
 Open access Proceedings Article DOI:10.1109/OCEANS.2007.4449142

Automated Coordinator Synthesis for Mission Control of Autonomous Underwater
Vehicles — Source link

Siddhartha Bhattacharyya, Ratnesh Kumar, S. Tangirala, Lawrence E. Holloway

Institutions: Kentucky State University, Iowa State University, Pennsylvania State University, University of Kentucky

Published on: 01 Sep 2007 - OCEANS Conference

Topics: Intervention AUV, Mission control center and Remotely operated underwater vehicle

Related papers:

 Embedded intelligent supervision and piloting for oceanographic AUV

 On mixed-initiative planning and control for Autonomous underwater vehicles

 Multiple communicating autonomous underwater vehicles

 Design of a prototype miniature autonomous underwater vehicle

 Applying AUV lessons and technologies to autonomous surface craft development

Share this paper:

View more about this paper here: https://typeset.io/papers/automated-coordinator-synthesis-for-mission-control-of-
cyzkvowyd0

https://typeset.io/
https://www.doi.org/10.1109/OCEANS.2007.4449142
https://typeset.io/papers/automated-coordinator-synthesis-for-mission-control-of-cyzkvowyd0
https://typeset.io/authors/siddhartha-bhattacharyya-frv7trakzf
https://typeset.io/authors/ratnesh-kumar-2p95bnq3dp
https://typeset.io/authors/s-tangirala-wp7uudlwt4
https://typeset.io/authors/lawrence-e-holloway-3602ev2vde
https://typeset.io/institutions/kentucky-state-university-17yaxaoa
https://typeset.io/institutions/iowa-state-university-a6g8atpr
https://typeset.io/institutions/pennsylvania-state-university-14gcuxm7
https://typeset.io/institutions/university-of-kentucky-2aen3wlv
https://typeset.io/conferences/oceans-conference-2juxdfk0
https://typeset.io/topics/intervention-auv-ozkg1gkr
https://typeset.io/topics/mission-control-center-3habui2t
https://typeset.io/topics/remotely-operated-underwater-vehicle-1ejf3jgl
https://typeset.io/papers/embedded-intelligent-supervision-and-piloting-for-2tycktpkfk
https://typeset.io/papers/on-mixed-initiative-planning-and-control-for-autonomous-1bee2ayem0
https://typeset.io/papers/multiple-communicating-autonomous-underwater-vehicles-ekfxf1vbi4
https://typeset.io/papers/design-of-a-prototype-miniature-autonomous-underwater-h8g37ssd4q
https://typeset.io/papers/applying-auv-lessons-and-technologies-to-autonomous-surface-4slk4n1u4h
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/automated-coordinator-synthesis-for-mission-control-of-cyzkvowyd0
https://twitter.com/intent/tweet?text=Automated%20Coordinator%20Synthesis%20for%20Mission%20Control%20of%20Autonomous%20Underwater%20Vehicles&url=https://typeset.io/papers/automated-coordinator-synthesis-for-mission-control-of-cyzkvowyd0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/automated-coordinator-synthesis-for-mission-control-of-cyzkvowyd0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/automated-coordinator-synthesis-for-mission-control-of-cyzkvowyd0
https://typeset.io/papers/automated-coordinator-synthesis-for-mission-control-of-cyzkvowyd0

Automated Coordinator Synthesis for Mission Control of

Autonomous Underwater Vehicles

S. Bhattacharyya+, R. Kumar*, S. Tangirala#, and L. E. Hollowayx
+ Kentucky State University (email:s.bhattacharyya@kysu.edu)

* Iowa State University (email:rkumar@iastate.edu)

Applied research Laboratory, Pennsylvania State University (shaky@psu.edu)

x University of Kentucky (holloway@engr.uky.edu)

Abstract— In our past work we have developed a hierarchical

hybrid-model based mission control approach for autonomous

underwater vehicles. The approach is aided by tools that allow

graphical design, iterative redesign, and code generation for

rapid deployment onto the target platform. The goal is to

support current and future autonomous underwater vehicle

(AUV) programs to meet evolving requirements and capabilities.

The hierarchical architecture contains mission controllers at each

level which coordinate with other controllers, the vehicle, and the

user for the successful execution of a mission. Here we propose an

approach for automated synthesis of such controllers, and

illustrate by applying the algorithm for automated synthesis of

the highest-level coordinators.

I. INTRODUCTION

Many practical systems can be modeled as a group of

interacting hybrid systems. A growing need for modeling,

design and analysis of such systems has led to an increased

interest for research in this area. In our past work we have
developed a hybrid-model based hierarchical mission control

architecture for autonomous underwater vehicles (AUVs) that

facilitates graphical design and code generation [10],

verification of logical correctness [11], and animation of the

AUV depicting the missions executed [18].

The control tasks for an autonomous underwater vehicle is

divided into lower level control, concerned with control of

continuous vehicle dynamics and a higher-level mission
control, which has discrete real-time dynamics and is

concerned with safe execution of mission. The overall control

is a hybrid system containing both continuous and discrete

dynamics.

The basic idea is to hierarchically decompose missions into

sequence of operations, and operations into sequence of

behaviors, and behaviors into sequence of vehicle maneuvers.

As shown in Figure 1 at the lowest level of the hierarchy is the

underwater vehicle (plant) along with the vehicle controllers

(VCs) above which we have the mission controller. The lowest

level of the mission controller is comprised of Behavior

Controllers, where a behavior may be thought of as a skill or

ability that an autonomous system possesses which enables it

to perform specific mission tasks (thrive) while remaining safe

(survive). Behaviors require execution of sequences of vehicle

maneuvers. The middle level of the mission control hierarchy

consists of Operation Controllers, where an operation

represents a mission segment or phase that is integral to the

completion of the overall AUV mission. Operations,

command/sequence the behavior controllers to achieve their

objectives. The highest level of the mission controller consists

of the Mission Coordinators which are responsible for

sequencing and scheduling operations in order to complete the

mission while ensuring the safety of the vehicle. Controllers at

each of the levels coordinate those at the lower levels to

achieve a higher level behavior or operation or mission, as the

case may be. Modules within a level may communicate with

each other and each level in the hierarchy is restricted to

command the level immediately below it and send responses to

the level immediately above it. All levels in the mission

controller hierarchy may assign vehicle commands directly by

placing an appropriate vehicle command in the shared

database.

Hierarchical approach reduces the complexity of design and

also facilitates the verification, animation and automated

synthesis of the highest level mission controller module(s),

which is the main theme of this paper. Here we present a

method for the automated synthesis of the coordinators.

Figure 1: Hybrid Mission Control Architecture

The vehicle controller and the mission controller

communicate through an interface layer symbolically

represented by MC2VC (mission controller to vehicle

controller) and VC2MC (vehicle controller to mission

controller). The MC2VC block also includes a Command

Conflict Manager which is responsible for selecting a specific

vehicle level command (when more than one exists) according

to a static or dynamic priority list or using other methods (such

as optimization). This module is included since all modules in

the mission controller hierarchy are allowed to assign vehicle

commands directly, and so there is a distinct possibility that

multiple vehicle commands can coexist.

A sequence of commands is sent to the vehicle subsystem

controllers via the MC2VC interface. AUV state information

is collected by the sensors and transferred by the VC2MC

interface periodically to the shared database. This state

information is made available to all modules in all levels of the

mission controller hierarchy. Similarly, vehicle commands,

assigned and manipulated by all levels in the mission

controller are stored in the shared database and sent to the

AUV by the MC2VC interface.

An event is initiated by a particular module and its

recipients are controlled by an event dependency table which

may be static or dynamic. The entire mission controller

contains interacting hybrid automata, which is formally

defined in a section below.

The mission controller modules are developed using TEJA

software tool [5], which supports the design of interacting

hybrid state machines and includes automatic real-time code

generation allowing for a rapid deployment on the target

platform. For verification purposes, the Teja modules

specifications are first transformed [6] into a format readable

by Uppaal [6] and HyTech [8], a hybrid system modeling,

simulation, and verification tool. For animation, the mission

controller modules in Uppaal are further converted to

animation modules of OpenGL [9].

In the present work our goal is to propose the automated

synthesis of mission coordinators (i.e. controllers at the

topmost layer) for hierarchy based hybrid mission control

architecture for AUVs. The interactions within the modules in

the hierarchical control architecture are complex. Synthesis of

a coordinator for such a system is a challenging task as it
requires careful monitoring of the inputs received and the

outputs sent. The controller is a hybrid system with discrete

states and continuous dynamics. The continuous dynamics are

implemented as functions. The coordinators are a special case

of hybrid system with timing constraints and are known as

timed automata.

Our method of coordinator synthesis is based on identifying

constant and variable properties like application specific
events. The basic idea for synthesis of coordinators is such that

it should satisfy properties to execute missions.

In section II we discuss the hierarchical mission controller

architecture for the survey AUV implemented at the Applied

Research Lab at Pennsylvania State University. In section III

the hybrid system model is discussed and in section IV we

discuss our approach of coordinator synthesis, in section V we

discuss related work and all that has been accomplished in our
work and finally conclude our work in section VI.

II. MOTIVATING APPLICATION: A SURVEY AUV

Figure 2 shows the details of a specific application of the

general AUV mission control architecture to a generic survey

AUV. The primary mission of a survey AUV is to transit to a

user specified location and conduct a survey following a

specific pattern in 3D, at a specified speed and depth/altitude.

In this example, there are three vehicle controllers (VCs), the

Autopilot which accepts commands to control the altitude,

speed and depth of the AUV; the Variable Buoyancy System

(VBS) Controller which accepts commands to control the trim

and buoyancy of the AUV; and the Device Controller which

accepts commands to control the various sensors and other

devices on board the AUV.

The lowest level of this mission controller is comprised of

two behavior controllers: Steering, which is responsible for

steering the vehicle to a specified location in space and

interacts with the Autopilot; Loiter which controls the vehicle

to loiter at a specific location in space for a specified duration

and interacts with the Autopilot and VBS Controller.

The behavior controllers are, in turn, commanded by the

operation controllers, which correspond directly to mission

orders that are specified by the user and are described next.

The Pause operation controller is used under certain situations

to let the vehicle remain at it’s current state for a specified

duration. The Launch operation controller is responsible for

bringing the vehicle off of the surface and running at depth

with enough forward speed to achieve controllability. This

controller interacts with the Autopilot, the VBS Controller, and

the Device Commander controller. The GPSFix operational

controller sequentially commands the AUV to shut off

propulsion, rise to the surface, raise the GPS mast, obtain a

GPS-aided position fix retract the GPS mast, and re-launch the

AUV. This controller interacts with the Autopilot, behavior

controller, the Device Commander, the Device Controllers,

and the Launch operation controller. The WaypointNavigator

operation controller controls the AUV to transit to waypoints

specified by the mission specification. This controller

interacts with Steering, Loiter, and the Device Controller. The

Device Commander is used to control sensors and devices on

the AUV in response to mission orders; this controller interacts

with the Device Controllers. Finally, at the highest level of the

AUV mission controller are the mission coordinators of which

there are two types: Progress and Safety, where the progress

coordinator is divide into two parts: Sequential, and Timed.

The sequential coordinator is responsible for executing a

mission consisting of a sequence of operations; a timed

coordinator is responsible for executing a timed sequence of

operations; and a safety coordinator ensures safe operation.

According to our hierarchical architecture coordinator

synthesis involves synthesizing the top level controllers which

receive input from the lower level controllers and the mission

file. The functionality of all the coordinators together is to

send command to the lower level controllers, respond to

successful mission completion and react to exceptions like

aborting missions or modifying parameters for safety.

Figure 2: Survey mission control architecture

III. HYBRID SYSTEM MODEL: NOTATIONS AND PRELIMINARIES

Hybrid systems are systems, which include continuous as

well as discrete signals and states. Hybrid systems [4] [10]

have been used as mathematical models for many important

applications. Their wide applicability has inspired a great deal

of research from both control theory and theoretical computer

science [7].

An AUV is a hybrid dynamical system with both discrete and

continuous states. Hybrid systems can be modeled as hybrid

automata. A hybrid automaton model captures the evolution of

variables over time. The variables will evolve continuously as

well as in instantaneous jumps. A hybrid automaton is as

described below. This type of modeling formalism has been

used to model the underwater vehicle control modules.

A. Controlled hybrid automaton

A controlled hybrid automaton is a tuple

H ()RGEIHFYUQ ,,,,,,,,,Σ= consisting of the following

components:

State space: XLQ ×= is the state space of the hybrid

automaton, where L is a finite set of locations and
n

X ℜ= is

 the continuous state space. Each state Q can be described

by Qxl ∈),(, where Ll ∈ and
nx ℜ∈ .

Events: Σ is the finite alphabet or event set of H.

Continuous Controls and Parameters:
m

U ℜ= is the

continuous control space consisting of control signals and

exogenous continuous-time parameters. [) Uu →∞,0:

denotes a control vector comprised of these parameters.

Outputs: Y is the output space of H, which may consist of

both continuous and discrete elements.

Continuous Dynamics: F is a function on UL × assigning a

vector field or differential inclusion to each location and

continuous control vector. We use the

notation)(),(ufulF
l

= .

Output Functions: H is a set of output functions, one for each

location Ll ∈ . We use the notation
l

hlH =)(, where

YUXh
l

→×: is the output function associated with

location Ll ∈ .

Invariant conditions:
X

I 2⊂ is a set of invariant conditions

on the continuous states, one for each location Ll ∈ . We

use the notation XilI
l
⊆=)(. If no

l
i is specified for some

Ll ∈ , then it's default value is taken to be
n

X ℜ= .

Edges: LLE ×Σ×⊂ is a set of directed edges.

Elle ∈′=),,(σ is a directed edge between a source location

Ll ∈ and a target location Ll ∈′ with event label Σ∈σ . In

addition,
Φ

∪= EEE
c

, where
c

E and
Φ

E represent the

controlled and uncontrolled edges, respectively.

Guard conditions:
X

G 2⊂ is the set of guard conditions on

the continuous states, one for each edge Ee∈ . We use the

notation XgG
ee

⊆= . If no
e

g is explicitly specified for

some edge Ee∈ , then it's default value is taken to be
n

X ℜ= .

Reset conditions: R is the set of reset conditions, one for each

edge Ee∈ . We use the notation
e

reR =)(, where
X

e
Xr 2: → is a set-valued map. If no

e
r is explicitly

specified for some edge Ee∈ , then the default value is taken

to be the identity function.

The semantics of a hybrid automaton can be understood as

follows. When in a certain discrete configuration l, the
continuous-state x of the hybrid system evolves according to

the controlled vector-field Fl(x,.). The evolution of the

continuous-state according to the flow of Fl(x,µ.) is defined as

long as x lies in the domain specified by the invariant

condition il. If at anytime during its evolution the continuous-

state acquires a value that satisfies a guard condition ge for

some edge e=(l,σ,l’) of the hybrid automaton, the system can

transition from configuration l to l’. The transition is labeled
by an ``event'' σ and the continuous-state in the new

configuration acquires a value specified by the reset condition

re. When in new configuration l’ the continuous-state evolves

according to the controlled vector-field Fl’(x,.). In the next we

discuss the algorithm to synthesize such hybrid coordinators.

IV. PROPOSED APPROACH FOR COORDINATOR SYNTHESIS

Automated synthesis of the mission controllers promises

reduction in time to develop and implement controllers for

hierarchical control of autonomous vehicles. It also improves
modification and debugging capability.

Our goal in the automation of controllers is to translate the

mission specifications and user inputs into sequence of actions

to successfully execute the mission. The specifications are the

sequence of operations for the coordinators, the sequence of

behaviors for the operation controllers and the sequence of

vehicle maneuvers for behavior controllers. The coordinators

we synthesize are timed automata with timing constraints
modeled as guard conditions. The operation and behavior

controllers are hybrid systems implementing discrete states

with continuous dynamics. The definitions of the automata

built are as discussed in section III.

The controllers consist of a basic structure which is common to

all the controllers (excepting the safety coordinator which
involves a basic structure) and a specific synthesized structure

based on the specific operation, behavior or maneuver to be

executed. Examples of the basic structure are responding to

failures or harmful events or initializing when started. An

example of a specific mission can be to find the present

location using a GPS or fire a missile. Although these two

distinct structures are exhibited by the controllers at each level

we only discuss the algorithm for synthesizing the coordinators.
We consider the requirement of three coordinators at the

topmost level. The three coordinators are a sequential

coordinator (implementing sequential control to execute a

sequence of actions for a mission), a timed coordinator

(implementing time critical missions) and a safety coordinator

(implements safe execution of mission). These coordinators

are synthesized based on user input and high level

specification.

A. Sequential coordinator

Sequential coordinator coordinates the execution of sequential

untimed mission. The synthesis of sequential coordinator is

based on the inputs received and the way it responds to

mission execution. Inputs received by the sequential

coordinator can be requests made by the user i.e. the mission

order or other coordinators at the same level or responses

received from lower level or same level coordinators. The
algorithm consists of two parts the first part implements the

basic structure and the second part implements the

augmentation of new edges, guards, reset values and locations

to the sequential coordinator for the mission specific structure.

The simplest structure of the sequential coordinator is shown

in Figure 3 showing the command (Do) and responses (Done)

and the user input. The basic structure is the same for all the

coordinators which involves two different phases: Initialization
phase, and Communication establishment phase. The mission

specific structure contains mission order phase, and a response

phase.

Initialization phase involves synthesizing the states (invariants)

and transitions (guards, events, resets) of the coordinators that

should occur during system start up. During the

communication phase communication is established with the

remote station to receive mission order. To handle the mission
specific structure the mission order phase models the states

and transitions of the sequential coordinator based on the

operations. The response phase involves modeling the way the

sequential coordinator responds to successful completion of

operations or handling exceptions like failure or termination of

operations/missions. In the algorithm explained next the label

Start indicates the beginning of the mission specific

implementation.

Figure 3: Structure of Sequential Coordinator

Algorithm:

Create five locations l L and name them as Idle,

WaitforVCComms, Run, Suspend and Endmission. (control

for any AUV needs all these states)

• Create an edge e0 from Idle to WaitforVCComms
(indicating transition to a state to wait to establish

communication with the Vehicle)

o Set event σin = Init

o Set guard condition Gi(e0) = t>=T where T is

a constant time to initialize the system (for

our case T = 1)

o Set reset condition R(e0) = {t=0}

• Create an edge e1 to Run state from
WaitforVCComms if a connection with vehicle is

established

o Set event σin = NewVCData

o Set guard condition Gi(e1) = t>=10

o Set reset condition R(e1) = {t = 0,

MissionTime = 0, Suspendable = 0}

• Create an edge e2 from Run state to EndMission state

o Set event σi = Endmission
o For each Controlleri Levelj where i= 1…n,

j = 1 only

 Set the guard condition on the edge

Gi(e2) = (Controllerk->Idle)

where k = 1,2…n, k != i checking

the status of other controllers (0

meaning idle)

o Set reset condition R(e2) = {t = 0,
Suspendable = 0, Idle = 0} to indicate that

all the coordinators are idle

• Create an edge e3 from Run state to EndMission state

o Set event σi / σo = Abort / Abort

 Set guard condition G(ei) = {True}

 Set reset condition R(ei) = {t = 0}

• At EndMission state

o Draw a self loop edge e4
 Set event σin = OnSurface

 Set guard condition Gi(e3) = (Vark <

= SurfaceThreshold) where Vark is

kth variable mapped to set of real

Input

Do Done

Sequential coordinator

Mission specific structure

… …

Basic
Structure

MN1 MN1 MN1

Lower level coordinators

Same level
coordinators

Do

Done

numbers (indicating sensor value of

depth) SurfaceThreshold indicates a

constant value

• Begin: Check if mission order file has more operation

names (based on the format used for separating

operation names commas mean there are further

operations or blank means no operation).

• If no operations in the order file go to End

• Start: Get Mission order name

Orn(<OperationName>, Prm).

• If mission name is obtained for the first time
o Create a location l L and name it

<OperationName>

o Draw an edge ei from the Run state to

<OperationName> state where i = j+1… n,

where j is the number for the last edge that

was drawn

 Set the events as σin/σo =

<OperationName>
/Do<OperationName> command

sent to the lower order controllers

Figure 4: Basic Structure of sequential coordinator

o Set the guard condition Gj(ei) = {Vark =

“<OperationName>”}
o Set the reset condition R(ei) ={Suspendable

= (0 or 1), Idle = 0, t = 0}

o If Suspendable = 1

 Create an edge ei from <Operation

Name> state to Suspend state

• Set event σin = Suspend

• Set guard condition G(ei)

= {True}

• Set reset condition R(ei) =

{t = 0, Suspendable = 0}

 If connecting to the Suspend state

for the first time

• Create a self loop ei at the

Suspend state
o Set the event σin /

σo = Abort /

Abort

o Set guard

condition G(ei) =

{Vark

= !Suspended }

o Set reset

condition R(ei) =
{Suspended = 1}

• Create an edge ei from

Suspend state to Run state

o Set event σin =

Resume

o Set guard

condition G(ei) =

{True}
o Set reset

condition R(ei) =

{Suspended = 0,

Suspendable = 0,

t = 0}

o Draw an edge ei from the <Operation

Name> state to EndMission State

 Set the σin/σo = Abort / Abort
 Set guard condition G(ei) = {True}

 Set reset condition R(ei) = {t = 0}

o Create an edge ei from <OperationName>

state to Run State

 Set event σin =

<OperationName>Done
 Set guard condition G(ei) = {True}

 Set reset condition R(ei) = {t = 0,
Suspendable = 0}

• Else if operation name is already there

o Go to Begin to get the name of the next

mission

• End

Figure 5: Sequential Coordinator

B. Timed coordinator synthesis

Timed coordinator coordinates the execution of time critical

mission. Time critical mission involves execution of sequence

of operations with timing constraints. The timed coordinator is

synthesized based on the inputs received and the way it should

OnSurface/-

G(.) = Vark < = SurfaceThreshold

R(.) = {Φ}

Abort/Abort

G(.) = {True}

R(.) = {t = 0}

EndMission/-

G (.) = Controller k ->

Idle

R(.) = {t = 0, Suspendable =

NewVCData/-

G(.) = t>=10

R(.)={t=0,

MissionTime = 0,

Suspendable = 0}

Init/-

G(.)= {t<τ}

R(.) = {t=0}

W

I

R

E

Abort/Abort

G (.) ={Vark = !Suspended}

R(.) = {Suspended = 1}

<OpNamej> / <DoOpNamej>

G(.) = {Vark =<OpName1>}

R(.) = {t = 0, suspendable =1, Idle = 0} <OpName1> / <DoOpName1>

G(.) = {Vark =<OpName1>}

R(.) = {t = 0, suspendable =0, Idle = 0}

<OpNamenDone>/-

G(.) = {True}

R(.) = {Suspendable = 0,
t = 0}

<OpName1Done>/-

G(.) = {True}

R(.) = {Suspendable = 0,

t = 0}

Abort/Abort

G(.) = {True}

R(.) = {t = 0}

Abort/Abort

G(.) = {True}

R(.) = {t = 0}

EndMission/-

G (.) = Controller k ->
Idle

R(.) = {t = 0, Suspendable =

Resume/-

G(.) = {True}

R(.) = {Suspendable = 0,

Suspended = 0, t = 0}

Suspend/-

Suspendable = 0

NewVCData/-

G(.) = t>=10

R(.)={t=0,

MissionTime = 0,

Suspendable = 0}

Init/-

G(.)= {t<τ}

R(.) = {t=0}

W

S

I

R

E

OnSurface/-

G(.) = Vark < = SurfaceThreshold

R(.) = {Φ}

ON1 ONn

Abort/Abort

G(.) = {True}

R(.) = {t = 0}

Abort/Abort

G(.) = {True}

R(.) = {t = 0} …

react to responses it receives. Based on the operation to be

executed one other action the timed coordinator needs to

implement is to check whether the sequential coordinator

should be suspended or not and then performing the action as
required. Inputs received by the timed coordinator can be

requests made by the user i.e. the mission order or other

coordinators at the same level or responses received from

lower level or same level coordinators. Response is the way

the timed coordinator reacts to a specific situation (similar to

the way explained for sequential coordinator). The algorithm

till the label Start implements the basic structure and the

remaining part implements the augmentation of new edges,
guards, reset values and locations to the sequential coordinator.

Algorithm:

• Create seven locations l L and name them as Idle,

WaitForFirstTO, CheckOrders, Wait4Suspend,

Check4Resume, Decide and End.

• Draw an edge e0 from Idle state to WaitForFirstTO

state (wait for timed order to arrive)
o Set event σin = Init/-

o Set guard condition G(e0) = {t>= τ} where τ
is a constant

o Set reset condition R(e0) = { Φ}

• Draw an edge e1 from WaitForFirstTO to

CheckOrders (check for timed order)

o Set event σin = NewVCData/-

o Set guard condition G(e1) = {True}
o Set reset condition R(e1) = {MissionTime =

0, t = 0, Done = 1}

• Draw an edge e2 from CheckOrders state to End state

o Set event σin = EndMission

o Set guard condition G(e2) = {True}

o Set reset condition R(e2) = {Idle = 0}

• Draw an edge e3 from CheckOrders state to Decide

state (to check the requirement to suspend the
Sequential cordinator)

o Set event σin = NewOrder

o Set guard condition Gi(e) = strcmp(this-

>CurrTimedOrd->Name,"None") &&

TimedActions_get_MissionTime() >= this-

>CurrTimedOrd->Time &&

(!TimedActions_CheckSuspend(this)||this-

>SeqController->Idle||this->SeqController-
>Suspended)

o Set reset condition R(e3) = {Idle = 0}

• Draw an edge e4 from CheckOrders to Wait4Suspend

(indicating that the mission requires suspension of the

other coordinators)

o Set σin = Suspend/ Suspend

o Set guard condition G(e4) = { strcmp(this-

>CurrTimedOrd->Name,"None") &&
TimedActions_get_MissionTime() >= this-

>CurrTimedOrd->Time &&

(TimedActions_CheckSuspend(this)&&this-

>SeqController->Suspendable && !this-

>SeqController->Idle) &&!this-

>SeqController->Suspended}

o Set reset condition R(e4) = {t = 0, Idle = 0,

Time2Suspend = 0 }

• Create a loop e5 at Wait4Suspend state

o Set σin = Suspend/ Suspend (suspend the

Sequential Coordinator)

o Set guard condition Gi(e5) = !this-

>SeqController->Suspended

o Set reset condition R(e5) = {t = 0}

• Draw an edge e6 from Wait4Suspend to Decide state

o Set σin = NewOrder
o Set Gi(e6) = this->SeqController-

>Suspended

o Set reset condition R(e6) = {Φ}

• Draw an edge e7 from Check4Resume to

CheckOrders without Resume event

o Set σin = OrderComplete/-

o Set the Gi(e7) = !this->SeqController-

>Suspended ||
(TimedActions_get_MissionTime() >= this-

>CurrTimedOrd->Time && strcmp(this-

>CurrTimedOrd->Name,"None"))

o Set the reset condition R(e7) = {Φ}

• Draw an edge e8 from Check4Resume to

CheckOrders
o Set σin = OrderComplete /Resume

o Set Gi(e8) = this->SeqController->Suspended
&& (TimedActions_get_MissionTime() <

this->CurrTimedOrd->Time || !strcmp(this-

>CurrTimedOrd->Name,"None"))

o Set the reset condition R(e8) = {Φ}

• Draw an edge e9 from each of the states (excepting

Idle and WaitForFirstTO) to End state

o Set event σin / σo = Abort/Abort

o Set guard condition Gi(e9) = {True}
o Set reset condition R(e9) = {Φ}

• Begin: Check if mission order file has more operation

names

• If no operations in the order file go to End

• Start: Get Operation names from Mission order file

Orn(<OperationName>, Prm).

• If mission name is obtained for the first time

o Create a location l L and name it

<OperationName>

o Draw an edge ei from the Decide state to

<OperationName> state where i = j+1…n

where j is the number for the last edge drawn

 Set σin / σo = <OperationName>/

Do<OperationName> sent to

lower level controllers

 Set guard condition G(ei) =
{CurrentOrder =

<OperationName>}

 Set reset condition R(ei) = {Φ}

o Draw an edge ei from the

<OperationName> state to End State

 Set σin / σo = Abort

 Set guard condition G(ei) = {True}

 Set reset condition R(ei) = {Φ}

o Create an edge ei from <OperationName>
state to Check4Resume State

 Set σin = <OperationName>Done

signal

 Set guard condition G(ei) = {True}

 Set reset condition R(ei) = {Φ}

• Else if mission name is already there

o Go to Start to look for the next order

• End

Figure 6: Timed Coordinator

C. Safety Coordinator synthesis

Safety by definition is the freedom from danger, damage or

risk. Thus the goal of a safety coordinator is to prevent the

vehicle from taking actions, which might damage the vehicle.

The safety coordinator monitors the different parameters

involved in the operations ordered by the coordinators, the
proper functioning of the components of the vehicle and the

environment surrounding the vehicle. So a safety coordinator

basically is an observer, which acts only when the operations

lead to unsafe state. When the safety coordinator finds that a

mission prompts execution of an unsafe action it tries to

correct the action and make it safe. If the safety coordinator is

not able to make the mission safe it aborts the mission. For

example if a mission commands the vehicle to go to a depth of
500ft and the present safe depth is only 200ft the safety

coordinator changes the depth to 200ft. If the safety

coordinator is able to correct it the mission is carried out or

else it aborts the mission. We here list a set of safety issues a

safety coordinator should satisfy.

1. Water depth safety monitoring should check the altitude of

the vehicle from the bottom of the sea and thus prevent the

vehicle from hitting the bottom of the sea.

2. Obstacle avoidance safety should monitor the presence of

obstacles, which might be other vehicles, or mountains under

sea and prevent collision of the AUV with the obstacle. (This

has not yet been implemented).
3. Device functioning safety should monitor the functioning of

the different critical components, which constitute an AUV.

Critical components are those components malfunctioning of

which might lead to damage of vehicle or undesirable situation

like AUV stuck at the bottom of the sea due to battery failure.

All these safety issues can be modeled as constraints within a

hybrid system as has been done for the survey AUV built at

ARL. The constraints are the guard conditions, which prompt
the transition from one state to other depending upon the

situation.

• Create locations l L and name them as Start, Idle,

CheckSafeties, LowAltitude and Abort

• Draw an edge e0 from Start state to Idle state (wait to

get initialized)

o Set event σin = Init/-
o Set guard condition G(e0) = {t>= τ} where τ

is a constant

o Set reset condition R(e0) = { Φ}

• Draw an edge e1 from Idle state to CheckSafeties

state (wait for new vehicle command to arrive)

o Set event σin = NewVCData/-

o Set guard condition G(e0) = {t>= τ} where τ
is a constant

o Set reset condition R(e0) = { Φ}

o Implement the Voltage, Water depth and

device safety algorithms.

• Draw an edge e2 from CheckSafeties state to

LowAltitude state

o Set event σin = AltitudeSafety/-

o Set guard condition G(e0) = {t>= τ} where τ
is a constant

o Set reset condition R(e0) = { Φ}

o Implement the Water depth correction

algorithm.

• Draw an edge e3 from CheckSafeties state to Abort

state

o Set event σ = Abort/Abort

o Set guard condition G(e0) = {t>= τ} where τ
is a constant

o Set reset condition R(e0) = { Φ}

• Draw an edge e4 from LowAltitude state to Abort

state

o Set event σ = Abort/Abort

o Set guard condition G(e0) = {t>= τ} where τ
is a constant

o Set reset condition R(e0) = { Φ}

• Draw an edge e5 from LowAltitude state to
Checksafeties state

o Set event σin = AltitudeOk/-

o Set guard condition G(e0) = {t>= τ} where τ
is a constant

o Set reset condition R(e0) = { Φ}

Abort/Abort

G(.)={True}
R(.)= {Φ}

…

<MissionName1Done>/-

G(.)={True}

R(.)= {Φ}

Abort/Abort

<OpName1>/ <DoOpName1>

G(.) = {CurrentOrder = “<OpName>”}

R(.) = { Φ }

NewOrder/-

G
i
(e3)

R(.) = {Idle = 0}

Neworder/-

G(.) = {SeqController->

Suspended}

R(.) = { Φ }

Suspend/Suspend

G(.) = {!this->SeqController ->Suspended}

R(.) = {t = 0}

Suspend/Suspend

G
i
(e4)

R(.) = {t = 0, Idle = 0, Time2Suspend = 0 }

<OpNamen>/ <DoOpNamen>

G(.) = {CurrentOrder = “<OpName>”}

R(.) = { Φ }

<MissionName1Done>/-

G(.)={True}

R(.)= {Φ}

OrderComplete/-

G
i
(e7)

R(.) = { Φ }

Abort/Abort

G(.)={True}

R(.)= {Φ}

Abort/Abort
G(.)={True}

R(.)= {Φ}

Abort/Abort

G(.)={True}
R(.)= {Φ}

Abort/Abort

G(.)={True}

R(.)= {Φ}

EndMission/-
G(.) = {True}

R(.) = {Idle = 0}

NewVCData/-

G(.) = {True}
R(e1) ={ MissionTime = 0, t = 0,

Done = 1}

Init/-

G(.) = {t>= τ}
R(.) = {Φ}

CO

WF

I

WS

D

CR

E

OrderCompleter/Resume

G
i
(e8)

R(.) = { Φ }

ON1
ONn

Figure 7: Safety Coordinator

The coordinators interact with each other to successfully

execute a mission. The information flow of the interaction is as

shown in Figure 8.

Figure 8: The Complete Structure

The present design is concerned with the successful execution

of mission decomposed as sequence of operations ordered by

the highest level controllers which we have automatically

synthesized.
The analysis is provided based on the interactions between the

modules shown in Figure 8 and the detailed modules of the

sequential (Figure 5) and timed coordinator (Figure 6).

Both the coordinators are initialized first. During initialization

the sequential coordinator establishes contact with the vehicle

and the terminal from which mission orders are received.

When new order is received both the coordinators transition to

the state at which they become ready to execute operations as a
part of mission. If it’s an untimed mission the sequential

coordinator accepts the input and sends <DoOperationName>

(Figure 8) to the lower level controllers. Once an operation is

successfully executed the sequential coordinator receives

<OperationNameDone> (Figure 8) from the lower level

controllers. Then the SC considers the next operation in queue

and passes control to the concerned lower level controller. If

due to some malfunctioning the operation needs to be
terminated an abort signal is received by the sequential

coordinator from the lower level controllers involved in the

mission. The sequential coordinator then broadcasts the abort

signal (Figure 5) and terminates the execution of all other

operations. If there are no more orders in the queue the SC

checks for the status of the TC. If the TC is idle SC sends

EndMission and transitions to the EndMission state (Figure 5).
If a timed mission is received then the timed coordinator

checks whether the execution of the present mission needs the

suspension of the sequential coordinator or not (these

constraints are guard conditions on edges). If TC needs to

suspend SC, TC sends the suspend signal to SC (Figure 6). If the

mission which SC is executing is suspendable then SC

synchronizes with the event suspend and transitions to the

Suspend state (Figure 5). When SC is suspended TC sends the
order as <DoOperationName> to the lower level controllers.

The lower level controllers respond back with the

<OperationNameDone> event to the TC when the operation

is completed (Figure 8). TC then finds the next order in queue

and either resumes the SC or keeps it suspended or keeps it

unsuspended (Figure 6).

The safety coordinator keeps checking the parameters from the

operations within a mission and sensor values of the AUV
from the common database to safely execute a mission (Figure

8).

This way all the coordinators interact with each other and

complete the execution of a mission order successfully. Next

we discuss the propositions that should be satisfied by the

coordinators for successful execution of a mission.

Proposition 1: (Given no Abort event) for all the orders there
exist a response from the lower level controller which

completes the mission successfully.

Proof: Proposition 1 can be reduced to the expression

))|(&)|((j

i

p

kk

p

k

j

ii HHHHMm ki →∃→∃∈∀ σσ σσ
--- 1.1

Equation 1.1 states that for all missions there exist an event to

pass control to the concerned commanded controllers as well

as there exist an event to let the commanding controller know

the completion of the mission.

From the coordinator synthesis algorithms we find that for the

missions there exist a method to pass control from the higher
level coordinator i.e. S.C or T.C. to the lower level coordinator

which is to synchronize on common events

<DoOperationName>. Thus we can express it as

)|(p

k

nNameDoOperatioj

ii HHMm i →∃∈∀ >=<σσ where i

indicates the subsystem at level j, k indicates the subsystem at

level p, j>p indicating that level j is at a higher level than level

k --- 1.2

From the algorithms we find that each of the lower level

coordinators respond back to a <DoOperationName> by a

<OperationNameDone> event sent to the higher level
controller.

)|(j

i

ameDoneOperationNp

kk HHMm k →∃∈∀ >=<σσ --- 1.3

Equation 1.2 and 1.3 together state that for each and every

mission to be executed there exist an event to pass the control

to the concerned controller as well as there exist a response

which tells the higher level coordinator that the mission has

DoOperationName

OperationNameDone

DoOperationName

OperationNameDone

Sequential
coordinator

Timed
Coordinator

Safety
Coordinator

Vehicle

Lower level controller

Database

been successfully executed. Thus equation 1.1 holds so does

Proposition.1.

Proposition 2: If the order is an Abort event it terminates the

mission.
Proof: The above Proposition 2 can be reduced to the

expression final

Abort
llEAbortLl →∃=∀∈∀ =σσ | ---

2.1

The expression states that for all locations belonging to a set of
locations and for all events which are Abort events there exist

an edge in which a transition occurs from the present location,

the source to the target location, the final state. If the above

expression holds for the coordinators synthesized by the

algorithm then Proposition 2 holds.

From the coordinator synthesis algorithm we find that there are

statements which implement edges with Abort events from the

<OperationName> locations to the Endmission location.

<OperationName> → = Abortσ
Endmission

Thus equation 2.1 holds and so does Proposition 2.

Proposition 3: Timed as well as untimed missions can be

successfully executed by the timely coordination between the

Timed and Sequential coordinator.

Proof: The above Proposition 3 can be reduced to the

expression)(| SCTCMm →∃∈∀ σσ ---3.1.

The expression states that for all missions there exist a

coordination event between the Timed Coordinator and the

Sequential Coordinator for successful completion of both

timed and untimed missions. If the above expression is

satisfied by the coordinator synthesis algorithm then

Proposition 3 holds.

In the Sequential Coordinator synthesis algorithm we find

statements dealing with creation of edges on value of

Suspendable =1 and σ = Suspend. In the Timed Coordinator

synthesis we find the implementation of edge e4 which

implements sending σ = Suspend to the Sequential Coordinator.

The above statements reduce to

SCTCSuspend Suspend →=∃ =σσ | --- 3.2

The above expression states that there exist an event which

allows TC to Suspend SC for execution of timed events.

From both the TC and SC synthesis algorithms we find

statements implementing σ = Resume which helps in resuming

the suspended SC. This statement reduces to the expression.

SCTCsume sume →=∃ =Re|Re σσ --- 3.3

From equations 3.2 and 3.3 we find that there exist methods of

coordination between both the TC and the SC to execute timed

as well as untimed missions. Thus equation 3.1 holds, so does

the Proposition 3.

 Proposition 4: Given a mission

(a) If no abort occurs during mission operation,

then the mission will be successfully completed.

(b) If an Abort occurs during the mission, then the
mission is terminated

(c) Timed and Sequential coordinator can

coordinate among each other by suspending the

other if required for execution of a mission.

Proof: Proposition 1 – 3 prove Proposition 4.

V. RELATED WORK

Several approaches like game theory, supervisory control, and

optimal control have been used to synthesize a controller. The

supervisory control of discrete event system approach of

Ramagde and Wonham [1] can also be said as the event

feedback scheme. The plant generates events. The supervisor

observes the events and then generates a control pattern based

on a legal set of specifications. Other approaches have used
state feedback control scheme [15]. The supervisor observes

the plant states. At each step the supervisor generates a control

pattern based on a given set of legal states to ensure no illegal

state are reached.

The approach by Lygeros in [15], [12], [13], [14] is to design a

hybrid controller by determining continuous control laws and

conditions under which they satisfy the closed loop

requirements. Then, a discrete design is constructed to ensure
that these conditions are satisfied. Controller synthesis for a

real time system is proposed by Asarin in [16]. The controller

in [16] is synthesized based on a winning strategy for certain

games defined by automata or timed automata. Another game

theoretic approach proposed in [17] is used for constructing

reliable controllers for arbitrarily large discrete systems. The

controller is synthesized by finding a winning strategy for

specific games defined by contracts. The discrete system
model is an action system, and the requirement is a temporal

property. The game reduces to a competition between, the

controller, and the plant, which try to prevent each other from

achieving their respective goals. If the synthesis is possible,

that is, if the controller has a way to enforce the required

property, the process ends with finding the winning strategy of

the controller, by propagating backwards the computed

precondition of the plant, with respect to that property. This
technique guarantees the correctness of the derived program.

Next we briefly discuss the interaction among some of the

mission controllers to successfully execute a mission in our

application to an AUV.

A. Modeling Mission Modules in TEJA

TEJA allows the creation of a system architecture where all

the modules required for a particular mission controller are

instantiated and initialized, and their interactions are specified

via an event dependency table which may be dynamically

reset. Automatic code generation ensures that the real-time

scheduling needs are met.

Figure 8-9 shows the hybrid automaton representation of the

GPSFixer, Launch operation controller and steering behavior

controller modeled using the Teja NP tool. On initialization the

modules go to the Idle state from Start. The GPSFixer (Figure

8) then goes to the surface, raises mast, updates the navigation

system and then passes control to the Launch controller to

lower the mast and then on the event Launch transitions to the

ComeOffSurface state. The Launch controller then goes

through its sequence of events shown in Figure 4 to lower the

mast and lower the AUV below the surface of water. Then the

Launch controller passes control to the GPSFixer controller on

the event LaunchDone. The GPSFixer transitions to the Decide

state where it decides whether to return back to the original

location before starting GPSFix mission or to just go to a

particular depth. If the AUV needs to return to the original

location the GPSFixer passes control to the Steer controller by

outputting the event Steer. The Steer controller then executes

its sequence of events (Figure 9). Once the AUV reaches the

destined location the Steer controller passes control to the

GPSFixer by outputting the event SteeringDone. The

GPSFixer finally ends the mission by sending the event

GPSFixDone to the TC or SC.

Figure 9: The GPSFixer Operation Controller

Figure 10: The Launch & Steering Controller modules

VI. CONCLUSION

Synthesis of higher-level coordinators for AUVs whose

mission controller is modeled in a hierarchical hybrid, model-

based architecture is presented. This method of synthesis

allows the generation of coordinators for any set of operation

or behaviors and for any type of autonomous system (aerial,

surface or underwater) modeled as shown in this work. This

method of synthesis also guarantees the appropriate design of
the coordinator modules to control the execution of sequence

of timed or untimed operations/behaviors in a mission. The

propositions prove that the algorithm satisfies the properties

that should be satisfied by the coordinators. Future work

involves implementing this proposed method using a software

program for automated synthesis of coordinators.

REFERENCES

[1] Ramagde, P.J., Wonham W.M..“The control of Discrete Event Systems”,

Proceedings IEEE, 1989, Vol. 77, No. 1, pp. 81-98.

[2] Holloway, L.E., Krogh, B.H., Giua, A.. “A survey of Petri Net Methods

for Controlled Discrete Event Systems,” Journal of Discrete Event

Systems, 1997, Vol. 7, No. 2, pp. 151-190.

[3] Datta N. Godbole, John Lygeros, and Shankar Sastry, “Hierarchical

Hybrid Control: a Case Study”, LNCS 999, June 1995.

[4] R. Alur, T. A. Henzinger, and E. D. Sontag, Eds., Hybrid Systems III.

New York: Springer-Verlag, 1996, vol. 1066, Lecture LNCS.

[5] www.teja.com

[6] www.uppaal.com

[7] R. Alur, T. A. Henzinger, G. Lafferriere, And George J. Pappas

Discrete Abstractions of Hybrid Systems. Proc. of the IEEE, July 2000.

[8] T. A. Henzinger, P-H Ho, and H W-Toi, 1995, “A user guide to

HyTech”, Proc. of the First International Workshop on TACAS '95,

LNCS 1019, Springer-Verlag, 41-71.

[9] OpenGL programming guide – Redbook version 1.4

[10] S. Tangirala, R. Kumar, S. Bhattacharyya, M. O’Connor, and L. E.

Holloway,“Hybrid-Model based Hierarchical Mission Control

Architecture for Autonomous Undersea Vehicles”, American Control

Conference (ACC), June 2005.

[11] M.O’Connor, S.Tangirala, R.Kumar, S. Bhattacharyya and L.E.

Holloway, “Hybrid-Model based Hierarchical Mission Control

 Architecture for Autonomous Undersea Vehicles: Verification”, ACC

 2006, Minneapolis, MN

[12] Lygeros, J.; Godbole, D.N.; Sastry, S. "A game-theoretic approach to

hybrid system design", IN: Hybrid Systems III. Verification and Control,

New Brunswick, NJ, USA, 22-25 Oct. 1995). Edited by: Alur, R.;

Henzinger, T.A.; Sontag, E.D. Berlin, Germany: Springer-Verlag, 1996.

p. 1-12.

[13] C. Tomlin, G. Pappas, and S. Sastry, ``Conflict resolution for air traffic

management: A case study in multi-agent hybrid systems,'' tech. rep.,

UCB/ERL M97/33, Electronics Research Laboratory, University of

California, Berkeley, 1997. To appear in the IEEE Transactions on

Automatic Control, Special Issue on Hybrid Systems, April 1998.

[14] Lygeros, J.; Tomlin, C.; Sastry, S. "Multiobjective hybrid controller

synthesis", IN: Hybrid and Real- Time Systems. International Workshop,

HART'97. Proceedings, Grenoble, France, 26-28 March 1997). Edited

by: Maler, O. Berlin, Germany: Springer-Verlag, 1997. p. 109-23.

[15] J. Lygeros, D. N. Godbole, and S. Sastry, “Verified hybrid controllers for

automated vehicles,” IEEE Trans. Automat. Contr., vol. 43, pp. 522–539,

Apr. 1998.

[16] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid System

II, volume 999 of Lecture Notes in Computer Science. Springer-Verlag,

1995

[17] Ralph-Johan Back, Cristina Cerschi Seceleanu, Contracts and Games in

Controller Synthesis for Discrete Systems, 11th IEEE International

Conference and Workshop on the Engineering of Computer-Based

Systems (ECBS'04) 05 24 - 05, 2004 Brno, Czech Republic

[18] S. Bhattacharyya, R.Kumar, S.Tangirala, M.O’Connor, and L.E.

Holloway, ‘‘Animation/ Simulation of Hybrid-Model based Hierarchical

Mission Control Architecture for Autonomous Undersea Vehicles”, ACC

2006,Minneapolis, MN

