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Abstract. A method is presented to automatically track and segment pelvic organs on dynamic magnetic
resonance imaging (MRI) followed by multiple-object trajectory classification to improve understanding of pelvic
organ prolapse (POP). POP is a major health problem in women where pelvic floor organs fall from their normal
position and bulge into the vagina. Dynamic MRI is presently used to analyze the organs’movements, providing
complementary support for clinical examination. However, there is currently no automated or quantitative
approach to measure the movement of the pelvic organs and their correlation with the severity of prolapse.
In the proposed method, organs are first tracked and segmented using particle filters and k -means clustering
with prior information. Then, the trajectories of the pelvic organs are modeled using a coupled switched hidden
Markov model to classify the severity of POP. Results demonstrate that the presented method can automatically
track and segment pelvic organs with a Dice similarity index above 78% and Hausdorff distance of <5.2 mm for
94 tested cases while demonstrating correlation between organ movement and POP. This work aims to enable
automatic tracking and analysis of multiple deformable structures from images to improve understanding of
medical disorders. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.014008]
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1 Introduction

Pelvic organ prolapse (POP) is a major health problem that
affects up to 30% to 50% of women1 with direct costs of about
$1 billion per year.2 POP is a herniation of the female pelvic
floor organs (bladder, uterus, small bowel, and rectum) into the
vagina. This condition can cause significant health implications,
including a bothersome vaginal bulge, and incomplete bowel
and bladder emptying. However, very little is known about the
risk factors of POP even though it is one of the most common
reasons for gynecological surgery according to the National
Center for Health Statistics.3 This makes POP a common but
poorly understood condition. Currently, POP is diagnosed through
clinical examination using the POP quantification (POP-Q) sys-
tem, which is a standardized method for quantifying and staging
POP.4 However, it only allows partial assessment of the pelvic
floor anatomymaking it difficult to observe pelvic organ descent
dynamics in all compartments that could improve understanding
of POP.5 Better understanding of the prolapsing pelvic organs
and their movement could be clinically important for recom-
mending appropriate treatment and POP repair surgery, which
currently has a reported high failure rate of 30%.6

To better understand pelvic organ dynamics, data obtained
through dynamic magnetic resonance imaging (MRI) of the pel-
vic floor have been increasingly studied and used for POP
assessment.7–10 Dynamic MRI of the pelvic floor consists of
a sequence of two-dimensional MRI images taken along the
midsagittal plane during straining maneuvers of the patient

that begin from rest to maximal straining as shown in Fig. 1.
It can be observed from the figure that pelvic organs, such as
the bladder, rectum, and uterus, move and deform significantly
with respect to bony structures. This enables observation of pel-
vic organ descent dynamics in all compartments simultaneously
to complement clinical examination in the assessment of POP.11

Various approaches have been proposed to assess POP using
dynamic MRI and its correlation to clinical examination out-
comes. The most common approach is to manually identify
reference lines and extract corresponding measurements from
the maximum strain frame only. Three of the most widely
used reference lines are the pubococcygeal line (PCL),12

H-line,13 and midpubic line (MPL).12 In addition, dynamic MRI
has been used to analyze the displacement of the pelvic organs.
Some studies have indicated some association between the
movement of the pelvic organs’ centroids and POP.14,15 How-
ever, these studies localized and segmented the organs manually
or semiautomatically. There is currently no automated or quan-
titative approach to measure multiple pelvic organ movement
and their correlation with prolapse.

Some of the challenges of automating the analysis of multi-
ple organ movements on dynamic MRI are as follows: (1) many
of the frames from the dynamic MRI sequence do not provide
additional information as the movement of pelvic organs during
straining maneuvers is fast and captured in only a few frames,
(2) within the few frames that capture organ movement, organs
sometimes move significantly among consecutive frames so
their boundaries do not overlap across the frames, and (3) the
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trajectories of pelvic organs need to be modeled together to
capture the interactions among the organs.

In this research, a model is presented to automatically track,
segment, and analyze multiple pelvic organ movement in
dynamic MRI, and a coupled switched hidden Markov model
(CSHMM) is proposed to analyze the movement and inter-
actions of the organs. The outcome of this model aims to provide
better understanding of POP through organ movement analysis
to potentially improve its diagnosis and treatment. A contour
tracking method is proposed to track and segment multiple pel-
vic organs from a sequence of dynamic MRI images. In the first
stage, the proposed method tracks the pelvic organs over the
frame sequence to generate initial contours that are used for sub-
sequent organ segmentation and to identify those frames that
contain changes in organ movement. This removes uninforma-
tive frames to avoid unnecessary segmentation and tracking.
In the second stage, pelvic organs are segmented using the con-
tours generated in the first stage. Finally, a CSHMM is proposed
as a dynamic Bayesian model to analyze multiple trajectories
and their interactions. This model aims to analyze multiple
organs movement and define MRI-based features to comple-
ment clinical examination for POP assessment.

2 Related Work

Extensive surveys for object tracking can be found in Refs. 16–
18. Tracking deformable objects is more challenging because
the object may go through changes in size, shape, and texture
during the image sequence making it difficult and sometimes
impossible to track. For trajectory classification, reviews can
be found in the work by Morris and Trivedi19 and Aggarwal
and Ryoo.20

Dynamic models have been proposed to take into account
the temporal ordering of the trajectories. A standard hidden
Markov model (HMM) can be used to model multiple-objects
trajectories, which results in multidimensional state states and
observation spaces.21 A multiobservation HMM was suggested,
in which the observation space is factorized by defining multiple
observation variables in each time interval.22 A parallel HMM23

was proposed, where both space state and observation states are
factorized. A distributed multidimensional HMM was proposed
in Ref. 24, which first models the trajectories as a noncausal,

multidimensional HMM and then distributes the noncausal
model into multiple-distributed causal HMMs. Previous appro-
aches either do not consider interactions among objects or
require large computations.

While there has been extensive research on the dynamics of
body organs, such as brain,25 heart,26 and lungs,27 few groups
have conducted research on the movement and deformation
of soft tissues in the pelvic area. In Ref. 28, landmarks are
tracked over the boundary of pelvic organs during strain for
prolapse analysis. Another work focused on generating biome-
chanical models to simulate pelvic organ movement.29 A finite-
element-based numerical simulation was presented in Ref. 30 to
study the effects of vaginal delivery on the pelvic floor.
However, these works segmented the organs using manual or
semiautomatic approaches.

Current contour tracking or boundary-based object tracking
methods require manual localization of the objects to be seg-
mented. They also rely on the assumption that the boundaries
of the objects to be tracked and segmented are overlapping
in consecutive frames. The dynamic MRI taken for POP con-
tains multiple frames with no changes that do not provide any
additional information. Thus, these uninformative frames need
to be identified and removed to avoid unnecessary segmenta-
tion. Moreover, the boundaries of the organs do not always
overlap in consecutive frames.

3 Methodology

The proposed method to automatically track, segment, and ana-
lyze the movement of pelvic organs is described in this section
and shown in Fig. 2. The process starts with the data collection
followed by a contour tracking method for automated tracking
and segmentation of pelvic organs using prior information.
Finally, the pelvic organ trajectories are analyzed using a pro-
posed CSHMM that extends and solves the concept of switched
HMM31 for multiple trajectories.

3.1 Data Acquisition

A representative clinical dataset of 94 cases with dynamic MRI
was used in this study. The distribution for the three types of
prolapse, anterior (for bladder), apical (for uterus), and posterior

Fig. 1 Midsagittal dynamic MRI: frame at (a) rest and (b) maximum strain.
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(for rectum), is shown in Table 1. The Institutional Review
Board at the University of South Florida considered the study
exempt since all protected health information was previously
removed from the clinical and MRI data before being collected
from a database for this study. MR imaging was taken on a
3-Tesla GE system (General Electric Company, GE Healthcare,
Buckinghamshire, United Kingdom) using an 8-channel torso
phased-array coil with the patient in a modified dorsal lithotomy
position. Prior to imaging, 60 ml of ultrasound gel was placed in
the rectum for improved visualization. Dynamic MRI of the
pelvis was performed using a T2-weighted single-shot turbo
spin-echo sequence in the midsagittal plane with a temporal
resolution of 2 s (field of view 300 × 300 mm2, slice thickness
3 mm, TR/TE 2000∕75 ms, 20 image sequences, and in-plane
resolution of 1.6 × 1.6 mm2). Patients were coached, prior to
imaging, on performance of an adequate valsalva maneuver.

Each patient has 20 frames showing the pelvic floor struc-
tures from rest to maximum strain. The image data have been
preprocessed and deidentified. For the ground truth, each patient
in the dataset was previously examined clinically using the POP-
Q system resulting in a POP stage assignment that ranges from
0 to 4, where 4 is the highest level of POP severity. A stage was

assigned for each of the three types of prolapse resulting in three
separate stages for the patient (a patient can have one or multiple
types of prolapse). The current study was designed as a two-
class classification problem to differentiate cases of low and
high stages of POP. In this study, low prolapse was defined as
stage 0 or 1, and high prolapse was defined as stage 2, 3, or 4.
The aim is to identify patients who most likely require repair
surgery (high prolapse) versus patients who do not (low
prolapse) based on pelvic organ movement. Thus, this study
aims to analyze the relationship between multiple pelvic organ
movement and severity of prolapse to improve understanding of
the condition, and potentially improve POP diagnosis and treat-
ment by complementing clinical examination.

Before analyzing the MRI data, the images are normalized to
improve the contrast of the input images by stretching the range
of intensity values. Then, a training set is selected from the data-
set to analyze and extract a representative set of intensity and
texture features R for the bladder and rectum. The texture fea-
tures include the range, standard deviation, and entropy. The
uterus, although also a pelvic organ, is not considered in this
work as some cases in our dataset belong to patients whose
uterus has been surgically removed.

3.2 Automated Tracking and Segmentation of
Pelvic Organs Using Prior Information

In the first stage of the proposed method, the bladder and rectum
are tracked using an adapted particle filter approach with prior
information. This information consists of the relative locations
and common movement directions of the pelvic organs. The fol-
lowing prior information has been incorporated in the particle
filter tracking and is explained in more detail throughout this
section:

Fig. 2 Overview of the proposed predictive model.

Table 1 Composition of the dataset based on POP severity for the
three types of POP.

POP type Low prolapse High prolapse

Anterior 34 60

Apical 78 16

Posterior 26 68
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• No part of the bladder and rectum is located on the top
quartile of the images.

• The pelvic organs tend to move down or to the right
during dynamic MRI.

• The bladder is always on the left side of the image while
the rectum is on the right side.

This prior information is used to improve the generation,
updating, and resampling of the particles. For example, since
no part of bladder and rectum is located in the top quartile
of the images, particles are not generated on this quartile to
improve particle tracking.

Then, for each frame, the following steps are performed:

1. Update the position of the particles by assuming a
proper velocity. We assume uniform linear motion
for the bladder and rectum, and use prior information
on their common movement directions to improve the
tracking results. This is achieved by updating the par-
ticles using the linear velocity and imposing higher
chances that a particle moves down or to the right.

2. Calculate the likelihood of particles LðkÞ. For each par-
ticle k, we measure how close its features qk are from
R, where σ is the standard deviation of ðqk − RÞ

EQ-TARGET;temp:intralink-;sec3.2;63;474LðkÞ ¼ 1
ffiffiffiffiffiffiffiffi

2πσ
p exp

�

−
ðqk − RÞ2

2o2

�

:

3. Resample the particles with replacement according to
their likelihood, where Pk is the likelihood of the k’th
particle and N is the number of particles

EQ-TARGET;temp:intralink-;sec3.2;63;391PðkÞ ¼ LðkÞ
P

N
v¼1 L

ðvÞ :

After resampling, for each frame, we use k-means to cluster
the particles into two groups corresponding to each pelvic organ
(bladder and rectum). Prior information on the relative location
of the bladder and rectum in the image is incorporated to provide
a better initialization for the k-means clustering. In particular, it
is known that the bladder is always on the left side of the image
while the rectum is on the right side. Therefore, the initial place-
ment for the centers in k-means is based on this information to
improve clustering of the two organs. Outlier particles are
removed from each cluster using the Grubbs test,32 because
during the resampling there is a chance that some particles
with low likelihood are selected. The Grubbs’s test statistics of
all particles to their corresponding center is measured based on
their distance assuming they have normal distribution. Then, the
ones that are statistically farther from the center at α ¼ 0.05 are
identified as outliers and are eliminated.

Our analysis of the image dataset showed that for all cases
only 3 to 5 frames out of the 20 frames provide information on
changes in pelvic organ movement whereas the remaining
frames show no pelvic organ movement. For this reason, seg-
mentation is performed only on a representative set of five
frames to avoid unnecessary segmentation on uninformative
frames. In this work and for each case in the dataset, the move-
ment of particles’ centroids for bladder and rectum is measured

over all the frames. Then, the five frames with the largest move-
ment are selected as the representative frames.

The resulting two clusters of particles are used to define a
bounding box for each pelvic organ to constrain the search
space during segmentation and significantly reduce the compu-
tational time. An initial adaptive contour is proposed for seg-
mentation that is generated from the convex hull of each
particle cluster. This provides a good initial contour to initialize
the Chan–Vese contour segmentation algorithm33 and automate
the process. In contrast with the original Chan–Vese algorithm
that requires an initial contour to be manually defined for each
frame, our approach determines the initial contour for each
frame automatically and adaptively using the convex hull of
particles to identify the boundaries of the bladder and rectum.
The generated bounding box and convex hull to initialize the
segmentation algorithm are shown in Fig. 3.

3.3 Multiple Pelvic Organs Trajectory Analysis

From Sec. 3.2, the trajectory of the bladder’s and rectum’s cent-
roids and lowest points are extracted. The lowest points are con-
sidered, because they are of clinical interest to determine the
stage (or severity) of prolapse. This leads to four trajectories
for each patient as can be seen in Fig. 3. A method called
CSHMM is proposed to capture the interactions among the
four trajectories to classify the severity of POP.

In this work, patients are to be classified into two classes:
high severity of prolapse (classþ1) and low severity of prolapse
(class −1), so the set of output variable is c ∈ fþ1;−1g. For
each patient i in class c, there exist four trajectories l ∈ f1; 2;
3; 4g with the sequence of positions xl ¼ ðx1l; : : : ; x5lÞ where
xlt ∈ R

2. CSHMM is a generative model; hence, a separate
model should be made for the examples of each class. As shown
in Fig. 4, the state of each trajectory at time t depends on its own
state at time t − 1, its observation at time t and on the states of
other trajectories at time t − 1.

We consider the observed variables as the set of the relative
movement fdlt ¼ðxl;tþ1−xl;tÞ; l¼ 1;2;3;4; t¼ 1;2;3;4g of the
four trajectories rather than their absolute positions X ¼ fxl; l ¼
1; 2; 3; 4g because we want to study the movements of the

Fig. 3 Generated bounding box (red) and initial contour (blue) for
bladder (left side) and rectum (right side) using their corresponding
particles and four trajectories to be analyzed for each patient.

Journal of Medical Imaging 014008-4 Jan–Mar 2018 • Vol. 5(1)

Nekooeimehr et al.: Automated contour tracking and trajectory classification of pelvic organs. . .



organs. As shown in Fig. 5, the hidden states in our model are
“stopped,” “moving up,” “moving down-right,” “moving down,”
and “moving down-left.”

Given the observed feature vector fdl ¼ ðdl1; : : : ; dl4Þ;
l ¼ 1; 2; 3; 4g and the corresponding set of hidden state
fhl ¼ ðhl1; : : : ; hl4Þ; l ¼ 1; 2; 3; 4g, the task is to estimate the
set of parameters γc ¼ ðΠc; θc; AcÞ for each class c. Πc ¼
fπcðS1; : : : ; S4Þ; Sl ¼ 1; : : : ; N; l ¼ 1; 2; 3; 4g are the initial
probabilities for the states, given that each state can take N

different values. θc is the set of parameters for the Gaussian
distribution, including the mean μðS1;: : : ;S4Þ and the variance
ΣðS1;: : : ;S4Þ, and Ac is the state transition probabilities. In contrast
to Ref. 31, in which first the Gaussian parameters θc are esti-
mated and then ðΠc; AcÞ are estimated separately, in our method,

all the parameters are determined simultaneously resulting in
better estimation of the parameters at the expense of higher
computational time.

After building a model for each type of prolapse, the next
step is to classify new cases having a set of four observed
trajectories. The “maximum a posteriori” rule is being used for
this purpose:

EQ-TARGET;temp:intralink-;sec3.3;326;675c ¼ arg maxcfpðxjcÞpðcÞg

¼ arg maxcfpðxjΠ̂c; θ̂c; ÂcÞpðcÞg;

in which the pðxjΠ̂c; θ̂c; ÂcÞ is the log likelihood of the most
probable explanation (mpe) of example x using the model for
class c, and pðcÞ is the “a priori” probability of the class c.
In our experiments, we set pðcÞ equal to the proportion of
each class in the dataset. Hence, we set pðc ¼ þ1Þ ¼ 0.34 and
pðc ¼ −1Þ ¼ 0.66. We also used the Viterbi algorithm34 to find
the mpe and likelihood of each new patient for each model.

4 Results

The proposed model was tested on 94 cases, which were man-
ually segmented by an expert as the ground truth. Tracking and
segmentation results were evaluated using Dice similarity index
(DSI) and Hausdorff distance to quantify the degree of overlap
and their spatial distance among objects, respectively. DSI35

was used as a quantitative measure of the overlap between
our method’s segmentations and the ground truth segmentation.
The value of DSI ranges from 0 to 1, where 0 indicates no inter-
section between the ground truth and automatically segmented
regions and 1 indicates a complete overlap between the two
segmentations. Hausdorff distance36 is a measure to estimate
the spatial distance between two sets of points. The smaller

Fig. 4 Proposed CSHMM.

Fig. 5 The scatterplot of trajectories’ displacement. Each eclipse refers to the Gaussian distribution of
the hidden states. The hidden states include “stopped,” “moving up,” “moving down-right,” “moving
down,” and “moving down-left.”
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the distance implies the closeness of the two sets and better
segmentation.

For each patient, the DSI and Hausdorff distance for the five
frames were calculated and averaged. Then the averaged DSI
for all the patients was averaged over the 94 patients. Results
indicate that the proposed method is able to automatically track
and segment bladder with a DSI of 0.8957� 0.0146 and
Hausdorff distance of 4.1567� 0.506 mm. The DSI for rectum
is 0.6720� 0.0654 and the Hausdorff distance is 6.3262�
0.5330 mm.

To determine whether there is a relationship among pelvic
organs movement on dynamic MRI with the severity of pro-
lapse, the maximum displacement of the organs’ lowest point
from rest to maximum strain was analyzed. The mean and stan-
dard deviation of this displacement were determined for the total
study population and compared with the two classes of prolapse
(low severity and high severity) as shown in Table 2. The stat-
istical significance of the maximum displacement difference
between the two classes was measured using a two-sided
t-test. Alpha ¼ 0.05 was used to accept or reject whether there
exists a difference between the two classes for each organ. As
can be seen from Table 2, at α ¼ 0.05, the difference is signifi-
cant for anterior prolapse. On the other hand, although on aver-
age the rectum was shown to move more for the case of high
severity of prolapse, the difference in displacement from rest to
maximum strain was not found to be significant for posterior
prolapse. Therefore, we can conclude that for the case of anterior
prolapse, large bladder displacement observed on MRI from rest
to maximum strain is related to high severity of prolapse. How-
ever, a similar conclusion cannot be made for posterior prolapse.

In addition, it was studied whether there exists any correla-
tion between the lowest point’s largest displacement of the blad-
der and rectum on MRI from rest to maximum strain. Figure 6
shows the displacement of the bladder on the y-axis and the
displacement of the rectum on the x-axis. Kendall’s tau for the
correlation was 0.3636 and the p-value was 2.2113 × 10−07. The
Pearson’s correlation coefficient was 0.3905 and the p-value
was 9.9720 × 10−05. Thus, at α ¼ 0.05, we can conclude that
there exists enough evidence that the maximum displacement
of the bladder and rectum is correlated. This indicates that
a large bladder displacement tends to also present with high
rectum displacement and vice versa. These results confirm
the importance of considering the interactions of pelvic organs
to improve understanding of the condition.

The proposed CSHMM was compared with single trajectory
classification, in which one single trajectory (the centroids) rep-
resents each organ and the interactions of the organs are not con-
sidered. In this case, the trajectory of the rectum’s centroids is
used to predict the severity of posterior prolapse, whereas the
trajectory of bladder’s centroid is used to predict the severity of
anterior prolapse. Given that the dataset contains some patients
whose uterus has been surgically removed, it was not possible to
track and segment the uterus to perform the single trajectory

analysis for apical prolapse. Instead, for the multiple trajectory
analysis, the trajectories of the bladder and rectum were used
to determine the severity of apical prolapse. The proposed
CSHMM is also compared with two commonly used manual
MRI-based measurements: (1) PCL and (2) MPL. PCL is
defined as the line connecting the inferior rim of the pubic bone
and the last visible coccygeal line. MPL is defined as the line
drawn through the longitudinal axis of the pubic bone and pass-
ing through its midequatorial point. These measurements were
obtained for all the cases in the dataset by an expert radiologist
and were converted to stages of prolapse using the standard
criteria described in Ref. 37.

Leave-one-out cross validation was used to measure the per-
formance of the prediction model in terms of accuracy and
F-measure. In leave-one-out cross validation, all but one of the
examples from the dataset are used for training the model, and
the remaining example is used for testing the model. This proc-
ess is repeated for each of the examples in the dataset to predict
if the example has high severity of prolapse or not. The pre-
diction for each example is compared with the POP-Q measure-
ment of each example to obtain the accuracy and the F-measure
of all 94 examples. F-measure is the weighted average of recall
and precision, and a suitable performance metric when the data-
set is imbalanced, such as our dataset. Precision measures the
exactness of our prediction model, that is, the number of patients
who were predicted correctly with high prolapse from the mod-
el’s positive predictions. Recall measures the completeness of
our prediction model as the number of patients with high
severity of prolapse was predicted correctly from the sample.
The experiments were repeated three times to report the average
in order to alleviate the randomness effects on the results. The
comparison between MPL, PCL, and our method for the three
types of prolapse is shown in Table 3. The N/Avalues in Table 3

Table 2 Summary statistics for the total displacement (in mm) of the lowest points for the bladder and rectum.

POP type Total (n ¼ 94) Low prolapse High prolapse P-value

Anterior 37.049� 23.375 27.446� 15.429 42.491� 25.394 0.0023*

Posterior 39.749� 23.375 34.983� 24.016 41.5718� 19.557 0.1741

*p < 0.05.
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are for the single trajectory analysis of apical posterior, since
the uterus was not tracked and segmented.

5 Discussion

As seen in the results, the proposed model provides greater accu-
racy compared to the current manual MRI-based measurements
(PCL and MPL) for all types of prolapse. In terms of F-measure,
the proposed method shows better results for both MPL and
PCL for anterior and apical prolapse, respectively, but not for
posterior prolapse. Also, in agreement with the results in Ref. 37
and as a secondary conclusion, MPL measurements work better
than PCL for the three types of prolapse in all our 94 patients.
The proposed method aims to complement clinical examination
(POP-Q) and enhances our understanding of POP through
an automated and quantitative MRI-based approach for organ
movement analysis. In particular, the proposed method provides
a model based on the trajectories and interactions of multiple
pelvic organs on dynamic MRI compared to current static mea-
surements (PCL and MPL) that are extracted only at the maxi-
mum strain frame.

Deep learning approaches, such as recurrent neural networks
and long short-term memory, have been presented for learning
temporal dynamics. However, HMMs are simpler, more inter-
pretable, better suited for short temporal horizons, and require
less training data. For these reasons, we used an HMM approach
as our dataset is not very large, the time for organ movement
analysis is short, and model interpretability is very important
for our application.

Although the proposed method correctly segmented the pel-
vic organs in our dataset, segmentation challenges may present
in cases where gas accumulates inside the rectum during image
acquisition. This can be observed in the segmentation results for
the rectum. As future work, additional data will be collected and
processed to perform experiments and generalize the method on
a larger dataset and to analyze the impact of the uterus’ trajec-
tory on classification.

6 Conclusions

In this paper, an automatic method was presented to track, seg-
ment, and analyze the trajectories of pelvic organs on dynamic
MRI. A modified particle filter approach was designed by incor-
porating prior information and clustering to track the pelvic
organs automatically. An adaptive initial contour for segmenta-
tion using the convex hull of the particle clusters was proposed

to automatically remove uninformative frames for segmentation.
Later, the trajectories of centroids and lowest points of the seg-
mented pelvic organs were modeled using a CSHMM to classify
the severity of POP. Results demonstrate that the proposed
method can accurately track and segment the pelvic organs
and improve the classification of the severity of pelvic prolapse
by modeling the resulted trajectories. The proposed method can
be used to quantitatively analyze the movement of pelvic organs
on MRI to improve understanding of POP, complement clinical
examination, and possibly improve treatment and outcomes.
It can also be used for the automatic tracking, segmentation,
and classification of deformable structures from a sequence of
images. As future work, we plan to collect additional data to
perform experiments on a larger dataset and extend this work
for the classification of all the five stages of POP.
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