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Wannier tight-binding models are effective models constructed from first-principles calculations. As such, they
bridge a gap between the accuracy of first-principles calculations and the computational simplicity of effective
models. In this work, we extend the existing methodology of creating Wannier tight-binding models from first-
principles calculations by introducing the symmetrization post-processing step, which enables the production of
Wannier-like models that respect the symmetries of the considered crystal. Furthermore, we implement automatic
workflows, which allow for producing a large number of tight-binding models for large classes of chemically
and structurally similar compounds or materials subject to external influence such as strain. As a particular
illustration, these workflows are applied to strained III-V semiconductor materials. These results can be used for
further study of topological phase transitions in III-V quantum wells.
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I. INTRODUCTION

A significant part of materials science is devoted to the
problem of finding the electronic structure of a given ma-
terial. As a result, numerous computational techniques have
been developed to study this problem. These techniques can
roughly be classified into two kinds: First-principles methods
solve the problem using the fundamental physical principles
and properties of atoms comprising the material. For weakly-
interacting systems, density functional theory (DFT) [1] is
the dominant (mean field) technique for solving the electronic
structure problem from first principles.

In contrast, empirical methods aim to capture the relevant
physical properties using a simplified model. Such models are
usually matched to known properties of the material, which
can be obtained from either experiments or first-principles
calculations. An example of such an empirical method is
given by the tight-binding approximation, which describes a
material as a set of localized orbitals and predefined electron
hopping terms between them. While the first-principles meth-
ods typically have superior accuracy, empirical methods are
often used due to their lower computational cost. In particular,
calculations of complex device geometries are often inaccessi-
ble to a direct first-principles study. As such, the construction
of reliable empirical models is of significant importance, and

*The work was carried out at Theoretical Physics, ETH Zurich,
8093 Zurich, Switzerland.

the technique of creating Wannier tight-binding models [2,3]
from first-principles calculations is arguably one of the most
popular tools in modern computational materials science. The
use of Wannier tight-binding models allows one to combine
the simplicity of empirical methods with the correct wave
function properties obtained from first principles.

In recent years, high-throughput techniques made a pro-
found impact in various fields of materials science [4–7].
While the domain eludes a strict definition, a common feature
of such techniques is that computational tools are applied to
a wide range of candidate materials, or variations of a given
material, in search of some beneficial property. Existing codes
and techniques are combined and applied on a scale that
was not previously possible. A range of automated frame-
works [8,9] support this by facilitating the combination of
separate calculations into logical workflows. The challenge
in designing such a high-throughput workflow is to make it
resilient to varying input parameters. Since the number of
calculations performed is too large to be human controlled,
many decisions—for example which calculation to perform
based on the output of a previous calculation—need to be
encoded into the automated workflow.

In this paper, we introduce steps for addressing two stan-
dardly known problems of using Wannier90 [10,11] in com-
bination with any ab initio software to construct tight-binding
models: the absence of symmetries present in the original
compound in the obtained tight-binding model and the ne-
cessity to search for optimal inner and outer energy windows
for projection of the first-principles energy bands. We do not,
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however, treat the issue of selecting the initial projections
used by Wannier90. As such, we create automated workflows
which are applicable to large classes of materials with similar
orbital character of the bands of interest. However, these
workflows are not yet applicable to high-throughput scenarios
in the sense that they can trivially be applied to arbitrary com-
pounds. Nevertheless, the presented workflows are written in
a way that they could be combined with efforts to address the
problem of selecting initial projections [12].

In Sec. II, we review the general process of calculating
the Wannier tight-binding models by means of Wannier90
and explain the proposed and implemented symmetrization
and automatic energy window choice procedures. Section III
describes how these procedures are used for the development
of an automated workflow using the AiiDA [8] framework.
While this workflow automates the tight-binding calculation
itself, there are still some tunable parameters which might be
eliminated by a more sophisticated system. By using a mod-
ular design approach, we provide an extensible framework
for implementing such improvements. In the final section, we
illustrate the application of this workflow to calculate tight-
binding models for strained III-V semiconductor materials.
These are useful in the pursuit of Majorana devices [13–
15], enabling the study of transport properties for different
topological devices with III-V quantum wells, where strains
play an important role in the topological transition.

II. CONSTRUCTION OF WANNIER-LIKE

TIGHT-BINDING MODELS

In this section, we describe the process of generating sym-
metrized Wannier-like tight-binding (SWTB) models. First,
we give a short description of the method for creating Wannier
tight-binding models (WTB) as introduced in the works of
Refs. [2,3] and implemented in the Wannier90 [10,11] soft-
ware package. Next, we describe a method for symmetrizing
these WTBs in a post-processing step. Finally, we describe a
scheme to enhance the band-structure accuracy by optimizing
the energy windows used by Wannier90.

A. Wannier tight-binding construction

Tight-binding models represent a common way to describe
crystalline systems in a computationally cheap way. The
material is described as a system of localized orbitals with
positions ti in the unit cell and hopping terms H ij [R] between
the j th orbital in the unit cell at location R and the ith
orbital in the home unit cell R = 0. From these parameters,
the matrix Hamiltonian can be written as [16]

Hij (k) =
∑

R

H ij [R]eik.(R+tj −ti ). (1)

For the case of spinful systems, we choose the indices i, j to
include the spin index for simplicity.

The Wannier tight-binding (WTB) method utilizes local-
ized Wannier functions as basis orbitals to capture the com-
pound’s physics. These basis Wannier functions are obtained
from first-principles simulations. This procedure is based
on the work of Refs. [2,3] and implemented in the Wan-
nier90 [10,11] code. After obtaining the necessary Wannier90

input files from a first-principles calculation, two steps are
performed to construct these Wannier functions.

In a first step, the Bloch wave functions |ψn,k〉 calculated
by the first-principles code are disentangled to obtain M wave
functions, where M is the target number of basis Wannier
functions in WTB. For selecting the Bloch wave functions
which are involved in this procedure, one needs to choose an
outer energy window. Optionally, an inner energy window can
be chosen. States inside this inner window will be preserved
by the disentanglement. An optimization routine is performed
to select the M states such that the “change of character” �I

(defined in Ref. [3]) is minimized. As an initial guess for
this optimization procedure, M localized trial orbitals |gm〉

are used. Because the disentanglement procedure needs to
discard some states, it usually changes both the symmetry
and the energy bands of the model in comparison with first-
principles results. Consequently, choosing good values for
both the energy windows and the trial orbitals has a strong
effect on the quality of the resulting model.

As a second (optional) step, another optimization is per-
formed to find a unitary transformation such that the resulting
Wannier functions are maximally localized [2]. Again, the
trial orbitals |gm〉 are used to create an initial guess for this
optimization. Typically, these orbitals are chosen to be those
chemical atomic orbitals that contribute most to the bands of
interest. A method for constructing Wannier orbitals without
the need for such a guess is described in Ref. [12].

B. Symmetrization

An important feature of tight-binding models, especially
for studying topological effects, is that they preserve certain
crystal symmetries. For a given symmetry group G, the sym-
metry constraint on the Hamiltonian matrix is given by [17]

∀g ∈ G : H(k) = Dk(g)H(g−1k)Dk(g−1), (2)

where Dk(g) is the k-dependent representation of the
symmetry g from the group G. We define the k-independent
part D(g) of the representation as

Dk(g) = eiαg .kD(g), (3)

where αg is the translation vector of the symmetry.
For a Hamiltonian which does not fulfill these symmetry

constraints, we define the symmetrized Hamiltonian as the
group average

H̃(k) =
1

|G|

∑

g∈G

Dk(g)H(g−1k)Dk(g−1). (4)

This procedure projects the Hamiltonian onto the symmetric
subspace, meaning that the modified Hamiltonian respects
Eq. (2), as shown in Appendix A. Furthermore, if the original
Hamiltonian is already symmetric, the original and sym-
metrized Hamiltonians are identical. Since this construction
does not explicitly construct the corresponding Wannier func-
tions, we term these models symmetrized Wannier-like tight-
binding models (SWTB).

It is important to note that the eigenstates and eigenvalues
of the symmetrized Hamiltonian may differ significantly from
those of the nonsymmetrized Hamiltonian. In fact, for an
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(a) (b)

FIG. 1. Comparison of the initial (blue) and symmetrized (orange) band structure for a tight-binding model of silicon with atom-centered
sp3 orbitals. (a) In the eV scale, there are no visible differences between the two models. (b) A zoom in around the X point on the meV scale
reveals a slight lifting of the band degeneracies in the initial model. This incorrectness is resolved in the symmetrized model. For comparison,
a symmetrized band structure taking into account only symmorphic symmetries (green) is also shown.

antisymmetric initial Hamiltonian, meaning that

Dk(g)H(g−1k)Dk(g−1) = −H(k) (5)

for some symmetry g, the symmetrized result vanishes com-
pletely. However, given a Hamiltonian which almost respects
the symmetry, this technique can effectively eliminate small
symmetry-breaking terms.

In the context of tight-binding models, this symmetrization
technique can only straightforwardly be applied when the
underlying basis set is symmetric. If the tight-binding basis
contains an orbital |α〉 centered around the position r, it
must also contain g|α〉 centered around gr for all symmetries
g ∈ G. For example, if the model for a material which has
Cx

4 symmetry contains a px orbital at the origin, it must also
contain a py orbital at the origin.

For Wannier tight-binding models, this means that the
technique can generally only be applied when the step of
maximally localizing the Wannier functions is omitted, and
pre-defined atomic orbitals are used. When this condition is
met however, the method can be applied for both unitary and
antiunitary symmetries, as well as nonsymmorphic symmetry
groups.

To apply the group average to tight-binding models, it is
convenient to rewrite Eq. (4) directly in terms of the hopping
matrices H [R] (see Appendix B for derivation):

H̃ ij [R] =
1

|G|

∑

g ∈ G

l,m

Dil (g)H lm
[

S−1
g

(

R − Tml
ij

)]

Dmj (g−1),

(6)

where Sg is the real-space rotation matrix of the symmetry
g, Tml

ij = Sg (tm − tl ) − tj − ti , and the indices m, l only go
over values for which Tml

ij is a lattice vector. Note that we use
the k-independent part D(g) of the representation here.

Figure 1 shows the results of this symmetrization proce-
dure on a tight-binding model for bulk silicon in the diamond
cubic crystal structure, with atom-centered sp3 orbitals. The

initial model already approximately fulfills the symmetry
condition, which is reflected in the fact that the band structure
does not change in the electronvolt scale. However, at the
submillielectronvolt scale the band degeneracies are lifted
in the original model but restored after the symmetrization
procedure. Since the symmetry group of the diamond cubic
structure Fd 3̄m (no. 227) is nonsymmorphic, this example
demonstrates that the symmetrization technique is capable
also of enforcing such symmetries. In panel (b) of Fig. 1, we
compare the symmetrization using the full symmetry group
to a partial symmetrization enforcing only the symmorphic
subgroup. Adding nonsymmorphic symmetries enforces the
fourfold degeneracy at the X point and twofold degeneracy on
the X-U line, whereas symmorphic symmetries only enforce
a twofold degeneracy on the Ŵ-X line.

To determine the matrix representations D(g), we use the
fact that Wannier90 allows one to manually choose the trial
orbitals |gm〉. As a result, the basis after the disentanglement
procedure corresponds to the chosen orbitals, up to some
numerical error. Since the behavior of the basis orbitals under
symmetries is known, D(g) can be determined in this way.
For the treatment of spin, we use the rotation matrices as
given in Ref. [18]. The action of time reversal on the spin
basis {|↑〉, |↓〉} is given by σyK̂ , where K̂ represents complex
conjugation. An automated method for generating the repre-
sentation matrices for given atomic orbitals is available in the
symmetry-representation package. Importantly, we used
Wannier90 without performing the maximal localization step.
It is the case in the illustrated application of Sec. IV, where
this allows us to preserve the orbital basis. Alternatively, one
could use the basis transformation matrices U (k) provided
by Wannier90 [10] to transform D(g) into the maximally-
localized basis. While this approach produces computation-
ally cheaper localized models, the drawback is that the basis
is different for each produced tight-binding model. As a result,
comparing models is more difficult. Also, linear interpolation
between models, as described in Sec. IV C, would require a
change of basis.
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Another approach to obtaining symmetric tight-binding
models is to use the site-symmetry mode implemented in
Wannier90 [19]. However, this method is limited to symme-
tries which leave a given real-space coordinate invariant (site
symmetries) and does not include time reversal. The method
presented here has no such limitation but is instead limited
to models which have a symmetric set of basis functions
as described above. The site-symmetry mode also relies on
obtaining the symmetry information from the first-principles
code, which is currently implemented only for Quantum
Espresso [20,21]. The workflow described in Sec. III could
be adapted to allow using this approach with only minimal
changes.

C. Optimization for band-structure fit

As described above, an important parameter in running
Wannier90 is the choice of the so-called energy windows [10].
There are two such windows: The outer window determines
which states are taken into account for the disentanglement
procedure. At every k point, it must contain at least M bands,
where M is the desired number of bands in the tight-binding
model. The inner (or frozen) window on the other hand
determines which states should not be modified during dis-
entanglement. It can contain at most M bands at any given k.

Since the quality of the resulting tight-binding model de-
pends sensitively on the choice of energy windows, a strategy
for reliably choosing good windows is required. A straight-
forward way of achieving this is by iteratively optimizing the
window values. Having constructed and symmetrized a tight-
binding model, its quality can be determined by comparing
its band structure to a reference computed directly from first
principles [22]. As a measure of their mismatch, we choose
the average difference between the energy eigenvalues

� =
1

M

1

Nk

M
∑

i=1

∑

k

∣

∣εDFT
i,k − εTB

i,k

∣

∣. (7)

Some values of the energy windows cannot produce a tight-
binding model, for example if the outer window contains less
than M bands. As a result, finding appropriate energy win-
dows is a constrained, four-dimensional optimization prob-
lem. The Nelder-Mead (downhill simplex) algorithm [23] can
be used to solve this problem [24].

Figure 2 shows the result of such an optimization proce-
dure for unstrained InSb, as described in Sec. IV. A clear
improvement is visible between the tight-binding model ob-
tained with the initial windows chosen by hand [panel (a)]
and the optimized window values [panel (b)]. In particular,
the conduction bands at the X and Z points are represented
more accurately in the optimized model. Since the given bands
for InSb are not entangled, it is also possible to skip the dis-
entanglement step completely by using the exclude_bands

parameter of Wannier90 to ignore all other energy bands. The
resulting band structure is shown in Fig. 2(c). Nevertheless,
we find that the band structure using optimized disentangle-
ment is slightly better (� = 0.0327) than the one without
disentanglement (� = 0.0375), especially for the four low-
est conduction bands on the Z-Ŵ-X line. Hence, it can be
useful to apply the disentanglement procedure and energy

window optimization even in cases where the bands are not
inherently entangled, especially when the time required to run
the tight-binding calculation is short compared to the initial
first-principles calculation.

III. IMPLEMENTATION IN AiiDA WORKFLOWS

The AiiDA [8] platform is a Python framework for per-
forming high-throughput calculations, focused on the field of
materials physics. It enables reproducible research by keeping
track of inputs, outputs, and settings for each calculation. On
top of this provenance layer, it provides a tool set for automat-
ically chaining calculations into user-defined workflows.

In this section, we describe the implementation of the Wan-
nier tight-binding extraction scheme as an AiiDA workflow.
This automation enables the application to the study of strain
effects (described in Sec. IV). Special care has been taken to
design the workflow in a modular way, which enables re-using
parts of the workflow for purposes other than tight-binding
extraction. We first discuss these design principles before
showing how they are applied in the tight-binding work-
flows. The code for the AiiDA workflows is available in the
open-source aiida-tbextraction package and provided as
Supplementary Material.

A. Modular workflow design

The basic principle of modular workflow design is to split
up a single monolithic workflow into minimal subworkflows
or calculations that perform exactly one task. For example, the
tight-binding model created by Wannier90 is post-processed
by parsing it to an HDF5 format, followed by optionally
changing the order of the basis and symmetrizing the model.
While this could easily be implemented in a single script,
splitting these three steps up into separate calculations allows
separately reusing each of the steps.

More complex workflows are created by combining mul-
tiple subworkflows into a logical unit at a higher abstraction
level. Inputs to the subworkflow are either forwarded directly
from the input to the parent workflow or created within the
parent workflow. Similarly, outputs from the subworkflow can
either be forwarded to be an output of the parent workflow or
consumed directly to guide the further execution of the parent
workflow.

Since a complex workflow can consist of multiple layers
of wrapped subworkflows, this modular approach is main-
tainable only if the overhead of forwarding input and output
is minimal. Following the single responsibility principle, a
parent workflow should not have to change if an input or
output parameter of a subworkflow changes, unless it directly
interacts with this parameter. To achieve this, a syntax is
needed to specify that a parent workflow will inherit inputs
or outputs of a subworkflow, without explicitly listing each
parameter. In AiiDA, such a feature is available in the newly-
introduced expose functionality, as described in Appendix C.

The modular architecture improves not only the reusability
but also the flexibility of workflows. Often, a given part of a
workflow could be performed in different ways. For example,
many different codes can perform the first-principles calcula-
tions in the tight-binding extraction workflows. Additionally,
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(a) (b) (c)

FIG. 2. Comparison between the reference first-principles band structure (blue) and band structures calculated from tight-binding models
(orange) for InSb. The tight-binding model in (a) was calculated with the initial energy window, whereas (b) shows the model using
the optimized energy window as detailed in Table II. The model in (c) was calculated without the disentanglement procedure, using the
exclude_bands parameter.

one might want to add steps such as relaxation or cutoff energy
convergence.

To allow for this, the parent workflow can allow for dy-
namically selecting a workflow for performing a given task
by passing it as an input [25]. An abstract workflow class
defines the interface that a workflow must fulfill so that it can
be used to perform the task. If needed, the parent workflow
can allow for dynamic inputs, which are just forwarded to the
specific workflow implementing the interface. In this way, the
parent workflow can act as a template that defines an abstract
series of steps, without knowledge of the detailed input flags
available on each step.

B. Tight-binding extraction workflow

Having discussed the design principles for modular
workflows, we now show how these are applied
to create a workflow for the construction of tight-
binding models. This workflow is implemented in the
OptimizeFirstPrinciplesTightBinding class as
sketched in Fig. 3. At the uppermost level, the workflow
has two parts: FirstPrinciplesRunBase, which executes
the first-principles calculations, and WindowSearch which
calculates the tight-binding model with energy window
optimization.

Since different first-principles codes can produce the in-
put files required by Wannier90, FirstPrinciplesRunBase
defines only the minimum interface needed to perform this
task. As described in the previous section, a workflow that
implements this interface for a specific first-principles code
can then be chosen dynamically. As a result, the subsequent
parts of the workflow are independent of which first-principles
code is used.

The WindowSearch workflow performs the Nelder-Mead
algorithm for finding the optimal energy window. Because
optimization schemes are useful outside of this specific ap-
plication, we implemented the Nelder-Mead method in a
general way. The OptimizationWorkChain, defined in the

aiida-optimize module, can be used to solve generic op-
timization problems in the context of AiiDA workflows. It
requires two inputs: a workflow which defines the function to
be optimized and an engine that implements the optimization
method. Consequently, changing the whole workflow to use
a different optimization method would be a simple matter of
using a different engine.

Because AiiDA workflows need to be able to stop and
restart after any given step, the engine is written in an object-
oriented instead of a procedural way. While this complicates

(a)

(b)

FIG. 3. Schematic of the AiiDA workflow for creating tight-
binding models with energy window optimization. Workflows are
shown in blue and calculations in purple. Orange arrows show
calls from parent to child workflows (or calculations). Dashed green
arrows show the implicit data dependency between workflows of the
same level. In calculation names, the suffix Calculation is omitted
for brevity.
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implementing the Nelder-Mead method, it allows for serializ-
ing and storing the state of the engine.

The function which is optimized by the
OptimizationWorkChain is implemented in the
RunWindow workflow. It again consists of two parts:
TightBindingCalculation creates the tight-binding model
itself, and ModelEvaluationBase evaluates the quality of
the model. The first step in the TightBindingCalculation
workflow is to run Wannier90 on the given input parameters.
In a second step, the Wannier90 output is parsed and
converted into the TBmodels [26] HDF5 format. A third,
optional, “slicing” step is used to either permute the basis
orbitals or discard some orbitals. Finally, the (also optional)
symmetrization procedure is performed. Both the Slice and
the Symmetrize calculation have a TBmodels HDF5 file as
both input and output, meaning that they could be chained
arbitrarily with other such post-processing steps.

For the evaluation of the tight-binding model, we again use
an abstract interface class, ModelEvaluationBase. While
for the purposes of this paper we used the average difference
of band energies [Eq. (7)] as a measure of model quality, other
quantities might be more appropriate for different applica-
tions.

IV. STRAIN-DEPENDENT TIGHT-BINDING MODELS

FOR MAJORANA DEVICES

The quest for Majorana zero modes (MZMs) in condensed
matter systems has recently attracted a lot of interest [13–
15,27–31]. The non-Abelian exchange statistics of Majo-
rana Fermions makes these zero modes promising candidates
for the realization of topological quantum computation de-
vices [13,32]. Experimental investigations of possible MZMs
focus on the proposal by Lutchyn et al. and Oreg et al. [14,15]
in which MZMs appear on the boundaries of proximitized
spin-orbit coupled quantum wires. Current experimental se-
tups include semiconducting InAs nanowires with epitaxial
superconducting Al [33] and InAs/GaSb heterostructures in
which the quantum spin Hall effect [34,35] can be realized
providing the possibility to proximity couple the helical edge
state [28,30]. While there is a good deal of evidence sug-
gesting that MZMs exist in the wire-based setups [36,37],
a conclusive proof requires directly showing the braiding
statistics of MZMs. An important step in realizing braiding
with the systems based on the helical edge state is the search
for optimized device and material properties. For optimizing
the topological gap, a better theoretical understanding of the
electronic structure in such devices is required. In this section,
we show how the workflows can be used to generate tight-
binding models which form the basis for accurate device
simulations. While these device simulations themselves are
outside the scope of this work, this shows the potential use of
the method for a topic of active research in current condensed
matter physics.

Highly accurate first-principles methods, using hybrid
functionals [38], or the GW approximation [39], are compu-
tationally too demanding for the simulation of realistic device
geometries and heterostructures. State of the art simulations
of such structures use the k.p method [40] or empirical tight-
binding (ETB) methods [41]. In both of these methods the

Hamiltonian is parametrized by a small number of parameters
which are obtained empirically, for example via fitting to the
first-principles band structure. For both of these methods the
choice of parameters is ambiguous and one can obtain a good
fit of the band structure while at the same time the electronic
wave function might be wrongly represented. This might lead
to unphysical solutions in confined geometries [42,43] and
low transferability of the bulk models to the heterostructure
in general. Recently, it was shown that better matching the
ETB with the first-principles calculations can improve their
transferability [43,44].

Realistic simulations of heterostructures require a correct
treatment of strains at interfaces. In the k.p and the ETB
method this is usually done by strain-dependent parameter
sets. However, often the symmetries are not broken correctly.
In this context, the Wannier or Wannier-like tight-binding
models can offer a significant improvement by accurately
representing the first-principles wave function and correctly
capturing the effect of strain. As a demonstration of the
AiiDA workflows, we construct SWTB models for the III-V
semiconductors InSb, InAs and GaSb.

Including spin-orbit coupling (SOC), we require only 14
basis functions, namely s and p orbitals centered on the
In/Ga atom, and p orbitals centered on the As/Sb atom.
The popular sp3d5s∗ ETB models on the other hand require
40 [45] basis functions. The reason for this is that WTB
models generally include longer-range neighbor interactions,
whereas ETB is typically limited to nearest-neighbor (or next-
nearest-neighbor in some cases [46]) interactions to keep the
number of parameters manageable. As illustrated in Fig. 4, the
produced tight-binding models include long-range hopping
parameters, with amplitudes quickly decaying with distance.

To account for strain, we construct tight-binding models
with biaxial (001), (110), and (111) strains, and the uniaxial
[110] strain, as described in Appendix D. For each material
and strain direction, we calculated 16 models in the range of
±4% strain. Including the unstrained models, we constructed
a total of 195 tight-binding models, showing the applicability
of the AiiDA workflow to a large number of chemically and
structurally similar compounds.

A. Strained tight-binding workflow

To automatically extract tight-binding models for
different strain directions and strengths, we define
an additional workflow, OptimizeStrainedFirst-

PrinciplesTightBinding, as shown in Fig. 5. The
first step in this workflow, ApplyStrainsWithSymmetry,
creates the strained structures from the initial structure
and strain parameters. Since strain can break crystal
symmetries, the symmetries of the unstrained system are
tested against the strained structure. With the strained
structures and the remaining symmetries, we then use the
OptimizeFirstPrinciplesTightBinding workflow to
create a tight-binding model for each strain value.

B. First-principles calculations

In the first step of generating the SWTB we need to carry
out a first-principles calculation of the bulk semiconductor
structure. We performed all first-principles calculations using
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(a) (b)

FIG. 4. Average (blue, left axis) and total (orange, right axis) weights of the hopping parameters for the unstrained InSb tight-binding
model, as a function of distance.

the Vienna ab initio simulation package (VASP) utilizing
projector augmented-wave (PAW) basis sets [47]. To obtain
an accurate prediction of the band gap we employed hy-
brid functionals [48]. The HSE03/HSE06 hybrid function-
als proved to be successful in computing band structures
of III-V semiconductors [49]. These hybrid functionals are
constructed by replacing a quarter of the density functional
short-range exchange (which is the Perdew-Burke-Enzerhof
functional in our case [50]) with its Hartree-Fock counterpart.
The screening parameter μ defines the separation into long-
and short-range parts. In the popular HSE06 scheme, it is

set to μ = 0.2 Å
−1

. We treated μ as an empirical parameter
such that the calculated band gap is fitted to the experimen-

tal value. In this work, we used μInAs = 0.20 Å
−1

, μGaSb =

0.15 Å
−1

, and μInSb = 0.23 Å
−1

, following the prescriptions
of Ref. [51]. Since the SOC of III-V semiconductors is sig-
nificant, we accounted for it by using scalar-relativistic PAW
potentials.

InAs, GaSb, and InSb crystallize in the zincblende struc-
ture with space group T 2

d (no. 216). For the unstrained
structures we perform the first-principles calculation with
the experimental lattice constant a at 300 K, that is aInAs =

6.058 Å, aGaSb = 6.096 Å, aInSb = 6.479 Å, from Ref. [52].
A plane-wave energy cutoff of 380 eV was used for all cal-
culations. The Brillouin-zone integrations were sampled by a
6 × 6 × 6 Ŵ-centered k-points mesh.

To get optimal results from the Wannier90 code in con-
junction with VASP [47] we found that it is necessary to turn

FIG. 5. Sketch of the workflow for constructing strained tight-
binding models. The color scheme is the same as in Fig. 3.

symmetries off in VASP, that is setting the ISYM-tag to 0.
Since the states are obtained by a numerical diagonalization
routine, they obtain a random phase at each k point. When
symmetries are enabled however, the phases are the same
for all vectors forming the star of k. Since the convergence
of Wannier90 is better if the numerical phases are random,
turning symmetries off generally results in more localized
Wannier functions after the projection step.

The interface for running first-principles calculations in
the tight-binding extraction workflow is defined in the
FirstPrinciplesRunBase class (see Sec. III B). Here, we
describe the specific subclass used to implement these cal-
culations with VASP [47], VaspFirstPrinciplesRun (see
Fig. 6). In a first step, this workflow performs a self-consistent
calculation. The resulting wave function is then passed to
calculations for the reference band structure and the input files
for Wannier90. Two workflows VaspReferenceBands and
VaspWannierInput are used to perform these calculations.
The workflows are thin wrappers around the corresponding
calculations from the aiida-vasp plugin [53], providing
additional input and output validation. For the band-structure
calculation, the workflow also adds the k-point grid needed
for hybrid functional calculations.

FIG. 6. Sketch of the FirstPrinciplesRunBase subclass used
for calculating the Wannier90 input and reference bands with VASP
and hybrid functionals.
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(a) (b)

FIG. 7. Comparison between the InSb band structure obtained directly from the tight-binding model with 2% biaxial (001) strain (blue)
and from the linear interpolation (orange) between models with 1% and 3% strain. The energy scale is fixed by setting the top of the valence
bands at Ŵ to zero. (a) At the electron-volt scale, the only visible difference is in the upper bands along the Ŵ-K line. (b) Closeup of the bands
around Ŵ. The bands for 1% (purple) and 3% strain (green) are also shown.

C. Strain interpolation

Using the AiiDA workflow, we obtained tight-binding
models for strains in the range of ±4%, in steps of 0.5%.
However, it is sometimes useful to have a finer control over the
strain value without having to run additional first-principles
calculations. A common way of obtaining this is by linear
interpolation of the hopping parameters. Given two strain
values s1 and s2, for which the hopping parameter H si [R]
are known, the hopping parameters for an unknown s∗ can
be calculated as

H s∗

[R] = αH s1 [R] + (1 − α)H s2 [R], (8)

where

α =
s∗ − s2

s1 − s2
. (9)

Since this method assumes that the hopping parameters are
a linear function of strain value, it becomes unreliable when s∗

is too far away from s1 and s2. For this reason, we compared

TABLE I. Effective masses of light hole (LH), heavy hole
(HH), split-off hole, and electron at the Ŵ point along the [100]
direction in the unstrained case. Values for symmetrized Wannier-
like tight-binding models (SWTB) are compared to first-principles
(HSEbgfit) [51] and experimental results [51,54].

Material Method |m∗
SO| |m∗

LH| |m∗
HH| |m∗

e | g factor

HSEbgfit 0.129 0.018 0.245 0.017
InSb SWTB 0.118 0.016 0.219 0.015 −49.8

Expt. 0.110 0.015 0.263 0.014 −50.6

HSEbgfit 0.112 0.033 0.343 0.027
InAs SWTB 0.118 0.036 0.340 0.029 −15.3

Expt. 0.140 0.027 0.333 0.026 −15

HSEbgfit 0.143 0.047 0.235 0.042
GaSb SWTB 0.124 0.039 0.20 0.036 −15.1

Expt. 0.120 0.044 0.250 0.039 −7.8

a tight-binding model for InSb with 2% biaxial (001) strain
obtained from linear interpolation of 1% and 3% strain models
with one calculated directly from first principles. Figure 7
shows a comparison of the two band structures, which we find
to be almost identical.

Important to note is that while linear interpolation works
well for strains of the same kind, this is not necessarily
the case when combining two models with different strain
directions. The reason for this is that the symmetries of a
particular structure depend on the direction of the applied
strain but (unless it is zero) not on its strength. As a result,
a tight-binding model resulting from linear interpolation be-
tween two models of a different strain direction would not
have the correct symmetries.

D. Results

To validate the tight-binding models obtained using the
aiida-tbextraction workflows, several material param-
eters were calculated. Table I shows effective masses and
g factors for the unstrained models, in comparison to first-
principles [51] and experimental [51,54] values. Effective
masses for the tight-binding models were calculated using

TABLE II. Initial and optimized energy windows used for calcu-
lating unstrained tight-binding models and the corresponding band-
structure mismatch as defined in Eq. (7).

Material Energy Windows (eV) �

initial (−4.5, [−4, 6.5], 16) 0.107
InSb

optimized (−4.44, [−3.24, 8.67], 14.01) 0.033

initial (−4.5, [−4, 6.5], 16) 0.113
InAs

optimized (−4.44, [−3.59, 7.34], 15.04) 0.046

initial (−4.5, [−4.5, 7], 16) 0.082
GaSb

optimized (−5.35, [−3.34, 7.90], 14.27) 0.043
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FIG. 8. Strain dependence of band energies. The two highest valence bands and the lowest conduction band are shown at the Ŵ (blue), X

(orange), and L (green) points, where each band is doubly degenerate. Energy values are shifted such that the valence band maximum at Ŵ is
zero. The line represents values calculated from the tight-binding models with linear interpolation [Eq. (8)] in steps of 0.1%. For comparison,
the points show values calculated from first principles. We find a good agreement between the tight-binding and first-principles values, except
for the conduction band value at the L point at −4% biaxial (111) strain.

a second-order polynomial fit with range 0.001 Å
−1

. The
g-factor calculations were performed using both perturbation
theory and a Landau level calculation [55], with good agree-
ment (<0.5% difference) between the two methods.

The effect of the energy window optimization is shown
in Table II, which lists the initial and optimized windows,
as well as the corresponding band-structure mismatch. As
previously shown in Fig. 2, it can be seen that the mismatch is
substantially reduced after optimization.

Finally, the effect of strain on the energy levels at high-
symmetry points is shown in Fig. 8. The numerical data is
listed in the Supplemental Material [56].

In the Supplemental Material of this paper, an export of
the AiiDA database is given. This database contains the full

provenance of each calculation performed to create the tight-
binding models. For ease of accessibility, a separate data set
containing only the 195 strained tight-binding models is also
given.

V. CONCLUSION AND OUTLOOK

We have implemented a workflow for an automatic
construction of Wannier tight-binding models from first-
principles calculations. Building on the known procedure for
calculating these models, we introduced a post-processing
step to symmetrize the models and an optimization of the en-
ergy windows used for disentanglement. These workflows are
implemented in the aiida-tbextraction package, which
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is a free and open-source plugin for the AiiDA framework. As
a test case, tight-binding models for strained III-V semicon-
ductor materials were calculated. These results should enable
device simulations for Majorana designs and other quantum
devices.

The workflows have been implemented in a modular and
extensible way. As a result, they can be used as building
blocks for further improvements in automating the process of
generating Wannier tight-binding models. Possible directions
include extending the number of first-principles codes which
are compatible with the plugin, adding different fitness criteria
for the energy window optimization, and further minimizing
the number of tunable parameters. For example, the need for
choosing initial trial orbitals could be eliminated either by
using another optimization step or by utilizing the method of
Ref. [12].
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APPENDIX A: PROPERTIES OF THE SYMMETRIZED

HAMILTONIAN

The symmetrized Hamiltonian is defined as [Eq. (4)]

H̃(k) =
1

|G|

∑

g∈G

Dk(g)H(g−1k)Dk(g−1). (A1)

We first show that this Hamiltonian respects the symme-
tries in G. Let g′ ∈ G:

Dk(g′)H̃([g′]−1k)Dk([g′]−1)

=
1

|G|

∑

g∈G

Dk(g′)Dk(g)H(g−1[g′]−1k)Dk(g−1)Dk([g′]−1)

=
1

|G|

∑

g∈G

Dk(g′g)H([g′g]−1k)Dk([g′g]−1)

=
g′′=g′g

1

|G|

∑

g′′∈G

Dk(g′′)H([g′′]−1k)Dk([g′′]−1) = H̃(k).

(A2)

Also, it is easily shown that symmetrizing a Hamiltonian
H

symm.
k which already respects the symmetry does not change

it:

H̃symm.(k) =
1

|G|

∑

g∈G

Dk(g)Hsymm.(g−1k)Dk(g−1)

=
Eq. (2)

1

|G|

∑

g∈G

Hsymm.(k) = Hsymm.(k). (A3)

APPENDIX B: SYMMETRIZED HAMILTONIAN IN TERMS

OF REAL-SPACE MATRICES

In this Appendix, we show how the symmetrized Hamilto-
nian H̃(k) can be expressed in terms of real-space hopping
matrices H [R]. In the following, we will assume that the
representation matrix Dk(g) of unitary operations is given in
the form

Dk(g) = eiαg .kD(g) = eiαg .kUg, (B1)

where αg is the translation vector and Ug is a unitary matrix.
For antiunitary operations, we assume they are of the form

Dk(g) = eiαg .kD(g) = eiαg .kUgK̂, (B2)

where K̂ represents complex conjugation.
First, we notice that Dk

il (g) 	= 0 only if gtl − ti ∈ Z
d ,

meaning that orbitals centered at tl are mapped onto ti , up
to a possible lattice translation. Using Eqs. (1) and (4), we can
write the symmetrized Hamiltonian as

H̃ij (k) =
1

|G|

∑

g ∈ G

l, m

R

Dk
il (g)H lm[R]ei(g−1k).(R+tm−tl )Dk

mj (g−1),

(B3)

where the indices l, m only go over nonzero Dk
il (g) and

Dk
mj (g−1). Writing the real-space operator for g in Seitz

notation [58]

gr = {Sg|αg}, g−1
r =

{

S−1
g

∣

∣ − S−1
g αg

}

, (B4)

where Sg is the rotational part, and αg is the translation vector
of the symmetry, this means that

gtl − ti = Sgtl + αg − ti ∈ Z
d (B5)

g−1tj − tm = S−1
g tj − S−1

g αg − tm ∈ Z
d

⇒ tj − αg − Sgtm ∈ Z
d (B6)

⇒
−(B5)−(B6)

Tml
ij = Sg (tm − tl ) − (tj − ti ) ∈ Z

d . (B7)

Next, we must consider how g acts on the reciprocal-space
vector k. For an (anti)unitary operator, we know that

〈k, r〉 = ±〈gk, gr〉, (B8)

where the positive (negative) sign corresponds to the unitary
(antiunitary) case. Since g acts on r with Sg , it follows that

〈k, r〉 = ±〈Ak, Sgr〉

kT r = ±kT AT Sgr, (B9)

where A is the operation which acts upon k when g is applied.
Since this is true for all k and r,

A = ±
(

ST
g

)−1
, (B10)
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and thus

g−1k = ±ST
g k. (B11)

For the next step, we treat the unitary and antiunitary cases
separately for clarity.

(1) Unitary case
By applying Eq. (B11) to Eq. (B3), we get

H̃ij (k) =
1

|G|

∑

g ∈ G

l, m

R

Dk
il (g)H lm[R]ei(ST

g k).(R+tm−tl )Dk
mj (g−1)

=
1

|G|

∑

g ∈ G

l, m

R

Dk
il (g)H lm[R]eik.[Sg (R+tm−tl )]Dk

mj (g−1).

(B12)

Applying Eq. (B1), we obtain

H̃ij (k) =
1

|G|

∑

g ∈ G

l, m

R

eiαg .k(Ug )ilH
lm[R]

× eik.[Sg (R+tm−tl )](U †
g )mje

−iαg .k

=
1

|G|

∑

g ∈ G

l, m

R

(Ug )ilH
lm[R](U †

g )mje
ik.[Sg (R+tm−tl )]

=
1

|G|

∑

g ∈ G

l, m

R

Dil (g)H lm[R]Dmj (g−1)eik.[Sg (R+tm−tl )].

(B13)

(2) Antiunitary case
In the antiunitary case, we get

H̃ij (k) =
1

|G|

∑

g ∈ G

l, m

R

Dk
il (g)H lm[R]ei(−ST

g k).(R+tm−tl )Dk
mj (g−1)

=
1

|G|

∑

g ∈ G

l, m

R

Dk
il (g)H lm[R]e−ik.[Sg (R+tm−tl )]Dk

mj (g−1).

(B14)

When applying Eq. (B2), it is important to note that the
representation of the inverse is given by

Dk(g−1) = (Dk(g))−1 = (eiαg .kUgK̂ )−1 = K̂U †
ge

−iαg .k

= eiαg .kK̂U †
g = eiαg .kD(g−1). (B15)

Applying Eqs. (B2) and (B15) to Eq. (B14), we get

H̃ij (k) =
1

|G|

∑

g ∈ G

l, m

R

eiαg .k(Ug )ilK̂H lm[R]

× eik.[−Sg (R+tm−tl )]eiαg .kK̂ (U †
g )mj

=
1

|G|

∑

g ∈ G

l, m

R

(Ug )ilK̂H lm[R]K̂ (U †
g )mje

ik.[Sg (R+tm−tl )]

=
1

|G|

∑

g ∈ G

l, m

R

Dil (g)H lm[R]Dmj (g−1)eik.[Sg (R+tm−tl )].

(B16)

We observe that the result is the same for the unitary and
antiunitary cases and treat them together in the following.
Note that the k-dependent part of the representation cancels
with its inverse in both cases [59].

Next, we substitute tm − tl using Tml
ij defined above and

define R′ = SgR + Tml
ij . Since R′ is again a lattice vector, we

can change the summation from R to R′:

H̃ij (k) =
1

|G|

∑

g ∈ G

l, m

R

Dil (g)H lm[R]Dmj (g−1)eik.[SgR+Tml
ij +tj −ti ]

(B17)

=
1

|G|

∑

g ∈ G

l, m

R′

Dil (g)H lm
[

S−1
g

(

R′−Tml
ij

)]

Dmj (g−1)

× eik.(R′+tj −ti ). (B18)

Finally, we again use Eq. (1) to obtain the symmetrized real-
space hopping matrices

H̃ ij [R′] =
1

|G|

∑

g ∈ G

l, m

Dil (g)H lm
[

S−1
g

(

R′ − Tml
ij

)]

Dmj (g−1).

(B19)

APPENDIX C: AiiDA expose FUNCTIONALITY

In this Appendix, we illustrate how the AiiDA expose
functionality simplifies writing modular workflows. It allows
implicitly forwarding input and output values of a subwork-
flow instead of having to explicitly specify each value. Listing
1 shows a simple workflow with two inputs a and b and one
output c. A parent workflow that only wraps this workflow is
shown in listings 2 and 3 with and without using the expose
functionality, respectively. Import statements are omitted in
all listings for brevity.
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Besides reducing the boilerplate code in the parent
workflow, this enables adhering to the single responsi-
bility principle: The parent workflow does not need to

change if the inputs or outputs of the wrapped work-
flow change, unless it directly impacts the parent workflow
logic.

Listing 1. A simple workflow with inputs a and b, and output c. The steps executing the workflow are omitted.

c l a s s SubWF(WorkChain ) :
@classmethod
def de f i n e ( c l s , spec ) :

spec . input ( ‘ a ’ , v a l i d t yp e=Int )
spec . input ( ‘b ’ , v a l i d t yp e=Int )
spec . output ( ‘ c ’ , v a l i d t yp e=Int )

. . .

@classmethod
def de f i n e ( c l s , spec ) :

spec . expose input s (SubWF)
spec . expose outputs (SubWF)

spec . o u t l i n e (
c l s . invoke subwf ,
c l s . wr i t e ou tput s

)

def invoke subwf ( s e l f ) :
return ToContext (

sub wf=s e l f . submit (SubWF, ∗∗ s e l f . exposed inputs (SubWF))
)

def wr i t e ou tput s ( s e l f ) :
s e l f . out many ( s e l f . exposed outputs ( s e l f . ctx . sub wf ) )

Listing 2. A workflow that wraps SubWF by using the expose functionality.

c l a s s ParentWF(WorkChain ) :

Listing 3. A workflow that wraps SubWF without using the expose functionality.

c l a s s ParentWF(WorkChain ) :
@classmethod
def de f i n e ( c l s , spec ) :

spec . input ( ‘ a ’ , v a l i d t yp e=Int )
spec . input ( ‘b ’ , v a l i d t yp e=Int )
spec . output ( ‘ c ’ , v a l i d t yp e=Int )

spec . o u t l i n e (
c l s . invoke subwf ,
c l s . wr i t e ou tput s

)

def invoke subwf ( s e l f ) :
return ToContext (

sub wf=s e l f . submit (SubWF, a=s e l f . inputs . a , b=s e l f . inputs . b )
)

def wr i t e ou tput s ( s e l f ) :
s e l f . out ( ‘ c ’ , s e l f . ctx . sub wf . out . c )
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APPENDIX D: STRAIN TENSOR AND STRAINED

ATOM POSITION

In this section, we list all the strain tensors that we used
in the above simulations. Under a small homogeneous and
elastic strain, the lattice vectors R transform (in Cartesian
coordinates) into [60,61]

R′ = (1 + ǫ)R, (D1)

where

ǫ =

⎛

⎜

⎝

ǫxx ǫxy ǫxz

ǫyx ǫyy ǫyz

ǫzx ǫzy ǫzz

⎞

⎟

⎠
(D2)

is the strain tensor. Due to the stress-strain relation, the strain
tensor under different kinds of strain can be obtained as listed
below [61–63]:

(1) (001) plane biaxial strain

ǫ
bi
001 =

⎛

⎜

⎝

ǫxx 0 0

0 ǫyy 0

0 0 ǫzz

⎞

⎟

⎠
, (D3)

where ǫxx = ǫyy = ǫ′, ǫzz = −2 C12
C11

ǫ′.
(2) (110) plane biaxial strain

ǫ
bi
110 =

⎛

⎜

⎝

ǫxx ǫxy 0

ǫxy ǫxx 0

0 0 ǫzz

⎞

⎟

⎠
, (D4)

where

ǫzz = ǫ′

ǫxx =
2C44 − C12

2C44 + C11 + C12
ǫ′ (D5)

ǫxy =
−C11 − 2C12

2C44 + C11 + C12
ǫ′.

(3) (111) plane biaxial strain

ǫ
bi
111 =

⎛

⎜

⎝

ǫxx ǫxy ǫxy

ǫxy ǫxx ǫxy

ǫxy ǫxy ǫxx

⎞

⎟

⎠
, (D6)

where

ǫxx =
4C44

4C44 + C11 + 2C12
ǫ′

ǫxy =
−C11 − 2C12

4C44 + C11 + 2C12
ǫ′. (D7)

TABLE III. Strain parameters used in this work.

Quantity Symbol Unit InAs GaSb InSb

C11 1011dyn cm−2 8.329 8.834 6.918
Elastic constanta C12 1011dyn cm−2 4.526 4.023 3.788

C44 1011dyn cm−2 3.959 4.322 3.132

Internal dis.b ζ 0.58 0.99 0.9

aFrom Ref. [64].
bFrom Ref. [65].
cFrom Ref. [66].

(4) [110] uniaxial strain

ǫ
uni
110 =

⎛

⎜

⎝

ǫxx ǫxy 0

ǫxy ǫxx 0

0 0 ǫzz

⎞

⎟

⎠
, (D8)

where

ǫzz = ǫ′

ǫxx = −
C11

2C12
ǫ′ (D9)

ǫxy = −
(C11 − C12)(C11 + 2C12)

4C44C12
ǫ′.

In the distorted system, the position of the atoms also
changes with the strain tensor. In the unstrained InAs, GaSb,
and InSb system, the cation is located in the (0, 0, 0) site
and the anion is located at τ̂ =(1/4, 1/4, 1/4) in primitive
lattice vectors. In Cartesian coordinates, τ changes by the
following [61–63]:

(1) (001) biaxial strain

τ̂ ′ = (1 + ǫ)τ̂ (D10)

(2) (111) biaxial strain

τ̂ ′ = (1 + ǫ)τ̂ −
a0

2
ǫxyζ

⎛

⎜

⎝

1

1

1

⎞

⎟

⎠
= (1 + ǫ − 2ǫxyζ )τ̂ , (D11)

where a0 is the lattice constant without strain.
(3) (110) biaxial strain and [110] uniaxial strain

τ̂ ′ = (1 + ǫ)τ̂ −
a0

2
ǫxyζ

⎛

⎜

⎝

0

0

1

⎞

⎟

⎠

=

⎛

⎜

⎝
1 + ǫ − 2ǫxyζ

⎛

⎜

⎝

0 0 0

0 0 0

0 0 1

⎞

⎟

⎠

⎞

⎟

⎠
τ̂ . (D12)

The internal displacement ζ and the stiffness constants
C11, C12, C44 of InAs, GaSb, and InSb we used in the paper
are listed in Table III.
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