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Abstract— In our past work we have developed a hierarchical 

hybrid-model based mission control approach for autonomous 

underwater vehicles. The approach is aided by tools that allow 

graphical design, iterative redesign, and code generation for 

rapid deployment onto the target platform.  The goal is to 

support current and future autonomous underwater vehicle 

(AUV) programs to meet evolving requirements and capabilities. 

The hierarchical architecture contains mission controllers at each 

level which coordinate with other controllers, the vehicle, and the 

user for the successful execution of a mission. Here we propose an 

approach for automated synthesis of such controllers, and 

illustrate by applying the algorithm for automated synthesis of 

the highest-level coordinators.  

I. INTRODUCTION 

Many practical systems can be modeled as a group of 

interacting hybrid systems. A growing need for modeling, 

design and analysis of such systems has led to an increased 

interest for research in this area. In our past work we have 
developed a hybrid-model based hierarchical mission control 

architecture for autonomous underwater vehicles (AUVs) that 

facilitates graphical design and code generation [10], 

verification of logical correctness [11], and animation of the 

AUV depicting the missions executed [18].  

The control tasks for an autonomous underwater vehicle is 

divided into lower level control, concerned with control of 

continuous vehicle dynamics and a higher-level mission 
control, which has discrete real-time dynamics and is 

concerned with safe execution of mission. The overall control 

is a hybrid system containing both continuous and discrete 

dynamics.  

The basic idea is to hierarchically decompose missions into 

sequence of operations, and operations into sequence of 

behaviors, and behaviors into sequence of vehicle maneuvers. 

As shown in Figure 1 at the lowest level of the hierarchy is the 

underwater vehicle (plant) along with the vehicle controllers 

(VCs) above which we have the mission controller. The lowest 

level of the mission controller is comprised of Behavior 

Controllers, where a behavior may be thought of as a skill or 

ability that an autonomous system possesses which enables it 

to perform specific mission tasks (thrive) while remaining safe 

(survive).  Behaviors require execution of sequences of vehicle 

maneuvers. The middle level of the mission control hierarchy 

consists of Operation Controllers, where an operation 

represents a mission segment or phase that is integral to the 

completion of the overall AUV mission.  Operations, 

command/sequence the behavior controllers to achieve their 

objectives. The highest level of the mission controller consists 

of the Mission Coordinators which are responsible for 

sequencing and scheduling operations in order to complete the 

mission while ensuring the safety of the vehicle. Controllers at 

each of the levels coordinate those at the lower levels to 

achieve a higher level behavior or operation or mission, as the 

case may be.  Modules within a level may communicate with 

each other and each level in the hierarchy is restricted to 

command the level immediately below it and send responses to 

the level immediately above it. All levels in the mission 

controller hierarchy may assign vehicle commands directly by 

placing an appropriate vehicle command in the shared 

database. 

Hierarchical approach reduces the complexity of design and 

also facilitates the verification, animation and automated 

synthesis of the highest level mission controller module(s), 

which is the main theme of this paper. Here we present a 

method for the automated synthesis of the coordinators. 

   

 

Figure 1: Hybrid Mission Control Architecture 

The vehicle controller and the mission controller 

communicate through an interface layer symbolically 

represented by MC2VC (mission controller to vehicle 

controller) and VC2MC (vehicle controller to mission 

controller).  The MC2VC block also includes a Command 

Conflict Manager which is responsible for selecting a specific 



 

 

vehicle level command (when more than one exists) according 

to a static or dynamic priority list or using other methods (such 

as optimization).  This module is included since all modules in 

the mission controller hierarchy are allowed to assign vehicle 

commands directly, and so there is a distinct possibility that 

multiple vehicle commands can coexist.  

A sequence of commands is sent to the vehicle subsystem 

controllers via the MC2VC interface.  AUV state information 

is collected by the sensors and transferred by the VC2MC 

interface periodically to the shared database. This state 

information is made available to all modules in all levels of the 

mission controller hierarchy.  Similarly, vehicle commands, 

assigned and manipulated by all levels in the mission 

controller are stored in the shared database and sent to the 

AUV by the MC2VC interface.  

An event is initiated by a particular module and its 

recipients are controlled by an event dependency table which 

may be static or dynamic.  The entire mission controller 

contains interacting hybrid automata, which is formally 

defined in a section below. 

The mission controller modules are developed using TEJA 

software tool [5], which supports the design of interacting 

hybrid state machines and includes automatic real-time code 

generation allowing for a rapid deployment on the target 

platform. For verification purposes, the Teja modules 

specifications are first transformed [6] into a format readable 

by Uppaal [6] and HyTech [8], a hybrid system modeling, 

simulation, and verification tool. For animation, the mission 

controller modules in Uppaal are further converted to 

animation modules of OpenGL [9].  

In the present work our goal is to propose the automated 

synthesis of mission coordinators (i.e. controllers at the 

topmost layer) for hierarchy based hybrid mission control 

architecture for AUVs. The interactions within the modules in 

the hierarchical control architecture are complex. Synthesis of 

a coordinator for such a system is a challenging task as it 
requires careful monitoring of the inputs received and the 

outputs sent. The controller is a hybrid system with discrete 

states and continuous dynamics. The continuous dynamics are 

implemented as functions. The coordinators are a special case 

of hybrid system with timing constraints and are known as 

timed automata.  

Our method of coordinator synthesis is based on identifying 

constant and variable properties like application specific 
events. The basic idea for synthesis of coordinators is such that 

it should satisfy properties to execute missions.  

In section II we discuss the hierarchical mission controller 

architecture for the survey AUV implemented at the Applied 

Research Lab at Pennsylvania State University. In section III 

the hybrid system model is discussed and in section IV we 

discuss our approach of coordinator synthesis, in section V we 

discuss related work and all that has been accomplished in our 
work and finally conclude our work in section VI. 

II. MOTIVATING APPLICATION: A SURVEY AUV 

Figure 2 shows the details of a specific application of the 

general AUV mission control architecture to a generic survey 

AUV. The primary mission of a survey AUV is to transit to a 

user specified location and conduct a survey following a 

specific pattern in 3D, at a specified speed and depth/altitude. 

In this example, there are three vehicle controllers (VCs), the 

Autopilot which accepts commands to control the altitude, 

speed and depth of the AUV; the Variable Buoyancy System 

(VBS) Controller which accepts commands to control the trim 

and buoyancy of the AUV; and the Device Controller which 

accepts commands to control the various sensors and other 

devices on board the AUV.  

The lowest level of this mission controller is comprised of 

two behavior controllers:  Steering, which is responsible for 

steering the vehicle to a specified location in space and 

interacts with the Autopilot; Loiter which controls the vehicle 

to loiter at a specific location in space for a specified duration 

and interacts with the Autopilot and VBS Controller.  

The behavior controllers are, in turn, commanded by the 

operation controllers, which correspond directly to mission 

orders that are specified by the user and are described next. 

The Pause operation controller is used under certain situations 

to let the vehicle remain at it’s current state for a specified 

duration. The Launch operation controller is responsible for 

bringing the vehicle off of the surface and running at depth 

with enough forward speed to achieve controllability.  This 

controller interacts with the Autopilot, the VBS Controller, and 

the Device Commander controller. The GPSFix operational 

controller sequentially commands the AUV to shut off 

propulsion, rise to the surface, raise the GPS mast, obtain a 

GPS-aided position fix retract the GPS mast, and re-launch the 

AUV.  This controller interacts with the Autopilot, behavior 

controller, the Device Commander, the Device Controllers, 

and the Launch operation controller. The WaypointNavigator 

operation controller controls the AUV to transit to waypoints 

specified by the mission specification.  This controller 

interacts with Steering, Loiter, and the Device Controller. The 

Device Commander is used to control sensors and devices on 

the AUV in response to mission orders; this controller interacts 

with the Device Controllers.  Finally, at the highest level of the 

AUV mission controller are the mission coordinators of which 

there are two types: Progress and Safety, where the progress 

coordinator is divide into two parts: Sequential, and Timed. 

The sequential coordinator is responsible for executing a 

mission consisting of a sequence of operations; a timed 

coordinator is responsible for executing a timed sequence of 

operations; and a safety coordinator ensures safe operation.  

According to our hierarchical architecture coordinator 

synthesis involves synthesizing the top level controllers which 

receive input from the lower level controllers and the mission 

file. The functionality of all the coordinators together is to  

send command to the lower level controllers, respond to 

successful mission completion and react to exceptions like 

aborting missions or modifying parameters for safety. 



 

 

Figure 2: Survey mission control architecture 

III. HYBRID SYSTEM MODEL: NOTATIONS AND PRELIMINARIES  

Hybrid systems are systems, which include continuous as 

well as discrete signals and states. Hybrid systems [4] [10] 

have been used as mathematical models for many important 

applications. Their wide applicability has inspired a great deal 

of research from both control theory and theoretical computer 

science [7].  

An AUV is a hybrid dynamical system with both discrete and 

continuous states. Hybrid systems can be modeled as hybrid 

automata. A hybrid automaton model captures the evolution of  

variables over time. The variables will evolve continuously as 

well as in instantaneous jumps. A hybrid automaton is as 

described below. This type of modeling formalism has been 

used to model the underwater vehicle control modules. 

A. Controlled hybrid automaton 

A controlled hybrid automaton is a tuple 

H ( )RGEIHFYUQ ,,,,,,,,,Σ=  consisting of the following  

components:  

State space: XLQ ×=  is the state space of the hybrid 

automaton, where L is a finite set of locations and 
n

X ℜ=  is  

 the continuous state space. Each state Q can be described 

by Qxl ∈),( , where Ll ∈  and 
nx ℜ∈ . 

Events: Σ  is the finite alphabet or event set of H.  

Continuous Controls and Parameters:
m

U ℜ=  is the 

continuous control space consisting of control signals and 
 

exogenous continuous-time parameters.  [ ) Uu →∞,0:  

denotes a control vector comprised of these parameters. 

Outputs: Y is the output space of H, which may consist of 

both continuous and discrete elements. 

Continuous Dynamics: F is a function on UL × assigning a  

vector field or differential inclusion to each location and 

continuous control vector. We use the 

notation )(),( ufulF
l

= . 

Output Functions: H is a set of output functions, one for each  

location Ll ∈ . We use the notation 
l

hlH =)( , where 

YUXh
l

→×:  is the output function associated with 

location Ll ∈ . 

Invariant conditions:
X

I 2⊂  is a set of invariant conditions  

on the continuous states, one for each location Ll ∈ .  We  

use the notation XilI
l
⊆=)( .  If no 

l
i  is specified for some  

Ll ∈ , then it's default value is taken to be 
n

X ℜ= . 

Edges: LLE ×Σ×⊂  is a set of directed edges.  

Elle ∈′= ),,( σ  is a directed edge between a source location 

Ll ∈ and a target location Ll ∈′   with event label Σ∈σ . In 

addition,
Φ

∪= EEE
c

, where 
c

E  and 
Φ

E  represent the 

controlled and uncontrolled edges, respectively. 

Guard conditions:
X

G 2⊂  is the set of guard conditions on 

the continuous states, one for each edge Ee∈ .  We use the 

notation XgG
ee

⊆= .  If no 
e

g  is explicitly specified for  

some edge Ee∈ , then it's default value is taken to be 
n

X ℜ= . 

Reset conditions: R is the set of reset conditions, one for each 

edge Ee∈ . We use the notation
e

reR =)( , where 
X

e
Xr 2: →  is a set-valued map. If no 

e
r  is explicitly 

specified for some edge Ee∈ , then the default value is taken 

to be the identity function. 

The semantics of a hybrid automaton can be understood as  

follows. When in a certain discrete configuration l, the 
continuous-state x of the hybrid system evolves according to 

the controlled vector-field Fl(x,.). The evolution of the 

continuous-state according to the flow of Fl(x,µ.) is defined as 

long as x lies in the domain specified by the invariant 

condition il. If at anytime during its evolution the continuous-

state acquires a value that satisfies a guard condition ge for 

some edge e=(l,σ,l’) of the hybrid automaton, the system can 

transition from configuration l to l’. The transition is labeled 
by an ``event'' σ and the continuous-state in the new 

configuration acquires a value specified by the reset condition 

re. When in new configuration l’ the continuous-state evolves 

according to the controlled vector-field Fl’(x,.). In the next we 

discuss the algorithm to synthesize such hybrid coordinators. 

IV. PROPOSED APPROACH FOR COORDINATOR SYNTHESIS 

Automated synthesis of the mission controllers promises 

reduction in time to develop and implement controllers for 

hierarchical control of autonomous vehicles. It also improves 
modification and debugging capability.  

Our goal in the automation of controllers is to translate the 

mission specifications and user inputs into sequence of actions 

to successfully execute the mission. The specifications are the 

sequence of operations for the coordinators, the sequence of 

behaviors for the operation controllers and the sequence of 

vehicle maneuvers for behavior controllers. The coordinators 

we synthesize are timed automata with timing constraints 
modeled as guard conditions. The operation and behavior 

controllers are hybrid systems implementing discrete states 



 

 

with continuous dynamics. The definitions of the automata 

built are as discussed in section III.     

The controllers consist of a basic structure which is common to 

all the controllers (excepting the safety coordinator which 
involves a basic structure) and a specific synthesized structure 

based on the specific operation, behavior or maneuver to be 

executed. Examples of the basic structure are responding to 

failures or harmful events or initializing when started. An 

example of a specific mission can be to find the present 

location using a GPS or fire a missile. Although these two 

distinct structures are exhibited by the controllers at each level 

we only discuss the algorithm for synthesizing the coordinators.  
We consider the requirement of three coordinators at the 

topmost level. The three coordinators are a sequential 

coordinator (implementing sequential control to execute a 

sequence of actions for a mission), a timed coordinator 

(implementing time critical missions) and a safety coordinator 

(implements safe execution of mission). These coordinators 

are synthesized based on user input and high level 

specification.  

A. Sequential coordinator  

Sequential coordinator coordinates the execution of sequential 

untimed mission. The synthesis of sequential coordinator is 

based on the inputs received and the way it responds to 

mission execution. Inputs received by the sequential 

coordinator can be requests made by the user i.e. the mission 

order or other coordinators at the same level or responses 

received from lower level or same level coordinators. The 
algorithm consists of two parts the first part implements the 

basic structure and the second part implements the 

augmentation of new edges, guards, reset values and locations 

to the sequential coordinator for the mission specific structure. 

The simplest structure of the sequential coordinator is shown 

in Figure 3 showing the command (Do) and responses (Done) 

and the user input. The basic structure is the same for all the 

coordinators which involves two different phases: Initialization 
phase, and Communication establishment phase. The mission 

specific structure contains mission order phase, and a response 

phase. 

Initialization phase involves synthesizing the states (invariants) 

and transitions (guards, events, resets) of the coordinators that 

should occur during system start up. During the 

communication phase communication is established with the 

remote station to receive mission order. To handle the mission 
specific structure the mission order phase models the states 

and transitions of the sequential coordinator based on the 

operations. The response phase involves modeling the way the 

sequential coordinator responds to successful completion of 

operations or handling exceptions like failure or termination of 

operations/missions. In the algorithm explained next the label 

Start indicates the beginning of the mission specific 

implementation. 

 

Figure 3: Structure of Sequential Coordinator 

Algorithm: 

Create five locations l  L and name them as Idle, 

WaitforVCComms, Run, Suspend and Endmission. (control 

for any AUV needs all these states ) 

• Create an edge e0 from Idle to WaitforVCComms 
(indicating transition to a state to wait to establish 

communication with the Vehicle) 

o Set event σin = Init 

o Set guard condition Gi(e0) = t>=T where T is 

a constant time to initialize the system (for  

our case T = 1) 

o Set reset condition R(e0) = {t=0} 

• Create an edge e1 to Run state from 
WaitforVCComms if a connection with vehicle is 

established  

o Set event σin = NewVCData 

o Set guard condition Gi(e1) = t>=10   

o Set reset condition R(e1) = {t = 0, 

MissionTime = 0, Suspendable = 0} 

• Create an edge e2 from Run state to EndMission state  

o Set event σi = Endmission  
o For each Controlleri  Levelj where i= 1…n,  

j = 1 only  

 Set the guard condition on the edge 

Gi(e2) = (  Controllerk->Idle) 

where k = 1,2…n, k != i checking 

the status of other controllers (0 

meaning idle) 

o Set reset condition R(e2) = {t = 0, 
Suspendable = 0, Idle = 0} to indicate that 

all the  coordinators are idle 

• Create an edge e3 from Run state to EndMission state  

o Set event σi / σo = Abort / Abort 

 Set guard condition G(ei) = {True} 

 Set reset condition R(ei) = {t = 0} 

• At EndMission state  

o Draw a self loop edge e4 
 Set event σin = OnSurface 

 Set guard condition Gi(e3) = (Vark < 

= SurfaceThreshold) where Vark is 

kth variable mapped to set of real 

Input 

Do Done 
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Basic 
Structure 

MN1 MN1 MN1 

Lower level coordinators 

Same level 
coordinators 

Do 

Done 



 

 

numbers (indicating sensor value of 

depth) SurfaceThreshold indicates a 

constant value   

 

• Begin: Check if mission order file has more operation 

names (based on the format used for separating 

operation names commas mean there are further 

operations or blank means no operation).  

• If  no operations in the order file go to End 

• Start: Get Mission order name 

Orn(<OperationName>, Prm). 

• If mission name is obtained for the first time 
o Create a location l  L and name it 

<OperationName> 

o Draw an edge ei from the Run state to 

<OperationName> state where i = j+1… n, 

where j is the number for the last edge that 

was drawn 

 Set the events as σin/σo = 

<OperationName> 
/Do<OperationName> command 

sent to the lower order controllers 

 

Figure 4: Basic Structure of sequential coordinator 

o Set the guard condition Gj(ei) = {Vark = 

“<OperationName>”} 
o Set the reset condition R(ei) ={Suspendable 

= (0 or 1), Idle = 0, t = 0} 

o If Suspendable = 1 

 Create an edge ei from <Operation 

Name> state to Suspend state  

• Set event  σin = Suspend  

• Set guard condition G(ei) 

= {True} 

• Set reset condition R(ei) = 

{t = 0, Suspendable = 0} 

 If connecting to the Suspend state 

for the first time 

• Create a self loop ei at the 

Suspend state  
o Set the event σin / 

σo =  Abort / 

Abort  

o Set guard 

condition G(ei) = 

{Vark 

= !Suspended } 

o Set reset 

condition R(ei) = 
{Suspended = 1} 

• Create an edge ei from 

Suspend state to Run state  

o Set event σin = 

Resume 

o Set guard 

condition G(ei) = 

{True} 
o Set reset 

condition R(ei) = 

{Suspended = 0, 

Suspendable = 0, 

t = 0}  

o Draw an edge ei from the <Operation 

Name> state to EndMission State  

 Set the σin/σo  = Abort / Abort  
 Set guard condition G(ei) = {True} 

 Set reset condition R(ei) = {t = 0} 

o Create an edge ei from <OperationName> 

state to Run State  

 Set event σin = 

<OperationName>Done  
 Set guard condition G(ei) = {True} 

 Set reset condition R(ei) = {t = 0, 
Suspendable = 0} 

• Else if operation name is already there  

o Go to Begin to get the name of the next 

mission 

• End  

 

Figure 5: Sequential Coordinator 

B. Timed coordinator synthesis 

Timed coordinator coordinates the execution of time critical 

mission. Time critical mission involves execution of sequence 

of operations with timing constraints. The timed coordinator is 

synthesized based on the inputs received and the way it should 

OnSurface/- 

G(.) = Vark < = SurfaceThreshold 

R(.) = {Φ} 

Abort/Abort 

G(.) = {True} 

R(.) = {t = 0} 

EndMission/- 

G (.) =  Controller k -> 

Idle 

R(.) = {t = 0, Suspendable = 

NewVCData/-   

G(.) = t>=10    

R(.)={t=0, 

MissionTime = 0, 

Suspendable = 0} 

Init/-     

G(.)= {t<τ} 

R(.) = {t=0}  

W 

I 

R 

E 

Abort/Abort 

G (.) ={Vark = !Suspended} 

R(.) = {Suspended = 1} 

<OpNamej> / <DoOpNamej> 

G(.) = {Vark =<OpName1>} 

R(.) = {t = 0, suspendable =1, Idle = 0} <OpName1> / <DoOpName1> 

G(.) = {Vark =<OpName1>} 

R(.) = {t = 0, suspendable =0, Idle = 0} 

<OpNamenDone>/- 

G(.) = {True} 

R(.) = {Suspendable = 0, 
t = 0} 

<OpName1Done>/- 

G(.) = {True} 

R(.) = {Suspendable = 0, 

t = 0}

Abort/Abort 

G(.) = {True} 

R(.) = {t = 0} 

Abort/Abort 

G(.) = {True} 

R(.) = {t = 0} 

EndMission/- 

G (.) =  Controller k -> 
Idle 

R(.) = {t = 0, Suspendable =

Resume/- 

G(.) = {True} 

R(.) = {Suspendable = 0, 

Suspended = 0, t = 0} 

Suspend/- 

Suspendable = 0 

NewVCData/-   

G(.) = t>=10    

R(.)={t=0, 

MissionTime = 0, 

Suspendable = 0} 

Init/-     

G(.)= {t<τ} 

R(.) = {t=0}  

W 

S 

I 

R 

E 

OnSurface/- 

G(.) = Vark < = SurfaceThreshold 

R(.) = {Φ} 

ON1 ONn

Abort/Abort 

G(.) = {True} 

R(.) = {t = 0} 

Abort/Abort 

G(.) = {True} 

R(.) = {t = 0} … 



 

 

react to responses it receives. Based on the operation to be 

executed one other action the timed coordinator needs to 

implement is to check whether the sequential coordinator 

should be suspended or not and then performing the action as 
required. Inputs received by the timed coordinator can be 

requests made by the user i.e. the mission order or other 

coordinators at the same level or responses received from 

lower level or same level coordinators.  Response is the way 

the timed coordinator reacts to a specific situation (similar to 

the way explained for sequential coordinator). The algorithm 

till the label Start implements the basic structure and the 

remaining part implements the augmentation of new edges, 
guards, reset values and locations to the sequential coordinator. 

Algorithm: 

 

• Create seven locations l  L and name them as Idle, 

WaitForFirstTO, CheckOrders,  Wait4Suspend, 

Check4Resume, Decide and End.  

• Draw an edge e0 from Idle state to WaitForFirstTO 

state (wait for timed order to arrive) 
o Set event σin = Init/- 

o Set guard condition G(e0) = {t>= τ} where τ 
is a constant 

o Set reset condition R(e0) = { Φ} 

• Draw an edge e1 from WaitForFirstTO to 

CheckOrders (check for timed order) 

o Set event σin =  NewVCData/- 

o Set guard condition G(e1) = {True} 
o Set reset condition R(e1) = {MissionTime = 

0, t = 0, Done = 1} 

• Draw an edge e2  from CheckOrders state to End state  

o Set event σin =   EndMission  

o Set guard condition G(e2) = {True} 

o Set reset condition R(e2) = {Idle = 0} 

• Draw an edge e3 from CheckOrders state to Decide 

state (to check the requirement to suspend the 
Sequential cordinator) 

o Set event σin =   NewOrder  

o Set guard condition Gi(e) = strcmp(this-

>CurrTimedOrd->Name,"None") && 

TimedActions_get_MissionTime() >= this-

>CurrTimedOrd->Time && 

(!TimedActions_CheckSuspend(this)||this-

>SeqController->Idle||this->SeqController-
>Suspended) 

o Set reset condition R(e3) = {Idle = 0} 

• Draw an edge e4 from CheckOrders to Wait4Suspend 

(indicating that the mission requires suspension of the 

other coordinators)  

o Set  σin  = Suspend/ Suspend  

o Set guard condition G(e4) = { strcmp(this-

>CurrTimedOrd->Name,"None") && 
TimedActions_get_MissionTime() >= this-

>CurrTimedOrd->Time && 

(TimedActions_CheckSuspend(this)&&this-

>SeqController->Suspendable && !this-

>SeqController->Idle) &&!this-

>SeqController->Suspended} 

o Set reset condition R(e4) = {t = 0, Idle = 0, 

Time2Suspend = 0 } 

• Create a loop e5 at Wait4Suspend state  

o Set σin  = Suspend/ Suspend (suspend the 

Sequential Coordinator) 

o Set guard condition Gi(e5) = !this-

>SeqController->Suspended 

o Set reset condition R(e5) = {t = 0}  

• Draw an edge e6 from Wait4Suspend to Decide state 

o Set σin = NewOrder 
o Set Gi(e6) =  this->SeqController-

>Suspended 

o Set reset condition R(e6) = {Φ} 

• Draw an edge e7 from Check4Resume to 

CheckOrders without Resume event  

o Set σin = OrderComplete/- 

o Set the Gi(e7) = !this->SeqController-

>Suspended || 
(TimedActions_get_MissionTime() >= this-

>CurrTimedOrd->Time && strcmp(this-

>CurrTimedOrd->Name,"None")) 

o Set the reset condition R(e7) = {Φ}  

• Draw an edge e8 from Check4Resume to 

CheckOrders  
o Set  σin  = OrderComplete /Resume  

o Set Gi(e8) = this->SeqController->Suspended 
&& (TimedActions_get_MissionTime() < 

this->CurrTimedOrd->Time || !strcmp(this-

>CurrTimedOrd->Name,"None")) 

o Set the reset condition R(e8) = {Φ}  

• Draw an edge e9 from each of the states (excepting 

Idle and WaitForFirstTO) to End state  

o Set event σin / σo =  Abort/Abort 

o Set guard condition Gi(e9) = {True} 
o Set reset condition R(e9) = {Φ} 

• Begin: Check if mission order file has more operation 

names  

• If  no operations in the order file go to End 

• Start: Get Operation names from Mission order file 

Orn(<OperationName>, Prm). 

• If mission name is obtained for the first time 

o Create a location l  L and name it 

<OperationName> 

o Draw an edge ei from the Decide state to 

<OperationName> state where i = j+1…n 

where j is the number for the last edge drawn 

 Set  σin / σo = <OperationName>/ 

Do<OperationName> sent to 

lower level controllers 

 Set guard condition G(ei) = 
{CurrentOrder = 

<OperationName>} 

 Set reset condition R(ei) = {Φ} 

o Draw an edge ei from the 

<OperationName> state to End State  



 

 

 Set σin / σo =  Abort  

 Set guard condition G(ei) = {True} 

 Set reset condition R(ei) = {Φ}  

o Create an edge ei from <OperationName> 
state to Check4Resume State  

 Set σin = <OperationName>Done 

signal  

 Set guard condition G(ei) = {True} 

 Set reset condition R(ei) = {Φ}  

• Else if mission name is already there  

o Go to Start to look for the next order  

• End 

 

Figure 6: Timed Coordinator 

C. Safety Coordinator synthesis  

Safety by definition is the freedom from danger, damage or 

risk. Thus the goal of a safety coordinator is to prevent the 

vehicle from taking actions, which might damage the vehicle. 

The safety coordinator monitors the different parameters 

involved in the operations ordered by the coordinators, the 
proper functioning of the components of the vehicle and the 

environment surrounding the vehicle. So a safety coordinator 

basically is an observer, which acts only when the operations 

lead to unsafe state. When the safety coordinator finds that a 

mission prompts execution of an unsafe action it tries to 

correct the action and make it safe. If the safety coordinator is 

not able to make the mission safe it aborts the mission. For 

example if a mission commands the vehicle to go to a depth of 
500ft and the present safe depth is only 200ft the safety 

coordinator changes the depth to 200ft. If the safety 

coordinator is able to correct it the mission is carried out or 

else it aborts the mission. We here list a set of safety issues a 

safety coordinator should satisfy.  

1. Water depth safety monitoring should check the altitude of 

the vehicle from the bottom of the sea and thus prevent the 

vehicle from hitting the bottom of the sea. 

2. Obstacle avoidance safety should monitor the presence of 

obstacles, which might be other vehicles, or mountains under 

sea and prevent collision of the AUV with the obstacle.  (This 

has not yet been implemented). 
3. Device functioning safety should monitor the functioning of 

the different critical components, which constitute an AUV.  

Critical components are those components malfunctioning of 

which might lead to damage of vehicle or undesirable situation 

like AUV stuck at the bottom of the sea due to battery failure. 

All these safety issues can be modeled as constraints within a 

hybrid system as has been done for the survey AUV built at 

ARL. The constraints are the guard conditions, which prompt 
the transition from one state to other depending upon the 

situation.  

 

• Create locations l  L and name them as Start, Idle, 

CheckSafeties,  LowAltitude and Abort 

• Draw an edge e0 from Start state to Idle state (wait to 

get initialized) 

o Set event σin = Init/- 
o Set guard condition G(e0) = {t>= τ} where τ 

is a constant 

o Set reset condition R(e0) = { Φ} 

• Draw an edge e1 from Idle state to CheckSafeties 

state (wait for new vehicle command to arrive) 

o Set event σin = NewVCData/- 

o Set guard condition G(e0) = {t>= τ} where τ 
is a constant 

o Set reset condition R(e0) = { Φ} 

o Implement the Voltage, Water depth and 

device safety algorithms. 

• Draw an edge e2 from CheckSafeties state to 

LowAltitude  state  

o Set event σin = AltitudeSafety/- 

o Set guard condition G(e0) = {t>= τ} where τ 
is a constant 

o Set reset condition R(e0) = { Φ} 

o Implement the Water depth correction 

algorithm. 

• Draw an edge e3 from CheckSafeties state to Abort 

state  

o Set event σ = Abort/Abort 

o Set guard condition G(e0) = {t>= τ} where τ 
is a constant 

o Set reset condition R(e0) = { Φ} 

• Draw an edge e4 from LowAltitude state to Abort 

state  

o Set event σ = Abort/Abort 

o Set guard condition G(e0) = {t>= τ} where τ 
is a constant 

o Set reset condition R(e0) = { Φ} 

• Draw an edge e5 from LowAltitude state to 
Checksafeties state  

o Set event σin = AltitudeOk/- 

o Set guard condition G(e0) = {t>= τ} where τ 
is a constant 

o Set reset condition R(e0) = { Φ} 

Abort/Abort 

G(.)={True} 
R(.)= {Φ} 

… 

<MissionName1Done>/- 

G(.)={True} 

R(.)= {Φ} 

Abort/Abort 

<OpName1>/ <DoOpName1> 

G(.) = {CurrentOrder = “<OpName>”} 

R(.) = { Φ } 

NewOrder/- 

G
i
(e3) 

R(.) = {Idle = 0} 

Neworder/- 

G(.) = {SeqController-> 

Suspended} 

R(.) = { Φ } 

Suspend/Suspend 

G(.) = {!this->SeqController ->Suspended}  

R(.) =  {t = 0} 

Suspend/Suspend 

G
i
(e4) 

R(.) = {t = 0, Idle = 0, Time2Suspend = 0 } 

<OpNamen>/ <DoOpNamen> 

G(.) = {CurrentOrder = “<OpName>”} 

R(.) = { Φ } 

<MissionName1Done>/- 

G(.)={True} 

R(.)= {Φ} 

OrderComplete/- 

G
i
(e7) 

R(.) = { Φ } 

Abort/Abort 

G(.)={True} 

R(.)= {Φ} 

Abort/Abort 
G(.)={True} 

R(.)= {Φ} 

Abort/Abort 

G(.)={True} 
R(.)= {Φ} 

Abort/Abort 

G(.)={True} 

R(.)= {Φ} 

EndMission/- 
G(.) = {True} 

R(.) = {Idle = 0} 

NewVCData/- 

G(.) = {True} 
R(e1) ={ MissionTime = 0, t = 0,  

Done = 1} 

Init/- 

G(.) = {t>= τ} 
R(.) = {Φ} 
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OrderCompleter/Resume 
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Figure 7: Safety Coordinator 

The coordinators interact with each other to successfully 

execute a mission. The information flow of the interaction is as 

shown in Figure 8. 

    

Figure 8: The Complete Structure 

The present design is concerned with the successful execution 

of mission decomposed as sequence of operations ordered by 

the highest level controllers which we have automatically 

synthesized.  
The analysis is provided based on the interactions between the 

modules shown in Figure 8 and the detailed modules of the 

sequential (Figure 5) and timed coordinator (Figure 6). 

Both the coordinators are initialized first. During initialization 

the sequential coordinator establishes contact with the vehicle 

and the terminal from which mission orders are received.  

When new order is received both the coordinators transition to 

the state at which they become ready to execute operations as a 
part of mission. If it’s an untimed mission the sequential 

coordinator accepts the input and sends <DoOperationName> 

(Figure 8) to the lower level controllers. Once an operation is 

successfully executed the sequential coordinator receives 

<OperationNameDone> (Figure 8) from the lower level 

controllers. Then the SC considers the next operation in queue 

and passes control to the concerned lower level controller. If 

due to some malfunctioning the operation needs to be 
terminated an abort signal is received by the sequential 

coordinator from the lower level controllers involved in the 

mission. The sequential coordinator then broadcasts the abort 

signal (Figure 5) and terminates the execution of all other 

operations. If there are no more orders in the queue the SC 

checks for the status of the TC. If the TC is idle SC sends 

EndMission and transitions to the EndMission state (Figure 5).  
If a timed mission is received then the timed coordinator 

checks whether the execution of the present mission needs the 

suspension of the sequential coordinator or not (these 

constraints are guard conditions on edges). If TC needs to 

suspend SC, TC sends the suspend signal to SC (Figure 6). If the 

mission which SC is executing is suspendable then SC 

synchronizes with the event suspend and transitions to the 

Suspend state (Figure 5). When SC is suspended TC sends the 
order as <DoOperationName> to the lower level controllers. 

The lower level controllers respond back with the 

<OperationNameDone> event to the TC when the operation 

is completed (Figure 8). TC then finds the next order in queue 

and either resumes the SC or keeps it suspended or keeps it 

unsuspended (Figure 6).   

The safety coordinator keeps checking the parameters from the 

operations within a mission and sensor values of the AUV 
from the common database to safely execute a mission (Figure 

8). 

This way all the coordinators interact with each other and 

complete the execution of a mission order successfully.  Next 

we discuss the propositions that should be satisfied by the 

coordinators for successful execution of a mission. 

 

Proposition 1: (Given no Abort event) for all the orders there 
exist a response from the lower level controller which 

completes the mission successfully. 

Proof: Proposition 1 can be reduced to the expression 

))|(&)|(( j

i

p

kk

p

k

j

ii HHHHMm ki →∃→∃∈∀ σσ σσ
--- 1.1 

Equation 1.1 states that for all missions there exist an event to 

pass control to the concerned commanded controllers as well 

as there exist an event to let the commanding controller know 

the completion of the mission.  

From the coordinator synthesis algorithms we find that for the 

missions there exist a method to pass control from the higher 
level coordinator i.e. S.C or T.C. to the lower level coordinator 

which is to synchronize on common events 

<DoOperationName>. Thus we can express it as  

)|( p

k

nNameDoOperatioj

ii HHMm i  →∃∈∀ >=<σσ  where i 

indicates the subsystem at level j, k indicates the subsystem at 

level p, j>p indicating that level j is at a higher level than level 

k --- 1.2 

From the algorithms we find that each of the lower level 

coordinators respond back to a <DoOperationName> by a 

<OperationNameDone> event sent to the higher level 
controller.   

)|( j

i

ameDoneOperationNp

kk HHMm k  →∃∈∀ >=<σσ --- 1.3 

Equation 1.2 and 1.3 together state that for each and every 

mission to be executed there exist an event to pass the control 

to the concerned controller as well as there exist a response 

which tells the higher level coordinator that the mission has 

DoOperationName 

OperationNameDone 

DoOperationName 

OperationNameDone 

Sequential 
coordinator 

Timed 
Coordinator 

Safety 
Coordinator 

Vehicle 

Lower level controller 

Database 



 

 

been successfully executed. Thus equation 1.1 holds so does 

Proposition.1. 

Proposition 2: If the order is an Abort event it terminates the 

mission. 
Proof: The above Proposition 2 can be reduced to the 

expression final

Abort
llEAbortLl  →∃=∀∈∀ =σσ |  --- 

2.1  

The expression states that for all locations belonging to a set of 
locations and for all events which are Abort events there exist 

an edge in which a transition occurs from the present location, 

the source to the target location, the final state. If the above 

expression holds for the coordinators synthesized by the 

algorithm then Proposition 2 holds.  

From the coordinator synthesis algorithm we find that there are 

statements which implement edges with Abort events from the 

<OperationName> locations to the Endmission location.  

<OperationName>  → = Abortσ
Endmission  

Thus equation 2.1 holds and so does Proposition 2.  

Proposition 3: Timed as well as untimed missions can be 

successfully executed by the timely coordination between the 

Timed and Sequential coordinator. 

Proof: The above Proposition 3 can be reduced to the 

expression )(| SCTCMm →∃∈∀ σσ  ---3.1. 

The expression states that for all missions there exist a 

coordination event between the Timed Coordinator and the 

Sequential Coordinator for successful completion of both 

timed and untimed missions. If the above expression is 

satisfied by the coordinator synthesis algorithm then 

Proposition 3 holds.  

In the Sequential Coordinator synthesis algorithm we find 

statements dealing with creation of edges on value of 

Suspendable =1 and σ = Suspend. In the Timed Coordinator 

synthesis we find the implementation of edge e4 which 

implements sending σ = Suspend to the Sequential Coordinator.   

The above statements reduce to 

SCTCSuspend Suspend →=∃ =σσ | --- 3.2 

The above expression states that there exist an event which 

allows TC to Suspend SC for execution of timed events. 

From both the TC and SC synthesis algorithms we find 

statements implementing σ = Resume which helps in resuming 

the suspended SC. This statement reduces to the expression. 

SCTCsume sume →=∃ =Re|Re σσ --- 3.3 

From equations 3.2 and 3.3 we find that there exist methods of 

coordination between both the TC and the SC to execute timed 

as well as untimed missions. Thus equation 3.1 holds, so does 

the Proposition 3. 

 Proposition 4: Given a mission 

(a) If no abort occurs during mission operation, 

then the mission will be successfully completed. 

(b) If an Abort occurs during the mission, then the 
mission is terminated 

(c) Timed and Sequential coordinator can 

coordinate among each other by suspending the 

other if required for execution of a mission. 

Proof: Proposition 1 – 3 prove Proposition 4. 

V.  RELATED WORK 

Several approaches like game theory, supervisory control, and 

optimal control have been used to synthesize a controller.  The 

supervisory control of discrete event system approach of 

Ramagde and Wonham [1] can also be said as the event 

feedback scheme. The plant generates events. The supervisor 

observes the events and then generates a control pattern based 

on a legal set of specifications. Other approaches have used 
state feedback control scheme [15]. The supervisor observes 

the plant states. At each step the supervisor generates a control 

pattern based on a given set of legal states to ensure no illegal 

state are reached.   

The approach by Lygeros in [15], [12], [13], [14] is to design a 

hybrid controller by determining continuous control laws and 

conditions under which they satisfy the closed loop 

requirements. Then, a discrete design is constructed to ensure 
that these conditions are satisfied. Controller synthesis for a 

real time system is proposed by Asarin in [16]. The controller 

in [16] is synthesized based on a winning strategy for certain 

games defined by automata or timed automata. Another game 

theoretic approach proposed in [17] is used for constructing 

reliable controllers for arbitrarily large discrete systems. The 

controller is synthesized by finding a winning strategy for 

specific games defined by contracts. The discrete system 
model is an action system, and the requirement is a temporal 

property. The game reduces to a competition between, the 

controller, and the plant, which try to prevent each other from 

achieving their respective goals. If the synthesis is possible, 

that is, if the controller has a way to enforce the required 

property, the process ends with finding the winning strategy of 

the controller, by propagating backwards the computed 

precondition of the plant, with respect to that property. This 
technique guarantees the correctness of the derived program. 

Next we briefly discuss the interaction among some of the 

mission controllers to successfully execute a mission in our 

application to an AUV. 

A. Modeling Mission Modules in TEJA 

TEJA allows the creation of a system architecture where all 

the modules required for a particular mission controller are 

instantiated and initialized, and their interactions are specified 

via an event dependency table which may be dynamically 

reset.  Automatic code generation ensures that the real-time 

scheduling needs are met.  

Figure 8-9 shows the hybrid automaton representation of the 

GPSFixer, Launch operation controller and steering behavior 

controller modeled using the Teja NP tool. On initialization the 

modules go to the Idle state from Start. The GPSFixer (Figure 

8) then goes to the surface, raises mast, updates the navigation 

system and then passes control to the Launch controller to 

lower the mast and then on the event Launch transitions to the 

ComeOffSurface state. The Launch controller then goes 

through its sequence of events shown in Figure 4 to lower the 

mast and lower the AUV below the surface of water. Then the 

Launch controller passes control to the GPSFixer controller on 

the event LaunchDone. The GPSFixer transitions to the Decide 

state where it decides whether to return back to the original 



 

 

location before starting GPSFix mission or to just go to a 

particular depth. If the AUV needs to return to the original 

location the GPSFixer passes control to the Steer controller by 

outputting the event Steer. The Steer controller then executes 

its sequence of events (Figure 9). Once the AUV reaches the 

destined location the Steer controller passes control to the 

GPSFixer by outputting the event SteeringDone. The 

GPSFixer finally ends the mission by sending the event 

GPSFixDone to the TC or SC.  

 
Figure 9: The GPSFixer Operation Controller 
 

 
Figure 10: The Launch & Steering Controller modules 

 
VI. CONCLUSION 

Synthesis of higher-level coordinators for AUVs whose 

mission controller is modeled in a hierarchical hybrid, model-

based architecture is presented.  This method of synthesis 

allows the generation of coordinators for any set of operation 

or behaviors and for any type of autonomous system (aerial, 

surface or underwater) modeled as shown in this work.  This 

method of synthesis also guarantees the appropriate design of 
the coordinator modules to control the execution of sequence 

of timed or untimed operations/behaviors in a mission. The 

propositions prove that the algorithm satisfies the properties 

that should be satisfied by the coordinators. Future work 

involves implementing this proposed method using a software 

program for automated synthesis of coordinators.  
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