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ABSTRACT Geometrical analysis of cone photoreceptor cells is important not only for ophthalmic diagno-

sis, but also for research on eye diseases. In this study, an automated cone photoreceptor cell segmentation

and identification method based on morphological processing and watershed algorithm is presented for

adaptive optics scanning laser ophthalmoscope images. Our method includes steps for image denoising,

rough segmentation, fine segmentation, small region removal, and identification. The effectiveness of the

proposed method was confirmed by comparing its results with those obtained manually yielding precision,

recall, and F1-score values of 93.6%, 98.0% and 95.8%, respectively. The performance of our method is

further verified by processing images with different cone photoreceptor cell densities from healthy retina and

an image from an eye with diabetic retinopathy. The experimental results show that our algorithm achieved

high accuracy in cone photoreceptor cell segmentation and identification in healthy retinas as well as in

retina with diabetic retinopathy.

INDEX TERMS Retinal images, adaptive optics scanning laser ophthalmoscope, image segmentation.

I. INTRODUCTION

Adaptive optics (AO) involves improving resolutions of opti-

cal instruments by correcting optical aberrations; this tech-

nology was originally used to eliminate the effects of atmo-

spheric distortion in astronomical telescopes [1] and was

subsequently introduced in retinal imaging to correct ocu-

lar aberrations [2]–[8]. As an AO integrated instrument, the

adaptive optics scanning laser ophthalmoscope (AO-SLO)

can be used to perform in vivo retinal imaging at a cel-
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lular level [4], [9]–[11]. Accordingly, AO-SLO images can

be used for segmentation and identification of cone pho-

toreceptor cells, which would be of significant importance

not only for understanding the cellular nature of retinal

diseases, thus improving their prognosis and diagnosis, but

also for the study of ophthalmic treatment efficacy and

examination. Although manual methods for segmentation

and identification of cone photoreceptor cells are accurate

and reliable, the associated labor costs and time required

to perform them are excessive. Therefore, several studies

aimed at the development of semi-automated and auto-

mated methods for segmentation and identification of cone
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photoreceptor cells have been conducted; these meth-

ods include non-learning [12]–[16], supervised-learning-

[17]–[19], and unsupervised-learning-based methods [20].

Although these methods achieve high accuracy in cone pho-

toreceptor cell segmentation and identification in healthy reti-

nas, there is no study that confirms the high accuracy of the

existing methods for all types of eye diseases. In fact, it was

reported that the existing methods achieve high accuracy in

cone photoreceptor cell segmentation and identification in

subjects with Stargardt disease [19], [20] and achromatop-

sia [17]. The major challenge encountered in cone photore-

ceptor cell segmentation and identification in subjects with

pathological eyes is that the distribution and appearance of the

photoreceptor cells differ from those in subjects with healthy

eyes. Therefore, after performing automated cone photore-

ceptor cell segmentation and identification, the errors in the

results are manually corrected and high accuracy is achieved

for some cases. To automatically segment and identify cone

photoreceptor cells in every type of pathological eye with

high accuracy, there is a need for a new method to be devel-

oped. One efficient way is to use existing methods that have

not yet been applied in the domain of cone photoreceptor cell

segmentation and identification inAO-SLO but are known for

their high accuracy in image segmentation and identification,

or to combine them.

Herein, we propose a new combination of morpholog-

ical processing and watershed algorithm to both segment

and identify cone photoreceptor cells in AO-SLO images to

achieve good performance not only for healthy eyes but also

for eyes with diabetic retinopathy. To confirm the effective-

ness of our proposed method, we compared our identification

results with those obtained manually in terms of precision,

recall, and F1-score. To further demonstrate the performance

of our method, the cone photoreceptor cell segmentation and

identification results for images with different cone photore-

ceptor cells densities from healthy retinae as well as for

an image of a pathological eye with diabetic retinopathy

obtained using our proposed approach are presented.

II. METHODS

In this section, our proposed automated image processing

method for segmentation and identification of cone photore-

ceptor cells is described. The flowchart for the proposed

image processing algorithm is shown in Fig. 1. It includes

five steps, namely image denoising, rough segmentation, fine

segmentation, small region removal, and cells identification.

First, an AO-SLO image is denoised by averaging multiple

registered images [21]. Second, the cone photoreceptor cells

were roughly segmented via adaptive threshold segmentation

and global morphological processing. Third, fine segmen-

tation was performed using local morphological processing

and watershed algorithm to further remove the conjunc-

tions between cone photoreceptor cells in the obtained rough

segmentation results. Fourth, segmented regions with areas

smaller than a threshold were removed to exclude regions

that do not contain cone photoreceptor cells. Finally, cone

FIGURE 1. Flowchart of our automated image processing method for the
segmentation and identification of cone photoreceptor cells.

photoreceptor cells were identified as the centroids of cone

photoreceptor cell-containing regions.

A. IMAGE DENOISING

Owing to the limited light exposure resilience of the human

eye, to ensure safety, the power of the AO-SLO imaging light

is low, which results in a low signal-to-noise ratio (SNR) in

AO-SLO images. To enhance the SNR in AO-SLO images,

we averaged multiple AO-SLO images that were registered

using the optical flow-based registration method [21]; in

particular, this registration method can be used to perform

accurate registration owing to its property of high number of

registration degrees of freedom [21]. An example of image

denoising on a representative image patch performed using

this method is shown in Fig. 2. As shown in the figure,

the noise in the image was significantly suppressed after

denoising was performed, which confirms the effectiveness

of the denoising method presented in [21]. To achieve fine

segmentation of cone photoreceptor cells, we magnified the

denoised image five times isotropically via bicubic interpo-

lation after image denoising and before segmentation.

B. ROUGH SEGMENTATION

1) ADAPTIVE THRESHOLD SEGMENTATION

As the initial segmentation approach for cone photore-

ceptor cells, we applied adaptive threshold segmentation

using OpenCV’s adaptiveThreshold function in Python

with a mean-value-based threshold. Compared with unified

threshold segmentation, the adaptive threshold segmentation

approach can be used to segment cone photoreceptor cells

in an image adaptively based on the differences in image
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FIGURE 2. Example of image denoising using the optical flow-based
image registration method: (a) Image before denoising, and (b) image
after denoising.

FIGURE 3. Comparison of adaptive threshold segmentation with unified
threshold segmentation approaches. (a) Input image. (b) Adaptive
threshold segmentation results on image, and (c–f) unified threshold
segmentation results with intensity thresholds of 60, 80, 100, and 120,
respectively.

intensities in the image. To demonstrate the much better

segmentation performance of the adaptive threshold segmen-

tation approach than unified threshold segmentation which

is simpler, we compared segmentation results obtained using

it with those obtained using four different unified threshold

segmentation approaches; these results are shown in Fig. 3.

As shown in the figure, the adaptive threshold segmentation

approach yielded much better results (Fig. 3(b)) than the

unified threshold segmentation approaches, which all failed

to simultaneously segment the dark and bright cone photore-

ceptor cells (Figs. 3(c)–(f)).

FIGURE 4. Example of global morphological processing. (a) Adaptive
threshold segmentation results as input, (b) large segmented regions,
(c) small segmented regions, and (d) final combined results of global
morphological processing.

2) GLOBAL MORPHOLOGICAL PROCESSING

To further segment the entire cone photoreceptor cells image

after adaptive threshold segmentation, we performed global

morphological processing on the adaptive threshold seg-

mentation results. First, morphological opening operation

was applied to adaptive threshold segmentation results to

obtain large segmented regions. Second, morphological top-

hat operation is applied to the adaptive threshold segmenta-

tion results and then the morphological opening operation

is applied to the top-hat operation results to obtain small

segmented regions. Finally, the large and small segmented

regions were combined together to obtain the final global

morphological processing results. An example of global mor-

phological processing using a representative image patch—

the same as that used in Fig. 3—is shown in Fig. 4.

C. FINE SEGMENTATION

1) LOCAL MORPHOLOGICAL PROCESSING

Despite performing rough segmentation, there is a high

probability that some cone photoreceptor cells still appear

conjoined with other cone photoreceptor cells in the rough

segmentation results. To partially address this problem,

we apply local morphological processing on the rough seg-

mentation results to segment regions containing conjunctions

between cone photoreceptor cells. First, regions whose con-

tours lengths were longer than the threshold of one cone

photoreceptor cell contour-length were regarded as regions

containing conjunctions. Second, the minimum enclosing

rectangles for each conjunction-containing region were

cropped. Third, morphological processing was applied on

each rectangle; here, the algorithm for morphological

105788 VOLUME 8, 2020



Y. Chen et al.: Automated Cone Photoreceptor Cell Segmentation and Identification in AO-SLO Images

FIGURE 5. Example of local morphological processing. (a) Segmentation
results before local morphological processing, and (b) after processing.
The red arrow indicates a successful segmentation, while the blue arrow
indicates an unsuccessful segmentation.

processing is the same as that of global morphological pro-

cessing, which combines the morphological opening opera-

tion processed results and morphological top-hat operation

processed results, albeit with different parameters. Finally,

the rough segmentation results are updated with the morpho-

logical processing results obtained for the enclosing rectan-

gles. An example of local morphological processing using a

representative image patch is shown in Fig. 5. As shown in the

figure, the conjunction-containing regions may (red arrow) or

may not (blue arrow) be segmented.

2) WATERSHED ALGORITHM

After localmorphological processing, conjunction-containing

regions could still be present in the segmentation results.

To solve this problem, we apply the watershed algorithm to

the local morphological processing results. First, we used

the same method to determine conjunction-containing

regions, which detect those regions by the threshold of the

contour-length of one cone photoreceptor cell, and crop rect-

angles for each of them as in the local morphological process-

ing step. Second, we applied marker-controlled watershed

segmentation to each rectangle using OpenCV’s watershed

function in Python. As inputs for themarker-controlledwater-

shed segmentation method, markers of objects, background,

and unknown areas are required. Accordingly, the markers of

objects were obtained via threshold-based segmentation as

follows:

Object Area={Location | Intensity(Location)≥Threshold}

(1)

where

Threshold = min(Bright) + [max(Bright) – min(Bright)]

× Rate (2)

Bright = {Intensity | Intensity ≥ mean(Intensities)} (3)

In (2) and (3), ‘‘Bright’’ refers the bright part of an

AO-SLO image, while ‘‘Rate’’ is a value between 0 and 1.

Furthermore, the markers for the background were set to

be the same as local morphological processing results,

while the remainder of the area was set as markers for

FIGURE 6. Watershed algorithm results for an example image patch
(a) before processing, and (b) after processing. Red arrows indicate two
successful segmentations.

FIGURE 7. Example of small region removal and cells identification.
(a) Denoised AO-SLO image (b) before small region removal, and (c) after
small region removal. (d) Final results of cell segmentation and
identification.

unknown area. The marker-controlled watershed segmen-

tation method was applied iteratively with an increasing

rate until no conjunction-containing regions are detected

using the previously discussed contour-length threshold-

based method. After these iterations, the contour-length of

each region is smaller than the threshold of the contour-length

of one cone photoreceptor cell, thereby avoiding the

conjunction-containing regions. Finally, the localmorpholog-

ical processing results are updated with all marker-controlled

watershed segmented rectangles. As an example, the results

of the watershed algorithm applied to a representative

image patch are shown in Fig. 6; as shown in the figure,

the conjunction-containing regions are clearly segmented

(see red arrows).

D. SMALL REGION REMOVAL AND CELLS IDENTIFICATION

Even after conducting the segmentation processing described

above, some regions without cells are still present owing to

different reasons, such as residual noise. The areas of regions

that do not contain cells are typically smaller the regions

containing cells. Thus, regions whose areas are smaller than

20% of the largest region are removed from consideration.

After this removal, the remaining regions are regarded as our

final cone photoreceptor cells image segmentation results;

these results are then used for cells identification, which

is performed by calculating the centroid of each region in

the final segmentation results. An example of small region

removal and cells identification using a representative image

patch is shown in Fig. 7. As shown in the figure, the regions

without cells were removed after small region removal; the

final cell segmentation and identification results are shown

in Fig. 7(d).
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TABLE 1. Comparison of the Performance Metrics for Cell Identification:
Overall Precision, Recall, and F1-Score Outcomes.

III. RESULTS

An AO-SLO with an imaging rate of 30 Hz was used for

imaging the posterior parts of human eyes. The field-of-

view (FOV) on the human retina is 1.5◦ and the correspond-

ing frame size is approximately 512 × 449 pixels. Thus,

a transverse area of approximately 445 µm × 445 µm was

scanned based on the assumption of a focal length of 17 mm

for the human eye. The details of the AO-SLO system are

described in [22]. Drops of tropicamide (1%) and phenyle-

phrine hydrochloride (2.5%) were administered to dilate the

pupil to a diameter in the range of 6–8 mm before imaging.

Light exposure adhered to the maximum permissible expo-

sure limits set by the American National Standards Insti-

tute [23] throughout the procedure.

The typical computational times for processing a

100 × 100 image using our automated approach are as

follows: 49.71 s for image denoising, 0.0020 s for adaptive

threshold segmentation, 0.0069 s for global morphological

processing, 0.0259 s for local morphological processing,

0.0189 s for the application of the watershed algorithm,

0.0199 s for small region removal, and 0.0050 s for cells iden-

tification. These computational times were obtained using a

system with an Intel Core i5-9400 CPU operating at 2.90

GHz, NVIDIA GeForce GTX 1660 Ti graphic card, and

16.0 GB RAM. The image denoising program was written in

MATLAB (64-bit) and CUDA 10.0, while the other programs

were written in Python (64-bit).

To evaluate the effectiveness of our method, images of five

eyes from five healthy subjects were obtained near the cen-

ters of their foveae. Our method successfully segmented and

identified cone photoreceptor cells in the five eye datasets,

and three typical results are shown in Fig. 8. The overall

precision, recall, and F1-score for identification are listed

in Table 1 and the values are compared with those of the

state-of-the-art algorithm [12]; here, manual identification of

cone photoreceptor cells is considered as the ground truth.

Based on the performance results, it is clear that our algorithm

achieves high accuracy for identification of cone photore-

ceptor cells, which is very approaching to the state-of-the-

art algorithm [12] near the centers of foveae from healthy

subjects.

To test the performance of our method for different

types of images, three examples with input AO-SLO images

(Figure 9a), corresponding segmented images (Figure 9b),

and corresponding identification results (Figure 9c) are pre-

sented in Figure 9. The first and second examples were

images from different locations of a healthy retina whose

cone photoreceptor cells density is smaller than examples in

Fig. 8 (shown in the top two rows in Figure 9). The bottom

FIGURE 8. Typical segmentation results obtained using the proposed
method. (a) Input AO-SLO images. (b) Segmentation of cells in the
images. (c) Identification of cells in the images.

FIGURE 9. Performance of the proposed method. (a) Input AO-SLO
images. (b) Segmentation of cells in the images. (c) Identification of cells
in the images.

row in Fig. 9 shows an example of an AO-SLO image of

an eye with diabetic retinopathy [24] along with the corre-

sponding segmentation and identification results. Based on

the examples show in Figure 9, it is clear that our algorithm

also provided accurate segmentation results for images with

smaller cone photoreceptor cells density as well as diabetic

retinopathy.
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IV. DISCUSSION

As mentioned earlier, an efficient way to enable automatic

segmentation and identification of cone photoreceptor cells

in every type of pathological eye is to use methods that

have not yet been applied in cone photoreceptor cell seg-

mentation and identification in AO-SLO, but are known for

their high accuracy in image segmentation and identifica-

tion, or their combinations. In this regard, we presented

the modified versions of three famous methods [25]–[27]

as promising solutions for dealing with some types of eye

diseases.

V. CONCLUSIONS

In this study, an automated method for segmentation and

identification of cone photoreceptor cells was proposed.Mor-

phological processing and watershed algorithm were primary

approaches used in our method for segmentation and iden-

tification of cone photoreceptor cells in AO-SLO images.

The effectiveness of our proposed approach was confirmed

based on the results of adaptive threshold segmentation,

global morphological processing, local morphological pro-

cessing, watershed algorithm, small region removal, and

cells identification. To further confirm the performance of

our proposed method, we compared the cone photoreceptor

cells identification results with those of manual identifica-

tion and obtained precision, recall, and F1-score metrics

of 93.6%, 98.0%, and 95.8% for cells identification, respec-

tively, which is very approaching to the ones of state-of-the-

art algorithm [12] near the centers of foveae from healthy

subjects. In addition, the performance of our method was

also demonstrated for different types of images, including

those with smaller cone photoreceptor cells densities and

diabetic retinopathy. The experimental results show that our

algorithm can achieve high accuracy in cone photoreceptor

cell segmentation and identification in healthy retinas as well

as in retina with diabetic retinopathy. Our proposed method

would be helpful for standard ophthalmic examinations

as well as the geometrical analysis of cone photoreceptor

cells.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their

valuable suggestions.

REFERENCES

[1] H. W. Babcock, ‘‘The possibility of compensating astronomical seeing,’’

Publ. Astronomical Soc. Pac., vol. 65, no. 386, pp. 229–236, 1953.

[2] A. Roorda, F. Romero-Borja, W. J. Donnelly, III, H. Queener,

T. J. W. Hebert, and M. C. Campbell, ‘‘Adaptive optics scanning laser

ophthalmoscopy,’’ Opt. Express, vol. 10, pp. 405–412, May 2002.

[3] S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer,

‘‘Large-field-of-view, modular, stabilized, adaptive-optics-based scanning

laser ophthalmoscope,’’ J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 24, no. 5,

pp. 1313–1326, 2007.

[4] R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng,

W. Zou, and S. A. Burns, ‘‘Adaptive optics scanning laser ophthalmoscope

with integrated wide-field retinal imaging and tracking,’’ J. Opt. Soc.

Amer. A, Opt. Image Sci., vol. 27, no. 11, pp. A265–A277, 2010.

[5] A. Dubra and Y. Sulai, ‘‘Reflective afocal broadband adaptive optics

scanning ophthalmoscope,’’ Biomed. Opt. Express, vol. 2, no. 6,

pp. 1757–1768, 2011.

[6] N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney,

and S. A. Boppart, ‘‘Computational high-resolution optical imaging of the

living human retina,’’Nature Photon., vol. 9, no. 7, pp. 440–443, Jul. 2015.

[7] J. Lu, B. Gu, X. Wang, and Y. Zhang, ‘‘High speed adaptive optics

ophthalmoscopy with an anamorphic point spread function,’’Opt. Express,

vol. 26, no. 11, pp. 14356–14374, 2018.

[8] S. Mozaffari, V. Jaedicke, F. Larocca, P. Tiruveedhula, and A. Roorda,

‘‘Versatile multi-detector scheme for adaptive optics scanning laser oph-

thalmoscopy,’’ Biomed. Opt. Express, vol. 9, no. 11, pp. 5477–5488, 2018.

[9] A. W. Dreher, J. F. Bille, and R. N. Weinreb, ‘‘Active optical depth

resolution improvement of the laser tomographic scanner,’’ Appl. Opt.,

vol. 28, no. 4, pp. 804–808, 1989.

[10] J. Liang, D. R. Williams, and D. T. Miller, ‘‘Supernormal vision and high-

resolution retinal imaging through adaptive optics,’’ J. Opt. Soc. Amer. A,

Opt. Image Sci., vol. 14, pp. 2884–2892, Nov. 1997.

[11] H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R.Williams,

‘‘Improvement in retinal image quality with dynamic correction of the

eye’s aberrations,’’ Opt. Express, vol. 8, no. 11, pp. 631–643, 2001.

[12] K. Y. Li and A. Roorda, ‘‘Automated identification of cone photoreceptors

in adaptive optics retinal images,’’ J. Opt. Soc. Amer. A, Opt. Image Sci.,

vol. 24, no. 5, pp. 1358–1363, 2007.

[13] A. Turpin, P. Morrow, B. Scotney, R. Anderson, and C. Wolsley, ‘‘Auto-

mated identification of photoreceptor cones using multi-scale modelling

and normalized cross-correlation,’’ in Proc. Int. Conf. Image Anal. Pro-

cess., Berlin, Germany: Springer, 2011, pp. 494–503.

[14] S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt,

and S. Farsiu, ‘‘Automatic cone photoreceptor segmentation using graph

theory and dynamic programming,’’ Biomed. Opt. Express, vol. 4, no. 6,

pp. 924–937, 2013.

[15] D. M. Bukowska, A. L. Chew, E. Huynh, I. Kashani, S. L. Wan, P. M.Wan,

and F. K. Chen, ‘‘Semi-automated identification of cones in the human

retina using circle Hough transform,’’ Biomed. Opt. Express, vol. 6, no. 12,

pp. 4676–4693, 2015.

[16] J. Liu, H. Jung, A. Dubra, and J. Tam, ‘‘Automated photoreceptor cell

identification on nonconfocal adaptive optics images using multiscale cir-

cular voting,’’ Invest. Ophthalmol. Vis. Sci., vol. 58, no. 11, pp. 4477–4489,

2017.

[17] D. Cunefare, C. S. Langlo, E. J. Patterson, S. Blau, A. Dubra, J. Carroll,

and S. Farsiu, ‘‘Deep learning based detection of cone photoreceptors

with multimodal adaptive optics scanning light ophthalmoscope images

of achromatopsia,’’ Biomed. Opt. Express, vol. 9, no. 8, pp. 3740–3756,

2018.

[18] D. Cunefare, L. Fang, R. F. Cooper, A. Dubra, J. Carroll, and S. Farsiu,

‘‘Open source software for automatic detection of cone photoreceptors

in adaptive optics ophthalmoscopy using convolutional neural networks,’’

Sci. Rep., vol. 7, no. 1, pp. 1–11, Dec. 2017.

[19] B. Davidson, A. Kalitzeos, J. Carroll, A. Dubra, S. Ourselin,

M. Michaelides, and C. Bergeles, ‘‘Automatic cone photoreceptor

localisation in healthy and stargardt afflicted retinas using deep learning,’’

Sci. Rep., vol. 8, no. 1, pp. 1–13, Dec. 2018.

[20] C. Bergeles, A. M. Dubis, B. Davidson, M. Kasilian, A. Kalitzeos,

J. Caroll, A. Dubra, M. Michaelides, and S. Ourselin, ‘‘Unsupervised

identification of cone photoreceptors in non-confocal adaptive optics scan-

ning light ophthalmoscope images,’’ Biomed. Opt. Express, vol. 8, no. 6,

pp. 3081–3094, 2017.

[21] Y. Chen, Y. He, J. Wang, W. Li, L. Xing, F. Gao, and G. Shi, ‘‘Automated

optical flow based registration for adaptive optics scanning laser ophthal-

moscope,’’ IEEE Photon. J., vol. 12, no. 2, pp. 1–9, Apr. 2020.

[22] Y. Wang, Y. He, L. Wei, X. Li, J. Yang, H. Zhou, and Y. Zhang, ‘‘Bimorph

deformable mirror based adaptive optics scanning laser ophthalmoscope

for retina imaging in vivo,’’ Chin. Opt. Lett., vol. 15, no. 12, 2017,

Art. no. 121102.

[23] American National Standard for Safe Use of Lasers, A. N. S. Inst., Laser

Inst. Amer., Orlando, FL, USA, 2007.

[24] S. A. Burns, A. E. Elsner, K. A. Sapoznik, R. L. Warner, and T. J. Gast,

‘‘Adaptive optics imaging of the human retina,’’ Prog. Retin. Eye Res.,

vol. 68, pp. 1–30, Jan. 2019.

[25] S. Wen, W. Liu, Y. Yang, and T. Huang, ‘‘Generating realistic videos from

keyframes with concatenated GANs,’’ IEEE Trans. Circuits Syst. Video

Technol., vol. 29, no. 8, pp. 2337–2348, Aug. 2019.

VOLUME 8, 2020 105791



Y. Chen et al.: Automated Cone Photoreceptor Cell Segmentation and Identification in AO-SLO Images

[26] M. Dong, S. Wen, Z. Zeng, Z. Yan, and T. Huang, ‘‘Sparse fully convolu-

tional network for face labeling,’’ Neurocomputing, vol. 331, pp. 465–472,

Feb. 2019.

[27] S. Wen, M. Dong, Y. Yang, P. Zhou, T. Huang, and Y. Chen,

‘‘End-to-end detection-segmentation system for face labeling,’’ IEEE

Trans. Emerg. Topics Comput. Intell., early access, Nov. 6, 2019,

doi: 10.1109/TETCI.2019.2947319.

YIWEI CHEN was born in Fujian, China, in 1987.

He received the B.S. degree from Nanjing Univer-

sity, in 2010, and the Ph.D. degree from the Uni-

versity of Chinese Academy of Sciences, in 2015.

He was Postdoctoral Researcher with the Univer-

sity of Tsukuba, from 2015 to 2017, and with the

University of Murcia, from 2018 to 2019. Since

2019, he has been working with the Suzhou Insti-

tute of Biomedical Engineering and Technology

Chinese Academy of Sciences as an Associate

Professor.

YI HE was born in Sichuan, China, in 1984.

He received the B.S. degree in automation from the

University of Science and Technology of China,

in 2008, and the Ph.D. degree in measurement

technology and instrument from the University

of Chinese Academy of Sciences, in 2013. From

2013 to 2015, he was a Research Assistant with

The Key Laboratory on Adaptive Optics, Chinese

Academy of Sciences, Chengdu, China, where he

has been an Associate Professor, since 2016. He is

the author of more than 40 articles and more than 40 inventions. His research

interests include biophotonics, biomedical imaging, confocal scanning imag-

ing, optical coherence tomography imaging, and optical wavefront engineer-

ing for human eyes high-resolution imaging.

JING WANG was born in Kunming, Yunnan,

China, in 1995. She received the B.S. degree

in biomedical engineering from Beijing Jiaotong

University, Beijing, in 2017. She is currently pur-

suing the master’s degree in biomedical engineer-

ing with the University of Science and Technology

of China, Hefei. Her research interests include

image processing andmachine learning-based reti-

nal disease automatic diagnosis and treatment

systems.

WANYUE LIwas born inXinjiang, China, in 1993.
She received the B.S. degree from Xidian Uni-

versity, Xi’an, in 2016. She is currently pur-

suing the Ph.D. degree with the University of

Science and Technology of China. She is also

doing her research work with the Suzhou Institute

of Biomedical Engineering and Technology Chi-

nese Academy of Sciences. Her research interests

include biomedical optical imaging and image pro-

cessing techniques. Furthermore, she is specializ-

ing in the application of deep learning in medical image and optical image

reconstruction.

LINA XING was born in Henan, China, in 1985.

She received the B.S. and M.S. degrees from the

College of Mechanical engineering, Chongqing

University, in 2007 and 2010, respectively. From

2010 to 2012, she was a Research Trainee with

the Changchun Institute of Optics, FineMechanics

and Physics. From 2012 to 2017, she has been

a Research Assistant with Changchun Institute of

Optics, Fine Mechanics and Physics. Since 2017,

she has been a Research Assistant with the Key

Medical Optics Laboratory of Jiangsu Province, Suzhou Institute of Biomed-

ical Engineering and Technology. Her research interests include optical

machine structure design and optical coherence tomography research.

FENG GAO was born in Jiangxi, China, in 1991.

He received the B.S. and M.S. degrees from the

College of Optoelectronic Information, University

of Electronic Science and Technology of China,

in 2013 and 2016, respectively. From 2016 to

2018, he was a Research Trainee with the Key

Medical Optics Laboratory of Jiangsu Province,

Suzhou Institute of Biomedical Engineering and

Technology. Since 2019, he has been a Research

Assistant. His research interests include optical

coherence tomography imaging and confocal ophthalmoscope research.

GUOHUA SHI was born in Zhejiang, China,

in 1981. He received the B.S. degree from the

Department of Optoelectronic Information Engi-

neering, Zhejiang University, Hangzhou, China,

in 2003, and the Ph.D. degree in optical engineer-

ing from the Institute of Optics and Electronics,

Chinese Academy of Sciences. He is currently a

Professor, the Ph.D. Advisor, the Director of the

Medical Optics Technology Laboratory, the Vice

Director of the Key Medical Optics Laboratory of

Jiangsu Province, Suzhou Institute of Biomedical Engineering and Tech-

nology, Chinese Academy of Sciences. His research interests include the

in vivo optical imaging and detecting method, as well as developing and

industrializing the corresponding optical medical instruments.

105792 VOLUME 8, 2020

http://dx.doi.org/10.1109/TETCI.2019.2947319

