
Automated Consistency Checking of
Requirements Specifications

CONSTANCE L. HEITMEYER, RALPH D. JEFFORDS, and
BRUCE G. LABAW
Naval Research Laboratory—Washington, D.C.

This article describes a formal analysis technique, called consistency checking, for automatic
detection of errors, such as type errors, nondeterminism, missing cases, and circular definitions, in
requirements specifications. The technique is designed to analyze requirements specifications
expressed in the SCR (Software Cost Reduction) tabular notation. As background, the SCR
approach to specifying requirements is reviewed. To provide a formal semantics for the SCR
notation and a foundation for consistency checking, a formal requirements model is introduced;
the model represents a software system as a finite-state automaton, which produces externally
visible outputs in response to changes in monitored environmental quantities. Results of two
experiments are presented which evaluated the utility and scalability of our technique for
consistency checking in a real-world avionics application. The role of consistency checking during
the requirements phase of software development is discussed.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/ Specifica-
tions; D.2.2 [Software Engineering]: Tools and Techniques; D.2.4 [Software Engineering]:
Program Verification; D.2.7 [Software Engineering]: Distribution and Maintenance—docu-
mentation; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs—mechanical verification; specification techniques; K.6.3 [Manage-
ment of Computing and Information]: Software Management—software development

General Terms: Documentation, Languages, Verification

Additional Key Words and Phrases: Application-independent properties, consistency checking,
formal requirements modeling, Software Cost Reduction (SCR) methodology, tabular notations

1. INTRODUCTION

Errors in requirements are pervasive, dangerous, and costly [Faulk 1995].
It is well known that the majority of software errors are introduced during
the requirements phase [GAO 1992]. There is also growing evidence that

This article is a revised and expanded version of a paper presented at the 2nd IEEE
International Symposium on Requirements Engineering (RE ’95) (York, England, Mar. 27–29,
1995).
This work was supported by ONR and SPAWAR.
Authors’ address: Naval Research Laboratory, Code 5546, Washington, D.C. 20375; email:
{heitmeyer; jeffords; labaw}@itd.nrl.navy.mil.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1049-331X/96/0700–0231 $03.50

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996, Pages 231–261.

requirements errors can lead to serious accidents. For example, a 1992
study found that the major source of safety-related software errors in
NASA’s Voyager and Galileo spacecraft were errors in functional and
interface requirements [Lutz 1993]. Unfortunately, fixing requirements
errors can be extremely costly, especially if the errors are detected late in
the software lifecycle. It is estimated that correcting requirements errors
late (e.g., during maintenance) can cost up to 200 times as much as
correcting the errors during the requirements phase [Boehm 1981; Fairley
1985]. Given the high frequency of requirements errors, the serious acci-
dents they may cause, and the high cost of correcting them late, techniques
for improving the quality of requirements documents and for early detec-
tion of requirements errors are crucial.
One promising approach to reducing requirements errors is to apply

formal methods during the requirements phase of software development.
By a formal method, we mean a development method based on some
formalism, such as a formal specification notation or a formal analysis
technique. A formal requirements specification can reduce errors by reduc-
ing ambiguity and imprecision and by making some instances of inconsis-
tency and incompleteness obvious. Formal analysis can detect many classes
of errors in requirements specifications, some of them automatically.
The SCR (Software Cost Reduction) requirements method was introduced

more than a decade ago to specify the software requirements of real-time
embedded systems unambiguously and concisely [Heninger 1980; Heninger
et al. 1978]. Recently, the method has been extended to describe system,
rather than simply software, requirements and to incorporate both func-
tional requirements (the values the system assigns to outputs) and non-
functional (e.g., timing and accuracy) requirements [Parnas and Madey
1995; van Schouwen 1990; van Schouwen et al. 1993]. Recent work has also
strengthened the method’s formal underpinnings [Faulk 1989; Parnas and
Madey 1995; van Schouwen 1990].
Designed for use by engineers, the SCR method has been successfully

applied to a variety of practical systems, including avionics systems, such
as the A-7 Operational Flight Program [Alspaugh et al. 1992; Heninger et
al. 1978], a submarine communications system [Heitmeyer and McLean
1983], and safety-critical components of the Darlington nuclear power plant
in Canada [van Schouwen et al. 1993]. More recently, a version of the SCR
method called CoRE [Faulk et al. 1992] was used to document require-
ments of Lockheed’s C-130J Operational Flight Program (OFP) [Faulk et
al. 1994]. The OFP consists of more than 100K lines of Ada code, thus
demonstrating the scalability of the SCR method.
While the above applications of SCR rely mostly on manual techniques,

effective use of the method in industrial settings will require powerful and
robust tool support. A significant barrier to industrial use of formal
methods to date has been the weakness of the methods associated with
given formalisms. Although much attention has been focused on the formal
aspects of formal methods, too little effort has been devoted to the support-
ing methods. To be useful in developing practical systems, not only must

232 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

formal methods provide rigor, in addition they must be supported by
robust, well-engineered tools. In many practical cases, a large amount of
detail is required to apply a formal method. This detail is difficult to
manage without some automation.
To provide automated support for the SCR requirements method, we are

developing a suite of prototype tools for constructing and analyzing formal
requirements specifications [Heitmeyer et al. 1995a]. The tools include a
specification editor for creating and modifying the specifications, a simula-
tor for symbolically executing the system based on the specifications, and
formal analysis tools for checking the specifications for selected properties.
One analysis tool, called a consistency checker, checks a requirements

specification for properties defined by our formal requirements model
[Heitmeyer et al. 1996]. Because the requirements model describes proper-
ties that all SCR requirements specifications must satisfy, the properties
checked by the consistency checker are independent of a particular applica-
tion. A second analysis tool, called a verifier, checks the specification for
critical application properties, such as timing properties [Heitmeyer and
Mandrioli 1996] and security properties [Landwehr et al. 1984]. Because
verification of application properties depends on a consistent requirements
specification, analysis using a verifier logically follows analysis with a
consistency checker.
Checking the consistency of an SCR requirements specification is usually

quite simple. For example, given a specification that includes a total
function F, the consistency checker analyzes F to make sure it is total (i.e.,
defined everywhere in F ’s domain). Although checking such properties is
usually straightforward, the number of times the properties need to be
checked in practical requirements specifications can become very large, and
thus reviewers must spend considerable time and effort verifying that the
specifications have the properties. In fact, in the certification of the
Darlington plant, Parnas [1993] has observed that the “reviewers spent too
much of their time and energy checking for simple, application-independent
properties” (such as the ones we describe in this article) which distracted
them from the “more difficult, safety-relevant issues.” Tools that automat-
ically perform such checks can save reviewers considerable time and effort,
liberating them to do more creative work.
An industrial-strength formal method should be usable by engineers,

scalable, and cost effective. Automated consistency checking as described in
this article is an important step in developing such a method for require-
ments specification. It is easy to use: after developing a requirements
specification in the SCR notation, a developer invokes the consistency
checker to find inconsistencies automatically. It scales up to handle practi-
cal applications: in two experiments, our automated consistency checker
found significant errors (that is, missing cases and nondeterminism) in the
requirements specification of a medium-size Navy application. These errors
were detected even though the specification had previously undergone
systematic, comprehensive checks by two independent review teams. These
results and the high cost (several million dollars) of the Darlington certifi-

Consistency Checking of Requirements Specifications • 233

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

cation effort, where such checks were done by hand, suggest that auto-
mated consistency checking is more cost effective than manual techniques.
After reviewing the SCR method for specifying requirements, this article

introduces our formal requirements model, describes consistency checks
based on the model, presents the results of experiments we conducted to
determine the utility of automated consistency checking, and discusses the
role of consistency checking in the software development process. The
contributions of this article include (1) formal definition and application of
a class of analysis, which we call consistency checking, for detecting
domain-independent errors in requirements specifications and (2) evidence
that software tools for automated consistency checking are usable, scalable,
and cost effective.

2. REVIEW OF THE SCR METHOD

2.1 Background

The purpose of a requirements document is to describe all acceptable
system implementations [Heitmeyer and McLean 1983]. The software
requirements document for the A-7 aircraft’s Operational Flight Program
was published in 1979 to demonstrate a systematic approach to producing
such a document. The A-7 document introduces many features associated
with the SCR requirements method—the tabular notation, the underlying
finite-state machine model, and special constructs for specifying require-
ments, such as conditions and events, input and output data items, mode
classes, and terms. Recently, a number of researchers, including Faulk
[Faulk 1989; Faulk et al. 1992; 1994], van Schouwen [van Schouwen 1990;
van Schouwen et al. 1993], and Parnas [Parnas and Madey 1995], have
extended and refined the original SCR method and strengthened its formal
foundations.
Faulk [1989] provided formal definitions for parts of the A-7 model. In

particular, condition tables, a special class of tables in SCR requirements
documents, are described as total functions and mode classes as finite-state
machines defined over events. Using mode classes to partition the state
space is a form of abstraction that not only makes analysis of the specifica-
tions more efficient, it also reduces redundancy and makes the specifica-
tions easier to understand. A deficiency in the original A-7 requirements
document, however, is that a mode class may be undefined in certain
states; for example, if no weapon is allocated, the Weapons mode class is
undefined. Faulk’s model defines a mode class in every state; for example,
when no weapon is allocated, the Weapons mode class is in mode None.
Using the original A-7 requirements document as a model, van Schouwen

[1990] published a system-level requirements specification for the Water
Level Monitoring System (WLMS), part of the shutdown system for a
nuclear power plant. The WLMS specification extends the SCR method

234 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

from software requirements to system requirements and demonstrates the
use of the method to describe a system’s accuracy and timing requirements
as well as its functional requirements. The Four-Variable Model of Parnas
and Madey [1995] provides a formal framework for the SCR method.

2.2 Four-Variable Model

The Four-Variable Model, illustrated in Figure 1, describes the required
system behavior, including the required timing and accuracy, as a set of
mathematical relations on four sets of variables—monitored and controlled
variables and input and output data items. A monitored variable repre-
sents an environmental quantity that influences system behavior, a con-
trolled variable an environmental quantity that the system controls. A
black-box specification of required behavior is given as two relations, REQ
and NAT, from the monitored to the controlled quantities. NAT, which
defines the set of possible values, describes the natural constraints on the
system behavior, such as constraints imposed by physical laws and the
system environment. REQ defines additional constraints on the system to
be built as relations the system must maintain between the monitored and
the controlled quantities.
In the Four-Variable Model, input devices (e.g., sensors) measure the

monitored quantities, and output devices set the controlled quantities;
input and output data items represent the values that the devices read and
write. The relation IN defines the mapping from the monitored quantities
to the input data items. The relation OUT defines the mapping from the
output data items (e.g., actuators) to the controlled quantities. The use of
monitored and controlled quantities to define the required behavior (rather
than input and output data items) keeps the specification in the problem
domain and allows a simpler specification.
Like the Four-Variable Model, our requirements model can be used to

describe both system requirements and software requirements. Our model
defines the system requirements by describing REQ, the required relation
between the monitored and controlled variables, and the software require-
ments by describing SOFT, the required relation between the input and
output data items. Below, the term input variable (output variable) repre-
sents a monitored variable (a controlled variable) when REQ is being
defined and an input data item (an output data item) when SOFT is being
defined.

Fig. 1. The Four-Variable Model.

Consistency Checking of Requirements Specifications • 235

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

The next section reviews the constructs and tabular notation used in SCR
requirements specifications in terms of the Four-Variable Model. Because
our initial requirements model emphasizes the system’s functions, the
discussion focuses on aspects of the Four-Variable Model that describe
functional behavior.

2.3 SCR Constructs

To specify the relations of the Four-Variable Model in a practical and
concise manner, four other constructs, each introduced in the A-7 require-
ments document [Heninger et al. 1978], are useful. These are modes, terms,
conditions, and events. A mode class is a state machine, defined on the
monitored variables, whose states are called system modes (or simply
modes) and whose transitions are triggered by events. Complex systems
are defined by several mode classes operating in parallel. Mode classes
reduce redundancy in the specifications by assigning a name (i.e., a mode)
to a logical expression used many times in the specifications and using the
name rather than repeating the logical expression. A term is an auxiliary
function defined on input variables, modes, or other terms that helps make
the specification concise. A condition is a predicate defined on one or more
system entities (a system entity is an input or output variable, mode, or
term) at some point in time. An event occurs when any system entity
changes value. A special event, called an input event, occurs when an input
variable changes value. A conditioned event occurs if an event occurs when
a specified condition is true.
To illustrate the SCR constructs, we consider a simplified version of the

control system for safety injection described by Courtois and Parnas [1993].
The system uses three sensors to monitor water pressure and adds coolant
to the reactor core when the pressure falls below some threshold. The
system operator blocks safety injection by turning on a “Block” switch and
resets the system after blockage by turning on a “Reset” switch. Figure 2
shows how SCR constructs are used to specify the requirements of the
control system within the framework of the Four-Variable Model. Water
pressure and the “Block” and “Reset” switches are represented as moni-
tored variables, WaterPres, Block, and Reset; safety injection as a controlled
variable, SafetyInjection; each sensor as an input data item; and the

Fig. 2. Requirements specification for Safety Injection.

236 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

hardware interface between the control system software and the safety
injection system as an output data item.1

The specification for the control system includes a mode class Pressure, a
term Overridden, and several conditions and events. The mode class Pres-
sure, an abstract model of the monitored variable WaterPres, contains three
modes, TooLow, Permitted, and High. At any given time, the system must be
in one of these modes. A drop in water pressure below a constant Low
causes the system to enter mode TooLow; an increase in pressure above a
larger constant Permit causes the system to enter mode High. The term
Overridden describes situations in which safety injection is blocked. An
example of a condition in the specification is “WaterPres , Low.” Events are
denoted by the notation “@T.” Two examples of events are the input event
@T(Block5On) (the operator turns Block from Off to On) and the condi-
tioned event @T(Block5On) WHEN WaterPres , Low (the operator turns
Block to On when water pressure is below Low).

2.4 SCR Tables

The tabular notation used in SCR specifications facilitates industrial
application of the method. Not only do engineers find tabular specifications
of requirements easy to understand and to develop; in addition, tables can
describe large quantities of requirements information concisely. Among the
tables in SCR specifications are condition tables, event tables, and mode
transition tables. Each table defines a mathematical function. A condition
table describes an output variable or term as a function of a mode and a
condition; an event table describes an output variable or term as a function
of a mode and an event. A mode transition table describes a mode as a
function of a mode and an event.
Tables I–III are part of REQ, the system requirements specification for

the control system. Table I is a mode transition table describing the mode
class Pressure as a function of the current mode and the monitored variable
WaterPres. The table defines all events that change the value of the mode
class Pressure. For example, the first row of Table I states, “If Pressure is
TooLow, and WaterPres rises to Low, then Pressure changes to Permitted.”
Events that do not change the value of the mode class are omitted from the

1 The example omits the SCR bracketing notation, e.g., *. . .* for a mode, /. . . / for an input
data item, !. . .! for a term, $. . .$ for an enumerated value, etc.

Table I. Mode Transition Table for Pressure

Consistency Checking of Requirements Specifications • 237

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

table. For example, if Pressure is TooLow, and WaterPres changes, but does
not reach Low, then Pressure is still TooLow after the event.
Table II is an event table describing the term Overridden as a function of

Pressure, Block, and Reset. Like mode transition tables, event tables make
explicit only those events that cause the variable defined by the table to
change. For example, the middle entry in the second row states, “If
Pressure is TooLow, and Block becomes On when Reset is Off, then
Overridden becomes true.” In contrast, if the mode class is High, and either
Block or Reset changes (from Off to On or vice versa), then the value of
Overridden does not change because the first row does not specify events
involving either Block or Reset. The entry “False” in an event table means
that no event can cause the variable defined by the table to assume the
value in the same column as the entry; thus, the entry “False” in row 1 of
Table II means that when the mode class is High no event can cause
Overridden to become true. The notation “@T(Inmode)” in a row of an event
table describes system entry into the group of modes in that row; for
example, “@T(Inmode)” in the second row of Table II means, “If the system
enters TooLow or Permitted, then Overridden becomes false.”
Table III is a condition table describing the controlled variable Safety-

Injection as a function of Pressure and Overridden. Table III states, “If
Pressure is High or Permitted, or if Pressure is TooLow and Overridden is
true, then SafetyInjection is Off; if Pressure is TooLow, and Overridden is
false, then SafetyInjection is On.” The entry “False” in the first row means
that SafetyInjection is never On when Pressure is High or Permitted.
While condition tables define total functions, event tables and mode

transition tables may define partial functions. This is partly because some
events cannot occur when certain conditions are true. For example, in the
control system introduced above, the event @T(Pressure5High) WHEN
Pressure5TooLow cannot occur, because starting from TooLow, the system
can only enter Permitted when a state transition occurs. In other cases and
as illustrated by the examples above, an event may occur that does not

Table II. Event Table for Overridden

Table III. Condition Table for SafetyInjection

238 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

change the value of a variable defined by an event table or a mode
transition table. In our formal requirements model (see below), we make
the functions defined by event tables and mode transition tables total by
assigning a variable its old value whenever the table does not explicitly
define the variable’s value.

3. FORMAL REQUIREMENTS MODEL

Although earlier requirements models—namely, Faulk’s automaton model
[Faulk 1989], the model underlying van Schouwen’s specification [van
Schouwen 1990; van Schouwen et al. 1993], and the Four-Variable Model—
define some aspects of the SCR requirements method, these models are too
abstract to provide a formal basis for our tools. To provide a precise and
detailed semantics for the SCR method, our model represents the system to
be built as a finite-state automaton and describes the input and output
variables, conditions, events, and other constructs that make up an SCR
specification in terms of that automaton. Our automaton model, a special
case of the Four-Variable Model, describes all monitored and controlled
quantities, even those which are naturally continuous, as discrete vari-
ables. Moreover, because our model abstracts away timing and imprecision,
it describes the “ideal” system behavior. The system requirements are
easier to specify and to reason about if the ideal behavior is defined first.
Then, the required precision and timing can be specified separately.
Heitmeyer [1996] describes how our model can be extended to include
continuous variables and to describe timing and accuracy requirements.
Although SCR requirements specifications may be nondeterministic, our

initial model is formulated in terms of functions and is therefore restricted
to deterministic systems. In some cases, nondeterminism may not be an
error—in fact, requiring determinism can lead to overspecification of the
requirements. However, like many practitioners and some researchers, we
recognize and stress the advantages of deterministic specifications. As
Berry and Gonthier [1992] have observed, “The importance of determinism
cannot be overestimated; deterministic systems are one order of magnitude
simpler to specify, debug, and analyze than nondeterministic ones.”
Our requirements model, inspired by the formal security model presented

by Landwehr et al. [1984], defines sets of modes, entity names, values, and
data types and a special function TY, which maps an entity to its legal
values. The model defines system state in terms of the entities, a condition
as a predicate on the system state, and an input event as a change in an
input variable which triggers a new system state. It also describes how a
set of functions, called table functions, can be derived from the SCR tables.
These table functions define the transform T, a special case of REQ (or
SOFT), which maps the current state and an input event to a new state.
Below, we present excerpts from our requirements model [Heitmeyer et al.
1996] along with examples taken from the system requirements specifica-
tion for the simple control system introduced above. To clarify the presen-

Consistency Checking of Requirements Specifications • 239

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

tation, some definitions of the requirements model (e.g., the definitions of
conditions and events) have been simplified.

3.1 System State

We assume the existence of the following sets.

—MS is the union of N nonempty, pairwise disjoint sets, namely, M1, M2,
. . . , MN, called mode classes. Each member of a mode class is called a
mode.

—TS is a union of data types, where each type is a nonempty set of values.
—VS 5 MSøTS is the set of entity values.
—RF is a set of entity names. RF is partitioned into four subsets: MR, the
set of mode class names; IR, the set of input variable names; GR, the set
of term names; and OR, the set of output variable names. For all r [RF,
TY(r) # VS is the type (i.e., the set of possible values) of the entity
named r. For all r [MR, there exists i such that TY(r) 5 Mi; we say
that r is the mode class name corresponding to Mi.

A system state s is a function that maps each entity name r in RF to a
value. More precisely, for all r [RF: s(r) 5 v, where v [TY(r). Thus, by
assumption, in any state s, the system is in exactly one mode from each
mode class, and each entity has a unique value.

Example. In the sample system, the set of entity names RF is defined by

RF 5 {Block, Reset, WaterPres, Pressure, SafetyInjection, Overridden}.

The type definitions include

TY(Pressure) 5 {TooLow, Permitted, High}
TY(WaterPres) 5 {0, 1, 2, . . . , 2000}
TY(Overridden) 5 {true, false}
TY(Block) 5 {On, Off }.

3.2 Conditions

Conditions are defined on the values of entities in RF. A simple condition is
true, false, or a logical statement r J v, where r [RF is an entity name; J
[{5, Þ, ., ,, $, #} is a relational operator; and v [TY(r) is a constant
value.2 A condition is a logical statement composed of simple conditions
connected in the standard way by the logical connectives ∧, ∨, and ¬.

3.3 Events

The “@T” notation denotes various events. A primitive event is denoted
@T(r 5 v), where r is an entity in RF, and v [TY(r). An input event is a
primitive event @T(r 5 v), where r [IR is an input variable. A basic event

2 Here, v is defined as a constant to keep the notation simple. Our formal model generalizes
this definition, so that v may be any function defined on entities whose range is TY(r).

240 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

is denoted @T(c), where c is any simple condition. A simple conditioned
event is denoted @T(c) WHEN d, where @T(c) is a basic event, and d is a
simple condition or a conjunction of simple conditions. Any basic event
@T(c) can be expressed as the simple conditioned event @T(c) WHEN true.
A conditioned event e is composed of simple conditioned events connected
by the logical connectors ∧ and ∨.
A simple conditioned event represents the logical expression defined by

@T~c! WHEN d 5 ¬c ∧ c9 ∧ d, (1)

where the unprimed version of condition c denotes c in the old state, and
the primed version denotes c in the new state. Given c 5 r J v, we define
c9 as c9 5 (r J v)9 5 r9 J v. Based on these definitions and the standard
predicate calculus, any conditioned event can be expressed as a logical
statement. An event occurs if the logical statement that the event repre-
sents evaluates to true for a given old state and a given new state.

Example. Applying the definition in (1), the conditioned event
@T(Block5On) WHEN Reset5Off can be rewritten as BlockÞOn ∧
Block95On ∧ Reset5Off. This event occurs if both Block and Reset are Off
in the old state and if Block is switched On in the new state.

3.4 System (Software System)

A system (software system) is a 4-tuple, 5 (Em, S, s0, T), where

—Em is a set of input events,
—S is the set of possible system states,
—s0 is a special state called the initial state, and
—T, the system transform, is a partial function3 from Em 3 S into S.

A basic assumption, called the One-Input Assumption, is that exactly one
input event occurs at each state transition.4

3.5 Ordering the Entities

To compute an entity’s value in the new state, the transform function may
use the values of entities in both the old state and the new state. To
describe the entities needed in the new state, each entity r is associated
with a subset of RF called the new state dependencies set. For each input
variable, the new state dependencies set is empty. For each entity defined
by a condition table, the set contains the entity naming the associated

3 T is a partial function because not all input events can occur in a given state. For example,
in the control system, Block cannot change to On if Block is already On.
4 Atlee and Gannon [1993] present an alternate definition of a conditioned event, namely,
@T(c) WHEN d 5 ¬ c ∧ c9 ∧ d ∧ d9. When c and d define independent input variables,
Definition (1) and the One-Input Assumption imply this alternative definition. Although we
prefer Definition (1) because the alternate definition makes the expression of certain condi-
tioned events overly complex, we see advantages in making two WHEN operators available to
specifiers, namely, WHEN d – d and WHEN9 d – d ∧ d9.

Consistency Checking of Requirements Specifications • 241

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

mode class and all entities appearing in conditions in the table’s body. For
each entity defined by an event table or a mode transition table, the set
contains all entities appearing in the table as part of a basic event and, if
@T(Inmode) appears in the table, the associated mode class. These new
state dependencies impose a partial ordering on the set RF. Using these
sets, the entities in RF can be ordered as a sequence R, where for all i and
j such that ri and rj belong to R, ri depends directly on rj implies that ri
follows rj in R (that is, i . j).

Example. The condition table in Table III shows that the controlled
variable SafetyInjection depends on two entities in the new state, the mode
class Pressure and the term Overridden. Hence, the new state dependencies
set for SafetyInjection is the set {Pressure, Overridden}. The partial ordering
of the entities based on the new state dependencies is determined as
follows: the three monitored variables are first because they only depend on
changes in the environment. Next is the mode class Pressure, which
depends on WaterPres. Next is the term Overridden, which depends on
Pressure and two monitored variables, Block and Reset. The last entity in
the partial ordering is SafetyInjection. A sequence R satisfying this partial
ordering is

R 5 ^WaterPres, Block, Reset, Pressure, Overridden, SafetyInjection&.

In sequence R, r1 5 WaterPres, r2 5 Block, . . . , and r6 5 SafetyInjection.

3.6 Table Functions

Each SCR table describes a table function, called Fi, which defines an
output variable, a term, or a mode class ri. Each entity ri defined by a table
is associated with exactly one mode class, Mj, 1 # j # N. To represent the
relation between an entity and a mode class, we define a function m, where
m(i) 5 j if and only if entity ri is associated with mode class Mj. Using this
notation, Mm(i) denotes the mode class associated with entity ri.

Example. The single mode class in this specification is Pressure. Hence,
N 5 1, and M1 5 TY(Pressure) 5 {TooLow, Permitted, High}. Because all
three entities defined by tables, namely, r4 5 Pressure, r5 5 Overridden,
and r6 5 SafetyInjection, are functions of Pressure, we have m(4) 5 m(5) 5
m(6) 5 1.

Table IV. Condition Table—Typical Format

242 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Presented below for condition, event, and mode transition tables is a typical
format and a description of how the table function is derived from a given
table.

3.7 Condition Tables

Table IV shows a typical format for a condition table with n 1 1 rows and
p 1 1 columns. Each condition table describes an output variable or term
ri as a relation ri defined on modes, conditions, and values. More precisely,
ri 5 {(mj, cj,k, vk) [Mm(i) 3 Ci 3 TY(ri)}, where Ci is a set of conditions
defined on entities in RF. The relation ri must satisfy the following four
properties:

(1) The mj and the vk are unique.
(2) øj51

n mj 5 Mm(i) (all modes in the associated mode class are included).
(3) For all j: ∨k51

p cj,k 5 true (Coverage: the disjunction of the conditions
in each row of the table is true).

(4) For all j, k, l, k Þ l; cj,k ∧ cj,l 5 false (Disjointness: the pairwise
conjunction of conditions in a row of the table is always false).

To make explicit entity ri’s dependencies on other entities, we consider
an alternate form Fi of the relation ri. The four properties above ensure
that Fi is a total function. Properties (1) and (4) ensure that Fi is a
function, while Properties (2) and (3) guarantee totality. To define Fi, we
require the new state dependencies set, { yi,1, yi,2, . . . , yi,ni

}, where yi,1, is
the entity name for the associated mode class, and yi,2, . . . , yi,ni

are
entities that appear in some condition c in Ci. Based on this set and ri, we
define ri as a function Fi as follows:

ri 5 Fi~ yi,1 ,· · ·, yi,ni! 5 5
v1
v2···
vp

if ∨ j51
n ~ yi,1 5 mj ∧ cj,1!

if ∨ j51
n ~ yi,1 5 mj ∧ cj,2!

if ∨ j51
n ~ yi,1 5 mj ∧ cj, p!

The function Fi is called a condition table function.

Example. Based on the new state dependencies set {Pressure, Overrid-
den} and Table III, the condition table function for SafetyInjection, denoted
F6, is defined by

Table V. Event Table—Typical Format

Consistency Checking of Requirements Specifications • 243

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

SafetyInjection5

F6(Pressure, Overridden) 5 5
Off if Pressure 5 High ∨ Pressure 5 Permitted ∨

(Pressure 5 TooLow ∧ Overridden 5 true)

On if Pressure 5 TooLow ∧ Overridden 5 false

3.8 Event Tables

Table V illustrates a typical format for an event table with n 1 1 rows and
p 1 1 columns. Each event table describes an output variable or term ri as
a relation ri between modes, conditioned events, and values, i.e., ri 5 {(mj,
ej,k, vk) [Mm(i) 3 Ei 3 TY(ri)}, where Ei is a set of conditioned events
defined on entities in RF. The relation ri must satisfy the following two
properties:

(1) The mj and the vk are unique.
(2) For all j, k, l, k Þ l; ej,k ∧ ej,l 5 false (Disjointness: the pairwise

conjunction of events in a row of the table is always false).

As with condition tables, we make explicit ri’s dependency on other entities
by extending the relation ri to an alternate form Fi. The One-Input
Assumption and the two properties above ensure that Fi is a function. The
“no change” part of Fi’s definition (see below) guarantees totality.
To define Fi, we require both the new state dependencies set { yi,1, . . .,

yi,ni
} and an old state dependencies set { xi,1, xi,2, . . ., xi,mi

}, which contains
the associated mode class xi,1 along with all entities appearing in some ei, j
in the associated table. Based on the old state dependencies, the new state
dependencies, and ri, Fi is defined by

r9i 5 Fi~ xi,1 , · · · , xi,mi , y9i,1, · · · , y9i,ni! 5 5
v1

v2
···
vp

ri

if ∨ j51
n ~ xi,1 5 mj ∧ ej,1!

if ∨ j51
n ~ xi,1 5 mj ∧ ej,2!

if ∨ j51
n ~ xi,1 5 mj ∧ ej, p!

otherwise (i.e., no change).

The function Fi is called an event table function. Note that if none of the ej,k
occurs, then the entity ri defined by Fi retains its value in the old state.

Example. Both the old state dependencies set and the new state depen-
dencies set for Overridden, {Block, Reset, Pressure, Overridden} and {Block,
Reset, Pressure}, can be derived from Table II. Based on these sets and
Table II, the event table function for Overridden is defined by

244 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Overridden95

F5(Block, Reset, Pressure, Overridden, Block9, Reset9, Pressure9)5

5
true

false

Overridden

if (Pressure 5 TooLow ∧ Block9 5 On ∧ Block 5 Off ∧
Reset 5 Off) ∨ (Pressure 5 Permitted ∧ Block9 5 On ∧
Block 5 Off ∧ Reset 5 Off)

if (Pressure 5 TooLow ∧ Reset9 5 On ∧ Reset 5 Off) ∨
(Pressure 5 Permitted ∧ Reset9 5 On ∧ Reset 5 Off) ∨
(Pressure9 5 High ∧ Pressure Þ High) ∨
((Pressure9 5 Permitted ∨ Pressure9 5 TooLow) ∧
¬ (Pressure 5 Permitted ∨ Pressure 5 TooLow))

otherwise

3.9 Mode Transition Tables
Table VI shows a typical format for a mode transition table for an entity ri
that names a mode class Mm(i). The table describes ri as a relation ri 5
{(mj, ej,k, mj,k) [Mm(i) 3 Ei 3 Mm(i)}, where Ei is a set of conditioned
events defined on entities in RF. The relation ri must satisfy the following
four properties:
(1) The mj are unique.
(2) For all k Þ l, mj,k Þ mj,l, and for all j and for all k, mj Þ mj,k.
(3) For all j, k, l, k Þ l; ej,k ∧ ej,l 5 false (Disjointness: the pairwise

conjunction of conditioned events in a row of the table is always false).
(4) Let m0 be the initial mode. Then, Mm(i) # {m u Q*(m0, m)}, where

Q(m1, m2) if and only if ri(m1, e, m2) for some e and Q* is the
reflexive and transitive closure of Q (Reachability: each mode must be
reachable from the initial mode).

It is easy to show that a mode transition table with the format in Table VI
can be expressed in the format shown in Table V for an event table. Hence,
a mode transition table can be expressed as an event table function.
Example. Based on Table I, the old and new dependencies sets for the

mode class Pressure are {WaterPres, Pressure} and {WaterPres}. Given these
sets and Table I, the table function for Pressure is defined by

Pressure9 5

F4 (Pressure, WaterPres, WaterPres9) 5

5
TooLow

High

Permitted

Pressure

if Pressure 5 Permitted ∧ WaterPres9 , Low ∧
WaterPres øLow

if Pressure 5 Permitted ∧ WaterPres9 $ Permit ∧
WaterPres àPermit

if (Pressure 5 TooLow ∧ WaterPres9 $ Low ∧
WaterPres àLow) ∨ (Pressure 5 High ∧
WaterPres9 , Permit ∧ WaterPres ø Permit)

otherwise.

Consistency Checking of Requirements Specifications • 245

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

4. AUTOMATED CONSISTENCY CHECKING

Listed below are consistency checks derived from our formal requirements
model. These checks, which determine whether the specifications are well
formed, are independent of a particular system state. Because they can be
performed without executing the system (or the specification), these checks
are a form of static analysis.

—Proper Syntax. Each component of the specification has proper syntax.
For example, each condition and event is well formed.

—Type Correctness. Each variable has a defined type, and all type defini-
tions are satisfied. For example, given any expression of the form r 5 v,
where r is an entity and v a value, v [TY(r) must hold.

—Completeness of Variable and Mode Class Definitions. The value of each
controlled variable, term, and mode class is defined. (Most variables will
be defined by tables, but standard mathematical definitions may be given
for some controlled variables and terms.)

—Initial Values. Initial values are defined for all mode classes, input
variables, terms, and output variables. Initial values are not required for
entities defined by condition tables, since they can be derived from the
tables.

—Reachability. Every mode in a mode class is statically reachable from
the initial mode of the mode class. This is a check of Property (4) for
Mode Transition Tables.

—Disjointness. To make the specifications deterministic, each condition,
event, and mode transition table must satisfy the Disjointness property.
That is, in a given state, each controlled variable, mode class, and term is
defined uniquely.

—Coverage. Each condition table satisfies the Coverage property. That is,
each variable described by a condition table is defined everywhere in its
domain.

—Lack of Circularity. No circularities exist among the new dependencies
sets. This property checks that the entities are partially ordered.

Table VI. Mode Transition Table—Typical Format

246 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Clearly, some checks must precede others. For example, checks for proper
syntax must precede type checking, and type checking should precede
checking for the Coverage property.

4.1 Checking for Disjointness and Coverage

The most computationally expensive checks are checks for Disjointness and
Coverage. To check these properties, the consistency checker determines
whether a logical expression is a tautology. For example, to check two
entries c1 and c2 in a row of a condition table for Disjointness, the
consistency checker evaluates the logical expression c1 ∧ c2 5 false. To
check the entries c1, c2, . . . , cn in a row of a condition table for Coverage,
the tool evaluates the logical expression c1 ∨ c2 ∨ . . . cn 5 true. To
determine whether these logical expressions are tautologies, our tool ap-
plies a tableaux-based decision procedure that encodes the algorithm in
Smullyan [1968].

Examples. Checking the consistency of Table VII, a modification of the
condition table in Table III, reveals four errors. The third row has two type
errors: SafetyInjection has the values Off and On, not False and True. The
second row violates two properties of condition tables—namely, Coverage
(Overridden ∨ Overridden 5 OverriddenÞ true) and Disjointness (Overridden
∧ Overridden 5 Overridden Þ false).
Disjointness, the second property required of event tables, is violated if

events in two different columns, say e1 and e2, overlap, i.e., e1 ∧ e2 Þ
false. Table VIII is a variation of the event table in Table II. Running the
consistency checker detects a Disjointness error in the second row of Table
VIII. In checking for Disjointness, the consistency checker evaluates the
expression, [@T(Block5On) WHEN Reset5Off] ∧ [@T(Block5On) ∨
@T(Reset5On)] 5 false. Below, we show that this expression is not a
tautology.

Table VII. Modified Table for Safety Injection

Table VIII. Modified Table for Overridden

Consistency Checking of Requirements Specifications • 247

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

[@T(Block 5 On) WHEN Reset 5 Off] ∧ [@T(Block 5 On) ∨
@T(Reset 5 On)]

5 [@T(Block 5 On) WHEN Reset 5 Off ∧ @T(Block 5 On)] ∨ [@T(Block 5
On) WHEN Reset 5 Off ∧ @T(Reset 5 On)] (Distributive Law)

5 [Block 5 Off ∧ Block9 5 On ∧ Reset 5 Off ∧ Block 5 Off ∧
Block9 5 On] ∨ [Block 5 Off ∧ Block9 5 On ∧ Reset 5 Off ∧
Reset 5 Off ∧ Reset9 5 On] (By (1))

5 [Block 5 Off ∧ Block9 5 On ∧ Reset 5 Off] ∨ false
(One-Input Assumption)

5 Block 5 Off ∧ Block9 5 On ∧ Reset 5 Off

Þ false

Because the expression does not evaluate to false, the specified behavior is
nondeterministic, i.e., there is at least one pair of states (s, s9), where the
event expression evaluates to true. In particular, if in TooLow or Permitted
mode the operator turns Block on when Reset is off, the system may
nondeterministically change Overridden to true or to false.
Some checks, such as syntax and type checking, are straightforward.

More complex are checks that depend on definitions, other than type
definitions, in different parts of the specification or checks that require
deductive reasoning. Consider, for example, checking the mode table in
Table I for nondeterminism. Nondeterminism can occur only if events in
the second and third rows overlap. These rows overlap if the expression
@T(WaterPres$Permit) ∧ @T(WaterPres,Low) evaluates to true in at least
one situation. Based on (1), this expression can be rewritten as WaterPres9
$ Permit ∧ WaterPres ¦ Permit ∧ WaterPres9 , Low ∧ WaterPres ø Low. By
assumptions on the constants, Permit . Low. This assumption and Water-
Pres9 $ Permit imply WaterPres9 $ Low, a contradiction. Hence, the
expression is always false and the defined behavior deterministic.
We have provided a semantic framework to reason formally about as-

sumptions, such as Permit . Low, that underlie a specification. Because, in
general, mechanical evaluation of such expressions is undecidable, we are
devising algorithms to identify and evaluate decidable subsets of these
expressions under a set of assumptions (see Bharadwaj [1996] for details).
For the general case, the tool may need user feedback to complete certain
checks.

4.2 Efficiency of Our Technique

The analysis performed by our consistency checker is quite efficient be-
cause it is based on static checks of components of an SCR requirements
specification rather than some form of reachability analysis. As noted
above, some checks, such as checks for proper syntax, type correctness, and
the completeness of definitions, are easy. Moreover, mode reachability can
be computed using standard search techniques in time linear in the
number of transitions in the mode class. Similarly, checking for lack of

248 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

circularity requires time linear in the number of arcs in the new state
dependencies graph.
Our definition of the transform function T simplifies checking that T is

complete (for each input event that may occur, at least one new system
state is completely defined) and deterministic (at most one new system
state is defined). Determinism and completeness are guaranteed if the
following properties are satisfied for each input event that occurs (see
Heitmeyer et al. [1996] for details):

—Lack of circularity,
—Properties (1)–(4) for condition tables,
—Properties (1)–(2) for event tables, and
—Properties (1)–(3) for mode transition tables.

As we indicate above, checking for Disjointness and Coverage amounts to
checking that logical formulas on conditions or events are tautologies.
Although tautology checking may have worst-case behavior that is expo-
nential in the size of the expression [Garey and Johnson 1979], we expect
this not to occur in practice. In particular, the use of modes to partition the
system state means that Disjointness and Coverage checking is decom-
posed into small, independent subproblems. Thus Coverage checking for
condition tables can be performed independently for each row (rather than
checking all rows together for missing cases). Similarly, each condition
table, event table, and mode transition table can be checked for Disjoint-
ness by analyzing each pair of cells in a row (rather than checking two
columns at a time). Another benefit of using modes arises in analyzing
Coverage errors: in our consistency checker, the same analysis that detects
an error also identifies the specific cause of the error (i.e., the missing
cases) and its precise location in the table. Section 6 compares our approach
to Disjointness and Coverage checking with other approaches.
Our experience with consistency checking is that the number of subprob-

lems and the size of each subproblem grow rather slowly. In contrast, using
state reachability techniques, such as model checking, to check for Disjoint-
ness and Coverage would be more expensive, because the cost of reachabil-
ity analysis increases exponentially with the size of the specification. Thus
we expect that our techniques would not suffer the state explosion problem
that plagues techniques such as model checking. Section 5 demonstrates
that our technique for consistency checking scales to industrial-strength
systems. Because consistency checking is cheap, it makes sense to perform
consistency checking early and to postpone more expensive checks, such as
model checking, until later on.

4.3 Prototype Consistency Checker

A prototype consistency checker that performs all of the above checks has
been implemented [Heitmeyer et al. 1995a]. The tool is coded in C11 and
runs on X-Windows with Motif widgets to support its user interface. In a
typical session with the consistency checker, the user edits a specification

Consistency Checking of Requirements Specifications • 249

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

and then runs the consistency checker to test for selected properties. The
tool runs the selected checks, listing any errors it finds. The user may
select one of the listed errors to display the parts of the specification that
produced the error (e.g., the specific rows or entries of the relevant table).
In the case of a Coverage or a Disjointness error, the tool also displays a
counterexample. Once the user has made corrections, he or she can rerun
the consistency checker to ensure that (1) the error has been properly
corrected and (2) no new errors have been introduced.

5. APPLYING CONSISTENCY CHECKS

To evaluate the utility of checking requirements specifications for consis-
tency, we conducted two experiments. In the experiments, our consistency
checker was used to analyze both the condition tables and the mode
transition tables in a revised version [Alspaugh et al. 1992] of the require-
ments specification for the A-7’s Operational Flight Program (OFP). The
OFP contains more than 16K lines of tight assembly code. The revised
version corrects several errors in the original specification [Heninger et al.
1978] and uses a new tabular format to specify mode transitions [Faulk
1989; Meyer and White 1983].
The results of these two experiments demonstrate the efficiency of our

techniques. Running on a Sun SPARCstation 20, our consistency checker
checked all of the condition tables in the A-7 requirements specification for
both Disjointness and Coverage and all of the mode transition tables in the
specification for Disjointness. The tool required a total computation time of
245 seconds to perform the entire analysis. This time includes a time of 45
seconds to check the syntax and type correctness of the tables and only 200
seconds for all of the Disjointness and Coverage checks, 30 seconds for the
condition tables, and 170 seconds for the mode transition tables.
Below, we briefly describe the two experiments. Because each mode

transition table is much larger than any of the condition tables and thus
more complex to analyze, we describe the analysis of the mode transition
tables in somewhat more detail.

5.1 Checks on Condition Tables

In the first experiment, our tool checked 36 condition tables, a total of 98
rows, for both Coverage and Disjointness. The tool found 19 errors. Seven-
teen of these, distributed over 11 tables, proved to be legitimate errors.
Determining that the remaining two “errors” were correct required knowl-
edge that our simple tool lacked. Both cases involved three values describ-
ing combined settings of two input devices. We confirmed by hand that the
two rows containing these values satisfy the two properties.
Table IX describes the detected errors. Interestingly, all 17 are Coverage

errors. In this example, the reason why inspection is more likely to detect
Disjointness errors than Coverage errors is that all the information needed
to detect Disjointness errors is in the table, whereas the information
needed to detect Coverage errors is not. Finding Coverage errors requires

250 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

knowledge of all values a variable can take on. In Alspaugh et al. [1992],
some type information is provided, not in the table, but elsewhere in the
requirements document; in several cases, it is omitted entirely. (Omission
of type information is a consequence of the semiformal nature of the A-7
requirements document. Using our tool, which enforces the type definitions
of our requirements model, helps eliminate such errors. The tool checks
that each entity in the specification has a corresponding type definition and
that each logical expression in the specification satisfies the type defini-
tions.)

5.2 Checks on Mode Transition Tables

In a second experiment, our tool checked all three mode transition tables in
the A-7 requirements specification for Disjointness.5 The three mode
classes contain a total of 48 different modes (18 modes in the first mode
class, 7 modes in the second, and 23 modes in the third). The mode
transition tables together contain a total of 700 rows, each row a simple
conditioned event of the form described below. In analyzing the tables, our
tool found 57 Disjointness errors.6 Although many of the 57 instances of
Disjointness violations that the tool detected are undoubtedly errors, a few
probably are not, since some detected events may be impossible. (As noted
above, some events cannot occur when certain conditions are true.) Of the
57 errors, 54 occurred in the mode transition table for the Weapons mode
class and the remaining three in the mode transition table for the Align-
ment, Navigation, and Test mode class. Many of the Disjointness errors in
the table for the Weapons mode class were instances of nondeterminism
present in the prose requirements documents from which the A-7 require-

5 The authors learned recently of an experiment, reported in 1983, which also detected
Disjointness errors in mode transition tables [Meyer and White 1983]. However, our algorithm
is more general than the algorithm of Meyer and White.
6 Heitmeyer et al. [1995b] describe a similar experiment which used an early version of the
consistency checker and detected fewer errors. Although the early tool used the same
algorithm, it only looked for one Disjointness error for every pair of disjunctions it analyzed.
The current tool is designed to find all Disjointness errors and thus detected additional errors.

Table IX. Errors Detected in the Condition Tables in Alspaugh et al. [1992]

Class of Error
Number of
Occurrences Explanation

Slewing Variable 9 Behavior for 3rd value of variable Slewing is
missing.

GRTest 4 Some tables do not specify behavior for all
GRTest submodes.

Steering Phase 3 Early document used 3 values to describe
steering phases. Revised document uses 4
values, but some tables have not been updated.

Application Specific 1 (OTS ∨ Range to RMax , 0) and NOT (range to
target # 10 mi.) do not cover the domain.

Consistency Checking of Requirements Specifications • 251

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

ments specification [Alspaugh et al. 1992; Heninger et al. 1978] was
partially derived.
Table X, an excerpt from the revised A-7 specification, shows a small part

of the mode transition table for the Alignment, Navigation, and Test mode
class. (In Alspaugh et al. [1992], the complete table is more than 14 pages
long.) This table has the same formal definition as Table I, but a more
structured format. In contrast to Table I, headings in the middle column
are simple conditions defined on input variables and terms. Each row of the
middle column of Table X must contain a simple conditioned event. Consec-
utive rows of Table X that are not separated by a dashed line (e.g., rows 2
through 5) represent the disjunction of the simple conditioned events in the
rows. In Table X, the notation “@T” (“@F”) denotes the event occurring
when the corresponding condition becomes true (false); “t” (“f”) means that
the corresponding condition is true (false); and “-” means that the corre-
sponding condition may be either true or false. To clarify the relationship
between the two formats for mode transition tables, Table XI translates the
first five rows of Table X into the alternate format. (Except for the asterisks
denoting mode names, Table XI omits the special SCR brackets.)

Table X. Error Detected in the Mode Transition Table for the Alignment, Navigation, and
Test Mode Class [Alspaugh et al. 1992].

252 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Table X illustrates a Disjointness error detected by our consistency
checker. Because the two conditioned events marked by arrows are mapped
to different new modes, they should not overlap. That they do overlap is an
error. Overlap in these two events allows the system to transfer nondeter-
ministically from the mode Inertial (*I*) to either the mode Airborne
Alignment (*Airaln*) or the mode Doppler Inertial (*DI*). An event that
triggers either transition is

@T(Doppler up) WHEN ¬(CA stage complete) ∧ IMSMODE 5 Gndal ∧
latitude . 70 deg ∧ latitude ù 80 deg ∧ ¬(present position entered).

In its analysis, the consistency checker examined 4319 conjunctions.
Each conjunction was of the form e1 ∧ e2, where e1 and e2 are simple
conditioned events from two different rows of a mode transition table in the
format shown in Table X. The two rows have the same current mode but
different new modes. The arrow in Table X indicates two such rows. In the
analysis, the maximum number of @T, @F, t, or f entries in the analyzed
conjunctions (that is, entries not marked “-”) was 18. The average number
of @T, @F, t, or f entries in the analyzed conjunctions was 5.7. Of the 4319
conjunctions, 1691 required analysis by the tautology checker, while the
remainder were analyzed separately because they were trivial. Our experi-
ence is that the relatively small sized logical expressions analyzed in our
experiments do not require sophisticated algorithms, such as BDDs [Bryant
1986].

5.3 Manual vs. Automated Checks

Prior to its publication, the revised A-7 requirements document was care-
fully reviewed by two teams, one made up of NRL computer scientists
(including the third author), the other composed of engineers at the Naval
Air Warfare Center who maintained the OFP. As noted above, our tools
detected many significant errors that the reviewers missed.

Table XI. Mode Transition Table in Table X Expressed in the Alternate Format

Consistency Checking of Requirements Specifications • 253

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

That errors were detected should not diminish the credit due the review-
ers, who did very well given the large volume and complexity of the
requirements data. Tools, such as ours, can complement the efforts of
software developers. Human effort is crucial to acquiring the requirements
information and expressing it precisely. Further, after errors are detected
in the specification, human intervention is needed to correct them. How-
ever, once the developers have a reasonable draft of the requirements
specifications, software tools provide a quick, effective means of checking
the specification for properties, such as those described in Section 4. Not
only are tools more effective than people for checking these properties; in
addition, they can significantly reduce a labor-intensive task that humans
find tedious and boring.
Another important feature of our tool is its low cost. In the Darlington

certification effort, which cost over U.S. $40M, reviewers checked the
requirements specifications for application-independent properties, such as
Disjointness and Coverage. In addition, they searched for discrepancies
between the requirements specifications and the code specifications. A tool
that compares the specifications with a refinement will be more complex
than our consistency checker. However, this does not diminish the value of
our tool. Parnas [1993] has observed that the “majority of the theorems
that arose in the documentation and inspection of the Darlington Nuclear
Plant Shutdown Systems” were simple properties and that the reviewers
analyzed trivial tables for such properties in documents weighing 40
kilograms. Using tools to do this analysis should cost far less than using
people.

6. RELATED WORK

A number of industrial organizations, including Bell Laboratories [Hester
et al. 1981], Grumman [Meyer and White 1983], Ontario Hydro [Parnas et
al. 1991], and the Software Productivity Consortium [Faulk et al. 1992;
1994], have adapted the SCR method to specify the requirements of
practical systems. Additionally, Parnas [1992] and Janicki [1995] have
developed formal semantics for many classes of tables. The condition tables
and event tables defined formally in Section 3 are special cases of their
Inverted Tables. For another class of tables defined by Parnas [1994] called
Program Tables, a tool has been developed which checks for Disjointness
and Coverage errors before proceeding with additional analyses [Dai and
Scott 1995]. Below, we briefly describe other related work: two other
automated techniques for analyzing tabular specifications for consistency
and three other approaches for detecting errors in SCR requirements
specifications.

6.1 Decision Table Processors

Decision tables [Hurley 1983; Metzner and Barnes 1977], an early tabular
notation, have been used for many years to specify software requirements
because tables are easier to read than expressions in predicate logic.

254 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Typically, decision tables associate each system input with one or more
actions. A general difference between SCR and methods based on decision
tables is that, unlike SCR, which associates a separate table with each
output, term, and mode class in the specification, methods based on
decision tables do not usually decompose a specification into smaller, more
manageable pieces. A notable exception is an early specification technique,
called Systematics [Grindley 1968], which decomposes decision tables into
smaller tables similar to SCR’s condition tables.
Various techniques have been developed to process decision tables.

Although most techniques focus on code generation, a few have been
designed to do consistency checking. DETRAN (DEcision TRANslator) is an
early example of a technique that checks decision tables for both Disjoint-
ness and Coverage. It can also translate the contents of a given table to
either Fortran or Cobol [Hughes et al. 1968].

6.2 Tablewise

Tablewise [Hoover and Chen 1995], a recent technique for processing
decision tables, checks a table for both Disjointness (called “consistency”)
and Coverage (called “completeness”). Tablewise improves on earlier tech-
niques based on decision tables in that it supports nonboolean variables.
The format of the tables analyzed by Tablewise is similar to the format of
Table X, except conditions label rows (rather than columns), and each
column is associated with an action. A significant difference between the
tables processed by Tablewise and SCR tables is that the former do not use
modes.

6.3 RSML

The Requirements State Machine Language (RSML) [Heimdahl and Leve-
son 1995; Jaffe et al. 1991; Leveson et al. 1994], which was developed to
describe real-time process control systems, uses a combination of graphical
and tabular notations. RSML’s graphical notation (e.g., its superstates and
AND-decomposition) is largely borrowed from Statecharts [Harel 1987].
Additional features of RSML include directed one-to-one communication
among high-level state machines and the introduction of AND/OR tables to
describe the guards on state transitions. Each table in RSML describes the
conditions under which a given state machine can make a transition from
one state to a second state under a specific input event. An output event
may be associated with each table. The format of RSML tables resembles
the format of Table X, except (as in Tablewise) conditions label the rows of
the table rather than the columns. Also, in contrast to Table X, different
conditions need not be disjoint; events do not appear as table entries; and
modes (that is, modes defined explicitly as functions of input variables) are
not used.
A prototype tool has been developed for checking RSML specifications for

“completeness” (i.e., every possible input event and the system’s response
to the event must be stated explicitly) and “consistency” (i.e., no input

Consistency Checking of Requirements Specifications • 255

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

event can cause a transition to two different system states). The tool, which
has been applied to large portions of the requirements specification of
TCAS II, a collision avoidance system for commercial aircraft, detected
errors not caught by an extensive manual review.

6.4 Consistency Checking in Tablewise, RSML, and SCR

RSML and SCR each support next-state semantics that simplify checking
for completeness and determinism. In either case, these checks may be
performed by decomposing the problem into smaller subproblems and
avoiding the state explosion inherent in reachability techniques. However,
a comparison of these two requirements languages and of the analysis
required to perform Disjointness and Coverage checks is made difficult by
the major differences in the RSML and SCR semantics. Further investiga-
tion is required for a quantitative comparison of these two methods on
realistic systems.
Because decision table processors, such as Tablewise, do not structure a

specification using mode classes, they cannot exploit the reduced analysis
for Coverage and Disjointness errors that mode classes make possible. In
addition to reducing the analysis needed to check certain properties, our
use of modes also makes it easy to determine the specific cause of an error.
When Tablewise detects a Coverage error, additional analysis, called a
“structural analysis,” must be performed to determine the missing cases
[Hoover and Chen 1995]. This additional analysis is unnecessary for our
consistency checker: As noted above, the specific cases that have been
omitted as well as the precise row of the table in which the missing case
was detected are byproducts of the analysis our tool does in checking for
coverage errors.

6.5 Mechanical Proof Systems

Parnas [1993] describes 10 small theorems that must be true of sample
specifications expressed in his tabular notation (similar to other SCR
notation) and challenges the developers of automated proof systems to
prove the theorems. Two of the theorems, the Domain Coverage Theorem
and the Disjoint Domains Theorem, are slight variations of our Coverage
and Disjointness properties. SRI researchers accepted Parnas’ challenge. In
a recent paper [Rushby and Srivas 1993], they describe the mechanical
proof of nine of Parnas’ theorems using the “tcc-strategy” (tcc’s are type
correctness conditions) of SRI’s proof system PVS [Crow et al. 1995]. That
PVS can prove such theorems easily is not too surprising, since the proofs
are based on very simple logic. What is noteworthy about the PVS experi-
ment is that the theorems were proven automatically.

6.6 Model Checking

Atlee and Gannon [1993] have demonstrated the utility of model checking
[Clarke et al. 1986] for detecting application-dependent errors in SCR
requirements specifications. However, where our consistency checker tests

256 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

all tables and other definitions (e.g., definitions of types, constants, etc.) in
an SCR specification, their tool analyzes properties of the mode transition
tables only.

6.7 Detecting Errors by Inspection

A recent experiment [Porter and Votta 1994] compares the effectiveness of
three different inspection methods for detecting errors in SCR require-
ments specifications. Many of the errors of interest in the experiment can
be automatically detected by our consistency checker. Using a tool like ours
in conjunction with inspection is likely to detect more errors than either
alone.

7. REQUIREMENTS PROCESS

We envision the following process for developing requirements specifica-
tions. Although such a process is an idealization of a real-world process
[Parnas and Clements 1986], it shows how tools such as our consistency
checker can be used to produce high-quality requirements specifications.

(1) A formal notation, such as the SCR notation, is used to specify the
requirements.

(2) An automated consistency checker is used to check the specification for
syntax and type correctness, coverage, determinism, and other applica-
tion-independent properties.

(3) The specification is executed symbolically using a simulator to ensure
that it captures the customers’ intent.

(4) In the later stages of the requirements phase, mechanical support is
used to analyze the specification for application properties. Initially, a
small subset with fixed parameters and only a few states is extracted
from the specification, and a tool, such as a model checker, is used to
detect violations of the properties. This may be repeated, each time
with a different or larger subset. Once there is sufficient confidence in
the specification, a mechanical proof system may be used to verify the
complete requirements specification or, more likely, safety-critical com-
ponents.7

8. CONCLUDING REMARKS

Based on our experience with automated consistency checking to date, we
have four conclusions:

—Tools for consistency checking can be highly effective for detecting errors
in requirements specifications. Not only can such tools find errors people
miss; they can liberate people from the tedious and error-prone task of
checking specifications for consistency.

7 A similar approach that combines model checking and mechanical theorem proving is
suggested in Lincoln and Rushby [1993].

Consistency Checking of Requirements Specifications • 257

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

—Using properly designed tools for consistency checking is significantly
cheaper than using people.

—Computer-based analysis requires an explicit formal semantics, such as
that provided by our requirements model. This semantics provides the
basis for algorithms that do the analysis.

—The formal method on which our tools are based scales up. The method
detected a significant number of errors in a medium-size real-world
specification. The structuring of the specifications using modes contrib-
utes significantly to the efficiency with which consistency checks, espe-
cially Disjointness and Coverage checks, can be performed on large
requirements specifications.

In addition to the consistency checker described in this article, our
current toolset includes a specification editor and a simulator. We are also
developing a verifier that checks SCR requirements specifications for
application properties. An option being considered is to link the toolset with
a mechanical proof system to support both automated consistency checking
and computer-assisted verification. This would relieve us of the difficult
and error-prone task of encoding our own proof engine.
We expect our requirements model to provide a solid foundation for a

suite of analysis tools. We also expect the process outlined above, which
uses formal notation to specify requirements and computer-supported
formal analysis to detect errors, to produce high-quality requirements
specifications. Such specifications should produce systems that are more
likely to perform as required and less likely to lead to accidents. They
should also lead to significant reductions in software development costs.

ACKNOWLEDGMENTS

We gratefully acknowledge the work of C. Gasarch, D. Kiskis, and A. Rose
on the design and implementation of the consistency checker. P. Clements
detected an error in our formal definition of the Reachability property. S.
Faulk suggested that we define our requirements model within the frame-
work of the Four-Variable Model. D. Parnas provided helpful insights about
the Four-Variable Model. N. Shankar suggested the algorithm that our tool
uses to check for tautologies. R. Bharadwaj, M. Chechik, S. Faulk, J. Kirby,
and the anonymous referees provided useful comments that led to signifi-
cant improvements in our presentation. Finally, we gratefully acknowledge
K. Britton, D. Parnas, and J. Shore, who developed the original A-7
requirements document, for their pioneering work in the area of require-
ments specification.

REFERENCES

ALSPAUGH, T. A., FAULK, S. R., BRITTON, K. H., PARKER, R. A., PARNAS, D. L., AND SHORE,
J. E. 1992. Software requirements for the A-7E aircraft. Tech. Rep. NRL-9194, Naval
Research Laboratory, Washington, D.C.

ATLEE, J. M. AND GANNON, J. 1993. State-based model checking of event-driven system
requirements. IEEE Trans. Softw. Eng. 19, 1 (Jan.), 24–40.

258 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

BERRY, G. AND GONTHIER, G. 1992. The Esterel synchronous programming language: De-
sign, semantics, implementation. Sci. Comput. Program. 19, 2, 89.

BHARADWAJ, R. 1996. A generalized validity checker. Tech. Rep., Naval Research Labora-
tory, Washington, D.C. In preparation.

BOEHM, B. W. 1981. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, N.J.
BRYANT, R. E. 1986. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. C-35, 8 (Aug.), 677–691.

CLARKE, E. M., EMERSON, E., AND SISTLA, A. 1986. Automatic verification of finite state
concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8,
2 (Apr.), 244–263.

COURTOIS, P.-J. AND PARNAS, D. L. 1993. Documentation for safety critical software. In
Proceedings of the 15th International Conference on Software Engineering (ICSE’93) (Balti-
more, Md.). ACM, New York, 315–323.

CROW, J., OWRE, S., RUSHBY, J., SHANKAR, N., AND SRIVAS, M. 1995. A tutorial introduction
to PVS. Tech. Rep., Computer Science Laboratory, SRI International, Menlo Park, Calif.
Apr. Presented at WIFT ’95: Workshop on Industrial-Strength Formal Specification Tech-
niques (Boca Raton, Fla.).

DAI, H. AND SCOTT, C. K. 1995. AVAT, a CASE tool for software verification and validation.
In Proceedings of the IEEE 7th International Workshop on Computer-Aided Software
Engineering—CASE’95 (Toronto, Canada, July). IEEE, New York, 358–367.

FAIRLEY, R. 1985. Software Engineering Concepts. McGraw-Hill, New York.
FAULK, S. R. 1989. State determination in hard-embedded systems. Ph.D. thesis, Univ. of
North Carolina, Chapel Hill, N. Carol.

FAULK, S. R. 1995. Software requirements: A tutorial. Tech. Rep. NRL-7775, Naval Re-
search Laboratory, Washington, D.C.

FAULK, S. R., BRACKETT, J., WARD, P., AND KIRBY, J., JR. 1992. The CoRE method for
real-time requirements. IEEE Softw. 9, 5 (Sept.), 22–33.

FAULK, S. R., FINNERAN, L., KIRBY, J., JR., SHAH, S., AND SUTTON, J. 1994. Experience
applying the CoRE method to the Lockheed C-130J. In Proceedings of the 9th Annual
Conference on Computer Assurance (COMPASS ’94) (Gaithersburg, Md., June). IEEE, New
York, 3–8.

GAO. 1992. Mission critical systems: Defense attempting to address major software chal-
lenges. Tech. Rep. GAO/IMTEC-93-13, U.S. General Accounting Office, Washington, D.C.
Dec.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractibility: A Guide to the Theory
of NP-Completeness. Freeman, New York.

GRINDLEY, C. B. B. 1968. The use of decision tables within Systematics. Comput. J. 11, 2
(Aug.), 128–133.

HAREL, D. 1987. Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram. 8, 3 (June), 231–274.

HEIMDAHL, M. P. E. AND LEVESON, N. 1995. Completeness and consistency analysis of state-
based requirements. In Proceedings of the 17th International Conference on Software
Engineering (ICSE ’95) (Seattle, Wash., Apr.). ACM, New York, 3–14.

HEITMEYER, C. L. 1996. Requirements specification for hybrid systems. In Proceedings of
Hybrid Systems Workshop III. Lecture Notes in Computer Science, R. Alur, T. Henzinger,
and E. Sontag, Eds. Springer-Verlag, Norwell, Mass. To be published.

HEITMEYER, C. L. AND MANDRIOLI, D., Eds. 1996. Formal Methods for Real-Time Computing.
Vol. 5, Trends in Software. John Wiley and Sons Ltd., Chichester, England.

HEITMEYER, C. L. AND MCLEAN, J. 1983. Abstract requirements specifications: A new ap-
proach and its application. IEEE Trans. Softw. Eng. SE-9, 5 (Sept.), 580–589.

HEITMEYER, C. L., BULL, A., GASARCH, C., AND LABAW, B. 1995a. SCR*: A toolset for
specifying and analyzing requirements. In Proceedings of the 10th Annual Conference on
Computer Assurance (COMPASS ’95) (Gaithersburg, Md., June). IEEE, New York, 109–122.

HEITMEYER, C. L., JEFFORDS, R. D., AND LABAW, B. G. 1996. Tools for analyzing SCR-style
requirements specifications: A formal foundation. Tech. Rep., Naval Research Laboratory,
Washington, D.C. In preparation.

Consistency Checking of Requirements Specifications • 259

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

HEITMEYER, C. L., LABAW, B., AND KISKIS, D. 1995b. Consistency checking of SCR-style
requirements specifications. In Proceedings of RE ’95: 2nd IEEE International Symposium
on Requirements Engineering (York, England, Mar.). IEEE, New York, 56–63.

HENINGER, K. L. 1980. Specifying software requirements for complex systems: New tech-
niques and their application. IEEE Trans. Softw. Eng. SE-6, 1 (Jan.), 2–13.

HENINGER, K., PARNAS, D. L., SHORE, J. E., AND KALLANDER, J. W. 1978. Software require-
ments for the A-7E aircraft. Tech. Rep. 3876, Naval Research Laboratory, Washington, D.C.

HESTER, S. D., PARNAS, D. L., AND UTTER, D. F. 1981. Using documentation as a software
design medium. Bell Syst. Tech. J. 60, 8 (Oct.), 1941–1977.

HOOVER, D. N. AND CHEN, Z. 1995. Tablewise, a decision table tool. In Proceedings of the
10th Annual Conference on Computer Assurance (COMPASS ’95) (Gaithersburg, Md., June).
IEEE, New York, 97–108.

HUGHES, M. L., SHANK, R. M., AND STEIN, E. S. 1968. Decision Tables. MDI Publications,
Wayne, Pa.

HURLEY, R. B. 1983. Decision Tables in Software Engineering. Van Nostrand Reinhold, New
York.

JAFFE, M. S., LEVESON, N. G., HEIMDAHL, M. P. E., AND MELHART, B. E. 1991. Software
requirements analysis for real-time process control systems. IEEE Trans. Softw. Eng.
SE-17, 3 (Mar.), 241–258.

JANICKI, R. 1995. Towards a formal semantics of Parnas tables. In Proceedings of the 17th
International Conference on Software Engineering (ICSE ’95) (Seattle, Wash., Apr.). ACM,
New York, 231–240.

LANDWEHR, C. E., HEITMEYER, C. L., AND MCLEAN, J. 1984. A security model for military
message systems. ACM Trans. Comput. Syst. 2, 3 (Aug.), 198–222.

LEVESON, N. G., HEIMDAHL, M. P., HILDRETH, H., AND REESE, J. D. 1994. Requirements
specification for process-control systems. IEEE Trans. Softw. Eng. 20, 9 (Sept.).

LINCOLN, P. AND RUSHBY, J. 1993. A formally verified algorithm for interactive consistency
under a hybrid fault model. Tech. Rep. SRI-CSL-93-02, Computer Science Laboratory, SRI
International. Menlo Park, Calif. Mar.

LUTZ, R. R. 1993. Targeting safety-related errors during software requirements analysis. In
Proceedings of the 1st ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (Los Angeles, Calif., Dec.). ACM, New York.

METZNER, J. R. AND BARNES, B. H. 1977. Decision Table Languages and Systems. Academic
Press, New York.

MEYER, S. AND WHITE, S. 1983. Software requirements methodology and tool study for A6-E
technology transfer. Tech. Rep., Grumman Aerospace Corp., Bethpage, N.Y. July.

PARNAS, D. L. 1992. Tabular representation of relations. Tech. Rep. CRL-260, Telecommu-
nications Research Institute of Ontario (TRIO), McMaster Univ., Hamilton, Ontario, Can-
ada. Oct.

PARNAS, D. L. 1993. Some theorems we should prove. In Proceedings of the 1993 Interna-
tional Conference on HOL Theorem Proving and Its Applications (Vancouver, British
Columbia, Canada, Aug.). Lecture Notes in Computer Science, vol. 780. Springer-Verlag,
Berlin, 155–162.

PARNAS, D. L. 1994. Inspection of safety-critical software using program-function tables.
Tech. Rep. CRL-288, Communications Research Laboratory, McMaster Univ., Hamilton,
Ontario, Canada.

PARNAS, D. L. AND CLEMENTS, P. C. 1986. A rational design process: How and why to fake it.
IEEE Trans. Softw. Eng. SE-12, 2 (Feb.), 251–257.

PARNAS, D. L. AND MADEY, J. 1995. Functional documentation for computer systems. Sci.
Comput. Program. 25, 1 (Oct.), 41–61.

PARNAS, D. L., ASMIS, G., AND MADEY, J. 1991. Assessment of safety-critical software in
nuclear power plants. Nucl. Safety 32, 2 (Apr.–June), 189–198.

PORTER, A. A. AND VOTTA, L. G., JR. 1994. An experiment to assess different defect detection
methods for software requirements inspections. In Proceedings of the 16th International
Conference on Software Engineering (Sorrento, Italy, May). IEEE Computer Society Press,
Los Alamitos, Calif.

260 • Constance L. Heitmeyer et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

RUSHBY, J. AND SRIVAS, M. 1993. Using PVS to prove some theorems of David Parnas. In
Proceedings of the 1993 International Conference on HOL Theorem Proving and Its Applica-
tions (Vancouver, British Columbia, Canada, Aug.). Lecture Notes in Computer Science, vol.
780. Springer-Verlag, Berlin, 163–173.

SMULLYAN, R. M. 1968. First-Order Logic. Springer-Verlag, New York.
VAN SCHOUWEN, A. J. 1990. The A-7 requirements model: Re-examination for real-time
systems and an application for monitoring systems. Tech. Rep. TR 90-276, Queen’s Univ.,
Kingston, Ontario, Canada.

VAN SCHOUWEN, A. J., PARNAS, D. L., AND MADEY, J. 1993. Documentation of requirements
for computer systems. In Proceedings of RE’93: IEEE International Symposium on Require-
ments Engineering (San Diego, Calif., Jan.). IEEE Computer Society Press, Los Alamitos,
Calif., 198–207.

Received October 1995; revised December 1995; accepted April 1996

Consistency Checking of Requirements Specifications • 261

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

