
Automated Construction of JavaScript Benchmarks

Gregor Richards, Andreas Gal†, Brendan Eich†, Jan Vitek

S3Lab, Computer Science Dept., Purdue University
† Mozilla Foundation

Abstract

JavaScript is a highly dynamic language for web-based ap-

plications. Many innovative implementation techniques for

improving its speed and responsiveness have been devel-

oped in recent years. Industry benchmarks such as WebKit

SunSpider are often cited as a measure of the efficacy of

these techniques. However, recent studies have shown that

these benchmarks fail to accurately represent the dynamic

nature of modern JavaScript applications, and thus may be

poor predictors of real-world performance. Worse, they may

lead to the development of optimizations which are unhelp-

ful for real applications. Our goal in this work is to develop

techniques to automate the creation of realistic and represen-

tative benchmarks from existing web applications. We pro-

pose a record-and-replay approach to capture JavaScript ses-

sions which has sufficient fidelity to accurately recreate key

characteristics of the original application, and at the same

time is sufficiently flexible that a recording produced on one

platform can be replayed on a different one. We describe JS-

BENCH, a flexible tool for workload capture and benchmark

generation, and demonstrate its use in creating eight bench-

marks based on popular sites. Using a variety of runtime

metrics collected with instrumented versions of Firefox, In-

ternet Explorer, and Safari, we show that workloads created

by JSBENCH match the behavior of web applications.

Categories and Subject Descriptors C.4 [Performance of

systems]: Design studies; Measurement techniques; D.2.8

[Metrics]: Performance measures
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1. Introduction

JavaScript’s popularity has grown with the success of the

web. Over time, the scripts embedded in web pages have

become increasingly complex. Use of technologies such as

AJAX has transformed static web pages into responsive ap-

plications hosted in a browser and delivered through the web.

These applications require no installation, will run on any

machine, and can provide access to any information stored

in the cloud. JavaScript is the language of choice for writing

web applications. Popular sites such as Amazon, GMail and

Facebook exercise large amounts of JavaScript code. The

complexity of these applications has spurred browser devel-

opers to increase performance in a number of dimensions,

including JavaScript throughput [6].

Because browser performance can significantly affect a

user’s experience with a web application, there is commer-

cial pressure for browser vendors to demonstrate perfor-

mance improvements. As a result, browser performance re-

sults from a few well-known JavaScript benchmark suites

are widely used in evaluating and marketing browser im-

plementations. The two most commonly cited JavaScript

benchmark suites are WebKit’s SunSpider1 and Google’s

suite associated with their V8 JavaScript engine2. The

benchmarks in both of these suites, unlike real web ap-

plications, are small; V8 benchmarks range from approxi-

mately 600 to 5,000 lines of code, most SunSpider bench-

marks are even smaller. Unrepresentative benchmarks may

mislead language implementers by encouraging optimiza-

tions that are not important in practice and by missing op-

portunities for optimization that are present in the real web

applications but not in the benchmarks. Weak benchmarks

have had a negative impact on language implementations

in the past. For example, the SPECjvm98 benchmark suite

was widely used to evaluate Java [4] even though there was

agreement in the community it was not representative of real

applications. Dissatisfaction with SPECjvm98 led to the cre-

ation of the DaCapo benchmark suite, which includes realis-

tic programs [1].

1 www2.webkit.org/perf/sunspider/sunspider.html
2 v8.googlecode.com/svn/data/benchmarks/v6



In previous work we measured the behavior of real-world

JavaScript applications [13] and compared those results to

similar measurements for the industry standard benchmarks.

Figure 1 shows one visually striking example of the differ-

ence between the SunSpider benchmark suite and a real web

application, in this case the Google search engine. The fig-

ures show the accesses performed on objects over their lifes-

pan. Time is measured in events that have the object as a tar-

get for a read, add, delete and update operation. Object lifes-

pans are normalized to construction time (shown as a vertical

line in the graph). SunSpider is completely unrepresentative

of Google’s behavior. First, objects stay live for the duration

of the benchmark. Second, the vast majority of operations

are reads and adds. Third, once constructed, the “shape” of

objects, i.e. their fields and methods, stay unchanged. Lastly,

no fields or methods are deleted. None of these hold in the

Google code. The benchmark completely misses out on the

use of dynamic features of JavaScript such as object proto-

col changes and the extensive use of eval which we docu-

mented in [12]. Our claim in [13] was that industry bench-

marks should not be used to draw conclusions about the per-

formance of JavaScript engines on real-world web applica-

tions. Contemporary work came to the same conclusion [11].

At the time we did not provide an experimental validation of

this claim. We do this in the present paper (see Figure 19).

The goal of this work is to provide developers with the

means to create JavaScript benchmarks that are representa-

tive of the behavior of real-world web applications, so that

these benchmarks may enable evaluating the performance

of JavaScript implementations. In particular, these bench-

marks should contain instruction mixes that retain the dy-

namism we have observed in web applications. There are

multiple challenges that make the task difficult. Amongst

them, many web applications are constructed dynamically

by servers. Thus the same web page can have different

behaviors at different times. JavaScript code can come in

many forms: as embedded <script> tags in a HTML doc-

ument, files that are downloaded by the browser, or dy-

namically constructed strings of text that are executed by

eval. The code executed for any given web page is often

browser-specific, with different features activated depend-

ing on the browser capabilities or special algorithms to cir-

cumvent performance issues in some JavaScript implemen-

tations. Moreover while JavaScript is a single-threaded lan-

guage, JavaScript programs are exposed to a number of

sources of non-determinism. Web applications are event-

based applications in which mouse position and timing of

user actions can affect the behavior of the program, timed

events fire at different rates on different systems. All of these

features render the task of creating repeatable performance

benchmarks challenging.

In addition to the technical challenges, another feature of

real-world JavaScript applications is their fluidity. The tech-

nology used to design web applications and the expectations

0.0

0.2

0.4

0.6

0.8

1.0

Dead

Read

Update

Add

Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead

Read

Update

Add

Delete

Figure 1. Object timelines. Comparing the operations per-

formed on objects in industry standard benchmarks and web

applications. Above, SunSpider. Below, Google.

of the users are evolving rapidly, towards richer and more

behavior-intensive applications. This means that it is unclear

whether one fixed benchmark suite can remain relevant for

very long. Instead we argue that it is desirable to develop

tools that will allow any web developer to create a set of

benchmarks that capture the behaviors that are relevant to

that particular developer at the time. Until now, no strategy

for generating stand-alone, “push-button” replayable bench-

marks has been proposed. Our tool, JSBENCH, fills this gap

by automatically generating replayable “packaged” bench-

marks from large JavaScript-based web applications. We

achieve this goal by building a browser-neutral record-replay

system. While such a system can be used for other purposes

such as producing test cases or capturing crash-producing

JavaScript executions in the field, in this paper we focus

on using record-replay-based techniques to produce repre-

sentative benchmarks for evaluating JavaScript implementa-

tions. Following industry practice, we focus on throughput-

oriented performance measurements, leaving an assessment

of responsiveness to future work. Furthermore, we designed

JSBENCH to isolate the performance of JavaScript engines

from other compute-intensive browser tasks such as layout,

painting, and CSS processing. This allows for a head-to-head

comparison of JavaScript implementations across different

browsers. We aim to produce benchmarks that fulfill four re-

quirements:

1. Deterministic replay: multiple runs of a benchmark

should display the same behavior.



2. Browser-independence: a benchmark’s behavior should

not be affected by browser-specific features and should

execute on all browsers.

3. Fidelity: benchmarks should correctly mimic the behav-

ior of live interactions with a web application. As there

is no result in a web page, we focus on the execution of

events and changes to the web page.

4. Accuracy: benchmarks should be representative of the

performance and non-functional characteristics of the

original web applications.

Previous projects have either focused on recording client-

side user behavior (e.g. [9]) or proposed browser-based in-

strumentation and recording techniques [11, 13]. Client-side

recording can fail to intercept some of the JavaScript code

and requiring a proxy to be present at the time of replay.

Browser-based approaches do not help with the goal of syn-

thesizing browser-independent benchmarks.

In summary, this paper makes the following contribu-

tions:

• We propose a browser-independent record system, called

JSBENCH, for reliably capturing complex user-driven

applications based solely on JavaScript source-level in-

strumentation and generating benchmarks to faithfully

reproduce the applications’ behavior.
• We describe how the record-replay approach can be used

for producing deterministic replays of non-trivial pro-

grams and propose trace post-processing steps designed

to achieve high fidelity.
• Through demonstration, we show that complex web ap-

plications can be successfully captured using JSBENCH

with little effort.
• We demonstrate results for eight real, large JavaScript ap-

plications. Our evaluation includes a variety of runtime

metrics pertaining to the JavaScript engine behavior as

well as JavaScript-browser interactions, such as memory

usage, GC time, event loop behavior, DOM layout and re-

paint events, etc. These were obtained with instrumented

versions of Internet Explorer, WebKit and Firefox.

We emphasize that the benchmark generation strategy we

enable is most suitable for comparing and tuning the per-

formance of JavaScript interpreters and just-in-time compil-

ers. The immediate impact of this work is to evaluate the

impact of different implementation techniques for the lan-

guage. Longer term, we expect these benchmarks, coupled

with the data of [12, 13], to help language designers evolve

the language. We explicitly did not aim to evaluate perfor-

mance of web browsers. While our tool allows to capture

some of that behavior, we leave the task of dealing with as-

pects such as responsiveness and rendering to future work.

JSBENCH is open source and available from:

http://sss.cs.purdue.edu/projects/dynjs

2. Related Work

At the core of JSBENCH, we have devised a technique for

capturing a program, including its dynamically generated

components, and replaying it in the absence of the sur-

rounding execution environment (browser, file system, net-

work connections, etc.) and to do so deterministically. The

approach can be generalized to other languages and sys-

tems and has applications, including mock object genera-

tion for unit testing [3]. Replay techniques have been investi-

gated in the past, mostly for debugging purposes. Cornelis et

al. [2] and Dionne et al. [5] have surveyed and categorized

replay-based debuggers. In Dionne’s taxonomy, JSBENCH

is a data-based automatic replay system as it records data

exchanged between the program and its environment and re-

quires no human-written changes to the source of the mon-

itored program. Failure of a replay occurs if the program’s

interactions with its environment deviates from the recorded

trace. While unlikely, this can happen due to implemen-

tation difference between browsers. A self-checking mode

for each benchmark may be used to catch departures from

pre-recorded traces. Related systems have been proposed.

Mugshot [9] is a record-replay tool for JavaScript which

aims for the highest possible fidelity, and as such recreates

events exactly as they appeared in the original recording. Al-

though suitable for debugging, this mechanism is too fragile

for our goal of general-purpose replay, as it prevents the user

from dispatching events and requires specialized functions

to recreate every possible event that the browser could dis-

patch. The API’s for dispatching browser events are incon-

sistent between browsers, and furthermore require careful

tuning of the event infrastructure to assure that only the de-

sired handlers are called. This creates browser-inconsistency

and unpredictable overhead, both of which are unacceptable

for benchmarking. Our system does not depend on recreat-

ing and dispatching true browser events, and as such relies

only on the JavaScript language itself. This is simpler and

less obtrusive. Another difference is that Mugshot aims to

be an “always-on” system and thus must be extremely low-

overhead and deal with privacy issues. JSBENCH can afford

higher recording costs and needs not worry about confiden-

tiality of user data. Mugshot also requires a proxy at the time

of replay, which JSBENCH does not need. Ripley [14] re-

plays JavaScript events in a server-side replica of a client

program. DoDOM [10] captures user interaction sequences

with web applications to allow fault-injection testing for

detecting unreliable software components. While DoDOM

captures sequences of external interactions with a web ap-

plication for later replay, it assumes that later interactions

will be with the original web site. Additionally, there have

been several systems to instrument JavaScript at the source

level. JSBENCH in particular is based on the same frame-

work as AjaxScope [7] and Doloto [8]. However, our goal of

having minimum impact on the behavior of the original code

is quite different from these systems.



3. Record/Replay Principles and

Requirements

A JavaScript program running in a browser executes in

a single-threaded, event-driven fashion. The browser fires

events in response to end-user interactions such as cursor

movements and clicks, timer events, networks replies, and

other pre-defined situations. Each event may trigger the ex-

ecution of an event handler, which is a JavaScript function.

When that function returns, the JavaScript event loop han-

dles the next event. The timing and order of events is depen-

dent on the particular browser, system, and other environ-

mental factors. Thus, there is non-determinism due to the

order in which events are processed by the browser. The

same program will yield different results on different pro-

cessors (the rate of processing events is different) and differ-

ent browsers (the internal event schedule may be different).

The JavaScript code interacts with the browser, the network

and even indirectly the file system through a set of native

operations that have browser-specific semantics. Figure 2 il-

lustrates common sources of non-deterministic behavior in

JavaScript-based web applications. Since every browser im-

plements its own proprietary API’s, and frequently these

API’s are undocumented, Figure 2 is necessarily incomplete,

but from inspection and experience is a representative list

of sources of non-determinism which are portable between

browsers. Repeatability is further complicated by the fact

that all web applications are interacting with one or more

remote servers. These servers provide inputs to the program

and code of the application.

Presentation DOM objects

event handlers

Network XMLHttpRequest objects

event handlers

File System DOM objects (cookies)

Time Date, setTimeout

User input DOM objects

event handlers

Nondeterministic functions Math.random

Environment queries document.location, navigator

Figure 2. Sources of non-determinism in JavaScript-

based web applications. DOM objects mirror the layout of

the web page, Listeners are used to associate callbacks to

events, XHR objects provide asynchronous HTTP requests,

setTimeout associates a callback to timer events.

In order to create benchmarks that are reproducible, these

sources of non-determinism must be isolated. Thus, we are

looking to produce benchmarks that somehow approximate,

in a deterministic and browser-neutral fashion, these non-

deterministic programs. Ideally we would want a determin-

istic program that faithfully and accurately reproduces the

original program. Another challenge is that there is no clear

notion of output of a web based application, no single result

that it is intended to produce. To capture a web site and turn

it into a replayable benchmark, we propose a record/replay

approach with the following steps:

1. A client-side proxy instruments the original web site’s

code to emit a trace of JavaScript operations performed

by the program.

2. The trace is filtered to get rid of unnecessary information;

3. A replayable JavaScript program, with all non-

determinism replaced, is generated from the trace;

4. The program is recombined with HTML from the origi-

nal web site.

While it is an attractive cross-browser approach, benchmark

generation through JavaScript instrumentation has certain

disadvantages. By introducing new JavaScript code into the

replay (the code that removes non-determinism at the very

least must be added to the original program), there is un-

avoidable perturbation of the original behavior. If we fail to

fully instrument the code (such as would be the case when

eval is called) on code that was not observed by the instru-

mentation proxy, certain parts of the program may not be

recorded. We will now describe the properties and require-

ments for replayable programs.

Definition 1. The execution state of a web application con-

sists of the state of a JavaScript engine P and an environ-

ment E. A step of execution is captured by a transition re-

lation P |E
α

−→t P ′|E′ where α is a label and t is a time

stamp.

As shown in Figure 3, the set of labels is split into labels

representing actions initiated by the environment, αE (ei-

ther events or returns from calls to native browser functions),

and actions performed by the JavaScript engine, αP , which

include function calls and returns, property reads and writes,

object allocation, calls to native functions, etc. (These ac-

tions are modeled on TracingSafari [13], JSBENCH only

captures the subset of events needed for creating replays.)

αE Browser interactions

EVT f, v External event handled by function f

REP v Return value v from an external call

αP Trace events

APP f, v Call function f with arguments v

RET v Return value v from a call

GET v, p Read member p from object v

SET v, p, v’ Set member p from object v to v’

NEW f, v Create an object with constructor

function f

INV f , v Invoke external operation f

Figure 3. Trace events. Operations performed by a Java-

Script program and inputs from the environment.



Definition 2. A trace T is a sequence α1, t1, . . . , αn, tn
corresponding to an execution P |E

α1−→t1 . . .
αn−→tn P ′|E′.

We write P |E ⊢ T when execution of a configuration P |E
yields trace T .

For any given program P , the same sequence of end-user ac-

tions (e.g. mouse clicks, key presses, etc.) can result in a dif-

ferent E due to timing and network latency issues. Different

browsers will definitely lead to different environment behav-

ior. Thus, requiring traces to be exactly equal is overly strin-

gent. As there is no single output, we consider two traces to

be equivalent if the display elements shown by the browser

are identical. This notion of equality captures the end-user

observable behavior of the program. We write T |p to denote

the sub-trace of T matching predicate p. Thus, T |DOM de-

notes a sub-trace of T composed only of SET actions on

objects that belong to the DOM.3

Definition 3. Two traces are DOM-equivalent, T ∼=D T ′, if

SET v, p, v, t ∈ T |DOM =⇒ SET v′, p, v, t′ ∈ T ′|DOM ∧

SET v′, p, v, t′ ∈ T ′|DOM =⇒ SET v, p, v, t ∈ T |DOM

DOM-equivalence is not order preserving, because the order

of event handlers executed by P may be different. A more

complex equivalence relation could try to capture the or-

dering within event handlers and dependencies across event

handlers, but a simple equivalence suffices for our purposes.

We are striving for determinism. This can be defined as

yielding DOM-equivalent traces for any environment E. In-

tuitively, this is the case when the program is independent

of external factors. Of course, deterministic programs run-

ning on different JavaScript engines may have slightly dif-

ferent traces due to browser optimizations, but they should

be DOM-equivalent.

Definition 4. A program P is DOM-deterministic if

∀E1, E2 : P |E1 ⊢ T1 ∧ P |E2 ⊢ T2 =⇒ T1
∼=D T2

In order to create a replayable benchmark for some pro-

gram P , the program must be run in an environment able to

record its actions. We denote the recording R(P ) and write

T
R

for the trace obtained during recording. It worth to point

out that R(P )|E and P |E will yield traces T
R

and T which

are not identical (but are DOM-equivalent). This is explained

by the presence of additional JavaScript operations needed

by the recording infrastructure appearing in the trace.

Definition 5. Recording program P in environment E, writ-

ten R(P )|E ⊢ T
R

, results in replayable program PR.

The replayable program, PR, is constructed so as to ex-

hibit the following properties. First, the replayable program

3 This test can be implemented as v instanceof Node, but since the

replay programs contain mock objects, we use (v instanceof Node ||
v.isJSBProxy()).

is fully deterministic, given the same environment it al-

ways yields the same trace, and secondly even in different

browsers the traces are DOM-equivalent. We have not spec-

ified how to construct PR, the details of this are an imple-

mentation choice.

Property 1. [Determinism] PR|E always yields the same

trace T and for any environment E′, PR|E
′ yields a trace T

′

that is DOM-equivalent to T .

One technique that can be used to construct replayable pro-

grams is to avoid non-determinism by proxying. For any ob-

ject v that performs a non-deterministic operations (e.g. a

native call) in one of its methods, replace that object with

a proxy, v, and memoize all of results returned by its meth-

ods during the original run, then use the memoized values in

replay runs. Thus PR could eschew non-determinism by al-

ways returning values obtained at record time for non deter-

ministic calls. To abstract from the behavior of the browser,

one can choose to record events issued by the browser and

replay them in a deterministic and browser-agnostic order.

Of course, determinism is not a sufficient requirement as

one could pick the empty program for PR and get a really

deterministic (and short) trace. The second required property

of replays is that they preserve the behavior of the recorded

trace.

Property 2. [Fidelity] If R(P )|E ⊢ T
R

, and PR|E ⊢ T

then T
R ∼=D T .

Fidelity is a property of recorded and replay traces stating

the replay will issue the same DOM calls as the recorded

trace. Fidelity is really a minimal requirement. It gives a

sense that replay is “correct” with respect to the observed

behavior of the recorded trace. But in order to get a bench-

mark that is a good predictor of the performance for orig-

inal program we need to make sure that when shedding

non-determinism, PR has not been turned into a trivial se-

quence of memoized calls. What is needed is to make sure

that replays are faithful to the computation performed in the

original trace and not only it’s DOM I/O behavior. Given a

suitable definition of distance between traces, δ, the replay

should be within the range of possible traces generated by

the original program.

Property 3. [Accuracy] If P |E ⊢ T and PR|E ⊢ T ,

there is some environment E′ such that P |E′ ⊢ T ′ and the

distance between the traces δ(T, T ) < δ(T, T ′).

Accuracy says that a trace generated from a replay is “close”

to a trace that could have been generated from the original

program under some environment. We deliberately leave the

definition of distance open.

Another desirable property is to make sure that the com-

putation performed by the replayable program PR be com-

parable in running time to the original program execution.

The execution time of trace T , of length n, written t(T ),
is tn − t0. Naively one would like that for a program



P |E ⊢ T , and its replay PR|E ⊢ T , the execution times

of the traces be comparable t(T ) ∼= t(T ). This is unfor-

tunately impossible to achieve while retaining determinism.

Instead, t(T ) > t(T ) is more likely. The replay trace suffers

from time compression due to two main reasons. First, the

original trace contains slack time between the last instruc-

tion of the previous event and the firing of the next event,

t((α, t), (EVT v, t′)). Second the compute time of native op-

erations t((INV f ,v, t), (REP v, t′)) can be substantial. The

replay program does not preserve either. Slack time depen-

dents inherently on the user and on the speed of processing

the previous event. JavaScript does not have means to accu-

rately control timing of event dispatches. Second, the exe-

cution time of native operations is highly dependent on the

quality of the implementation of the browser. In Section 5,

instead of simply comparing execution times, we argue that

the replay has comparable dynamic attributes.

4. Creating Benchmarks with JSBench

To create a benchmark, users of JSBENCH need only point

their browser to a web application hosted on some remote

server. JSBENCH acts as a proxy between the user’s browser

and the server. Any JavaScript code loaded from the server

will be intercepted by JSBENCH and rewritten in-place to

an instrumented program with similar behavior. The instru-

mentation introduced by JSBENCH records a trace of the op-

erations performed by the web application. Once the execu-

tion is complete, a post-processing pass is applied to turn

that trace into a stand-alone JavaScript program consisting

of the original HTML and a rewritten version of the source

code in which dependencies to the origin server are removed

and all non-deterministic operations are replaced by calls to

mock objects returning memoized results. Figure 4 summa-

rizes this architecture and the rest of this section discusses it

in more detail.

4.1 Recording JavaScript executions

Before a piece of JavaScript code is handed to the browser

for execution, JSBENCH instruments it, rewriting all func-

tion entries and exits as well as field access and related oper-

ations, as detailed below.4 The purpose of the instrumenta-

tion is to create, as a side effect of executing the application,

a trace of the executed operations. There are many potential

mechanisms for observing the behavior of JavaScript pro-

grams. We have based JSBENCH on source-level instrumen-

tation for two reasons:

• Source-level instrumentation is portable across differ-

ent browsers and different versions of the same browser,

users will thus be able to create benchmarks on any

browser.

4 Code in this section is simplified for readability and to spare the reader the

gruesome details of assuring that JSBENCH’s variables are never shadowed,

and other nuances of JavaScript that are not directly relevant.

ReplayRecord

Web 

site

Instrumented 

JavaScript

Browser

Record-

time proxy

Trace replay.js

Replay 

compiler

Instrumented 

JavaScript

Replayable 

benchmark

Site mirror

Figure 4. System architecture. JSBENCH acts as a proxy

between the browser and the server, rewriting JavaScript

code on the fly to add instrumentation and finally creating

an executable stand-alone application.

DEC o Declare object or function o exists.

GET o, f, v Field o. f has value v

SET o, f, v Field o. f is updated to v

APP o, [o1 ...], v Calling function o with return value v.

NEW o, [o1 ...], o’ Creating object o’ with constructor o.

EVT g, [o1 ...] Function g fired as an event with arguments

[o1 ...] . g may either be a static function, or the

result of a CTX event.

CTX o, g, [ f1 ...],
[v1 ...]

The function o refers to the original static function

g with variables [ f1 ...] in its closed context

referring to values [v1 ...] .

Figure 5. Record-time trace statements.

• The JavaScript language evolves at a slower rate than its

implementations.

JSBENCH uses proxy-based instrumentation of JavaScript

code to record an execution trace that contains all the in-

formation needed to create an executable replay of that

trace [7]. The trace generated by JSBENCH consists of a

sequence of labeled trace statements, as detailed in Fig-

ure 5. DEC declares that a pre-existing JavaScript object has

been encountered, GET and SET indicate reads and writes

of properties, APP indicates a function call, NEW marks the

construction of a new object, EVT denotes the firing of an

event, and CTX denotes the construction of a closure. Not all

operations need to be logged. Indeed, only operations that

introduce non-determinism must be recorded. For those, JS-



BENCH records enough information to reproduce their be-

havior deterministically. JSBENCH will record calls with

their arguments as well as their results, and replace any ob-

ject that has non-deterministic operations with a memoiza-

tion wrapper. A memoization wrapper is a small JavaScript

object which contains a reference to the original object and

a unique identifier. The purpose of the memoization wrap-

per is to record all operations performed over the object and

any objects or functions it refers to. We avoid creation of

multiple memoization wrappers for the same original object

leveraging the dynamism of JavaScript. JSBENCH extends

wrapped objects by adding one extra field that holds a back

pointer to the wrapper. Some native objects can not be ex-

tended. In this case, a reverse reference is not stored, a warn-

ing is produced, and each access to the object will create

a new wrapper. Every time a memoization wrapper is cre-

ated, a DEC event is logged in the trace. The behavior of

certain functions must be memoized as well. A memoizing

function is similar in principle to a memoization wrapper. It

stands between the code and the real function, and its behav-

ior when called is identical to that of the function it memo-

izes, but it also records an APP event. The reproduction of

memoized functions at replay time must be capable of pro-

ducing the same argument-to-value mapping as was seen by

APP events. Constructors are just a special case of functions.

When a memoizing function is called with new (and thus,

as a constructor), a NEW event is generated, but otherwise

the behavior is the same. JSBENCH makes sure that before

any JavaScript code is allowed to run, a JSBENCH-generated

function is run which replaces all of the objects and func-

tions that we have identified as introducing non-determinism

with memoization objects and memoizing functions. This

function also produces DEC and GET trace events for each

replaced object.

4.1.1 Instrumenting field accesses

JSBENCH needs to instrument field accesses. This is for

two reasons: reads of DOM and other wrapped objects

will be memoized for replay, and writes to these objects

may be checked at replay time to ensure fidelity. Reads

are denoted by GET events in the trace, writes by SET

events. JavaScript’s highly-dynamic nature makes record-

time memoization a straightforward task: all object mem-

ber accesses are rewritten to use a logging function, which

returns an object containing the appropriate member. The

JavaScript expression x[exp], which uses associative syntax

to access the field named by the value of the expression exp

of object x, is rewritten into:

( memoRead( x, t = (exp) ) )[ t ]

where t is a unique temporary variable, used to assure that

side effects of exp are not repeated. The more conventional

syntax for reading fields, x.y, is syntactic sugar for x[ ”y” ] ,

and is rewritten appropriately.

The memoRead() has a somewhat baroque definition as a

direct consequence of the semantics of JavaScript. In Java-

Script, functions take an extra argument to a context object.

Within the body of the function this argument is the im-

plicit this reference. A call of the form x. f () will execute

function f with this bound to x. A call of the form x[ f ]()

must also bind this to x in f . But, surprisingly, the follow-

ing z=x[f ]; z() will not. Our translation preserves this seman-

tics so, memoRead does not return the value of the property

rather it returns an object that has the desired property. Con-

sider the following access to x[ ” f ” ]:

x[ ” f ” ] ⇒

memoRead(x,t=”f”)[t] ⇒

{f :wrap(x[”f ” ])}[ ” f ” ]

This design also allows unwrapped objects to be returned

directly, while still preserving call semantics:

x[ ” f ” ] ⇒ memoRead(x, t=”f”)[t] ⇒ x[ ” f ” ]

The translation replaces the original expression with a call

to memoRead() and, assuming x is wrapped, memoRead()

returns a newly created object with a property f referring to

a wrapped value. More precisely the memoRead() function

behaves as follows. It checks if x is a memoization wrapper

object. If not, it simply returns x. If it is, then the wrapper has

a reference to the original object, the operation is forwarded

to that object and a GET event is logged. The return value

depends on the type of the value referenced by the requested

property:

• A primitive: The wrapped object is returned without fur-

ther processing.

• An object: if the object has not previously been wrapped

in a memoization wrapper, a memoization wrapper is cre-

ated for it and the associated DEC event is logged. A

new object containing a mapping of the expected prop-

erty name to the wrapper is created and returned.

• A function: a memoizing function is created which wraps

the original function. A new object containing a mapping

of the expected property name to the memoizing function

is created and returned. The memoizing function is capa-

ble of determining when it is called with the returned ob-

ject as the context (value of this); in this case, the original

function is called with this as x. Otherwise, the original

this is passed through.

Assignments are implemented similarly, with a memoWrite()

function which logs a SET event for memoization wrapper

objects, and performs the associated write. It can also deal

with operators such as += by an optional argument which

describes which operation is used to update the argument.

This case produces both a GET event of the original read,

and a SET event of the new value.

Other related operations worthy of note include opera-

tor in, statement for(...in...), equality-related operators and

instanceof. They are replaced by memoization-wrapper-



1 function onloadHandler() {

2 myvalue = document

3 .getElementById(”input”)

4 .value;

5 }

(a) Source code

1 EVT onloadHandler, [window]

2 DEC o1

3 GET window, document, o1

4 DEC f1

5 GET o1, getElementById, f1

6 DEC o2

7 APP f1, [o1, ” input” ], o2

8 GET o2, value, ”Hello!”

(b) Recorded Trace

1

2

3

4

onload event onloadHandler()

document.
getElementById("input")

DOM element

.value

inspect document

document object

inspect element

"Hello!"

BROWSER INSTRUMENTATION PROGRAM

EVT

get value

DEC, GET,  DEC, GET

APP

GET 

Figure 6. Example. Source code to the trace and browser and JavaScript interactions.

aware versions. This is a much simpler task, as none of these

return objects, so no new wrappers need be generated. y in x

is replaced by memoIn(y, x), and for (y in x) is replaced by

for (y in unwrap(x)). Both of these functions simply per-

form the action of the operation they replace on the wrapped

object. Equality operators are replaced by unwrapping ver-

sions, such as unwrap(x)==unwrap(y).

4.1.2 Instrumenting functions

JSBENCH instruments every function entry and exit point.

In the browser model, a program execution consists of se-

quence of single-threaded event handler calls. As any func-

tion can be used to handle events, we need to identify which

functions are being invoked as event handlers and memoize

the arguments of these functions for replay. JSBENCH mod-

ifies every function in the source code to check if its caller

is another JavaScript function. If this is not the case, then

JSBENCH deduces that the function has been invoked by

function f (...) {

if (! callerJS) { // event handler

callerJS = true; var ret ;

try {

var hid = logContext(f,{ /∗ closure context ∗/ });

var wthis = memoizationWrap(this);

var args = arguments.map(memoizationWrap);

logEvent(hid, wthis, args);

ret = f .apply(wthis, args);

} catch (ex) { callerJS = false; throw ex; }

callerJS = false; return ret ;

} else { /∗ original function body∗/ }

}

Figure 7. Example of function instrumentation.

the browser in reponse to an event happening. Every func-

tion in the source is instrumented as shown in Figure 7. The

logEvent() adds an EVT event corresponding to the current

function invocation to the trace. In addition to memoizing

the event handler arguments, if the event handler is a clo-

sure, then JSBENCH must also memoize the environment

of that closure. This is necessary because at replay time the

closure may try to access variables in its environment. As

it impossible to name the particular closure called as a han-

dler, the replay instrumentation wraps the function such that

it can recreate part of its context. The logContext() function

generates a CTX event, as well as a unique closure ID for

this particular instance of this function. The closure con-

text alluded to in the above code is an object literal which

maps the names of all variables which are closed over (de-

terminable statically since JavaScript is lexically scoped) to

their current values. For instance, if f closed over variables x

and y, the closure context object literal would be {x:x, y:y}.

This strategy works can lead to over-memoization. The post-

processing used to alleviate this is discussed next.

4.1.3 Example

To illustrate in the inner workings of JSBENCH, we provide

an extended example. Figure 6 shows the browser operations

on the left hand side and JavaScript engine operations on the

right hand side. To describe the interaction, we start with a

piece of JavaScript source code in Figure 6(a). Figure 6(b)

shows the trace that JSBENCH logs as part of recording the

execution of this code.

1. onload: onLoadHandle is set up as a listener such that it

will be called by the browser when the load event occurs.

The first step of the recording process signified by the

EVT label records the presence of an external event that

invokes the onLoadHandler handler.



2. Calling getElementById: The next step involves two

references to objects not defined in the program. The

trace system creates temporaries for them: o1 (document

object provided by the browser) and o2 (the DOM el-

ement corresponding to input). Additionally, the native

function document.getElementById is referred to as f1.

Two GET labels in the trace reflect the relevant state of

the program heap.

3. Returning the DOM element: Next, we create a trace

object o2 for the result of getElementById call and record

a APP label identifying this fact.

4. value property lookup: The last step records the text

string which corresponds to property value of o2. This is

recorded with the last GET label.

Once the trace has been generated, converting to the replay

script shown in Figure 8 is a syntax-directed translation

process. Lines 2 and 6 initialize the two objects used for

replay. Line 4 does the same for f1. Bodies of all such

functions use memoization tables to map inputs to outputs,

as illustrated by the cases setup in line 8. GETs in the trace

result in heap assignments in lines 3, 6, and 9. Finally, each

event in the trace corresponds to a function call such as

shown in line 10.

function replay() {

var o1 = {}; window.document = o1;

var f1 = function() {

return lookupCase(f1, this, arguments); }

o1.getElementById = f1;

var o2 = {}; f1 .cases[2][o1][ ” input” ] = o2;

o2.value = ”Hello! ” ;

onloadHandler.call(window);

}

Figure 8. Example replay function.

4.2 Replaying recorded traces

The instrumentation of existing code for replay is far lighter

than record instrumentation. There are only two instrumen-

tation steps. In some cases it is not possible to override

variables in JavaScript, e.g. certain browsers do not allow

document to be overwritten, and in these cases references

to such variables must be renamed in the original code.

This is accomplished simply by replacing all instances of

the identifier with an automatically-generated unique iden-

tifier. Not all static functions have a global name. But for

the replay to be able to call them, there must be a refer-

ence to them which the replay code can access. Those func-

tions which are referred to by EVT events are instrumented

to store a reference to the function in an object owned by

JSBENCH. For instance, if a function func is defined, and is

used in an EVT event with ID f1, then a statement such as

window.handlers.f1 =func is added to the program to retain

the reference.

4.2.1 Generating the replay code

At replay time, the lightly-instrumented original code is

combined in file called replay. js , which is generated from

the trace. All of the objects which were memoized at record

time will be replaced with mock objects at replay time which

expose the same API as was used in the original source.

Memoized objects are replaced with mock objects which

have all of the recorded members (all members seen by GET

events) with their original values, and memoizing functions

are replaced by mock functions, which map all of the argu-

ments seen in APP events to the return values seen. To gen-

erate replay. js , all events are grouped with their preceding

EVT event, the event handler that caused the relevant action.

Events which are grouped with an EVT generate code which

precedes the code generated for EVT itself, to ensure that

the created mock objects expose the API which the handler

uses. Figure 9 shows the JavaScript code generated for each

trace statement. DEC, GET, APP and NEW events are used

to construct mock objects and functions. DEC events are re-

placed by creating an object named by their unique ID. Non-

redundant GET events are replaced by an assignment to the

relevant mock object. Each mock function generated con-

tains an associated mapping between arguments and return

values. APP and NEW events are replaced by adding new en-

tries to this mapping. SET events do not need to be replayed

since they represent a behavior performed by the replayed

JavaScript code, and not a source of non-deterministic be-

havior, but may optionally be replayed as assertions to verify

that the field sets actually occur in replay.

DEC o (for objects) var o = {};

DEC o (for functions) var o = function() {
return callCase(o,this,arguments);}

GET o, f, v o. f = v;

APP o, [o1...on], v o.cases[n][o1 ]...[ on] = v;

NEW o, [o1...on], o’ o.newCases[n][o1]...[on] = o’ ;

EVT g, [o1 ... on] g. call (o1, ..., on);

CTX o, g, [ f1 ... fn ],
[v1 ... vn]

o = g(v1, ..., vn);

Figure 9. Replay statements.

4.2.2 Trace Post-processing

Our tracing framework captures a large amount of informa-

tion, and much of it is easily determined to be unnecessary

during replay. Although a trivial conversion of the trace into

a replay function is feasible and can produce semantically

correct results, the overhead of such naı̈ve conversion is too

high. To preserve accuracy of the captured trace, the trace

is processed and filtered in various ways before producing

the final replay code. The most important post-processing



task is trimming. The record-time instrumentation memo-

izes some objects which ultimately do not need to be gen-

erated as mock objects in the replay. In particular, since we

memoize all variables in the context of each closure used

as an event handler, recreating all the relevant mock objects

would be both expensive and unnecessary. To restore true

interaction with a given object in a trace, it is possible to

follow the variable and its dependencies through the trace,

determine all objects which are ultimately attained by refer-

ences from the variable to be removed, and remove them. All

EVT events, when logged during recording, have an associ-

ated CTX event describing the event’s closure context. The

replay implementation wraps functions which are referred

to by at least one CTX event such that their closure context

may be reproduced. For instance, a function f with ID f1

which closes over x and y but modifies neither is wrapped as

follows.

var f = (window.handlers.f1 = function(x, y) {

return function() { /∗ original body ∗/ }

})(x, y );

However, quite frequently the closure context never changes,

making this wrapping an unnecessary expense. As such, all

CTX events which correspond to the same static function are

compared, and those variables which never change are re-

moved. Any resulting CTX events which refer to no variables

at all are removed, and associated EVT events are then free

to refer to the static functions directly. Such EVT events do

not generate wrapped functions to regenerate closure con-

text, and as such have much lower overhead. In our experi-

ence, the vast majority of CTX events are removed from the

trace.

4.3 Practical Challenges

While the principles of memoization are outlined above,

many other issues had to be addressed before JSBENCH was

able to record and replay large real sites.

Missed and Uninstrumented Code. There are two primary

means by which uninstrumented code can be run: The proxy

may have failed to recognize and instrument it, or it may

have been generated entirely by JavaScript. The solution to

the former case is simply to fix the instrumentation engine in

the proxy, but the latter case is more difficult to contend with;

JavaScript’s semantics make it impossible to override the

eval function, so there is in general no way to reliably ensure

that generated code is instrumented. We have no solution to

this problem, but have observed that it does not substantially

reduce the correctness of the technique because:

• Most complicated eval code is loaded through XHR re-

quests, and so will be instrumented.
• The remaining eval code tends not to access memoized

objects.

Neither of these properties are intrinsic to the language how-

ever, and so it is possible for real benchmarks to function

improperly due to uninstrumented code.

Failure Pruning. Our system is imperfect, and on some

sites it fails to create a workable replay. Although ideally

this would be solved by fixing whatever bug led to the

replay failure, it is also possible to identify which events fail

(by catching exceptions in the generated replay code) and

pruning them from the log, thereby generating a working

replay that captures less of the original behavior.

Closures. Although JavaScript’s event dispatch semantics

generally passes only simple and trivially-memoizable ob-

jects as arguments to event handler functions, the func-

tions themselves can be closures, and as such may have im-

plicit dependencies on arbitrarily-complex data in their clo-

sure contexts. Furthermore, it is impossible purely within

JavaScript code to get a reference to a particular instance

of a closure without having bound it to a name. Binding ev-

ery closure to a name is impractical due to the high runtime

cost of the mechanism. Furthermore, such a solution would

be fragile to any inconsistencies between record and replay.

Instead, we use our memoization techniques to capture all

closed variables, but regenerate only those that change at

runtime.

Mirroring. Making redistributable and replayable record-

ings requires mirroring the web page, as otherwise running

the benchmarks would necessitates setting up the browser’s

HTTP proxy, an unacceptable requirement for performance

testing. Mirroring dynamic web pages is a research problem

in and of itself, but is not within the scope of this paper.

We used three techniques to mirror web sites, each of which

worked on particular sites:

• Static mirroring. Download tools such as wget have the

ability to mirror web pages, but as they are not browsers

and therefore cannot mirror dynamic content.

• Dynamic mirroring. Browsers such as Firefox and

Chrome have the ability to save ”whole” web pages by

saving everything from the browser’s internal state, rather

than the original files. This has the disadvantage that dy-

namic changes made to the web page by JavaScript code

will be saved, which can conflict with the replay code

which will redo their effect.

• Cache mirroring. The proxy used for instrumentation

is also capable of caching. The cached files can be ex-

tracted from the proxy for mirroring purposes. This has

the advantage of including every referenced file, but the

disadvantage of requiring manual remapping of the files

to their new locations on disk.

Harness. To simplify running benchmarks generated by

JSBENCH, the mirrored site is combined with replay. js and

is placed in a separate iframe. The replay function is then

called and the execution time is timed using the JavaScript



Date functions. Our harness uses a push-button approach to

run all the recorded sites, similar to the setup of SunSpider

benchmarks.

4.4 Replay Modes

While we are focusing on JavaScript throughput, one of

the strengths of the JSBENCH approach is that the level

of non-determinism in the replay code can be dialed up to

evaluate other browser features. We have implemented three

dimensions of customizability.

Event loop generation. In JavaScript, execution unfolds

by calling a series of event handlers in a single thread. When

replaying the event handlers, the challenge is to invoke them

in a manner similar to the original in-browser execution. JS-

BENCH supports several options:

• All handlers may be collapsed into one, resulting essen-

tially in one very long event. This approach does not exer-

cise the browser’s event loop, deviating from the original

execution.

• The original events may be recreated by createEvent,

then fired by dispatchEvent. However, this mechanism

does not integrate with our memoization system, and

has poor inter-browser compatibility. These methods are

uncommon in real code, so being sensitive to their timing

may produce unrealistic benchmarks.

• Event handlers may be invoked using the setTimeout

function, passing the handler closure as the callback argu-

ment and 0 as the delay. Ideally this would simply yield

to the browser and fire as soon as possible, but in fact

most browsers cannot time out for less than a particular

OS- and browser-dependent amount of time, so most of

the execution time would be spent idle.

• The postMessage mechanism, although intended for

inter-domain and inter-frame communication, also yields

to the browser’s event loop to fire the message handler.

On most browsers, there is no idle time between plac-

ing a message with postMessage and the handler firing,

but other browser jobs can be performed. postMessage,

however, is extremely uncommon in real code, and on

some browsers the implementation is slow. In spite of

these limitations, it is currently the most reliable mech-

anism available which yields to the browser event loop.

DOM Removal. If we wish to create a JavaScript bench-

mark that can be run outside the context of a browser or that

exercise only the JavaScript engine, we need to remove ac-

cesses to DOM objects. As such, our record-time instrumen-

tation memoizes DOM objects. Objects generally considered

to be part of the DOM are those accessible by traversing

members of the document object. The replays created will

normally have no interaction with the DOM, as mock ob-

jects will be put in its place. To restore DOM interaction, we

need only to trim document and its dependencies from the

trace.

Mock Object Collection. Because every access to every

memoized object is traced, the exact lifespan that each of

these objects needs is known. As such, a simple processing

procedure guarantees that mock objects are created as late as

possible, and all references to them held by the replay code

are removed as early as possible. This optimization trades

time for space: without it, all mock objects would be alive for

the entire duration of the replay, taking a lot of unnecessary

space, but the process of creating and destroying them would

not be part of the replay proper, removing that time from the

recorded time of the benchmark.

5. Empirical Evaluation

This section provides a detailed empirical evaluation of JS-

BENCH as well as evidence supporting our claims about the

quality of the benchmarks created with our tool. The empiri-

cal evaluation relies on two different research infrastructures

which we extended for this paper.

1. TracingSafari is an instrumented version of the Safari 5

browser (WebKit Rev. 49500) based on [13] which is able

to record low-level, compact JavaScript execution traces.

We use it to compare the behavior of replays to live

traces. Even though TracingSafari only runs in interpreter

mode, the instrumentation is lightweight enough to be

barely noticeable on most sites.

2. FirefoxMem is a heavily instrumented build of the Fire-

fox 4.0b2 browser that produces exhaustive information

about memory and object lifetimes. The cost of memory

tracing is rather prohibitive, but FirefoxMem provides a

very detailed picture of memory usage.

We used an unmodified version of Internet Explorer with

ETW (low-overhead event tracing) enabled. We also used

several different versions of popular browsers, listed in Fig-

ure 10, in order to highlight certain properties of the bench-

marks generated by JSBENCH. Unless indicated otherwise,

to obtain the experimental results presented in this section

were obtained on an HP xw4300 Workstation (Intel Pen-

tium 4 3.6 GHz machine with 2 Gigabytes of memory) run-

ning Windows 7 Enterprise 64-bit operating system.

Short name Browser Browser version

IE8 MS Internet Explorer 8 (8.0.7600.16385)

IE9 MS Internet Explorer 9 Preview 4 (9.0.7916.6000)

FF3 Mozilla Firefox 3.6.8

FF4 Mozilla Firefox 4.0b2

Chrome5 Google Chrome 5.0.375.99

Chrome6 Google Chromium 6.0.492.0 (Rev. 55729)

Opera10 Opera 10.61.3484

Safari5 Apple Safari 5.0.1 (build 7533.17.8)

Figure 10. Browsers used for measurements.



5.1 Web Applications

JSBENCH is capable of creating replayable workloads from

most websites, but not all of these will be useful in practice.

We have identified four properties for good candidates for

benchmarks. Reasonable execution time: A short-running

benchmark is subject to more perturbation due to system

conditions than a long-running benchmark. Ideally the inter-

action with the web page should be long enough that the gen-

erated benchmark produces consistent results. Meaningful

interaction: One can easily produce a long-running bench-

mark on many sites by simply waiting several minutes while

timer events fire, then measuring those timer events. How-

ever, this is not a realistic interaction with the site. To be

comparable to the real site’s expected behavior, the interac-

tion should be representative of a typical end-user’s experi-

ence. Limited overhead: The amount of overhead introduced

by JSBENCH depends on the number of proxies that have

to be introduced. On a site for which the replay introduces

many mock objects, the time taken to create skew the results.

Many browsers come with profilers that can be used to es-

timate this overhead; the benchmarks we have presented all

had an overhead of under 10%. Generality: The site chosen

for recording should have behavior which is representative,

so that its results generalize a significant segment of web ap-

plications.

We have constructed eight benchmarks for this paper,

listed in Figure 11. The first two are small programs that

are self-contained JavaScript applications. sibeli.us is an

arcade-style game and JSMIPS is a MIPS emulator.5 Both

are small single-file JavaScript programs. The latter six rep-

resent a large class of widely-used web applications, accord-

ing to alexa.com. We do not claim that this is a definitive set

of benchmarks, selecting such a set will require further ex-

perimentation, community involvement and, in order to dis-

tribute the suite, consent from web site’s owner. The power

of JSBENCH comes from the fact that anyone can take their

own benchmark and package it.

Benchmark Bytes Files LOC

sibeli.us 19K 1 650

JSMIPS 108K 1 4,036

amazon.com 1,065K 10 23,912

microsoft.com 791K 21 17,241

bing.com 39K 4 1,872

maps.google.com 572K 8 5,318

economist.com 239K 5 7,129

msnbc.msn.com 621K 11 4,273

total 3,4564K 61 60,585

Figure 11. Summary. Information about original sites.

5 http://codu.org/jsmips

For web applications we have captured user interactions

of length around 1 minute. The sites that were selected,

amazon, microsoft, bing google, economist, msnbc, are all

among the top 100 US web site and according to [13] exhibit

representative dynamic behavior. The sizes and complex-

ity of these sites varies between 1,8 KLOC and 23 KLOC,

as measured in lines of JavaScript code. As a point of

comparison, the entire SunSpider and V8 benchmark suites

have 13,963 and 11,208 LOC, respectively, being composed

of small, well-behaved applications [11, 13].

5.2 Determinism

We have evaluated determinism of our benchmarks both

within the same browser and across browsers and found no

difference in the behavior of each benchmark. They run in a

completely deterministic fashion and are DOM-equivalent.

Replay mode

Browser Real Poison

IE 8 0 11

Firefox 3 0 0

Chrome 5 0 2

Figure 12. Browser

differences.

(economist.com)

Determinism of the re-

plays across browsers hinges

on hiding browser-specific

behavior from the replay

code by the means of mock

objects. We experimented

with the impact of removing

the memoization around

the navigator object which

is used by JavaScript code

to detect the browser. This

will result in each browser

behaving slightly differently

if the application contains browser “sniffing” code — code

specialized to a particular browser or version. Figure 12

shows the result of a replay instrumented to output the call

path of the program. In this run, there are 10,773 function

calls. Column 2 shows that if we memoize the navigator ob-

ject, the replay is fully deterministic, as demonstrated by an

identical call trace. Column 3 of the table shows the number

of differences in the call trace obtained when we record with

Firefox and replay with a different browser. Note that the

difference numbers are all quite small, representing only a

tiny percentage of the overall trace.

5.3 Fidelity

One measure of fidelity is to verify that any DOM call

observed during trace recording is present, with identical

arguments, at replay time. This is true by construction of our

trace and we have validated it experimentally.

Another measure of fidelity is to line up events fired in

the recording and in the replay. JavaScript programs usu-

ally have several load-time events firing, many XHR events

firing, then a sequence of user interaction events firing. We

compare the event firing behavior. To do so, we collect event

firing traces and post-processed them to correlate the events

and their order of dispatch. We observed perfect fidelity, with

all events appearing in record and replay traces, but some

difference in ordering due to timing issues. Since the traces



(a) Load-time (b) Time-based events (c) Quiescence

Figure 13. Matching events. Comparing real execution

and replay (amazon; IE9).

are about 2,000 events each, we cannot show them fully. In-

stead, we compare three representative segments of the trace

separately. The result of this experiment is shown in Fig-

ure 13. Each oval represents an individual event, with real

events on the left and replay events on the right.

(a) Load-time. The initial portion of the two traces match

up quite well, except for the fact that they are offset by

two “stray” XHR events happening in the replay that

happen later in the real trace. This is an example of

browser scheduling non-determinism.

(b) Time-based events. This segment is taken from the

middle of the trace, when various timers that run as

part of standard Amazon.com execution kick in. Unsur-

prisingly, with timer-based, XHR and onload events be-

ing fired by the browser’s scheduler, the real and re-

play events can be scheduled in a very different order,

as shown in the figure.

(c) Quiescence. This segment corresponds to the end of

the trace and a state of quiescence for this site. The traces

match up perfectly.

5.4 Accuracy

Comparing the behavior of the replay with the original pro-

gram is a bit more tricky. A replay PR has been obtained by

running an instrumented program, thus it is conceivable that

the behavior observed at recording, R(P ) is significantly

different from an un-instrumented run of the original pro-

gram P . While, ideally one could compare traces, δ(T, T ),
our infrastructure can not give us a trace of the original pro-

gram without substantially perturbing the very characteris-

tics we want to observe. So instead of measuring the distance

between traces, we will argue for accuracy by observing a

number of properties of original and replay executions and

argue that they have sufficient similarities so that replays can

be used as predictors of performance of the original applica-

tion.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  100  200  300  400  500  600  700  800  900

W
rit

e 
op

er
at

io
ns

 p
er

 1
K 

op
er

at
io

ns

K operations

Real
Replay

Figure 14. Write accuracy. Each point on x-axis repre-

sents one thousand bytecodes executed by the JavaScript en-

gine. The y-axis gives the absolute number of object prop-

erty writes performed in each 1K window. The maximum

deviation observed over multiple run was 10.4%. (msnbc;

TracingSafari).

As a first approximation of replay accuracy, we provide

a high-level view of the updates performed by the bench-

mark on non-DOM objects. While fidelity ensures that all

DOM updates performed in the recording will also happen

at replay, it makes no guarantees about other writes. Fig-

ure 14 plots the number of writes that are performed in in a

window of one thousand bytecodes. We compare an original

(non-instrumented) run of msnbc with a run of the replay

program. The data is obtained using TracingSafari as it has

a non-intrusive (browser-specific) recording mechanism. Vi-

sually, it is clear that original and the replay line up, but are

not identical. This is expected as any non-instrumented run

will have different numbers of timer events, different order

of events, and the replay has mock objects. We measure the

difference of between the original and the replay trace using

normalized root-mean-square deviation (NRMSD).6 For five

real and five replay runs, the maximum NRMSD is 10.4%

which suggests that the replay are generally close to origi-

nal runs in terms of the update operations they perform. The

NRMSD between replay runs is always 0% (attesting to their

determinism).

To get another reading on replay accuracy, we measured

the internal operations performed the JavaScript engine dur-

ing execution of a replay and compared it with an origi-

nal run. For this measurement we used the ETW, a low-

overhead tracing framework supported by Internet Explorer.

ETW let us measure the number of invocations of the Java-

Script parser, the bytecode compiler, the native code gener-

ator, other calls to the engine, and calls to the DOM. Fig-

6 NRMSD is a common statistical measure of the deviation between func-

tions; however, it is not ideal as it has no ability to contend with repeated or

re-ordered events.



Real Replay Mean

Behavior Mean Std. dev. Mean Std. dev. diff.

Parsing 20 0 20 0 0

Bytecode Gen 20 0 20 0 0

Native Code Gen 32.4 2.6 32.4 3.8 0

Calls to JS engine 2,540.6 36.86 2,525 0 15.6

Calls to DOM 62,032 566.35 61,753 0 279

Figure 15. Service tasks. Calls to the JavaScript engine

over five runs of the real application and its replay. (amazon;

IE9).

ure 15 summarizes the results of five different run of the

original amazon site and five runs of the replay. As can be

readily observed, different real runs have make slightly dif-

ferent number of service requests on the JavaScript engine.

The replay on the other hand is deterministic. The last col-

umn gives the absolute difference in the means. This differ-

ence is rather small and within the standard deviation. The

number of times parsing and bytecode generation is invoked

is exactly identical in both original and replay.

ETW also allows us to measure the time spent garbage

collecting. It is important to make sure that our replay mech-

anism does not fundamentally affect the memory behavior

of the program. For this we report in Figure 16 the number

of calls to the garbage collector in each run of the real and

replay program and the time spent in GC. The number of GC

cycles is slightly smaller in the replay runs but the amount

of time actually spent in GC ranges from similar to slightly

higher, which is easily explained by the introduction of mock

objects.
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Figure 16. Garbage Collection. Comparing GC calls and

execution time between real and replay. (amazon; IE9)

To get a better understanding of the memory usage and

impact of mock objects we used FirefoxMem to record the

JavaScript heap growth over time. Figure 17 shows the size

of heap over time. It compare five real runs to five replay

runs. The overall behavior is similar although one can ob-
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Figure 17. Memory usage. The y-axis gives the size of the

JavaScript heap. (economist; FirefoxMem)

serve time compression as the replays complete faster than

the real runs. The replay runs with heap size 6.8% smaller

than the original program, a reduction due to the fact that

mock objects are smaller than the objects they are replacing.

Though, this need not be the case.

We observed that replay experience time compression as

slack time is eliminated and native operations are memoized.

Figure 18 shows the CPU utilization for microsoft.com over

time for original and replay runs. While total CPU align

nicely, the real site takes considerably longer than the re-

play, 710 ms compared to 265 ms. One potential threat due to

time compression is that the lack of slack time removes op-

portunities for the JavaScript engine to perform service tasks

such as code JITing, garbage collection, and code prefetch.

This may be an important consideration in browser engineer-

ing and, as such, illustrates the inherent challenges in creat-

ing effective browser benchmarks.

!"#$%&'("$')"

!"*$#+%&'("$')"
,--

,--

Figure 18. Time compression. CPU utilization over time.

The x-axis is in milliseconds and the y-axis gives percentage

of CPU used by the JavaScript engine. (microsoft.com; IE9)



5.5 JSBench vs. SunSpider

A representative benchmark should serve as a predictor of

performance of a system on real sites and a guide for imple-

menters. We have argued that industry standard benchmarks

are ill suited to this task. We provide one sample experiment

to back up this claim. Figure 19 gives the relative throughput

improvement, over Firefox 1.5, obtained by subsequent ver-

sions when running the SunSpider industry standard bench-

mark and a benchmark constructed by JSBENCH from an in-

teraction with the amazon website. The graph clearly shows

that, according to SunSpider, the performance of Firefox im-

proved over 13× between version 1.5 and version 3.6. Yet

when we look at the performance improvements on amazon

they are a more modest 3×. And even more interestingly, in

the last two years, gains on amazon have flattened. Suggest-

ing that some of the optimizations that work well on Sun-

Spider do little for amazon. Note that as we have previously

demonstrated [11, 13], popular sites behave rather similarly,

so we anticipate the results for other large popular sites to be

similar to what we are observing for amazon.
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Figure 19. Speed ups. Throughput improvements of

different versions of Firefox. (sunspider, amazon;

FF1.5 - FF 3.6.12) Measurements on an HPZ800, dual

Xeon E5630 2.53Ghz, 24GB memory, Windows 7 64-bit

Enterprise. Numbers normalized to FF 1.5.

5.6 Browser-specific Replays

In this paper, our primary focus is on comparing the perfor-

mance of JavaScript engines by running them on JavaScript-

only versions of our benchmarks. However, JSBENCH does

support generation of traces with some browser-specific op-

erations left in. In these partially-deterministic modes JS-

BENCH does not guarantee that the program will run identi-

cally, or at all, in a different browser (because the browser

may perform DOM accesses that were not encountered

at recording time), but when replays can run in multi-

ple browsers it is possible to compare the impact of other

browser features on performance.

We start by looking at the performance impact of DOM

operations. For this we measure the performance of a replay

without mock objects for DOM reads/writes. This means
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Figure 20. Cross-browser comparison. Impact of DOM

operations on throughput. (number normalized to the replay

without DOM; average over five runs; lower is better)
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Figure 21. Cross-browser comparison. Impact of events

on throughput. (number normalized to the replay without

event processing; average over five runs; lower is better)

that throughput measure will include the time spent in the

browser’s DOM implementation. Figure 20 illustrates the

relative performance of browsers with DOM turned on in the

amazon and bing benchmarks. We can see that the impact

of DOM operations is negligible for bing and substantial

for amazon. We see that Safari5 and IE9 stand out in the

case of amazon, which may be because of a slower DOM

implementation or a comparatively fast JavaScript engine.

Figure 21 shows the relative cost of enabling event pro-

cessing in replay as the ratio of the running times. In many

browsers, the cost of event processing for the bing bench-

mark is relatively high, and as high as 77x in the case of

Safari5. This may be because our chosen method of event

dispatch through postMessage is on a particularly unopti-

mized code path in the case of that browser. Next, we look

at how stable our execution time results are across the dif-



72

74

76

78

80

82

84

86

Real Replay

(a) Layout

0

2

4

6

8

10

12

14

Real Replay

(b) Paint

0

5

10

15

20

25

30

35

40

45

50

Real Replay

(c) CSS Calc.

Figure 22. Rendering and layout. Comparing internal

browser operation between 5 real runs and 5 replay runs.
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Sibelius 684 117 315 285 82 82 89 74

Amazon 342 63 104 85 110 111 147 62

Microsoft 42 4 14 11 12 10 58 5

Bing 87 11 44 51 30 27 9 9

Economist 81 103 124 48 39 40. 57

MSNBC 32 172 85 32 31 43 48

JSMIPS 7,773 4,935 3,480 12,596

Figure 23. Cross-browser running time comparison.

Times are in milliseconds. An empty cell indicates that the

benchmark could not produce results, due either to insuffi-

cient feature support or taking too long to execute.

ferent JavaScript engines by running each five times and

looking at the standard deviation between the running times.

Most browsers reliably produce consistent results. We eval-

uate consistency by computing the standard deviation over

five runs and then normalizing it by the mean running time.

For IE8, the maximum across all applications is 0.04; for

FF3 it is 0.13. It is encouraging that these ratios are quite

small. The browser that stands out in terms of inconsis-

tency is Opera. For some of the benchmarks, this ratio is as

high 2.1, which implies that either Opera’s speed is very in-

consistent, or its JavaScript time mechanisms are incorrect.

In fact, the bing.com benchmark sometimes yields negative

time on Opera, indicating that its Date s do not monotoni-

cally increase!

Figure 22 demonstrates that for the number of layout,

paint, and CSS calculation events performed by the browser,

the replay trace is actually more deterministic than the real

trace. We can think of our replay mechanism as removing

some of the inherent browser uncertainty.

Despite the fact our goal is to enable JavaScript engine

comparisons, we acknowledge that our benchmarks will be

used to compare browsers. We provide a snapshot of the

performance of our benchmarks on browsers available at the

time of writing in Figure 23.

6. Conclusions

Previous work has shown that relying on industry-standard

benchmark suite leads to optimizations that do not improve

the throughput of JavaScript engines running complex web

applications. This paper has presented a methodology for

constructing realistic benchmarks as replays of event-driven,

interactive web applications. The JSBENCH tool can do

so by encapsulating all the non-determinism in the execu-

tion environment, including user input, network IO, timed

events, and browser-specific features. The result is a re-

playable program that can be deterministically executed in a

JavaScript engine with a high degree of fidelity compared to

the recorded trace, and high accuracy when compared to runs

of the original web site. As a caveat, while we believe that we

have demonstrated that creating representative benchmarks

with a high degree of fidelity is possible with this approach,

we do not claim that the specific benchmarks used in this

paper are in fact the “correct” set to be used in ultimately

comparing the performance of JavaScript engines. With JS-

BENCH, however, one can easily capture benchmarks that

matter. As the use of client-heavy web applications evolves,

approaches such as JSBENCH will enable browser manu-

facturers and web site builders to tailor their efforts to the

ever-changing application landscape.
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