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Abstract

This research combines symbolic execution, a formal method of static analysis, with various

test adequacy criteria, to explore the effectiveness of using symbolic execution for calculating

code coverage on a program’s existing JUnit test suites. Code coverage is measured with a

number of test adequacy criteria, including statement coverage, branch coverage, condition

coverage, method coverage, class coverage, and loop coverage. The results of the code coverage

calculation is then used to automatically generate JUnit test cases for areas of a program that

are not sufficiently covered. The level of redundancy of each test case is also calculated during

coverage calculation, thereby identifying fully redundant, and partially redundant, test cases.

The combination of symbolic execution and code coverage calculation is extended to perform

coverage calculation during a manual execution of a program, allowing testers to measure the

effectiveness of manual testing.

This is implemented as an Eclipse plug-in, named ATCO, which attempts to take advantage

of the Eclipse workspace and extensible user interface environment to improve usability of the

tool by minimizing the user interaction required to use the tool.

The code coverage calculation process uses constraint solving to determine method pa-

rameter values to reach specific areas in the program. Constraint solving is an expensive

computation, so the tool was parallellised using Java’s Concurrency package, to reduce the

overall execution time of the tool.
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Opsomming

Hierdie navorsing kombineer simboliese uitvoering, ’n formele metode van statiese analise, met

verskeie toets genoegsaamheid kriteria, om die effektiwiteit van die gebruik van simboliese

uitvoer te ondersoek vir die berekening van kode dekking op ’n program se bestaande JUnit

toets stelle. Kode dekking word gemeet deur verskeie toets genoegsaamheid kriteria, insluited

stelling dekking, tak dekking, kondisie dekking, metode dekking, klas dekking, en lus dekking.

Die resultate van die kode dekking berekeninge word dan gebruik om outomaties JUnit toets

voorbeelde te genereer vir areas van ’n program wat nie doeltreffend ondersoek word nie. Die

vlak van oortolligheid van elke toets voorbeeld word ook bereken gedurende die dekkings-

berekening, en daardeur word volledig oortollige, en gedeeltelik oortollige, toets voorbeelde

identifiseer. Die kombinasie van simboliese uitvoer en kode dekking berekening is uitgebrei

deur die uitvoer van dekking berekeninge van ’n gebruiker-beheerde uitvoer, om sodoende kode

dekking van ’n gebruiker-beheerde uitvoer van ’n program te meet. Dit laat toetsers toe om

die effektiwiteit van hulle beheerde uitvoer te meet.

Bogenoemde word gëımplimenteer as ’n Eclipse aanvoegsel, genaamd ATCO, wat poog om

voordeel te trek vanuit die Eclipse werkspasie, en die uitbreibare gebruiker oordrag omgewing,

om die bruikbaarheid van ATCO te verbeter, deur die vermindering van die gebruiker interaksie

wat benodig word om ATCO te gebruik.

Die kode dekking berekeningsproses gebruik beperking oplossing om metode invoer waardes

te bereken, om spesifieke areas in die program te bereik. Beperking oplossing is ’n duur bereken-

ing, so ATCO is geparalleliseer, met behulp van Java se Concurrency pakket, om die algehele

uitvoer tyd van die program te verminder.

iv
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Chapter 1

Introduction

1.1 Motivation

Software testing is a vital part of software development. However, it is a laborious task that

typically accounts for half of the software development cycle [45]. This has encouraged the de-

velopment of various test automation frameworks and tools, to alleviate the effort of performing

software testing. One such framework is the JUnit testing framework [29].

The JUnit testing framework allows software developers to create test cases, which consist

of class instantiations, and method invocations, with specific parameters, which can be executed

by the framework to automatically test the program. A set of these test cases is called a test

suite, and a test suite that aims to test the current functionality of a program is called a

regression test suite. Having a thorough and efficient regression test suite assists in detecting

newly introduced program faults quickly. However, to create and maintain such a regression

test suite is an intensive, time-consuming task.

A number of tools attempt to address this problem by providing mechanisms to automati-

cally generate test cases. These mechanisms range from generating random inputs for methods

(JCrasher [13]), to using symbolic execution [33] to create a symbolic representation of a pro-

gram’s execution (Symstra [45]), to many more. However, simply generating (often large sets

of) test cases is not sufficient to acquire a thorough and efficient regression test suite.

A regression test suite is considered to be thorough if it executes an adequate percentage

of the entire program. For example, a test suite may be considered adequate if 80% of all

statements are covered. However, a thorough regression test suite does not necessarily imply

1
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CHAPTER 1. INTRODUCTION 2

that it is an efficient test suite.

An efficient regression test suite achieves adequate levels of coverage with the minimum

number of test cases. The more test cases contained in a test suite, the longer it will typically

take to execute the suite. Regression test suites may often contain redundant test cases, i.e.,

test cases that do not test any area of the program that has not previously been covered by

another test case in the suite. These redundant test cases increase the time, and resources,

required to execute a regression test suite, without necessarily contributing to the effectiveness

of the suite.

There are tools such as Agitar [1, 45, 46], JTest [27, 45, 46], and Symstra [45], that aim to

generate thorough regression test suites. This is achieved by analysing the program, typically

through a static analysis methodology [27, 45], and then generating test cases to cover as much

of the program as possible. Tools, like Symstra, apply redundancy detection checks to ensure

that as few redundant tests are created as possible. However, these tools create a separate

regression test suite, not considering the content of an already existing regression test suite.

The purpose of this thesis is to explore the practical applicability of using the static anal-

ysis formal method called symbolic execution, to extend the current regression test suite by

generating additional test cases, and adding them to the suite. The aim is for the resulting

regression test suite to be as thorough and efficient as possible.

1.2 Background

This section will provide an overview of what is meant by symbolic execution [33], code coverage

[47], and automated JUnit test case generation.

1.2.1 Symbolic Execution

The notion of symbolic execution follows naturally from normal execution. The code is in-

spected line-by-line, much like an interpreter would execute machine code. However, instead

of actually executing the code, the execution of the program is simulated by inspecting the

code and maintaining a representation of the static state of the program. This representation

of the static state is called the symbolic state. The symbolic execution of a program must be

structured in such a way that the symbolic state is equivalent to the static state of the program,

Stellenbosch University   http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

during normal execution.

When a procedure is symbolically executed, execution proceeds normally until any data,

external to the procedure, is accessed. Data external to the procedure are data entities, like

parameter variables of the procedure, global variables in the program, Input/Output operations,

and others. Whenever an external data entity is accessed, that entity is regarded as a symbolic

value. These symbolic values are used to represent some unknown, yet fixed value. Values that

are not external to the procedure are known as concrete values, and include local variables with

non-symbolic values assigned to them, or constants.

There are two situations where the symbolic state will manipulate data differently from

normal execution. These two situations are evident during the computation of expressions and

during conditional branching.

Computation of Expressions

Since the symbolic values are unknown, any expressions containing symbolic values cannot be

solved. Instead, these expressions are represented in terms of the symbolic values within them.

Conditional Branching

Conditional branching in a program occurs at every branching statement, such as an if state-

ment, where only one of the paths is followed given the conditions in the if. During symbolic

execution, concrete conditions, i.e., conditions composed of only concrete values, are handled

normally, since the result of the condition can be calculated and the correct execution path can

be followed.

Since symbolic values are unknown, if statements with one or more symbolic conditions,

cannot be resolved during symbolic execution. Therefore, these conditional statements are

referred to as unresolved conditional statements. Whenever an unresolved conditional statement

is encountered, it has to be assumed that the condition can be both true and false. This

occurs, because it has to be assumed that a symbolic value can represent any value within the

domain of its type, i.e., if the symbolic value SV is of type int, it can assume any value in the

domain −231 <= SV <= 231 − 1. Since the condition has to be assumed as both true and

false, both execution paths need to be followed. When both paths are followed, it means that

the execution forks into two parallel executions of the current procedure, where the execution
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CHAPTER 1. INTRODUCTION 4

of each path proceeds as normal, except for the assumed outcome of the unresolved conditional

statement.

The assumptions are stored with their values in the symbolic state as a path condition,

because assumptions made by one unresolved conditional statement may assist in resolving

subsequent unresolved statement executions.

Path Condition

The path condition (PC ) is an accumulator of conditions on symbolic values which determines

a unique control path through the program. Each path has its own PC and no two PC s are

ever identical.

At the beginning of a program, the PC is set to true. When a conditional branching

statement is encountered, its condition (represented by b(C)) is examined. If b(C) contains no

symbolic values, i.e., only concrete values, then b(C) can be solved using the concrete values.

The correct path can then be followed with no modification to the PC. However, if b(C) is

an unresolved condition, the execution has to be forked into two parallel executions. The two

forked executions will each receive a copy of the PC, at that point, and the assumed result of

b(C) is added to the PC :

PC1

∧
b(C)

PC2

∧
¬b(C)

Execution of each path continues in parallel, where the path represented by PC1 assumes

b(C) = true and the path represented by PC2 assumes ¬b(C) = true.

1.2.2 Code Coverage

Code coverage, a field of study under test adequacy [47], is the measurement of a coverage

criterion. A coverage criterion is a testing requirement, which specifies that some element of

a program should be covered. To cover an element of a program means to execute or analyse

that element during testing. The coverage criteria considered in this thesis may be categorised

as control-flow criteria.

Control-flow criteria is specified over the coverage of the control-flow graph of a program.

The control-flow graph is a graphic interpretation of the execution of a program, where the

nodes represent code blocks, branches occur at conditional statements, and the edges represent
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the conditions required to hold for that path to be followed. Every execution of a program

corresponds to a path in the control-flow graph, known as the execution path, from the begin

node to the end node. The begin node represents the entry point of the program, and the end

node represents the point of program termination.

The four common coverage criteria specified over the control-flow graph are:

• Statement coverage: Statement coverage is a very basic testing requirement which speci-

fies that every statement in the code should be executed at least once.

• Branch coverage: Branch coverage specifies that each possible branch of every branching

statement should be executed at least once.

• Method coverage: Method coverage is the testing requirement that every method in a

program should be executed at least once.

• Class coverage: This testing requirement specifies that every class in a program should

be executed at least once, i.e., any one of its methods should be executed at least once.

An additional, uncommon, coverage criterion considered in this thesis is loop coverage. This

testing requirement specifies that every loop in a program should be iterated at least twice.

The purpose of loop coverage is to detect bugs that present themselves when a loop is iterated

more than once [30]. By this definition, loops, designed to iterate only once or never at all, will

never satisfy the loop coverage criterion.

Measuring Code Coverage

There are various approaches to measure the criteria. Atlassian, the creators of Clover [9, 46],

identified three approaches to measure code coverage of Java programs:

1. Source code instrumentation is an approach where instrumentation statements, such as

annotations or method calls to the coverage calculation tool, are added to the source

code. The code is then compiled to produce an instrumented assembly.

2. Intermediate code instrumentation is an approach where the compiled class files are in-

strumented by adding new byte codes, and a new instrumented class is generated.
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3. Run-time information collection is an approach that collects information from the run-

time environment, as the code executes, to determine coverage information.

As the program under test is executed, coverage is measured according to one, or a combination,

of these measuring approaches.

This thesis uses run-time information collection, in the form of execution tracing, to measure

code coverage. Execution tracing involves closely monitoring the Java Virtual Machine (JVM )

that executes a program, through the use of the Java Platform Debugger Architecture (JPDA)

[4].

1.2.3 JUnit Test Generation

The symbolic state, constructed during symbolic execution, contains sufficient information,

such as local variable values and path conditions on symbolic values, to generate a test case

that will reach that specific symbolic state during normal execution. It is, therefore, possible

to generate test cases to execute specific branches of a program, with the help of the symbolic

states that represent those specific branches. These test cases are generated as JUnit test cases,

which can be compiled by the Java compiler, and executed with the JUnit testing framework.

1.3 Literature Synopsis

James King [33] sought to find a middle-ground between program verification and program

testing in 1976. This middle-ground was symbolic execution. It presented a way to symbolically

represent the behaviour of a program. Symbolic execution has since been used in a variety of

studies, to investigate how the formal method can assist in the analysis and testing of programs.

The research most relevant to this thesis, and the symbolic execution engine used in this

thesis, is that of Tomb et al. [39]. Tomb et al. studied the use of symbolic execution to detect

unhandled run-time exceptions. They analysed a program’s byte code to detect any possible

exceptions that may occur during the execution of a program. If this exception is not properly

handled, e.g., with the help of try-catch blocks in Java, a JUnit test case is generated to

confirm whether the possible exception is, in fact, handled or not.

Many studies regarding symbolic execution aim to use it to generate JUnit test cases to

achieve high levels of code coverage [45]. The studies have shown that symbolic execution can
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be used to generate such test cases from an analysis of the code; the code is analysed, and a

separate, independent test suite is created. However, none of the studies found considered an

already existing JUnit regression test suite.

Code coverage calculation tools are wide-spread, and measure a variety of code coverage

criteria. Those that are available in the industry are typically focused on measuring common

coverage criteria, such as statement (line) coverage, branch coverage, method coverage, and

class coverage [46]. The less common coverage criteria are typically omitted due to the increased

complexity and difficulty to measure them.

1.4 Objectives

The goal of this thesis is to explore the practical applicability of using the static analysis formal

method known as symbolic execution, to calculate code coverage of an existing regression test

suite, and then to extend the test suite by generating additional test cases, such that the

resulting regression test suite is as thorough and efficient as possible.

The main objectives of this thesis are as follows:

• Use symbolic execution to measure code coverage of an existing regression test suite for

various common coverage criteria. These common criteria include statement coverage,

branch coverage, class coverage, and method coverage.

• Use the results from symbolic execution and coverage calculation to generate JUnit test

cases for all areas not covered by the current regression test suite. Evaluate the effective-

ness of the resulting regression test suite.

• Design the solution to benefit from a multi-processor environment, and evaluate the

benefits of this concurrent design.

• Integrate the solution into an Eclipse plug-in to improve its usability.

1.5 Contributions

To achieve the objectives of this thesis, ATCO (Automated Test Coverage Calculation and

GeneratiOn) was developed, and the following contributions were made:

Stellenbosch University   http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 8

• Symbolic execution can be used to measure code coverage of the common coverage criteria

when primitive data types are used. A level of inaccuracy is introduced with more com-

plex data types and branching conditions, however, since the path conditions containing

complex data types cannot currently be solved.

• Combining symbolic execution with coverage calculation allows JUnit test cases to be

generated automatically for areas of a program not tested with the current regression

test suite.

• ATCO is designed to utilise the additional processors of a multi-core platform. This

allows sections of ATCO to execute concurrently, thereby reducing the time required to

perform its tasks by up to 54%.

• ATCO is implemented as an Eclipse plug-in, utilising the graphical user interface (GUI )

extensions, provided by Eclipse. This greatly improves the usability of ATCO.

Along with the main objectives, the following additional contributions were made during

this thesis:

• Using symbolic execution to measure code coverage of a less common coverage criterion,

such as loop coverage.

• Extending ATCO to perform test redundancy detection, i.e., monitoring whether the

tests in the existing regression test suite cover unique areas of the code, or whether they

only cover areas covered by other tests.

• Using execution tracing to calculate coverage for the manual execution of a program,

which can give program testers the ability to verify the thoroughness of their manual

testing.

1.6 Outline

The rest of this thesis is structured as follows.

Chapter 2: Theoretical Background provides an overview of the theory of testing and

test adequacy. This chapter is separated into two parts.
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First, the chapter presents two methodologies of testing, the one is proving the absence

of bugs, and the other is finding bugs. The chapter also presents two approaches to these

methodologies, namely program verification and program analysis. These approaches, and how

they are used with regard to testing, are compared. This broad overview provides the necessary

context for an in-depth description of symbolic execution, and how it can be used for testing.

Second, the chapter presents an overview of test adequacy. It describes the use of testing

requirements in the measurement of test adequacy, followed by a classification of various test

adequacy criteria categories. The chapter then discusses code coverage, a field of study under

test adequacy, and particularly focuses on program-based coverage, where the coverage criteria

are described. Available methods of measuring coverage are also presented, followed by a

discussion on some of the coverage calculation tools, and their preferred methods of measuring

coverage.

Chapter 3: Design and Implementation contains an in-depth description of the design

and implementation ATCO, the Eclipse plug-in that is implemented for this thesis. This

description includes how symbolic execution is used, how that information is presented in

preparation of coverage calculation, how coverage is measured, and how the resulting data

is used to automatically generate JUnit test cases. Additionally, a description of Eclipse’s

extensible plug-in framework, and the design of the Graphical User Interface (GUI ) for ATCO,

as it is integrated into the Eclipse environment, is discussed.

The chapter also discusses the benefits, and some interesting occurrences, of using symbolic

execution to measure coverage, as well as the benefits of using execution tracing to drive

the coverage calculation. Various possibilities of extending the functionality of ATCO are

presented. These extensions are: measuring uncommon coverage criteria, test redundancy

detection, and method invocation recording.

The concurrent design of ATCO, the design considerations that impact the concurrent

measurement of coverage, and additional optimisation considerations are also discussed.

Chapter 4: Evaluation presents and analyses the various experiments that are used to

evaluate ATCO.

The experiments are separated into three sets. First, the experiments are aimed at verifying

the correctness of ATCO, through manual inspection as well as a comparison with another
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coverage calculation tool. Second, the experiments focus on evaluating the performance benefits

of the concurrent design of ATCO. Third, the experiments measure the effectiveness of the

resulting regression test suite. Each set of experiments begins with a discussion on the goals

of that set of experiments. This is followed by a description of the programs that are used for

those experiments. And each set of experiments is concluded with an analysis of the results

achieved by that set.

Chapter 5: Conclusion concludes this thesis by summarising the findings in using symbolic

execution to measure code coverage, and then automatically generate JUnit test cases. It also

presents potential avenues for future work.
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Chapter 2

Theoretical Background

2.1 Introduction to Program Verification and Program Analy-

sis

Developing large-scale, complex systems has become common practice in software development.

Unfortunately, an increase in scale and complexity often also increases the likelihood of subtle

errors being introduced into the system. When a program does not function according to its

intended design and purpose it may result in an undesirable user experience, financial losses may

be incurred and, in some cases, human lives may even be lost [8]. Testing, as will be discussed

in this chapter, has, therefore, become an important part of the software development cycle.

Testing aims to prevent, or at least minimise, the damage caused by erroneous systems

through one of two methodologies. The first methodology is proving the absence of bugs. In

order to prove the absence of a bug, it needs be proven that the bug can never occur on any

of the execution paths of the system. The second methodology is finding bugs, e.g., finding

code that has been implemented incorrectly due to, e.g., an insufficient understanding of the

programming language, or as a result of insufficient error checking for irregular inputs.

In this chapter, program verification and program analysis and how these methods may

be used to test a system to either find bugs, or to prove the absence of bugs will be briefly

discussed. Some of the techniques in these testing methodologies that are applicable to this

thesis, will also be discussed.

11
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2.2 Program Verification

Program verification is a formal method. Formal methods are mathematically-based languages,

techniques, and tools for specifying and verifying complex software systems. To verify a pro-

gram, the system and the properties to be verified are expressed in some formalism and the

verification techniques are, subsequently, used to analyse the system to determine whether the

desired properties have been retained in the program.

Two well-established verification techniques aremodel checking and theorem proving (Clarke

et al. [8]).

2.2.1 Model Checking

Model checking is a technique for verifying finite state concurrent systems. This technique was

initially used for hardware verification, but later much research went into also using model

checking to analyse the specifications of software systems [8].

The model checking process consists of three tasks:

Modelling: To verify the design of a system, it needs to be converted to a model that can

be read by a model-checking tool. A model is generally constructed using a modelling

language, e.g., the Promela modelling language used for the model checker, SPIN. Alter-

natively, the implementation may be verified by using a model-checking tool that supports

the programming language in which the system has been written. Depending on the size

of the state space and the limitations on time and memory, abstractions may be required,

to exclude irrelevant details.

Specification: The correctness properties that should be satisfied during program execution,

need to be specified. Temporal logic is commonly used to specify the correctness proper-

ties, since it is able to determine how the behaviour of the system evolves over time.

Verification: The model checker automatically verifies whether the system satisfies the spec-

ified properties, by traversing the state space and determining whether the properties

have been retained in the model. If the verification process fails to terminate due to the

size of the model, the model needs to be adjusted, e.g., by adding additional abstrac-

tions, and the verification process needs to be restarted. In the event that the verification
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process terminates normally and an error has been encountered, the error trace needs

to be examined manually. This error trace, known as a counterexample, may be used to

determine where the error occurred. Errors may indicate one of two possibilities:

1. An error in the design of the system, i.e., one or more properties are not satisfied in

the design. Examining the error trace can assist in locating the problem area in the

design, allowing it to be repaired.

2. Human error in either the modelling of the design, or the specification of the prop-

erties. Errors that occur as a result of human error are often called false negatives,

denoting an error that occurs in the model that will not occur in the design. Exam-

ining the error trace can assist in identifying the problem.

The most significant drawback of model checking is the state-explosion problem [7]. The

state-explosion problem is defined by the rapid increase in the size of the state space as system

complexity increases, i.e., the state space grows exponentially with each program variable,

concurrent component, and communication channel in each process running on the concurrent

system. Since resource requirements and verification time are directly proportional to the size

of the state space, the availability of these resources limits the size and complexity of the

systems that may be verified.

2.2.2 Theorem Proving

In model checking, a system is modelled as program states at specific intervals and the proper-

ties to be checked are specified using a formalism such as temporal logic. In theorem proving,

however, a program is modelled as a set of mathematical definitions in some formal logic and

the properties to be checked are then derived as theorems that follow from these definitions [3].

Because the program is modelled as a set of mathematical definitions, theorem proving can

verify programs with infinite state spaces, as well as handle complex data types and recursion,

effectively. This makes theorem proving well suited for “data-intensive” systems with complex

data structures [35].

Even though theorem provers have some distinct advantages over model checking, they do

have significant disadvantages, as well. First, the generated proofs can be large and difficult to

understand. As a result, the generated proofs require a great deal of user expertise and effort
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to use. Second, theorem provers cannot be fully automated, thereby, again, indicating the need

for user expertise [35].

2.2.3 Program Verification Tools to Prove the Absence of Bugs

To prove the absence of a bug, with respect to the specified properties, the model checker has

to exhaustively investigate all execution paths to prove that no execution path violates the

specified properties.

Model checking is a strong and successful formal method for verifying a system. However,

original model checkers required the specification of system design in a modelling language,

which required expert knowledge.

Corbett et al. [11] attempted to solve the problem of converting a system to be model

checked to a modelling language, by creating Bandera. Instead of requiring expert knowledge

to create models from existing systems, this tool, Bandera, accepts Java source code and

converts it into a modelling language that is accepted by model-checking applications. To

minimise the model size, developers have to manually add data abstraction information.

2.2.4 Program Verification Tools to Find Bugs

Some model checkers have been adapted to handle programming languages. The model checker,

SPIN, has been adapted to handle embedded C or C++ in verification models [22].

Visser et al. [43] took another path and created Java Pathfinder (JPF ), a custom-designed

model checker. JPF is a model checker designed specifically for testing multi-threaded, interac-

tive Java programs. It works from the compiled version of Java source code, known as byte code,

which is executed within the Java Virtual Machine (JVM ) run-time environment. The model

is constructed by using a custom JVM (JVMJPF ) that analyses the byte code and interprets

the behaviour of the different threading components of the program, thereby constructing the

state space. JVMJPF guides the execution of the program while JPF analyses the resulting

state space to find race conditions and deadlocks that are common in multi-threaded programs.

2.2.5 Conclusion

Program verification may either be used to prove that specific correctness properties are satisfied

within all existing execution paths of a system, or it may be used to find behavioural bugs in
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a system.

It is important to note that even if a model checker could perform an exhaustive verification,

i.e., check that all execution paths satisfy all the specified properties, it still does not guarantee

the correctness of the system. Verification techniques check only for the specified properties. If

there were an error in the system that would have violated any particular property, which had

never been specified and, therefore, never been checked, that particular error would remain

undetected. Verification techniques also have a scalability issue, due to the state explosion

problem. However, program verification increases our understanding of a system by revealing

inconsistencies, ambiguities, and any incomplete sections of a system that might otherwise have

been undetected [8].

2.3 Program Analysis

Another approach to testing is program analysis. Program analysis, often referred to as static

analysis, offers static compile-time techniques for predicting safe approximations of program

data or program behaviour that arise dynamically at run-time, during the execution of a

program on a computer. According to Nielson et al. [34], program analysis may be divided into

a number of techniques, with this thesis focusing on the following three techniques:

1. Data-flow Analysis graphically represents data changes in a program, where the nodes

represent possible states of the data and the edges represent state changes.

2. Constraint-based Analysis is used to approximate control-flow data. Control-flow

analysis determines information about execution behaviour, i.e., determining which state-

ments lead to which other statements. However, in functional and object-oriented lan-

guages, this information is not, necessarily, available immediately. Constraint-based anal-

ysis allows for the control-flow analysis of these languages, by representing data as sets

of constraints.

3. Abstract Interpretation: Whereas data-flow analysis represents changes in the state

of data, abstract interpretation represents the state of data at a specific point in the

program by using collecting semantics to accurately trace the possible values of data at

that point. Galois connections [34] are then used to group these collecting semantics for
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each field of data, thus, obtaining a smaller domain that represents the behaviour of the

data of the program more accurately.

There are various sub-techniques that further define these techniques [34]. For the purposes

of this thesis, particular attention is paid to two of these sub-techniques that form part of

data-flow analysis. These sub-techniques are intraprocedural and interprocedural analysis. The

defining difference between these two techniques is the manner in which they handle methods

in a program.

Intraprocedural Analysis analyses each method of a program as an independent block of

code. Any function or procedure call, encountered during intraprocedural analysis is

skipped, thereby ignoring the effect that such calls might have on the data. By skipping

these calls, the approximations of data values are not as accurate, but require significantly

less memory compared to interprocedural analysis, since each method is handled as a

closed system.

Interprocedural Analysis takes function and procedure calls into account. All the function

and procedure calls encountered are followed, thereby taking into account the effect they

have on the data. This approach allows for a more accurate analysis of the program

than intraprocedural analysis, but demands more resources and gives rise to a number of

complications. These complications arise as a result of the need for ensuring that calls and

returns match one another, when dealing with parameter mechanisms (and the aliasing

that may result from call-by-reference method parameters), and when allowing procedures

as parameters. Resource requirements can be reduced by defining a call depth, k. The

purpose of k is to limit the depth that the analysis will follow from the top-level method.

Thus with k = 1, all procedure calls within the analysed method will be called, but calls

within those procedures will not be called. The higher the value of k, the deeper the

analysis will follow the call graph, but the more memory will be required when applying

this technique.

King [32] created a formal method of static analysis, called symbolic execution, which relies

on constraint-based analysis, as well as intraprocedural and interprocedural analysis, mentioned

above. This is the analysis technique this thesis is based on, and it will, therefore, be discussed

in detail later in this chapter.
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2.3.1 Program Analysis Tools to Prove the Absence of Bugs

Analysis tools that focus on proving the absence of bugs are path-insensitive, i.e., the analysis

is not guided by execution paths and conditional branches. ASTREÉ [12] is an abstract

interpretation-based program analyser that focuses on proving the absence of run-time bugs

in C. It uses data-flow analysis to verify that all data in the program is used within the rules

defined by the programming language, e.g., ensuring the short variable type is used only

within the constraints of its domain, or that array indexing occurs within the defined bounds.

ASTREÉ uses multiple abstract domains to analyse different aspects of the program, as well as

to allow the analysis processes of these domains to closely interact with each other to achieve

mutual reduction over all domains.

Another example of an analysis tool is ESC/Java [19], a tool that uses annotations to

indicate design decisions of routines. These annotations are inspected during intraprocedural

analysis and any violations found against these design decisions are reported. ESC/Java uses

a theorem-prover to reason about program semantics and is, therefore, able to check for syn-

chronisation errors of concurrent programs. The annotations need to be added manually, so a

substantial period of time is required for development preparation.

2.3.2 Program Analysis Tools to Find Bugs

Analysis tools focusing on finding bugs are typically path-sensitive, i.e., the analysis is guided

by execution paths and/or conditional branches. An example of such an analysis tool, is the

static analyser FindBugs, created by Hovemeyer et al. [23]. This analysis tool is built on

the assumption that most bugs that reside in programs are blatant errors that are easy to find

during code inspection. FindBugs uses class structure, data-flow, and control-flow information,

as well as an instruction state machine to analyse each class and search for patterns that

typically cause errors during execution. It uses simple, broad techniques to uncover common,

and likely, bugs. FindBugs also requires little or no development preparation for its application.

2.3.3 Conclusion

We discussed static analysis and how it may be used to both analyse and verify a program

through code-inspection methods, using information extracted from the code by means of

data-flow and control-flow information, or by using information supplied by the user, by means
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of annotations. However, static analysers are unsound, i.e., they return false positives. If a tool

returns a false positive, it means that the tool has indicated that a section of code contains an

error, but, that under execution, it is not an actual error. Since the user has to go through all

identified errors and determine whether a bug actually exists, examining these false positives

are usually time-consuming.

2.4 Symbolic Execution

Symbolic execution is the formal method that forms the fundamental part of this thesis.

In 1975, James C. King [32] identified program testing and program proving as the two

extremes of program verification in terms of the number of times a program needs to be exe-

cuted. On the one extreme, to verify the correctness of a program through testing, the program

must be executed at least once for every possible unique input, which, typically, requires an

infinite number of program executions. On the other extreme, to verify the correctness of a

program through a correctness proof, the program requires no execution, but a tedious, and

often difficult, formal analysis. King proposed a middle-ground in the spectrum, between run-

ning individual tests and general correctness proofs. This proposed middle-ground is known

as symbolic execution [33], which is the analysis technique that forms the fundamental part of

the research in this thesis.

2.4.1 Concept

The notion of symbolic execution follows naturally from normal execution. The code is in-

spected line-by-line, much like an interpreter would execute machine code. However, instead

of actually executing the code, the execution of the program is simulated by inspecting the

code and maintaining a representation of the static state of the program. This representation

of the static state will, from here on, be called the symbolic state. The symbolic execution of

a program must be structured in such a way that the symbolic state is equivalent to the static

state of the program, during normal execution.

When a procedure is symbolically executed, execution proceeds as normal until any data,

external to the procedure, is accessed. Data external to the procedure are data entities, like

parameter variables of the procedure, global variables in the program, Input/Output operations,
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and others. Whenever an external data entity is accessed, that entity is regarded as a symbolic

value. These symbolic values are used to represent some unknown, yet fixed value, as opposed

to, e.g., program variables, which are symbolic names that may assume numerous different

values during the execution of a program. Values that are not external to the procedure

are known as concrete values, and include local variables with non-symbolic values assigned

to them, or constants. From this description, it is clear that symbolic execution is, by its

definition, an intraprocedural analysis technique.

There are two situations where the symbolic state will manipulate data differently from

normal execution. These two situations are evident during the computation of expressions and

during conditional branching.

Computation of Expressions

Since the symbolic values are unknown, any expressions containing symbolic values cannot be

solved. Instead, these expressions are represented in terms of the symbolic values within them.

The example shown in Figure 2.1, p. 19 explains this representation clearly.

Expression Symbolic Representation

A = α A = α

B = β B = β

C = A+ 2×B C = α+ 2× β

D = C −A D = α+ 2× β − α

= 2× β

Figure 2.1: This is an example of the symbolic representation of expressions. In this example,
variable A is assigned the symbolic value α and variable B is assigned the symbolic value β.
Variables C and D are assigned values through arithmetic expressions composed of variables
A, B and C, and the resulting representation of its assigned value is shown under the Symbolic
Representation.

Conditional Branching

Conditional branching in a program occurs at every branching statement, such as an if state-

ment, where only one of the paths is followed given the conditions in the if. During symbolic

execution, concrete conditions, i.e., conditions composed of only concrete values, are handled

normally, since the result of the condition can be calculated and the correct execution path can

be followed.
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Since symbolic values are unknown, if statements, with one or more symbolic conditions,

cannot be resolved during symbolic execution. Therefore, these conditional statements are

referred to as unresolved conditional statements. Whenever an unresolved conditional statement

is encountered, it has to be assumed that the condition can be both true and false. This

occurs, because it has to be assumed that a symbolic value can represent any value within the

domain of its type, i.e., if the symbolic value is of type int, it can assume any value in the

domain −231 <= SV <= 231 − 1. Since the condition has to be assumed as both true and

false, both execution paths need to be followed. When both paths are followed, it means that

the execution forks into two parallel executions of the current procedure, where the execution of

each path proceeds as normally, except for the assumed outcome of the unresolved conditional

statement.

The assumptions are stored with their values in the symbolic state as a path condition,

because assumptions made by one unresolved conditional statement may assist in resolving

subsequent unresolved statement executions.

2.4.2 Path Condition

The path condition (PC ) is an accumulator of conditions on symbolic values which determines

a unique control path through the program. Each path has its own PC and no two PC s are

ever identical.

At the beginning of a program, the PC is set to true. When a conditional branching

statement is encountered, its condition (represented by b(C)) is examined. If b(C) contains no

symbolic values, i.e., only concrete values, then b(C) can be solved using the concrete values.

The correct path can, then, be followed with no modification to the PC. However, if b(C) is

an unresolved condition, the execution has to be forked into two parallel executions. The two

forked executions will each receive a copy of the PC, at that point, and the assumed result of

b(C) is added to the PC :

PC1 ≡ PC
∧

b(C)

PC2 ≡ PC
∧

¬b(C)

Execution of each path continues in parallel, where the path represented by PC1 assumes

b(C) = true and the path represented by PC2 assumes ¬b(C) = true. Figure 2.2, p. 21

provides an example taken from [31].
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Figure 2.2: This figure contains a code and graph example of path conditions. The code
snippet on the left shows two variables, x and y. These variables have the symbolic values X
and Y, respectively, associated with them. The graph on the right shows how the PC changes
during symbolic execution. The number, associated with each edge, shows the line number
of the statement executed, while each node represents the state of the PC and the symbolic
variables.

2.4.3 Symbolic Execution Tree

As is the case with normal execution, where the static states may be used to produce an

execution tree that represents the different execution paths that the program may take, so

can symbolic states be used to produce a Symbolic Execution Tree (SET ) that characterises

the execution of a procedure. Each node in the SET represents the program state after the

program statement that has been executed, and the transition between nodes is a directed arc

connecting the two nodes. Each unresolved conditional statement that causes the symbolic

execution to be forked into two parallel execution paths, results in a fork in the SET.

Each SET node typically contains:

• a statement counter

• variable values stored as concrete values, if concrete, or as formulae over symbolic

values, if symbolic.

• a PC consisting of a set of constraints over symbolic values characterising conditions the
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variable values would have to satisfy to reach the node.

The graph in Figure 2.2, p. 21 is an example of what a SET would look like for the code

snippet provided in the figure. Another example of a code snippet and its corresponding SET,

taken from [25], is shown in Figure 2.3, p. 22 and Figure 2.4, p. 23 respectively.

1: int min( int a, int b ) {

2: int min = a;

3: if ( b < min )

4: min = b;

5: if ( a < min )

6: min = a;

7: return min;

8: }

Figure 2.3: A simple method example, which is used to illustrate a SET. The method calcu-
lates the minimum of two arguments.

2.4.4 Issues

Symbolic execution has issues that need to be addressed. First, it is possible for a path

condition (PC ) to be unsatisfiable, i.e., it may contain contradicting conditions [16]. The

example in Figure 2.2, p. 21 illustrates this situation. In the example, the assert(false);

statement indicates that, at that point, a contradiction would be present in the PC. The code

snippet switches the symbolic values of the variables, i.e., x becomes Y and y becomes X. The

first condition in the PC is that X > Y, while the second condition states that, to follow that

execution path, Y - X > 0, i.e., to follow that execution path (X > Y & Y - X > 0) must

be true, which is impossible. Although the code is semantically correct, the instruction at

line 6 will never be reached, due to the contradicting conditions of the variable x. Since

symbolic execution will attempt to fork the execution at line 5, a theorem-prover will need

to be instrumented to ensure that the PC s do not contain contradictions. All PC s with

contradictions indicate an execution path that will never be followed during normal execution

and, therefore, the execution path should not be expanded. Figure 2.4, p. 23 shows a SET

with two paths that contain contradictions. These two paths are the paths that end with

nodes labeled backtrack.
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Figure 2.4: This is the SET graph of the method displayed in Figure 2.3, p. 22.

Second, the number of times a loop with symbolic conditions needs to be iterated is un-

known. Concrete loops, i.e., loops that contain only concrete conditions, are straightforward

during symbolic execution. A concrete loop is merely a block of code that will be executed

a concrete number of times. Thus, during symbolic execution, the code is symbolically exe-

cuted a concrete number of times. However, limiting the number of iterations of concrete loops

might be considered if the concrete number becomes large. Symbolic loops, i.e., loops that

contain symbolic conditions, need to be handled differently. The conditions contain symbolic

values, requiring that both the true and false paths be followed, at every iteration of the

loop. The true path of a loop results in another iteration, while the false path results in

the execution breaking out of the loop. In other words, after every iteration of the loop, the

loop is both exited and re-entered for another iteration. This can result in the loop iterating

through the entire domain of the counting variable’s type, depending on the start value and

whether counting is incremental or decremental. As the symbolic execution will attempt to
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iterate through the entire domain of the counting variable’s type, a state explosion problem

may occur. The explosion problem becomes even more apparent when nested symbolic loops

are used, i.e., symbolic loops containing symbolic loops.

The example code snippet and resulting SET illustrating this problem are shown in Fig-

ure 2.5, p. 24 and Figure 2.6, p. 25, respectively.

1: int loop( int a ) {

2: int ret = a;

3: for( int i = 0; i < a; i++ ) {

4: ret++;

5: }

6: return ret;

7: }

Figure 2.5: This method shows a simple example of a loop with symbolic conditions. The
resulting SET is shown in Figure 2.6, p. 25.

It is, therefore, necessary to limit the number of iterations of a loop to adequately test the

body of the loop, while preventing a state explosion or unnecessary execution. A symbolic

loop could iterate three times or, even, three million times during normal execution, but the

actual number of iterations is never known during symbolic execution. Limiting the number

of iterations will, therefore, either result in certain execution paths not being followed, or, for

certain execution paths that will not exist during normal execution to be followed.

2.4.5 Advantages

Symbolic execution is a very diverse, formal technique that has been proposed for many veri-

fication and testing activities such as symbolic debugging, test data generation, verification of

program correctness and program reduction [10].

Symbolic execution requires no modification to the code such as reformatting or preparation

such as annotations, in order to analyse it effectively. This makes any analysis tools, based on

symbolic execution, very easy to use. Also, since it simulates normal execution, the behavioural

information extracted from symbolic execution, closely resembles the behaviour of a program

during normal execution, thereby representing the behaviour of a program more accurately

than by means of regular static analysis.
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Figure 2.6: This is an example of a symbolic loop, represented as a SET. It is the result of the
code in Figure 2.5, p. 24 being symbolically executed. Each node represents a symbolic state
with variables and path conditions. Each edge indicates the Java statement that was executed
to transition from the one node to the other.
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2.4.6 Extending Symbolic Execution

Interprocedural Symbolic Execution

As mentioned earlier, symbolic execution is, by nature, intraprocedural, i.e., every procedure is

analysed as an individual entity with no link to any other procedure. Tomb et al. [39] researched

the notion of interprocedural symbolic execution. According to the findings of Tomb et al. the

level of interprocedural analysis has no noticeable effect on the discovery of errors, but it does

assist in more constrained PC s and, thus, more accurate representations of the constraints on

symbolic values.

Tomb et al. mention that object-oriented programs using accessor methods rarely access

instance fields directly. As a result, any value returned from a procedure call or an instance

field accessed by means of an accessor method, will result in the creation of a new symbolic

value. Tomb et al. hypothesise that setting the interprocedural analysis level to one, would

yield a significant immediate benefit, by making it possible to reason about field values. How-

ever, interprocedural symbolic execution may cause PC s to contain contradictions, thereby

indicating the existence of infeasible execution paths. This gives rise to the need for pruning

such infeasible paths from the SET.

Path Pruning

When a program is compiled, the code is not checked for contradictions in conditional branches.

It is, therefore, possible for infeasible paths to be present in the code. Symbolically executing

these paths would therefore be unnecessary, since they will never be executed during normal

execution of the program. Infeasible paths can therefore be reported, but not explored, which

reduces the resource requirements for analysing the program. During experimentation, Tomb

et al. [39] discovered that pruning infeasible paths pruned less than 10% of paths during in-

traprocedural analysis, while pruning 20% of paths during interprocedural analysis, and up to

50% of paths with larger examples [39]. Path pruning, therefore, becomes indispensable during

interprocedural analysis.

Infeasible path pruning also increases the execution time if a PC has no obvious contra-

dictions. An obvious contradiction is the situation where at least two conditions in a PC are

exact inverts of one another. These can easily be identified without using a decision procedure.
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A non-obvious contradiction requires a decision procedure to identify the contradiction, which

is an expensive computation. As an example, consider symbolic integer variable A:

obvious contradiction: PC = A < 2 & A >= 2

non-obvious contradiction: PC = A < 2 & A > 4

2.4.7 Symbolic Execution in Practice

Symbolic execution has various practical uses with respect to the role it plays in analysis and

design tools. Some examples of its application will be discussed in this section.

Tomb et al. [39] use symbolic execution for testing and test case generation. They attempt

to detect unhandled run-time exceptions in Java byte code by deciding the satisfiability of

arbitrary formulae in first order logic. These detected exceptions are then recreated by solving

the PC to reach the state where the exception might occur. The solved values are then used

to generate test cases using the Java Reflection API in an attempt to verify the validity of the

error.

Siegel et al. [37] use symbolic execution to assist in the parallelisation of sequential pro-

grams, focusing, specifically, on parallel numerical programs. According to them, the process

of “parallelising” a sequential program is notoriously difficult and error-prone. In the first

instance, the main issues are that it is infeasible to test more than a tiny fraction of possible

inputs that a numerical program will encounter during execution. Therefore, it is impractical

to attempt to show that a program behaves correctly on all possible inputs. Second, in con-

current programs, unlike in sequential programs, the order in which events occur differs with

every execution, due to a number of factors, such as the load on the processors, and the latency

of the communication network. Symbolic execution is therefore used to represent the outputs

of the program as constraints on the inputs, i.e., the PC s of the outputs. These PC s of the

parallel and sequential versions of the program are then used together with a model checker,

like SPIN, to explore the possible states of the parallel and sequential programs. If the results

produced by the parallel program agree with the results produced by the sequential program,

then the two programs must be equivalent.

Dynamic invariant inference tools like Daikon [16] observe the behaviour of program prop-

erties during the execution of a test suite. These properties are a collection of object state

invariants, method pre-conditions, or method post-conditions, which are collectively known
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as invariants. However, according to Csallner et al. [16], these dynamic invariant inference

tools are likely to generate either incorrect, or irrelevant, invariants. Therefore, they combine

symbolic execution with the process of dynamic invariant inference. The invariants are gen-

erated during the execution of a test suite and the source code is symbolically executed, as

well. The PC s generated through symbolic execution are then used, together with the invari-

ants generated through dynamic invariant inference, to determine which of the invariants are

relevant.

According to Coen-Porisini et al. [10], systems such as aircraft avionics systems, nuclear

power plant control systems, and patient monitoring systems, which are all safety-critical sys-

tems, need to be highly reliable, since failures in these systems may have catastrophic con-

sequences. However, while formal methods successfully enhance the quality of software, they

are often neglected in practice. Industrial software project verification usually relies on tech-

niques that perform code inspection or testing to find programming errors, but correctness is

seldom formally verified. Coen-Porisini et al. designed a Path Description Language (PDL)

which is used to express safety properties as predicates of execution paths. Symbolic execution

is used to construct operational models of the software on which the safety properties can be

assessed. Assessing the safety properties on the generated operational models can, therefore,

verify whether or not the specified safety property is retained in the safety-critical system.

2.5 Dynamic Analysis

The program analysis section showed that static analysers were unsound, since all errors that

were found, were reported without any validation on a running instance of a program. Dynamic

analysis follows more naturally on manual testing. Dynamic analysis is built on the concept

of, first, black-box testing, where the tester tests the entire application without any knowledge

of its implementation, and, second, static regression testing, where the developer maintains a

test suite that executes different pieces of overall functionality [13].

Where static analysers test programs through code inspection, dynamic analysers, also

known as run-time analysers, test programs by executing the programs. This is done by running

a series of tests against the program and seeing whether any errors occur during execution. The

problem with this, however, is that the time it takes to create and maintain these test suites
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can be substantial, especially for applications near the end of the development cycle.

Csallner et al. created a tool called JCrasher [13] to assist in avoiding the above-mentioned

problem. JCrasher is a random test tool for Java classes. It automatically generates a random

number of tests that are type-correct, but contain random data inputs. These tests are run

against the program and any errors that occur during execution are reported. Random testing,

which is a form of blind testing [13], investigates the capability of a program to handle un-

expected scenarios, i.e., the robustness of the program. It requires minimal user input, easily

covers shallow boundary cases, like incorrect inputs on arithmetic functions, and effectively

checks whether pre-conditions of public methods are enforced. However, since the inputs are

all random, the overall effectiveness of testing is proportional to the number of tests generated

and executed.

It is important to note that when using dynamic analysis, the static state of a program

becomes relevant. Each test that is executed against a program can affect the static state of

the program, which, in turn, could affect the outcome of other tests. Precautions need to be

put in place to preserve the static state which would, in turn, ensure the integrity of each test.

2.5.1 Focused Testing using Program Analysis

Static analysers are effective at finding coding bugs in a program, but as mentioned earlier, they

are prone to producing large amounts of false positives, as well as producing reports that may

be difficult to understand. Dynamic analysers are sound, i.e., they contain no false positives:

a program cannot crash on an error that does not exist. Their reports are also much easier

to understand, typically containing counterexamples expressed as tests that can be run. The

problem is that the tests have to be created, either manually, or by using tools like JCrasher

[13], that generate random inputs. Some tools were, therefore, designed by combining the

concepts of static analysis and dynamic analysis.

Csallner et al. took their JCrasher tool and added a static analysis component to it by

combining it with ESC/Java [19], the annotation-based static analyser discussed earlier, and

called the tool Check ‘n’ Crash [14]. In Check ’n’ Crash, a program is tested by statically

analysing it using ESC/Java. This results in a list of counterexamples, detailing all code

fragments it considers to be possible errors. These counterexamples are then used by JCrasher

to generate tests that will cause the expected error to occur. These tests are run against the
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program and all tests that have caused an error are, subsequently, reported, while all tests that

ran without causing an error, are discarded. This approach improves on JCrasher, by focusing

its test generation through counterexamples, while improving the soundness of ESC/Java by

confirming whether a counterexample is an error, before reporting it.

The problem with using ESC/Java, is that, in order to use it to its full potential, it still

requires annotations to be added to the code. To solve this problem, Csallner et al. added

another tool to Check ‘n’ Crash, called Daikon [18], and called the resulting tool DSD-Crasher

[15]. DSD-Crasher uses Daikon to monitor a program during execution and generalise the

observed behaviour of the variables to invariants. These invariants are then used to annotate

the code, where Check ‘n’ Crash can begin its testing. However, to monitor the program and

derive the invariants, Daikon needs tests to run through the entire functional domain of the

program.

Here, it becomes evident that by combining dynamic analysis with static analysis, one could

benefit from the automated nature of static analysers, while benefiting from the soundness of

dynamic analysers. However, an important question to be asked is: At which point is it safe to

say that a program has been sufficiently tested? In the following sections, the concept of test

adequacy will be explored.

2.6 Introduction to Test Adequacy and Coverage

In the previous section, various testing techniques were discussed that covered testing for the

purposes of error detection, as well as, proving the absence of possible errors. These testing

techniques do not consider the history of the program. Every testing cycle is regarded as a

separate entity. However, testers are often required to run regression tests. Regression testing

is a form of testing where the program under development is tested, during development, to

ensure that all areas that operate correctly, continue to do so, as new features are added. Testers

are assisted by regression testing in detecting the presence of bugs sooner and locating the bug

faster, since they know what has changed during the period between the previous regression

cycle and the current one. Testers, generally, create test cases to automate regression testing.

A test case is defined as an input with which the program being tested is executed during

testing. These test cases can be grouped together to form a test suite, or test set [47]. Test sets
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are created to satisfy a test adequacy criterion, often also called a test data adequacy criterion.

A test adequacy criterion specifies a testing requirement that, when satisfied, implies that the

tested program is without errors.

Zhu et al. present a formal definition of test adequacy criteria and classify them [47]. An

explanation of these definitions and classifications is given in the next section, followed by a

section on code coverage.

2.7 Test Adequacy Criteria

2.7.1 Introduction

Test adequacy criteria have two notions associated with them. First, an adequacy criterion is

considered to be a stopping rule for itself, determining when the program has been sufficiently

tested so that the checking of the criterion may be halted. An adequacy criterion can be

formalised as a function C that takes a program p, a specification s, and a test set t and gives

a truth value true or false. Formally, let P be a set of programs, S be a set of specifications,

D be a set of inputs of the programs in P , T be a set of test sets, such that T = 2D, where 2X

denotes the set of subsets of X [47].

Definition 2.7.1.1 (Test Data Adequacy Criteria as Stopping Rules: [47]) A test data

adequacy criterion C is a function

C : P × S × T → {true, false}.

C(p, s, t) = true means that t is adequate for testing program p against specification s according

to the criterion C, otherwise t is inadequate.

Second, test data adequacy criteria provide measurements of test quality when a degree of

adequacy is associated with each test set, so that it is not simply classified as either sufficient

or insufficient. For example, the percentage of code coverage is often used as an adequacy

measurement. Thus, with an adequacy criterion C, formally defined as a function C from a

program p with a specification s and a test set t, the degree of adequacy r can be defined as

r = C(p, s, t) [47].
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Definition 2.7.1.2 (Test Data Adequacy Criteria as Measurements: [47]) A test data

adequacy criterion is a function C,

C : P × S × T → [0, 1].

C(p, s, t) = 1 means that the adequacy of testing the program p with the test set t with respect

to the specification s is of degree r according to the criterion C. The greater the real number

r, the more adequate the testing.

These two notions of test data adequacy criteria are closely related to one another. If an

adequacy criterion states that every statement in a program must be executed at least once,

then the criterion C(p, s, t) will only be true if every statement is executed. However, if a test

set is considered adequate if only 80% of the statements are executed, then, with adequacy

measurement M , and degree of adequacy r, the stopping rule Mr would be so that a test set

is adequate if, and only if, the adequacy degree is greater than, or equal to, r, with r at 80%.

Mr(p, s, t) = true ⇔ M(p, s, t) ≥ r

An adequacy criterion is an essential part of any testing method. It plays two fundamental

roles. In the first instance, it specifies a particular software testing requirement, and, hence,

determines test cases to satisfy the requirement. Second, it determines the observations that

should be made during testing. For example, a criterion which specifies that each statement

should be executed, will require that each statement executed be observed, while a criterion in

which each execution path should be followed, will have no use for the observation of statements

executed, but will require that all executed paths be observed and recorded.

2.7.2 Categories of Test Data Adequacy Criteria

Zhu et al. [47], identified three categories for the classification of adequacy criteria: Clas-

sification by source of information, classification by prospective usage of the software, and

classification by the underlying testing approach.

Classification by source of information

The most common classification is by the source of the information used to specify testing

requirements. The adequacy criterion is, therefore,
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• specification-based, which specifies the required testing in terms of the features defined

in the functional specifications or requirements of the program, e.g., the spellchecking

feature of a word processor. A test set is adequate if all the defined features have been

thoroughly tested;

• program-based, which specifies testing requirements in terms of the function of the pro-

gram under test, e.g., a source code compiler that needs to interpret all allowable syntax of

the programming language and convert it to an executable format. A test set is adequate

if the function of the program has been thoroughly tested; and

• combined specification-based and program-based criteria, which use the ideas of both

specification-based and program-based criteria.

It is important to remember that with specification-based, program-based, and the combined

criteria, the correctness of program outputs must be checked against the specification or re-

quirement.

Classification by prospective usage of the software

Some adequacy criteria may be more concerned with whether the test cases cover the data

that are most likely to be frequently used as input during the operation of the software. These

criteria are called

• interface-based criteria, which specify testing requirements only in terms of the type and

range of software input, without reference to any internal features of the specification or

the program.

Classification by the underlying testing approach

There are three basic approaches to software testing:

• structural testing, which specifies testing requirements in terms of the coverage of a par-

ticular set of elements in the structure of the program or specification;

• fault-based testing, which focuses on finding bugs in the software. An adequacy criterion

of this approach is some measurement of the fault detecting ability of the test set;
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• error-based testing, which requires test cases to check the program for certain error-

prone points, according to our knowledge about how programs typically depart from

their specification.

2.7.3 Focus of this Thesis

As the title of this thesis suggests, the focus of this study lies in the calculation of code

coverage, which, according to the above-listed classifications of test adequacy criteria, falls

under structural testing.

2.8 Code Coverage

Code coverage consists of adequacy criteria specifying that certain elements of a program be

covered. To cover an element of a program means to execute or analyse that element during

testing.

Our discussion of coverage is divided into two subsections: specification-based and program-

based coverage [47].

2.8.1 Specification-based Coverage

Specification-based coverage, often referred to as functional coverage [36, 21, 40], has two

possible roles in testing. The first role is to provide information for test case selection when

building test sets, to maximise the test adequacy of the set [47]. Its second function is to

analyse the adequacy of the test suite when testing the functionality of the program against its

specification, similar to black-box testing. This is useful when the program has to conform to

some universal specification standard [36] like network protocols, or when verifying a hardware

design [20, 2]. However, because specification-based coverage is specification dependent, finding

an existing coverage tool to measure specification-based coverage of a program is difficult, since

most tools have the coverage models hard-coded into them [21]. To analyse specification-based

coverage, developers have to either try and modify existing tools to support their specification,

or create a new coverage tool to test their program specification. To improve on this, tools

such as Comet [21] were developed to separate the coverage model definitions from the tool.

This allows developers to define their own coverage models [20], without having to build an
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entire new tool from scratch.

Since the formal method used in this thesis is symbolic execution, which is specification

independent, specification-based coverage is not used for the purposes of this thesis. The focus

of this study is, therefore, program-based coverage.

2.8.2 Program-based Coverage

Program-based coverage is split into two groups of criteria: data-flow criteria and control-flow

criteria [47].

Data-flow criteria

Data-flow criteria, as the name suggests, focus on the coverage of data-flow testing in a program.

Data-flow testing investigates the usage of data values in a program and how these values affect

the execution of the program. The checking of this criteria is similar to model checkers, where

model checking analyses program states that represent data values at specific points during

program execution. However, data-flow criteria falls outside the scope of this thesis, and

interested readers are referred to [47].

Control-flow criteria

Control-flow criteria focus on the coverage of the control-flow graph of a program. The control-

flow graph is a graphic interpretation of the execution of a program, where the nodes represent

code blocks, branches occur at conditional statements, and the edges represent the conditions

required to hold for that path to be followed.

Every execution of a program corresponds to a path in the control-flow graph, known as

the execution path, from the begin node to the end node. The begin node represents the entry

point of the program, and the end node represents the point of program termination.

The most common control-flow coverage criteria will be discussed in the following para-

graphs.

Statement Coverage Criterion A very basic testing requirement is that every statement

in the code has to be executed at least once. This testing requirement is known as the statement

coverage criterion.
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Definition 2.8.2.1 (Statement Coverage Criterion: [47]) A set P of execution paths sat-

isfies the statement coverage criterion if and only if for all nodes n in the flow graph, there is

at least one path p in P such that node n is on the path p.

Even with adequate tests, it is possible to not achieve full statement coverage. This is due

to the possibility of infeasible statements, also referred to as dead code. Dead code is code

that cannot be executed during program execution, because conditions required for the code

to execute containing contradictions, e.g., as in the code snippet displayed in Figure 2.7, p. 36.

1: int conditionalIncrement( int x ) {

2: if( x < 2 && x > 3 ) {

3: x++;

4: }

5: return x;

6: }

Figure 2.7: This method is a simple example to illustrate infeasible statements. The parameter
received is incremented only when the value is less than 2 and more than 3. These conditions
are contradicting, and, therefore, line 3 will never be executed. Line 3 is, therefore, dead code.

It is also important to note that there is a difference between statement coverage and

line coverage. A single source code line can contain more than one statement, e.g., a multi-

conditional if statement, or more complex Java statements. See Figure 2.8, p. 36 for an

example the difference between line coverage, and statement coverage [17].

1: int x; 1: int x = var > 0 ? -1 : 1;

2: if( var > 0 ) {

3: x = -1;

4: } else {

5: x = 1;

6: }

Figure 2.8: This shows the difference between statement coverage and line coverage. The left
side contains an example of a simple conditional assignment. The right side contains the same
conditional assignment compressed into a single line of code. Full line coverage on the right
does not imply full line coverage on the left, while full statement coverage on either side implies
full statement coverage on both sides.

Statement coverage is a weak coverage criterion since some control-flow transfers may be

missed. This becomes apparent with control statements such as for loops, while loops, goto

Stellenbosch University   http://scholar.sun.ac.za



CHAPTER 2. THEORETICAL BACKGROUND 37

statements, and similar examples, since any jump back to previously executed statements is

irrelevant in statement coverage.

Branch Coverage Criterion Where statement coverage requires statements to be checked,

branch coverage requires the checking of control transfers.

Definition 2.8.2.2 (Branch Coverage Criterion: [47]) A set P of execution paths satis-

fies the branch coverage criterion if, and only if, for all edges e in the flow graph, there is at

least one path p in P such that p contains the edge e.

Branch coverage is stronger than statement coverage, since full branch coverage also implies

full statement coverage. Therefore, a test set that satisfies the branch coverage criterion also

satisfies the statement coverage criterion. This relationship between adequacy criteria is called

the subsumes relation [47].

Having full branch coverage, however, does not necessarily mean that all possible execution

paths have been explored.

Path Coverage Criterion The path coverage criterion is the testing requirement that all

combinations of control transfers are checked.

Definition 2.8.2.3 (Path Coverage Criterion: [47]) A set P of execution paths satisfies

the path coverage criterion if, and only if, P contains all execution paths from the begin node

to the end node in the flow graph.

Path coverage is stronger than branch coverage, because the requirement is that all pos-

sible execution paths be explored. Path coverage subsumes branch coverage, and, therefore,

statement coverage as well. However, this criterion is too strong to be practically useful for

most programs, due to the possibility of an infinite number of different paths in a program

with loops [47]. This is the same issue encountered when using symbolic execution to analyse

a program with symbolic loops, as discussed under symbolic execution.

Multiple Condition Coverage The previously discussed coverage criteria are all based

on the control-flow graph, and do not take the actual program text into account. Condition

coverage, on the other hand, focuses on the conditions of control transfers in the program.
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A test set that satisfies the condition coverage criterion contains test cases such that every

condition in the program is evaluated to true, and evaluated to false at least once. This

criterion is then extended to the multiple condition coverage criterion to allow for multiple

conditions available in most high-level programming languages.

Definition 2.8.2.4 (Multiple Condition Coverage Criterion: [47]) A test set T is said

to be adequate according to the multiple-condition-coverage criterion if, for every condition C,

which consists of atomic predicates (p1, p2, ..., pn), and all possible combinations (b1, b2, ..., bn)

of their truth values, there is at least one test case in T such that the value of pi equals bi,

i = 1, 2, ..., n.

Issues with Control-flow adequacy criteria

The issue of unreachable statements, or dead code, was mentioned on the previous page. This

issue occurs in all the discussed coverage criteria that measure adequacy from the control-flow

graph, i.e., statement coverage, branch coverage, and path coverage. This is because it is

impossible to recognise the existence of dead code from the graph, since it models execution

behaviour, not program text. Unreachable statements will not be modelled in the control-flow

graph, because they are not part of the execution behaviour of the program. Since condition

coverage is measured from the program text, it is possible to identify dead code. Later in

this study it will become evident how symbolic execution is used to improve on this issue by

assisting in the identification of dead code.

Another issue mentioned was that of loops, where, potentially, an infinite number of possible

paths may exist in a program with loops. Similar to the issue with symbolic loops in symbolic

execution, it is potentially impossible to obtain full path coverage due to the infinite number

of test cases that will be required to evaluate the infinite paths. Much research has gone into

finding ways to find suitable subsets of execution paths. Some of the examples include: selecting

paths that contain no redundant information, selecting paths of length less than or equal to

n (called the length-n path coverage criterion), and using loop counting (known as the loop

count-K criterion. Loop counting involves limiting the number of iterations a loop can follow

to a natural number K. The solution for handling symbolic loops during symbolic execution is

also a form of the loop count-K criterion.
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Further Reading

The above discussions on test adequacy and coverage is limited to the scope of this thesis.

Interested readers are referred to Zhu et al. [47], as well as Kaner [30], who compiled a list of

as many as 110 different types of coverage criteria.

2.8.3 Measuring Coverage

There are various approaches to measure the criteria. Atlassian, the creators of Clover [9, 46],

identified three approaches to measure code coverage of Java programs:

1. Source code instrumentation is an approach where instrumentation statements, such as

annotations or method calls to the coverage calculation tool, are added to the source

code. The code is then compiled to produce an instrumented assembly.

2. Intermediate code instrumentation is an approach where the compiled class files are in-

strumented by adding new byte code, and a new instrumented class is generated.

3. Run-time information collection is an approach that collects information from the run-

time environment, as the code executes, to determine coverage information.

As the program under test is executed, coverage is measured according to one, or a combination,

of these measuring approaches.

2.8.4 Coverage Tools

There are a number of coverage tools available that are designed to measure one or more of the

coverage criteria. Among these tools are Clover [9, 46], JCover [26, 46], and EMMA [17, 46].

Clover uses source code instrumentation to instrument Java source code. This is done by

integrating Clover into the compilation process to add the instrumentation data to the code

before it is compiled. After compilation, the user needs to run the test suite manually to allow

for coverage to be measured. Clover measures the coverage by using the statement coverage

criterion (Definition 2.8.2.1, p. 36), and the branch coverage criterion (Definition 2.8.2.2, p. 37).

It also measures method coverage, which involves checking whether all methods in the source

code are executed during testing.
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JCover can use either source code instrumentation, or intermediate code instrumentation,

depending on whether it is using source code, or compiled class files. Coverage is then measured

similarly to Clover, requiring a build and execution of the test suite. JCover also has a coverage

API which allows developers to control JCover, during run-time, through annotations in the

code. It focuses mainly on statement coverage, and branch coverage, while also supporting

method coverage, class coverage, file coverage, and package coverage. Class coverage involves

checking whether every class in the program has been executed, while file coverage checks all

non-Java resources such as properties files, XML, and others. Package coverage checks whether

all defined packages, i.e., all namespaces within a Java project, are executed during testing.

EMMA uses intermediate code instrumentation, instrumenting the byte code by either com-

piling the class files with EMMA, or by using the custom class loader of EMMA to instrument

the class files on-the-fly. Its main focus is basic block coverage, extending it to line coverage,

method coverage, and class coverage. Basic block coverage is the coverage measurement of

basic code blocks, these being blocks of code without any control statements. Thus, if the

first statement in a code block is executed, the last statement in the block will be executed,

regardless of variable values, conditional statements, and other elements in the program.

2.9 Conclusion

This chapter covered some of the theory and concepts behind testing and test adequacy. Some

of the focus points of this thesis were also identified. At this point, the reader should have

a basic understanding of the theory behind program analysis and testing, the formal method

known as symbolic execution, and the concept of test adequacy and some of the coverage

criteria that are available.

In the next chapter, the way in which symbolic execution is used to assist in testing and

coverage calculation, as well as how this implementation was integrated into an Eclipse plug-in,

will be discussed.

Stellenbosch University   http://scholar.sun.ac.za



Chapter 3

Design and Implementation

3.1 Overview

The previous chapter discussed the theory behind the concepts and techniques that are used

in this thesis. This chapter will now discuss how these techniques were applied and combined

into an Eclipse plug-in named ATCO.

ATCO

ATCO is an acronym compiled from Automated Test Coverage Calculation and GeneratiOn.

The purpose of ATCO is to study the practical applicability of using symbolic execution to

calculate test case coverage, and then use the results from the coverage analysis to automatically

generate tests for areas that are not covered. The tool executes in three separate phases, where

each phase uses the results from the previous phase. The first phase is the information gathering

phase, which runs symbolic execution on the classes under test, and builds the data structures

needed in later phases. The second phase is the information analysis phase, where the data

structures are analysed while existing JUnit test cases are executed to calculate test coverage.

The coverage statistics are then added to the data structures in preparation for the last phase.

The last phase, the result analysis phase, analyses the coverage statistics and then automatically

generates test cases to cover the areas that are not yet covered by the existing test suite.

Some of the phases contain expensive computations, which will increase execution time as

the complexity and scale of the program under analysis grows. Therefore, Java’s Concurrency

Utilities [41] are utilised to allow these expensive computations to be executed concurrently.

41
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Later sections will discuss how this is achieved.

ATCO is built on top of another analysis tool, called Artemis.

Artemis

Artemis, currently being implemented for academic purposes at Stellenbosch University, is an

analysis tool that is designed to detect unhandled run-time exceptions from Java byte code.

It operates by symbolically executing a program, trying to detect possible unhandled run-

time exceptions. When a possible error is located, it runs constraint solving on the symbolic

state’s path condition to generate method inputs to reach the potentially erroneous state, and

generates a JUnit test with these inputs. The test is executed to determine whether it is a

real error or a spurious warning. All real errors are reported, while all spurious warnings are

ignored. After a possible error is handled by Artemis, analysis continues.

Artemis contains two components of interest for this thesis:

• Its symbolic execution engine, used in ATCO ’s information gathering phase. The engine

is slightly modified, as will be discussed later.

• Its test case generation engine, used in ATCO ’s result analysis phase.

Outline

This chapter discusses the three phases of ATCO ’s execution, as well as an overview of how it

was integrated into the Eclipse workspace as a plug-in.

3.2 Information Gathering Phase

The first phase in ATCO ’s execution involves analysing all the classes under analysis and

constructing the data structure that will be used in subsequent phases. The analysis of the

classes is achieved by using Artemis’ symbolic execution engine to symbolically execute each

class and then storing the symbolic states in a data structure.

3.2.1 Artemis’ Symbolic Execution Engine

The symbolic execution engine is built on top of Soot, a Java byte code optimisation framework

[42].
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Soot is used to convert the Java byte code to Jimple, a typed 3-address intermediate

representation, that is suitable for optimisation [42]. Soot converts classes, one method at

a time, using transforms. Each method is parsed and a SootMethod class of the method is

generated. This class is then passed to the applicable transform to convert the given method

into the required representation.

Soot allows for custom transforms to be added to its conversion process. This allows users

to either extend the Soot analysis process, or build new analyses on top of Soot. Artemis

builds a new analysis process on top of Soot by creating a SymbolicTransformer class, which

is plugged into Soot during its initialisation, and used during its execution.

When Soot calls the SymbolicTransformer class, the SootMethod received from Soot is al-

ready in Jimple form. This transformed method is then sent to Artemis for symbolic execution.

Artemis initialises a single symbolic state and sets up the symbolic execution environment. It

then sequentially runs through the method, one instruction at a time, and applies the action

of the instruction to the symbolic state. The symbolic state, therefore, maintains an accurate

symbolic representation of the program state after each instruction’s execution.

When a symbolic branch is reached, the symbolic state at that point is cloned and pushed

onto a stack, thereby preserving the state at that branch. This symbolic state, stored on the

stack, represents the symbolic branch before any of its paths are executed. The true path of

the branch is executed until its last statement. Thereafter, the symbolic state at the top of

the stack is removed. The false path of that symbolic branch is then executed until its last

statement. The symbolic state at the top of the stack is again removed, and its false path

is executed, and so on. It can be seen that symbolic branches are handled as a depth-first

traversal through a Binary Tree.

Since symbolic execution creates execution paths for both the true path and false path of

a branch, it is possible for the path conditions of some of these paths to contain contradictions.

Contradictions in the path conditions of symbolic states mean that those symbolic states are

unreachable. To prevent symbolic execution to be performed on these paths that contain

contradictions, Artemis performs path pruning whenever it reaches a branching statement. If

a path contains contradicting path conditions, that path is stopped, i.e. no longer symbolically

executed.

As discussed in Section 2.4.4, p. 22, a symbolic loop is a special case in symbolic execution.

Stellenbosch University   http://scholar.sun.ac.za



CHAPTER 3. DESIGN AND IMPLEMENTATION 44

During symbolic execution, both the true and false paths of all if statements need to be

followed. This will result in an infinite loop when a loop has symbolic constraints. Artemis

handles this issue by maintaining a loop counter to limit the number of times a symbolic loop

may be executed. Therefore, the branching statement representing the loop will have its true

and false paths followed N times, with N being the value of the loop counter.

Interprocedural analysis

Artemis analyses each method interprocedurally, confined to a maximum call depth (CDM ).

Whenever a method call is encountered in a method, the current call depth (CDC) is examined.

If

CDC < CDM , invoke method, CDC = CDC + 1

CDC >= CDM , ignore method

Whenever a symbolic value of the current method is sent to, and modified in, an invoked

method, or is assigned a value returned from the invoked method, these changes would not be

reflected on that symbolic value during intraprocedural analysis. By taking into account the

effect invoked methods have on symbolic values, additional constraints might be added on these

symbolic values. The more constraints added on a symbolic value, the narrower the domain of

possible values it may have, becomes. The narrower the domain of a symbolic value, the easier

it becomes to identify infeasible paths. Figure 3.1, p. 45 illustrates this.

Modification

To use the symbolic states for coverage analysis, it is required to be aware of the symbolic

states at symbolic branches. When a symbolic branch is encountered, two options are available;

either run the relevant test cases testing that method, or build a data structure of all symbolic

branches, and then run the test cases. If the tests are run whenever a branch is encountered,

each test will have to be executed exponentially many times, as a method may have multiple

paths, and each path may have multiple branches. Storing the symbolic states in a data

structure will require that each test case is only executed once.

It was mentioned earlier that Artemis maintains a single symbolic state throughout the

symbolic execution of the method. When a symbolic branch is reached, the symbolic state is

cloned. However, the cloned copy of the symbolic state made at a branch is only used as a
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1: public void method1( int x ) {

2: x = method2();

3: if( x > 1 ) {

4: x = 5;

5: } else if( x < 0 ) {

6: x = 6;

7: } else {

8: x = 7;

9: }

10: }

11:

12: public int method2() {

13: return 1;

14: }

Figure 3.1: Interprocedural infeasible path identification is illustrated in the above code
snippet. If method 1 were to be symbolically executed intraprocedurally, the invocation of
method 2 would be ignored, and all three paths through method 1 would be considered possible.
With interprocedural analysis, method 2 would be invoked, and it would be discovered that
only the path at line 8 would be executable. The other two paths (line 4 and line 6) would be
identified as unreachable. Line 4 and line 6 are, therefore, both infeasible paths.

snapshot of the symbolic state at that point. To use symbolic states in ATCO, the symbolic

state for each statement in the program needs to be stored separately. Knowing the relationship

between the different symbolic states is also important, i.e., knowing which symbolic states form

which execution paths.

A symbolic execution tree (SET ), as discussed in Section 2.4.3, p. 21, is used to store the

symbolic states of a method. All SET s constructed during symbolic execution is grouped by

class, allowing ATCO to access each SET of each class during coverage calculation.

3.2.2 Symbolic Execution Tree

Structure

The SET is a Binary Tree, as each branching node may have, at most, two children, i.e.,

a true path and a false path leading from it. Each node in the SET contains the entire

symbolic state at that point in the method. The structure of the SET represents the flow of

execution through the method, a root node for the first statement of the method, a branch in

the tree for every corresponding branching statement in the method, and a leaf node for the
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last statement of every possible path in the method. The unique paths between the root and

leaf nodes indicate all the possible execution paths through the method, except when symbolic

loops are present.

When a method contains a symbolic loop, the unique paths between the root and leaf nodes

do not necessarily represent all possible execution paths through the method. This is because

loop iterations are limited during symbolic execution. In such a situation, the SET would only

contain a subset of the execution paths. The size of the subset depends on the limit set on loop

iterations.

Special constructs

Most of the control-flow statements in Java are represented as if statements in byte code, after

compilation. So a SET representation of a method may easily be derived. However, the switch

statement in Java is handled differently. The switch is represented as a special tableswitch

or lookupswitch construct, to allow the JVM to handle the switch statement more efficiently.

This results in a single statement that may now have more than two paths extending from it.

To enable ATCO to handle this special construct, an additional transformation is required to

represent this construct in the SET, as each node in the SET may have, at most, two children.

This additional transformation involves inserting blank nodes into the SET, which may serve

as branching points for the different branching cases of the switch statement. Figure 3.2, p. 46,

illustrates this solution with an example.

1: int checkValue(int x) {

2: int a = 0;

3: switch(x) {

4: case 1: a++; break;

5: case 2: a--; break;

6: case 3: a = x; break;

7: default: a = 0; break;

8: }

9: return a;

10: }

Figure 3.2: This figure displays a simple code example of a Java switch statement. The
variable a is modified in a certain manner, depending on the value of x received as input pa-
rameter. Figure 3.3, p. 47 displays the resulting SET, constructed from symbolically executing
this method.
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Figure 3.3: This is a SET of the switch statement in the code example, displayed in Fig-
ure 3.2, p. 46. The nodes contain the line number to be executed, and the edges contain the
statement that was executed. The dotted nodes indicate the blank symbolic states, inserted
into the SET, which serve as the branching points for the different cases.
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Interprocedural analysis introduces a similar scenario to that of the switch statement. If

a method, invoked during interprocedural analysis, contains symbolic branches, and returns

a value to the method from which it was invoked, that invocation statement may have two,

or more, paths extending from it. To maintain an accurate representation of the method

under analysis, the SET needs to reflect these paths. This scenario is handled similarly to the

solution for handling the switch statement. Blank nodes are inserted into the SET to serve

as the branching points for the various paths that may be followed in the method that was

invoked. Figure 3.4, p. 48, illustrates this solution, with regards to interprocedural analysis,

with an example.

1: void printValue(int x) {

2: int y = checkValue(x);

3: System.out.println(y);

4: }

Figure 3.4: This figure displays a simple code example, used to illustrate the branching that
may occur during interprocedural analysis. With the checkValue method example, displayed
in Figure 3.2, p. 46, this example contains a method that invokes checkValue and prints the
resulting value. The resulting SET is displayed in Figure 3.5, p. 49.

Why use a SET?

Because of the nature of symbolic execution, it becomes difficult to effectively and accurately

group statements into repeating code blocks. The best example for illustration is symbolic

loops. The same code block gets executed with each iteration of the loop. However, with sym-

bolic execution, the path condition, and, in fact, the symbolic state of the program, is different

for each iteration. Simply grouping statements into code blocks would therefore not yield an

accurate representation of the symbolic states achievable by that block. By storing these sym-

bolic states separately, the SET structure simplifies the process of storing and differentiating

between these types of code blocks. To indicate this, recall the symbolic loop example displayed

in Figure 2.6, p. 25. With a loop counter of three, i.e., the loop will be iterated three times,

Figure 3.6, p. 50, displays the resulting SET if the statements were grouped into repeating code

blocks. The size of the SET is smaller than before, but all the data regarding every iteration

of the loop is lost, apart from the last iteration.

During symbolic execution, constraint solving may be used to prune infeasible paths, also
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Figure 3.5: An example SET to illustrate the branching that may occur during interproce-
dural analysis, with the code example displayed in Figure 3.4, p. 48. The checkValue method
returns one of four values, namely 1, −1, 3, or 0, depending on the value of x received. The
nodes contain the line number to be executed, and the edges contain the statement that was
executed. The dotted nodes indicate the blank symbolic states, inserted into the SET, which
serve as the branching points for the different values that are returned by checkValue.
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Figure 3.6: This SET is the result of the code in Figure 2.5, p. 24, being symbolically executed,
and stored in a SET when statements are grouped into repeating code blocks. All the data
regarding every iteration of the loop is lost, apart from the last iteration. The edges contain
the statement that was executed.

called dead code or unreachable statements, from the analysis. Artemis uses a constraint solver,

called Choco [38], to solve path conditions for testing and path pruning. Constraint solving

involves determining whether there is a solution to a given set of constraints on variables,

as represented in a constraint model. Thus, infeasible paths may be identified by creating

a constraint model from the path condition of the symbolic state and attempting to solve

the model with Choco. When a path condition contains a contradiction on the constraints of

a symbolic value, that set of constraints, or rather the path condition, is unsatisfiable. An

unsatisfiable path condition indicates that its symbolic state cannot be reached, i.e., it is a

dead state. Therefore, the code represented by that symbolic state is dead code. Constraint

solving is used similarly during coverage analysis in ATCO. Constraint solving is an expensive
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computation, so minimising the number of times constraint solving is run may greatly reduce

the time required to perform coverage analysis. Storing the states in a SET minimises the

amount of constraint solving required to calculate coverage by limiting the computation to

only the first non-branching nodes after a branching node, as will be discussed in Section 3.3.

Types of coverage derivable from the SET

Section 3.3.3, p. 55, will discuss how ATCO measures branch coverage (as defined in Definition

2.8.2.2, p. 37), multi-conditional coverage (as defined in Definition 2.8.2.4, p. 38), and statement

coverage (as defined in Definition 2.8.2.1, p. 36). However, there are a multitude of other

coverage criteria that may be derived using the SET after branch coverage, multi-conditional

coverage, and statement coverage have been calculated, and indicated, on the SET. A list, taken

from [30], is displayed below. This list contains, but is not limited to, a number of coverage

criteria that are not directly implemented within ATCO, but are inadvertently measured in,

or can be derived from, the SET, together with the symbolic states within.

Line coverage: ATCO already uses line numbers in the statement coverage calculation pro-

cess. Line coverage can, therefore, easily be derived from statement coverage.

Path coverage: Each SET represents the execution paths that may be followed within the

method it represents. When no symbolic loops exist, the SET contains all execution

paths in the method. Therefore, with full branch coverage in a method, path coverage

for that method is subsumed by the branch coverage. However, when symbolic loops are

present, a loop counter is used. This limits the execution paths to the subset of paths

that have been symbolically executed before the counter limit was reached. Path coverage

on the method containing symbolic loops may, therefore, only be derived to the subset

of paths symbolically executed. Full path coverage, i.e., path coverage over the entire

program’s execution, however, cannot be derived with ATCO ’s current implementation

of the SET. Containing all execution paths in each method is not sufficient to derive full

path coverage. Every sequence in which each execution path in each method is executed

needs to be considered to measure full path coverage. Although it should, theoretically,

be possible to collect sufficient data to measure full path coverage, the number of possible

paths is still too large to make this criterion practical.
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Loop coverage: With the use of loop counting, set to n, each symbolic loop will be symboli-

cally executed n times. Loop coverage can therefore be measured by setting n > 1. ATCO

is able to measure loop coverage by counting the iterations of a loop during test execution.

Due to the design of ATCO, measuring loop coverage is not performed when redundancy

detection is disabled. This is because no further attempts are made to determine whether

a loop is hit, if it has already been hit at least once.

Assertion coverage: In the byte code, an assert statement is compiled to a branching state-

ment. To calculate assertion coverage, all assert branches need to be identified. Knowing

this, it is possible to calculate the number of assert branches that are covered. How-

ever, to identify whether a branch is an assert branch, the original Java source code

statements are required. ATCO contains sufficient data in the SET to calculate this cov-

erage criterion, however, due to third-party library constraints, the actual Java source

code statements are unavailable. Thus, measuring this coverage criterion is currently not

possible.

Method and Class coverage: The SET s represent methods which are grouped together and

categorised according to class. Method coverage can, therefore, easily be determined by

examining the coverage statistics of that method’s SET. If any node in the SET was hit

during testing, the method has been hit at least once. Class coverage requires that at

least one SET for that class was hit during testing.

Component, tool, subsystem, and other Kaner [30] mentions that measuring this cover-

age criterion is difficult, because programs often rely on off-the-shelf components to which

the source code is not always available. However, because coverage is measured from byte

code and not source code, it is possible to extend ATCO to measure coverage over all

components, open source or closed source. This is because all libraries are, at least, in

byte code format to allow them to be used.

Because of the structure and information stored within the SET, it is possible to extend

the coverage calculation within ATCO to measure most control-flow coverage criteria. The

symbolic states within the SET contain all the information required to measure many data-

flow coverage criteria as well, such as the variable definition-and-use criteria discussed in [47].

However, this does not fall within the scope of this thesis, and was, therefore, not investigated.
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3.3 Information Analysis Phase

After the information gathering phase, ATCO has access to the SET s of each method in each

class being analysed. This information may be used to calculate the coverage of the existing

JUnit test suite over these classes.

Section 2.8.3, p. 39, mentioned three approaches to measuring coverage. The chosen ap-

proach for this thesis is the run-time information collection approach. This is done with the

use of execution tracing. An execution tracer is attached to the test environment wherein a

JUnit test will be run. As mentioned earlier, this phase is executed concurrently, which requires

special consideration to be taken during the calculation process.

3.3.1 Execution Tracing

Execution tracing is achieved by utilising the Java Platform Debugger Architecture (JPDA)

[4]. The JPDA is a debugging architecture used for debugger development, providing the ser-

vices the Java Virtual Machine (JVM ) must provide for tools attempting to perform profiling,

debugging, monitoring, thread analysis, coverage analysis, and so on. The highest level layer

of JPDA is the Java Debug Interface (JDI ). The JDI provides explicit control over the JVM,

allows for inspection of the JVM ’s state at any point, event notification such as exceptions

being thrown, class loading, method calling, and more, as well as providing the use of break-

points, watchpoints, and so on. The events are among the services provided by the JDI that

was used to perform execution tracing.

Events are triggered at the occurrence of specific operations in the attached JVM. Three

events of particular interest for this coverage implementation are: the ClassPrepareEvent, the

MethodEntryEvent, and the BreakpointEvent.

Whenever a class is loaded in the JVM, the ClassPrepareEvent is triggered before the class

is executed. This event is triggered for all classes being loaded, from the core Java classes,

to custom libraries, to the class under analysis. This presents many avenues of operation for

tools using the JDI. However, for this coverage analysis implementation, only the class under

analysis is inspected. When this event occurs for the class under analysis, the class’s SET is

traversed to determine at which lines the breakpoints should be added.

Breakpoints are triggers that may be attached to locations in the source code that, when
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reached, will cause a BreakpointEvent before executing the code at that location. Breakpoints

will be used to indicate the presence of branches in the execution of methods.

A MethodEntryEvent is triggered when a method is to be invoked. This event allows an

analysis tool to investigate the data used in the method’s invocation. The method parame-

ters are among the data accessible within this event, which is important to ATCO ’s coverage

calculation process.

Why use Execution Tracing?

Execution tracing is not the only method that may be used to evaluate which states are

hit during test runs. Another method of calculating coverage is to parse the JUnit tests to

locate all method calls to the method under test, and run constraint solving over the input

parameters and the states in the SET. However, tests may potentially have complex setup

methods and require external libraries. Parsing the test and storing all the necessary data to

ensure the conditions of the test are an exact representation of its actual execution may be

difficult. This may require an expert knowledge of the JUnit test framework. Also, constraint

solving would have to be performed across all possible branches in the SET, to determine which

path is followed. This could greatly reduce performance as constraint solving is an expensive

computation and a method may theoretically contain infinitely many symbolic branches.

With execution tracing, the JUnit tests are executed, resulting in all the environmental

data required for coverage calculation to be available via the JDI without any additional

computations or knowledge of the JUnit test framework. The environmental data, such as

method invocation parameters, or which branch is currently being executed, may be used to

greatly reduce any unnecessary constraint solving, as will be seen in later sections.

Execution tracing also automatically extends the coverage calculation to be interprocedural.

A JUnit test will typically not directly call all methods in the class it is testing. It will, typically,

invoke a certain piece of functionality through a number of method calls. This will, in turn,

perform its purpose through other method calls, often private or protected methods, which

cannot be invoked directly from the JUnit test. Execution tracing will automatically handle

these methods the same as methods invoked directly from the test, which allows for coverage

to be calculated on non-public methods, without any additional processing.
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3.3.2 Test Environment

The test environment is a JVM, created through the JDI, in which the JUnit test will be

executed. When executing multiple tests, it is important to maintain the integrity of each test.

One test run may affect subsequent test runs, thereby compromising the integrity of all tests

executed within the same environment. Each test is, therefore, executed within its own test

environment. This ensures that the integrity of the test is maintained, while also providing an

easily identifiable unit of work to be executed concurrently.

3.3.3 Calculating Coverage

ATCO calculates branch coverage, multi-conditional coverage, and statement coverage as de-

fined in Definitions 2.8.2.2 (p. 37), 2.8.2.4 (p. 38), and 2.8.2.1 (p. 36), respectively.

Branch coverage is measured on a Jimple level. So, a branch covered in Jimple does not

necessarily translate to the conditional statement being completely covered in Java. This occurs

when the conditional statement in Java has multiple conditions. A multi-conditional branching

statement in Java is compiled to a series of subsequent single-conditional branching statements

in Jimple. The structure of the SET, together with the data stored within the symbolic states,

allows for all Jimple statements to be linked to their corresponding Java statements. This

allows multi-conditional coverage to be calculated by linking all compiled single-conditional

branching statements in Jimple to their corresponding multi-conditional branching statement

in Java. The SET also allows for statement coverage to be calculated on a Jimple level from

branch coverage. Therefore, with the help of the SET, branch coverage on a Jimple level can

be translated to statement coverage, branch coverage, and multi-conditional coverage in Java

source code.

Calculation during execution tracing

The test environment is set up by creating the JVM in which the test will be executed, and

passing the JVM the SET s of the class under test at the JDI level. The test execution is then

started.

Configuration of the JVM occurs on-the-fly during test execution, when a ClassPrepareEvent

is triggered for a class under analysis, i.e., when the class is about to be loaded during execution.

The configuration involves adding breakpoints to certain symbolic states in the class’s SET s,
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before the class is loaded. To add a breakpoint to a symbolic state means to add a breakpoint to

the Java source code line number, that the symbolic state represents. Breakpoints are added to

the first non-branching symbolic state following a branching symbolic state in the SET, along

both the branching symbolic state’s true and false paths. This is to cater for the possibility

that a branching symbolic state may be immediately followed by another branching symbolic

state. The reason for attaching breakpoints to these symbolic states, and not the branching

symbolic states themselves, is because breakpoints on branching symbolic states will require

two constraint solving operations to determine which path was taken. Having the breakpoints

on the first non-branching symbolic state will require no constraint solving, since the path

containing the breakpoint is followed during test execution.

Figure 3.7, p. 56 illustrates this configuration with an example.

1: int checkValue(int x) {

2: int a = 0;

3: if( x > 0 ) {

4: if( x % 2 == 0 ) {

5: a++;

6: } else {

7: a--;

8: }

9: }

10: return a;

11: }

Figure 3.7: This method is a simple example, used to illustrate the breakpoint configuration
during coverage calculation. The method returns 0 if x <= 0, returns 1 if x is positive and
even, and returns −1 if x is positive and odd. The resulting SET is shown in Figure 3.8, p. 57.
The first non-branching symbolic states following branching symbolic states are indicated with
dotted nodes.

After the breakpoint configuration, the class is loaded, and test execution continues until

a MethodEntryEvent is triggered. When the event is triggered, the parameters are stored

locally for the duration of that method’s execution. Data related to the parameters include the

parameter names, types, and values. Also, during this event, there is a check whether the SET

contains any branches. Please be reminded that branches in the SET only occur at branching

statements with symbolic conditions. If a method contains no symbolic branches, then that

method will have no breakpoints set. In such a case, all statements within the method being
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Figure 3.8: This SET is the result of the code in Figure 3.7, p. 56, being symbolically executed.
The nodes contain the line number to be executed, and the edges contain the statement that
was executed. The edge if1 indicates the if statement at line 3, while if2 indicates the if

statement at line 4. The values (true) and (false), associated with those if edges, indicate
whether the true or false paths were followed with that edge. The dotted nodes indicate the
symbolic states to which breakpoints will be added.

Stellenbosch University   http://scholar.sun.ac.za



CHAPTER 3. DESIGN AND IMPLEMENTATION 58

invoked may immediately be marked as covered, as all statements will be executed. When a

symbolic state in the SET is marked as covered, a coverage counter, maintained within that

symbolic state, is incremented. This counter indicates the number of times the symbolic state

was hit during coverage calculation; a hit means the symbolic state was reached during test

execution.

Execution continues until a BreakpointEvent is triggered. As previously mentioned, break-

points are added to the first non-branching symbolic state following a branching symbolic state

in the SET. Therefore, when a BreakpointEvent is triggered, a symbolic branch was reached

and one of its branches is already followed. If the symbolic branch executed has no symbolic

branches preceding it, nested branching excluded, then the statement at the breakpoint will

have only one symbolic state representing it. The single symbolic state is, therefore, the sym-

bolic state hit during execution, and this symbolic state’s counter is then incremented, with

no constraint solving required. If the branch has symbolic branches preceding it, then the

statement at the breakpoint will have multiple symbolic states representing it. Each symbolic

state, representing the single statement, will have a unique path condition, depending on which

paths were followed in earlier branches. An example is displayed in Figure 3.9, p. 59. When a

statement has multiple symbolic states representing it, a copy of each symbolic state is made

to maintain the integrity of the original symbolic state. Each copy has the method parameters

added to the path condition. Each copy, with the method parameters added to the path con-

dition, is then run through the constraint solver to discover which of the symbolic states were

actually hit. The symbolic state with a satisfiable path condition is the symbolic state hit at

the breakpoint. An exception to this occurs when symbolic loops are involved, which will be

discussed later in this section, p. 62.

The JVM continues to run the test and service the triggered events until the test is complete.

Upon completion, the SET will have the updated coverage counter values of all the symbolic

states that had breakpoints set at their location. A 100% statement covered method will have

the coverage counter of every first non-branching symbolic state following a branching symbolic

state in its SET set to at least 1. For methods with no symbolic branches, i.e., no branching

statements in its SET, only the first symbolic state in the SET will have its coverage counter

updated.
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1: int checkValue(int x) {

2: int a = 0;

3: if( x > 0 ) {

4: a += 1;

5: }

6: if( x % 2 == 0 ) {

7: a += 2;

8: }

9: return a;

10: }

Figure 3.9: This method is a simple example used to illustrate the breakpoint configuration
during coverage calculation when a line of code is represented by multiple states. The method
returns 0 if x <= 0, returns 1 if x is positive and odd, returns 2 if x is negative and even, and
returns 3 if x is positive and even. The resulting SET is shown in Figure 3.10, p. 60. The first
non-branching states following branching states are indicated with dotted nodes.

Updating coverage counters in the SET

The coverage results, after test execution, show only which paths were followed at each branch

in the SET by way of the first non-branching state containing a coverage counter indicating

how many times it was hit. Since the SET is an execution tree with no paths leading to nodes

other than a specific node’s direct parent or children, these coverage results may be used to

accurately calculate which paths in the SET were followed during execution. This is achieved

by updating the coverage counter of all the states in the SET. The counters are updated by

traversing the SET depth-first, until the last covered state in an execution path is found, i.e.,

a state marked as hit, with its direct parent being a branching state, and no branching states

succeeding it. Figure 3.11, p. 61, indicates this by showing the selected states as dotted nodes.

The coverage counter for each state in that execution path is then updated as follows: With

the root state, Sr, the last covered state, Sm, the last state in the path of Sm, Sl, their coverage

counters Sc
r , S

c
m, and Sc

l
, respectively, and i = r..(m − 1), all states along the path of Sm are

updated as:

Sc
i

= Sc
i
+ Sc

m

Sc
m..l

= Sc
m

This is illustrated in the example displayed in Figure 3.11, p. 61.
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Figure 3.10: This SET is the result of the code in Figure 3.9, p. 59, being symbolically
executed. The nodes contain the line number to be executed, and the edges contain the
statement that was executed. The edge if1 indicates the if statement at line 3, while if2

indicates the if statement at line 6. The values (true) and (false), associated with those
if edges, indicate whether the true or false paths were followed with that edge. The dotted
nodes indicate the states to which breakpoints will be added. Note that there are two symbolic
states with breakpoints representing lines 7 and 9 in the SET.
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Figure 3.11: This SET is the result of the code in Figure 3.7, p. 56, being symbolically exe-
cuted, and a test then being executed. The nodes now contain the coverage counters (Counter)
of the symbolic states after execution tracing has been completed, with the dotted nodes being
the symbolic states where breakpoints were added. The solid edges, as before, contain the
statements that were executed, while the dotted edges illustrate how the coverage counters of
the other states are updated. The edge if1 indicates the if statement at line 3, while if2

indicates the if statement at line 4. The values (true) and (false), associated with those
if edges, indicate whether the true or false paths were followed with that edge.
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The end result

After execution tracing is complete and the coverage counters in the SET are updated, the

coverage counter of each statement and branch in the SET will have been updated. This

indicates how many times each symbolic state in the SET was hit during testing. Therefore,

the result is the branch coverage and statement coverage of the SET on a Jimple level. This

information is then used to map the coverage statistics in the SET to the Java level, which

will then indicate the branch coverage, multi-conditional coverage, and statement coverage of

the SET on a Java level.

Interesting case with symbolic loops

There is an interesting occurrence when dealing with symbolic loops. With a symbolic value

V , when a loop condition contains a symbolic condition, e.g., i < V , both the true and false

paths are followed for the number of iterations as indicated with the loop counter, e.g., n. Thus,

all the statements in the loop will have n states, e.g., S1..n, representing them. Figure 3.12,

p. 62, displays a code example for a symbolic loop, together with the path conditions of the

symbolic states representing the paths.

Code snippet Path conditions

for( int i = 0; i < V, i++ ) { S1 : 0 < V

System.out.println( "Looped" ); S2 : 0 < V, 1 < V

} Sn : 0 < V, 1 < V, ..., n− 1 < V

Figure 3.12: This table illustrates an interesting case with symbolic loops when calculating
coverage using symbolic execution.

The first non-branching statement within the loop will have a breakpoint assigned to it.

When this breakpoint is reached with each iteration of the loop, constraint solving will be used

to determine which of the n states were hit. The input parameters will indicate that, e.g.,

V = v. If v > n, then states S1..n will be marked as hit, while Sn+1..v will not. This is because

the number of times the loop is traversed during normal testing is more than the number of

times it is traversed during symbolic execution. If v < n, then states S1..v will be marked as

hit, while Sv+1..n will not. If v = n, then all states will be marked as hit. This interesting case

will not result in states being marked as covered when they were not hit during testing, but it

will result in the number of times they were hit being incorrect.
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To resolve this inaccuracy, the following needs to be considered. During the execution of a

method, the symbolic values remain unchanged. The method’s execution changes concrete val-

ues, path conditions of symbolic states, and the local variables that contain the computational

expressions of the symbolic values. Recall Figure 2.1, p. 19. With every iteration of a symbolic

loop, the symbolic values will be the same. This results in the same subset of symbolic states

having satisfiable path conditions with every iteration. Thus, all symbolic states in the SET,

that are part of the subset of symbolic states in the loop that will be marked as covered, are

marked as hit with every iteration. So to resolve this inaccuracy, the coverage counters should

only be updated with the first iteration of the loop. All subsequent iterations may be followed

and monitored, but no coverage counters should be updated for the affected subset. However,

due to time constraints during the implementation of ATCO, this was not implemented.

3.3.4 Test Redundancy Detection

Having a satisfactory level of code coverage indicates that a program is sufficiently tested, but

it does not indicate that a program is tested efficiently. Ideally, a test suite should contain no

redundant tests. A test is considered redundant if it does not exercise any new behaviour of a

program that has not already been exercised by other tests in the suite [45]. These redundant

tests increase the resources required to generate, execute, and maintain a test suite, without

adding any value to the suite itself.

ATCO provides a mechanism for identifying such redundant tests by gathering statistics

on what value each test case adds to the test suite during coverage calculation. Whenever

coverage calculation determines which state in the SET was hit during testing, the statistics

of the test that was executed is examined. If the state, hit during testing, has not yet been

hit by a previous test, a counter is incremented to indicate that this test has hit a new state,

i.e., it is testing a new behaviour in the program. If the state was previously hit, a counter is

incremented to indicate that the test has performed a redundant hit, i.e., it is testing behaviour

that has already been tested. Therefore, after all the tests in the suite have been executed and

coverage was calculated, the statistics of each test will indicate whether the test is a redundant

test or not. It is the user’s responsibility to decide whether these tests should remain in the

suite, or whether they may be removed.

It is important to note that the sequence in which the tests are executed have a great impact
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on the statistics of the tests. Take, for example, two tests, testA and testB, that test a similar

behaviour of a program. If testA is executed first, then B may be marked as a redundant test,

and vice versa. There may also be situations where redundant tests are desirable, as the tests

may test a specific behaviour in conjunction with other behaviours that may have already been

tested in other scenarios. ATCO only provides the statistics that indicate whether the tests

hit any states that were not previously reached by other tests.

3.3.5 Optimisation

The information analysis phase consists of numerous time-consuming tasks. Some optimisation

steps have, therefore, been taken to reduce the execution time of this phase.

Concurrency Considerations

Because tests are executed concurrently, and because more than one test may test the same

behaviour of a program, it is possible that more than one test may be executing the same

class in parallel. It is, therefore, possible that a race condition may occur with the coverage

counters of some states in a SET. A race condition occurs when a process attempts to access

or modify data while it is being modified by another process. This may cause inconsistencies

in the data, which would result in erroneous data. To protect the coverage data of the SET,

Java’s synchronisation is used to ensure that only one process may read or modify the coverage

counter of a specific state. Therefore, multiple processes may update the coverage counters of

different states in a single SET, but only one process may update the counter of a single state.

Java’s method synchronisation idiom was chosen to protect against race conditions, because

the resource requirements to assign a copy of all the SET s of large and complex programs may

be too large for the available resources. Synchronisation may, however, have a negative impact

on the execution time of concurrent processes, as a process may be blocked from completing

its assigned task, if another process is currently accessing the state it requires.

Constraint Solving Reduction

The purpose of constraint solving during coverage calculation was discussed in an earlier sec-

tion: constraint solving is used to determine which symbolic state was hit during test execution.

Constraint solving reduction was applied to this process, by only performing constraint solving
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when a single statement has multiple symbolic states representing it. Therefore, when a state-

ment has only one symbolic state representing it, that symbolic state will be the state that was

hit during test execution, and thus constraint solving is unnecessary.

The number of constraint solving operations may be reduced even further, at the cost of

test redundancy detection. For test redundancy detection, the actual values of the coverage

counters are relevant. This is because test redundancy detection needs to be aware of how

many times each statement was hit. When test redundancy detection is not required, the only

relevant information is whether a statement was hit at least once. Therefore, when a symbolic

state has been marked as hit for the first time, i.e., its coverage counter was incremented, all

subsequent constraint solving operations on that symbolic state becomes irrelevant, since it is

already covered. Therefore, when test redundancy detection is not measured, constraint solving

will only be performed on a symbolic state if the statement it represents has multiple symbolic

states representing it, and the symbolic state in question has not already been hit during

testing. Whether the redundancy of tests should be measured during coverage calculation is

configurable in ATCO.

3.3.6 Execution Tracing of Manual Testing

It was mentioned earlier that execution tracing is used during the execution of the JUnit

tests in order to calculate coverage. One of the benefits of execution tracing is that any

Java application, executed within a JDI controlled JVM, may be traced. Therefore, coverage

calculation does not have to be limited to the execution of JUnit test cases only. Allowing

a user to manually test an application, while performing execution tracing on that manual

test, allows coverage to be calculated on a manual test plan, i.e., a document, containing steps

to follow, to test an application. Performing coverage calculation on manual testing allows

application testers to verify the completeness of a test plan.

3.4 Result Analysis Phase

After coverage calculation is completed, as discussed in Section 3.3, the resulting SET s contain

the coverage statistics of all statements, branches, and so on. These statistics are then used

in the last phase of ATCO ’s execution, namely the result analysis phase. This phase involves
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guiding Artemis ’s test generation engine to generate tests for all the branches that are not

covered by the existing test suite.

3.4.1 Artemis’ Test Generation Engine

As mentioned earlier, Artemis detects unhandled run-time exceptions, and generates JUnit

tests to verify the soundness of these detected exceptions. To accomplish the test generation,

Artemis has a test generation engine that is used to convert a symbolic state, together with its

path condition, into a JUnit test. This involves solving the constraints on the path condition

of the symbolic state, and using the results of the solved path condition as input parameters

for the method that contains the unhandled run-time exception.

3.4.2 Test Generation in ATCO

The test generation engine is used in ATCO to generate tests for symbolic states that were not

hit during coverage calculation, instead of generating tests for symbolic states that represent

statements that cause the unhandled exceptions.

3.5 Eclipse Plug-in

Analysis tools are, more often than not, difficult to set up and run. There are long descriptions

on dependencies, setup requirements, like environment variables, long classpaths, and, often,

complex build scripts are needed, to run these tools. With Integrated Development Environ-

ments (IDEs), integrating functionality into an easy-to-use interface to speed up compilation,

testing, and deploying of programs, why not attempt to integrate such an analysis tool into

the IDE as well? This would greatly reduce the effort to use such a tool, thereby encouraging

developers to use such tools more frequently.

Eclipse is an open-source IDE with an extensible plug-in system. It consists of a run-time

core that launches the platform base and then dynamically runs other plug-ins. The entire

architecture of Eclipse, including the core, is comprised of plug-ins, allowing developers to

completely remodel and customise Eclipse, should they so desire. This makes Eclipse ideal for

integrating an analysis tool, such as ATCO.
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ATCO extends three of the standard plug-ins within Eclipse, namely the Resource Man-

agement plug-in, the Workbench plug-in, and the run-time core plug-in.

3.5.1 Resource Management Plug-in

As the name suggests, the resource management plug-in manages all the resources the user is

working with. Resources include projects, folders, and files present in the Eclipse workspace.

The workspace is where all the user’s data files reside. Information on all resources within the

workspace, all elements such as libraries, dependencies with other projects, etc. can be accessed

through the resource management plug-in. The user can define a workspace directory on the

file system to house projects, but the resources within the workspace are not limited to projects

within that directory. Eclipse allows projects and other resources from arbitrary locations on

the file system, or perhaps even on another machine, to be imported into the Eclipse workspace

without physically copying it into the workspace directory.

The functionality provided by this plug-in is useful for a tool such as ATCO. It allows the

tool to dynamically build classpaths for files to be analysed, by accessing the project’s library

list, and adding the locations of all libraries to the classpath, before running Soot during

the information gathering phase. The resource management plug-in allows ATCO to access

information on resources across the entire workspace, even if those resources are not physically

stored in a single location. Therefore, apart from being able to handle projects within the

workspace directory, ATCO can also handle projects within the workspace that reside outside

the workspace directory.

3.5.2 Workbench Plug-in

The workbench is the User Interface (UI ) plug-in that contains most of the UI components in

Eclipse. It defines the extension points that other plug-ins can use to contribute to the UI of

Eclipse. Some of the extension points include preferences, views, and the tool bar.

Preferences

When using a plug-in within an IDE, the user would expect a level of customisation. Plug-ins,

therefore, allow a user to control the behaviour of the plug-in, to a certain extent, by presenting

the user with a settings, or preferences, menu. The workbench provides some support for this
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Figure 3.13: The main preferences page that houses the other preferences pages as sub pages.

through the Preferences dialog. The preferences dialog allow the user to customise the plug-in,

and let these settings persist, even if Eclipse is terminated and launched again. This greatly

improves the usability of a tool.

ATCO contains three preference pages: the Symbolic Execution Preferences (Figure 3.14,

p. 69), the Coverage Preferences (Figure 3.15, p. 70), and the Manual Execution Preferences

(Figure 3.16, p. 70), all grouped under a parent preference page (Figure 3.13, p. 68). These

preference pages contain all the settings the user may use to configure ATCO. Settings for

symbolic execution include the classes to be analysed, the interprocedural call depth, and

the loop count limiter when symbolically executing the classes. The user may also specify

the output directory where all debugging and graph files are stored. Settings for coverage

calculation include selecting the tests to run, how many concurrent threads to use and how

much memory to allocate to each thread, and the flag to indicate whether redundancy detection

should be used during coverage calculation. Settings for manual execution include specifying

the class to execute, together with the JVM parameters and the command-line parameters to

send to the class. The input required from the user is minimal, since all other information is

extracted from the resource management plug-in.

A filtering implementation was added to the file selection component of the preferences

pages, to filter the files to display. Within the symbolic execution preferences, only Java class

files are displayed, since these are the only files ATCO can analyse. In the coverage preferences,
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Figure 3.14: The symbolic execution preferences page.

only files that import the JUnit library are displayed, thereby limiting the user’s selection of

files to files that are likely to be actual JUnit tests. To improve usability when selecting

multiple files with the file selection interface, recursive selection was implemented. When a

folder is ticked or unticked, then all objects within that folder are ticked or unticked as well.

Thus, ticking the project will select all applicable files within the entire file structure of the

project.

The preferences pages of ATCO are listed under the general Eclipse preferences (see Fig-

ure 3.17, p. 70) since ATCO is not project specific, but spans across the entire workspace.

Keeping the settings uniform across the whole workspace, this allows the user to test multiple

projects simultaneously, without having to do the setup for each project individually. However,

this prevents individual ATCO configurations for the various projects within the workspace.

Views

A View is a component that provides a visual output of information. A common example

within Eclipse is the Problems view that lists compilation errors and warnings of the projects

in the workspace. This is the component ATCO uses to display the classes to be analysed, as

well as the result of the analysis, after it is finished.

ATCO contains two views. First, the File Coverage View, shown in Figure 3.18, p. 71,
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Figure 3.15: The coverage preferences page.

Figure 3.16: The manual execution preferences page.

Figure 3.17: The standard Window drop down menu in Eclipse houses the preferences page.
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Figure 3.18: The file coverage view, displaying all the classes under analysis, together with
their coverage results after analysis.

displays the coverage statistics of all the classes under test, and contains three columns. The

Project column indicates the project of the selected file. The Package.File column shows the

package and name of the selected class. The Coverage % column shows the coverage results

as calculated by ATCO after analysis. The user can sort the view results according to project

name, or package.class name. For a more detailed summary of the coverage results, the user

can double-click on the desired class, resulting in a pop-up window displaying a more detailed

report on the coverage results. This pop-up is displayed in Figure 3.19, p. 72. The results

have the class-wide statistics displayed at the top, followed by the statistics per each method

within the class. Second, the JUnit Statistics View, shown in Figure 3.20, p. 72, displays the

redundancy statistics of the tests used during analysis. The structure of the view is similar

to the File Coverage View, displaying project, package, and class name of the selected tests.

The Branches tested % column indicates the percentage of branches across all the selected

classes under test. This gives the user an indication on what percentage of the program under

analysis a given JUnit test case tests. For a more detailed summary of the results, the user

can double-click on the desired test, resulting in a pop-up window displaying the statistics

per-class-per-method the selected test case tested. This pop-up is displayed in Figure 3.21,

p. 72. Within the JUnit Statistics View, the columns indicate the number of branches that

were newly hit (Hit), redundantly hit (Redundant), and the total number of branches hit by

this test (Total).

The views implemented for ATCO are very basic, but Eclipse provides functionality for

more complex outputs, including graphs for the statistics, as well as extending the editor to

display coverage statistics at, e.g., each line, method, or class. Unfortunately, due to time

constraints in the development of ATCO, this functionality was never incorporated into the

plug-in.
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Figure 3.19: The detailed view available from the file coverage view by double-clicking on
any of the classes in the view.

Figure 3.20: The JUnit statistics view, displaying all the selected JUnit test cases, together
with their redundancy results after analysis.

Figure 3.21: The detailed view available from the JUnit statistics view by double-clicking on
any of the test cases in the view.
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Figure 3.22: The ATCO action button, housed within its own tool bar group, and complete
with tool-tip, used to launch the analysis of the selected class(es). For lack of an icon for the
button, the tool name was used.

Tool Bar Action Button

The workbench contains many extension points for adding action buttons, which perform an

action when pressed. These buttons can be added to many places in the workbench, from

the views, to drop-down menus, the tool bar, and so on. These action buttons, when clicked,

execute the code embedded within the class used to implement the button.

Within ATCO, the implemented action button is used to launch its entire analysis process.

The user may set the preferences of ATCO through its preferences pages, then click the action

button to run the analysis on the selected classes. Within the action button, the arguments,

to be passed to Soot, are constructed by using the resource management plug-in to locate the

required libraries and source locations, and compiling all the necessary information into a valid

Soot argument string to be passed to Artemis. Artemis is then invoked with this argument

string, which is then followed by the analysis implemented in ATCO. Figure 3.22, p. 73 shows

the action button with tool-tip.

3.5.3 Jobs

One of the challenges of plugging a processor intensive tool into an IDE is that the tool must be

able to run concurrently with the other operations constantly running within the IDE. Merely

running the tool will seize the other functions of the IDE, such as the various views, compilers,

and even the editors. This issue holds throughout the entire Eclipse environment, since it

constantly has plug-ins running various tasks at all times. Eclipse addresses this issue with its

concurrency infrastructure by introducing the Jobs package. A job represents a unit of work

that needs to be able to run asynchronously. A plug-in creates and schedules a job, which is

then added to the job queue maintained by the Eclipse platform.
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Figure 3.23: The progress bar indicating the overall progress of the various execution phases
within ATCO. This example displays the information gathering phase, where Soot converts the
Java bytecode into Jimple format, and where symbolic execution will be performed.

The analysis in ATCO is run within a job object. This allows the processor intensive

operation of symbolic execution and constraint solving to execute concurrently with the rest

of Eclipse, allowing the user to still use the IDE during analysis.

Another feature provided by the job package is the Progress Monitor, shown in Figure

3.23, p. 74. This may be used to output statistics on the progress of the job being executed

under the Progress view, which is standard to Eclipse. ATCO use the progress monitor to

display the phase it is currently executing, the class currently being analysed, and so on. The

concurrent execution of the information analysis phase makes the use of the progress monitor

difficult, since there is only one progress monitor for each job. Therefore, the progress monitor

is used to display the progress across all classes analysed, i.e., the percentage of classes already

analysed, as opposed to displaying the progress of each class currently being analysed.
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Chapter 4

Evaluation

Previous chapters presented the theory, as well as the design and implementation of the ATCO

plug-in. This chapter will describe the various experiments that were used to evaluate ATCO.

The experiments were designed with the following objectives in mind.

Correctness of Coverage Calculation: The correctness of coverage calculation withATCO,

i.e., whether the coverage calculation, measured with ATCO, is correct, needs to be eval-

uated. The impact that the analysis configurations in ATCO have on the accuracy of

the coverage calculation, needs to be evaluated as well. The analysis may be configured

by changing any of the following values (default values are included in parentheses): call

depth (1), loop count (4), and whether redundancy detection is turned on (yes).

Performance of Coverage Calculation: The performance of coverage calculation with ATCO

needs to be evaluated. The impact of the concurrent configuration in ATCO, i.e., the

number of concurrent threads used during coverage calculation, needs to be evaluated as

well.

Effectiveness of Generated Test Cases: The effectiveness and correctness of the test cases,

generated through ATCO ’s analysis, need to be evaluated. The impact of the analysis

configurations on the effectiveness of the generated test cases needs to be evaluated as

well.

75
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4.1 Test Setup

ATCO has been developed as an Eclipse plug-in to take advantage of Eclipse’s Graphical User

Interface (GUI ) extensions, as was described in the previous chapter. However, the tool was

also developed to allow it to be executed from a normal command-line interface. The purpose

of this is to allow ATCO to be executed on two different environments, both of which will be

discussed here.

4.1.1 Single-core GUI Environment

Eclipse is a GUI application, and, therefore, require an environment that is able to display its

interfaces. Most standard operating systems, such as Microsoft Windows and Linux, are capable

of displaying GUI applications. However, the GUI environment available for the evaluation

of the ATCO plug-in is a single-core machine with limited resources. This environment is,

therefore, only used during testing of the ATCO plug-in’s GUI. All experiments, which are

presented in this chapter, are performed on a multi-core command-line environment.

4.1.2 Multi-core Command-Line Environment

To fully utilise the concurrent design in ATCO, a multi-core system is necessary. The multi-core

system, used for all of the experiments, contains two 2.26GHz Intel Xeon E5520 processors,

which supports up to a total of 8 threads, with 4GB of allocated memory. However, this

environment is only accessible remotely via secure shell (SSH ). Therefore, Eclipse could not be

used in this environment. Thus, ATCO is adapted to allow it to execute on a command-line

interface, in order to use this environment.

4.2 Other Tools

There are a number of tools that generate test cases for the purpose of maximising coverage, like

JTest [27] and Symstra [44]. However, these tools do not consider an already existing JUnit

test suite. These tools generate an additional, independent test suite. As the focus of this

thesis is coverage calculation, and using that information to generate tests, it is decided that

little value would be received from comparing ATCO to these tools. Instead, the experiments,

described in this chapter, will be compared to EMMA [17], a popular coverage calculation tool
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discussed in Section 2.8.4, p. 39. EMMA is the chosen tool because it is an open-source, freely

available coverage calculation tool, that is well documented and easy to use. It also presents

its results in a manner that makes it easy to compare to ATCO.

4.3 Correctness of Coverage Calculation

The first set of experiments aims to verify whether ATCO measures coverage correctly. This

is separated into three groups of tests. First, a set of custom applications, together with JUnit

test cases. Second, a set of small, real-world applications, often used to demonstrate the usage

of the JUnit test framework. Third, a large, real-world application, often used in evaluations

of program analysis and program verification tools.

4.3.1 Custom Applications

The purpose of the custom applications is to allow for accurate, manual confirmation that

ATCO yields the expected results. These custom applications are also used to evaluate the

impact of the analysis configurations. These results are compared to the results generated by

EMMA [17], to further verify the correctness of ATCO.

There are three custom applications used for this evaluation:

• SimpleComparisons: This application is a single class that consists of independent meth-

ods. Thus, no method within the class invokes another method, so its coverage results

are unaffected by the configured call depth. It also contains no loops, so its coverage

results are unaffected by the configured loop count.

• InterprocInvestigations: This application is a single class that consists of methods that

invoke other methods in the class. The methods also have varying scopes, i.e., public,

private, and protected methods. This application is used to evaluate the effect of

various call depth configurations on the SET and the coverage calculation results. It also

demonstrates the benefits of interprocedural analysis on methods that cannot be directly

invoked outside of their scope. It contains no loops, so its coverage results are unaffected

by the configured loop count.

• Loops: This application is a single class that consists of independent methods that contain

loops. This application is used to evaluate the effect of various loop count configurations
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on the SET and the coverage calculation results. Since the methods are independent, the

results are unaffected by the configured call depth.

Each of the above-mentioned custom applications have corresponding JUnit test cases, used

to test the application. These test cases are designed to follow specific paths through the

various methods in the applications. Knowledge of the specific paths, gained through manual

inspection of the applications and their JUnit tests, allow the results to be verified manually.

Results

The results in Table 4.1, p. 79, displays the accuracy of ATCO and the impact of the different

analysis configurations. The results are verified as correct and accurate through manual inspec-

tion of the source code of the custom applications, together with the JUnit test cases. Further

confidence in the results, presented by ATCO, is gained by using EMMA to measure coverage

on the custom applications as well. The comparable results between ATCO and EMMA are

displayed in Table 4.2, p. 80. EMMA rounds its results to the nearest integer value. Therefore,

for the sake of comparison, ATCO ’s coverage results are also rounded to the nearest integer

value.

Evaluation

Manual code inspection of the experiments in Table 4.1, p. 79, together with the comparison

to EMMA in Table 4.2, p. 80, provides sufficient evidence that ATCO yields the correct results

during coverage calculation. The results in Table 4.1 will now be discussed in more detail.

• SimpleComparisons: This custom application contains no interprocedural method calls,

no symbolic loops, and no nested or sequential symbolic branching statements. Therefore,

each statement has, at most, one symbolic state representing it. As such, no constraint

solving is required during coverage calculation, since constraint solving is only required

when a single statement is represented by multiple symbolic states. As no constraint solv-

ing occurs during coverage calculation, there is also no benefit from disabling redundancy

detection.

• InterprocInvestigations: An increase in explored symbolic states is observed, when com-

paring the intraprocedural analysis, i.e., CD = 0, to interprocedural analysis, i.e., CD >
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SimpleComparisons

CD LC RD St CS Cl Me Br Ln Lo TR

N/A N/A Yes 60 0 100% 83.33% 62.5% 76.19% N/A 54.55%

N/A N/A No 60 0 100% 83.33% 62.5% 76.19% N/A N/A

InterprocInvestigations

CD LC RD St CS Cl Me Br Ln Lo TR

0 N/A Yes 161 0 100% 100% 61.54% 78.26% N/A 41.46%

0 N/A No 161 0 100% 100% 61.54% 78.26% N/A N/A

1 N/A Yes 225 39 100% 100% 61.54% 78.26% N/A 43.90%

1 N/A No 225 27 100% 100% 61.54% 78.26% N/A N/A

2 N/A Yes 227 43 100% 100% 61.54% 78.26% N/A 43.90%

2 N/A No 227 31 100% 100% 61.54% 78.26% N/A N/A

3 N/A Yes 227 43 100% 100% 61.54% 78.26% N/A 43.90%

3 N/A No 227 31 100% 100% 61.54% 78.26% N/A N/A

Loops

CD LC RD St CS Cl Me Br Ln Lo TR

N/A 2 Yes 198 116 100% 100% 69.23% 100% 85.71% 80.6%

N/A 2 No 198 62 100% 100% 69.23% 100% 0% N/A

N/A 4 Yes 466 329 100% 100% 76.92% 100% 85.71% 81.51%

N/A 4 No 466 232 100% 100% 76.92% 100% 0% N/A

N/A 6 Yes 863 645 100% 100% 84.62% 100% 85.71% 82.74%

N/A 6 No 863 506 100% 100% 84.62% 100% 0% N/A

N/A 8 Yes 1392 1065 100% 100% 84.62% 100% 85.71% 83.67%

N/A 8 No 1392 901 100% 100% 84.62% 100% 0% N/A

N/A 10 Yes 2050 1589 100% 100% 92.31% 100% 85.71% 84.07%

N/A 10 No 2050 1399 100% 100% 92.31% 100% 0% N/A

Table 4.1: The correctness evaluation of ATCO through custom applications. Each table
header contains the name of the custom application analysed. The columns contain the config-
ured call depth (CD), the configured loop count (LC), whether redundancy detection was used
(RD), the number of explored symbolic states (St), the number of constraint solving opera-
tions performed during the information gathering phase and information analysis phase (CS),
and the following coverage statistics: Class coverage (Cl), Method coverage (Me), Branch
coverage (Br), Line coverage (Ln), and Loop coverage (Lo). The last column contains the test
redundancy statistics (TR), indicating the percentage of states, hit during testing, that were
already hit, i.e., redundant.
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SimpleComparisons

Class Method Line

Tool Total Cov Total Cov Total Cov

ATCO 1 100% 6 83% 21 76%

EMMA 1 100% 6 83% 21 76%

InterprocInvestigations

Class Method Line

Tool Total Cov Total Cov Total Cov

ATCO 1 100% 18 100% 69 78%

EMMA 1 100% 18 100% 69 78%

Loops

Class Method Line

Tool Total Cov Total Cov Total Cov

ATCO 1 100% 6 100% 30 100%

EMMA 1 100% 6 100% 30 100%

Table 4.2: The correctness evaluation of ATCO, by comparing its results to that of EMMA.
Each table header contains the name of the custom application analysed. The columns contain
the tool used (Tool), and the total number (Total) of classes, methods, and executable lines
found in the applications, as well as the corresponding percentage of this number to the total
number of classes, methods, and executable lines that are covered (Cov).

0. Also, an increase in call depth increases the number of constraint solving operations

required to accurately perform coverage calculation, since the invoked methods have mul-

tiple return states. A method that invokes another method gains an execution path for

every possible return state in the method it invoked. Interprocedural analysis yields an

increase in test redundancy, as the invoked methods are also considered, which increases

the number of symbolic states that may be hit redundantly. Disabling redundancy de-

tection yields a decrease in the number of constraint solving operations, but due to the

small size of this application, the benefits are minimal. Larger examples will yield more

significant benefits.

• Loops: A significant increase in explored symbolic states, together with a significant

increase in constraint solving operations, is observed with an increase in loop count (LC ).

This is to be expected, as the loop count dictates the number of times a symbolic loop is

iterated during symbolic execution. A notable occurrence is that line coverage is at 100%,

while the branch coverage is less than 100%. This occurs when the loop count is less than

the number of times the loop is actually iterated during testing. The path where the test
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execution exits the loop is never represented symbolically. So, when the test execution

exits the loop, no symbolic state contains those path conditions, and thus the loop exit

branch is never hit during testing. The branch coverage increases with the increase in

loop count, because the JUnit test cases iterate over all the loops variably between 1

and 10 times. Therefore, the increase in loop count reduces the instances where the loop

count is less than the number of actual test iterations of a loop. Finally, the high test

redundancy statistic is due to the interesting case with symbolic loops, as discussed in

Section 3.3.3, p. 62. Test redundancy is measured on the symbolic states being hit during

testing. And, as stated in Section 3.3.3, with every iteration of a loop during testing, all

the branches representing that loop in the SET, that fall within the bounds of the actual

loop, will be marked as a hit. This results in each test hitting many states repeatedly,

which, in turn, causes the high test redundancy.

The custom applications, used to evaluate ATCO, all contain only primitive data types as

method input parameters, and in the branching statements. The experiments indicate that this

works well with symbolic execution and constraint solving. However, to evaluate the real-world

use of ATCO, non-primitive data types need to be considered.

4.3.2 Small Real-World Applications

Three small, real-world examples of the JUnit test framework are used to evaluate ATCO.

The purpose of these experiments are to evaluate ATCO with small examples that are not

custom applications, written specifically to test ATCO. These results are compared to the

results generated by EMMA [17], to further verify the correctness of ATCO.

The three applications used for these experiments are:

• Latitude [24]: This application is a single class that houses latitude coordinate informa-

tion. This is a simple application, with no interprocedural method calls or loops.

• ShoppingCart [6]: This is a simple example of a shopping cart application. It consists of

two classes (ShoppingCart, and Product), and a custom exception (ProductNotFoundEx-

ception). It contains some interprocedural method calls, and one loop, which will iterate

at most twice, according to its test.
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• Money [29]: This is a simple example of a currency conversion system, with some basic

calculations between currencies. It consists of two classes (Money, and MoneyBag), and

one interface (IMoney). It contains many interprocedural method calls, and many loops.

Results

The results in Table 4.3, p. 82, display the accuracy and configuration impact of ATCO. EMMA

is used to measure coverage on the small applications as well. The comparable results between

ATCO and EMMA are displayed in Table 4.4, p. 83. As before, ATCO ’s coverage results are

rounded to the nearest integer for the sake of comparison.

Latitude

CD LC RD St CS Cl Me Br Ln Lo TR

N/A N/A N/A 57 0 100% 100% 80% 95.24% N/A 25%

ShoppingCart

CD LC RD St CS Cl Me Br Ln Lo TR

0 N/A N/A 161 0 100% 90.91% 50% 75.86% N/A 25%

1 N/A N/A 161 0 100% 90.91% 50% 75.86% N/A 25%

Money

CD LC RD St CS Cl Me Br Ln Lo TR

0 4 Yes 602 2681 100% 96.88% 80% 86.73% 85.71% 96.48%

0 4 No 602 103 100% 96.88% 80% 86.73% N/A N/A

0 8 Yes 882 4653 100% 96.88% 80% 86.73% 85.71% 96.27%

0 8 No 882 183 100% 96.88% 80% 86.73% N/A N/A

1 4 Yes 6728 22478 100% 96.88% 80% 86.73% 85.71% 90.39%

1 4 No 6728 2186 100% 96.88% 80% 86.73% N/A N/A

1 8 Yes 1530380 4595462 100% 96.88% 80% 86.73% 85.71% 88.89%

1 8 No 1530380 524546 100% 96.88% 80% 86.73% N/A N/A

Table 4.3: The correctness evaluation of ATCO through small, real-world applications. Each
table header contains the name of the application analysed. The columns contain the config-
ured call depth (CD), the configured loop count (LC), whether redundancy detection was used
(RD), the number of explored symbolic states (St), the number of constraint solving opera-
tions performed during the information gathering phase and information analysis phase (CS),
and the following coverage statistics: Class coverage (Cl), Method coverage (Me), Branch
coverage (Br), Line coverage (Ln), and Loop coverage (Lo). The last column contains the test
redundancy statistics (TR), indicating the percentage of states, hit during testing, that were
already hit, i.e., redundant.
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Latitude

Class Method Line

Tool Total Cov Total Cov Total Cov

ATCO 1 100% 3 100% 21 95%

EMMA 1 100% 3 100% 21 90%

ShoppingCart

Class Method Line

Tool Total Cov Total Cov Total Cov

ATCO 3 100% 11 90% 29 75%

EMMA 3 100% 11 100% 29 97%

Money

Class Method Line

Tool Total Cov Total Cov Total Cov

ATCO 2 100% 32 96% 98 86%

EMMA 2 100% 32 97% 98 88%

Table 4.4: The correctness evaluation of ATCO, by comparing its results with that of EMMA.
Each table header contains the name of the application analysed. The columns contain the tool
used (Tool), and the total number (Total) of classes, methods, and executable lines found in
the applications, as well as the corresponding percentage of this number to the total number
of classes, methods, and executable lines that are covered (Cov).

Evaluation

First, the results, displayed in Table 4.3, p. 82, are discussed in detail.

• Latitude: Similar to the SimpleComparisons example in the custom application evalu-

ation, this application is unaffected by the analysis configurations. Constraint solving

never has to be used, as there are no statements that are represented by more than one

symbolic state.

• ShoppingCart: This application contains some interprocedural method calls, but the

results show no change, regardless of call depth. This is because the methods, invoked

by other methods, do not contain any branches. Therefore, it does not contribute any

additional paths to the invoking method, and thus the results remain unchanged across

the configured call depths.

• Money: This application provides a clear example of, first, the state-explosion problem

when using interprocedural analysis and symbolic loops, and second, the benefits of not
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performing redundancy detection. First, there is a significant increase in explored sym-

bolic states across the configured call depths, and an even more significant increase across

the configured loop counts. This is because the application contains methods, with sym-

bolic loops, that invoke other methods with a number of execution paths. Since symbolic

execution iterates a symbolic loop a number of times, and since interprocedural analysis

follows all invoked methods, up to a certain depth, the state space grows exponentially.

A notable observation is the reduction in test redundancy levels as the state space grows.

Because test redundancy is measured on the symbolic states in the SET, an increase in

the state space increases the total number of states that may be hit during testing. Thus,

if the state space grows, but the number of symbolic states that are hit redundantly

remain the same, or at least increases at a slower rate, then the total test redundancy

level will decrease. Second, disabling redundancy detection vastly reduces the number of

constraint solving operations required to perform coverage calculation, showing up to a

96.16% reduction in constraint solving operations.

Second, the comparable results between ATCO and EMMA, displayed in Table 4.4, p. 83 are

presented and evaluated. These results all yield different results to EMMA. This is because the

symbolic execution engine is still under development, and currently cannot handle non-primitive

types properly. Also, constraint solving, by definition, is used to solve constraints of primitive

variable types, such as binary or numeric data types. It is not for Objects, which are non-

primitive types. These small applications contain non-primitive input parameters to methods,

and symbolic loops over Collections of non-primitive types. They also contain non-primitive

conditions on branches, by using the instanceof operator in Java. As a result, constraint

solving cannot solve some of the path conditions on symbolic states. Therefore, the information

analysis phase cannot accurately determine which of the symbolic states, representing the

statement in question, should be marked as hit. This results in no symbolic states being

marked as covered, which causes the degradation in accuracy, seen in Table 4.4.

4.3.3 Large Real-World Application

The large, real-world application, used for these experiments, is JTopas [28], a Java tokenizer

and parsing tool. JTopas is open-source, has an accompanying JUnit regression test suite, and

is freely available from the Software-artifact Infrastructure Repository [5].
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The symbolic execution engine, still under development at the time of evaluation, could not

handle some of the classes in JTopas. These classes included more complex constructs, such

as synchronized blocks, exceptions, and referencing array entries in conditional statements.

Thus, these classes had to be omitted during all experiments involving JTopas. However, the

experiments still yield sufficient results to demonstrate the goals of this thesis.

Results

Table 4.5, p. 85, presents the coverage calculation results of JTopas, while Table 4.6, p. 86

displays the comparable results between EMMA and ATCO. As before, ATCO ’s coverage

results are rounded to the nearest integer for the sake of comparison.

CD LC RD St CS Cl Me Br Ln Lo TR

0 4 Yes 2060 269694 54.17% 49.73% 36.21% 44.17% 0% 99.99%

0 4 No 2060 26 54.17% 49.73% 36.21% 44.17% N/A N/A

0 8 Yes 13340 269694 54.17% 49.73% 36.21% 44.17% 0% 99.99%

0 8 No 13340 26 54.17% 49.73% 36.21% 44.17% N/A N/A

1 4 Yes 4117 269694 54.17% 43.78% 31.41% 41.3% 0% 99.99%

1 4 No 4117 26 54.17% 43.78% 31.41% 41.3% N/A N/A

1 8 Yes 121399 269694 54.17% 43.78% 31.41% 41.3% 0% 99.99%

1 8 No 121399 26 54.17% 43.78% 31.41% 41.3% N/A N/A

2 4 Yes 4117 269694 54.17% 43.78% 31.41% 41.3% 0% 99.99%

2 4 No 4117 26 54.17% 43.78% 31.41% 41.3% N/A N/A

2 8 Yes 121399 269694 54.17% 43.78% 31.41% 41.3% 0% 99.99%

2 8 No 121399 26 54.17% 43.78% 31.41% 41.3% N/A N/A

Table 4.5: The correctness evaluation of ATCO through JTopas, a large, real-world applica-
tion. The columns contain the configured call depth (CD), the configured loop count (LC),
whether redundancy detection was used (RD), the number of explored symbolic states (St),
the number of constraint solving operations performed during the information gathering phase
and information analysis phase (CS), and the following coverage statistics: Class coverage
(Cl), Method coverage (Me), Branch coverage (Br), Line coverage (Ln), and Loop coverage
(Lo). The last column contains the test redundancy statistics (TR), indicating the percentage
of states, hit during testing, that were already hit, i.e., redundant.

Evaluation

None of the behaviour, observed in the experiments presented in Table 4.5, have not already

been observed in previous experiments. There is a reduction in branch coverage, and line
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Class Method Line

Tool Total Cov Total Cov Total Cov

ATCO 21 54% 183 43% 520 41%

EMMA 21 95% 183 72% 520 74%

Table 4.6: The correctness evaluation of ATCO, by comparing its results, when measuring the
code coverage of JTopas, with that of EMMA. The columns contain the tool used (Tool), and
the total number (Total) of classes, methods, and executable lines found in the applications,
as well as the corresponding percentage of this number to the total number of classes, methods,
and executable lines that are covered (Cov).

coverage, when interprocedural analysis (CD > 0) is used. Also, there is a consistent 0%

loop coverage, across all experiments. As mentioned in previous experiments, the presence

of non-primitive conditions for branches, and symbolic loops, causes a degradation in the

accuracy of coverage calculation. However, the benefits of disabling redundancy detection in

these experiments are remarkable, requiring only 26 constraint solving operations to yield the

same coverage results. This demonstrates the repetitive design of the JUnit test suite of JTopas.

This repetitive design is further illuminated by the high test redundancy levels, detected during

coverage calculation.

The comparable results between ATCO and EMMA, again indicate the limitations of the

current implementation of the symbolic execution engine, still under development at the time

of evaluation. Since constraint solving cannot be used to determine which symbolic states are

hit during testing when non-primitive types are used, none of the symbolic states are marked

as hit, even though the test did, in fact, execute that specific line.

4.4 Performance of Coverage Calculation

The second set of experiments aims to measure the performance gains from the concurrent

design of coverage calculation in ATCO. These experiments are performed with the custom

application Loops, and the large, real-world application JTopas.

Each experiment is performed with varying concurrent configurations. Each experiment is

executed five times, and the results are calculated as an average over the five executions. This

is to account for varying loads on the experimentation environment. The average provides a

more accurate approximation of the actual performance.
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4.4.1 Custom Applications

To increase the visibility of the performance gains of ATCO ’s concurrent design, the Loops

application is analysed with a loop count configuration of 30. A high loop count increases the

number of explored symbolic states, as well as the number of constraint solving operations

during coverage calculation, as is shown in Table 4.1, p. 79.

Results

The results in Table 4.7, p. 87, displays the monitored execution times of the full information

analysis phase, as well as the execution time of the longest running JUnit test case. The

purpose of displaying the longest running test case is to provide a more visible indication of

the benefits of ATCO ’s concurrent design.

St CS Tst Thr Time Long Gain

15848 12549 3 1 40.08s 23.51s 0%

15848 12549 3 2 30.72s 23.97s 23.35%

15848 12549 3 3 27.07s 24.24s 32.46%

Table 4.7: The performance evaluation of ATCO with the Loops custom application, config-
ured with a loop count of 30. The columns contain the number of explored symbolic states (St),
the number of constraint solving operations performed during the information gathering phase
and information analysis phase (CS), the number of JUnit tests executed (Tst), the number
of configured concurrent threads (Thr), the total execution time of the information analysis
phase (Time), the execution time of the longest running test (Long), and the performance
gain (Gain) received from the concurrent configuration, when compared to the execution with
only one concurrent thread.

Evaluation

With only one concurrent thread, all the test cases are executed sequentially. Therefore, the

total execution time is the sum of the execution time of each test, together with post-processing

performed by ATCO, such as updating coverage counters, and so on. A noticeable improvement

on execution time is observed with the increase in concurrent threads. However, this experiment

is small, so a large, real-world application will yield more accurate and reliable results.
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4.4.2 Large Real-World Applications

JTopas should provide a more reliable and accurate indication of the performance gains of

ATCO ’s concurrent design, as it contains many classes and test cases. For these experiments,

the default analysis configurations are used.

Results

As with the previous performance evaluation, the results in Table 4.8, p. 88, displays the

monitored execution times of the full information analysis phase, as well as the execution time

of the longest running JUnit test case.

St CS Tst Thr Time Long Gain

4117 269694 17 1 4930s 2124s 0%

4117 269694 17 2 2599s 2058s 47.28%

4117 269694 17 3 2243s 2051s 54.50%

4117 269694 17 4 2245s 2101s 54.46%

4117 269694 17 5 2252s 2158s 54.32%

Table 4.8: The performance evaluation of ATCO with the JTopas application, with the default
configurations for call depth (1), loop count (4), and whether redundancy detection is used (yes).
The columns contain the number of explored symbolic states (St), the number of constraint
solving operations performed during the information gathering phase and information analysis
phase (CS), the number of JUnit tests executed (Tst), the number of configured concurrent
threads (Thr), the total execution time of the information analysis phase (Time), the execution
time of the longest running test (Long), and the performance gain (Gain) received from the
concurrent configuration, when compared to the execution with only one concurrent thread.

Evaluation

The concurrent design of ATCO yields notable improvements to the performance of the tool.

However, the results in Table 4.8 also reveals a bottleneck in the current design. The maximum

performance gain, through the current concurrent design, is determined by the execution time

of the longest running test case. This is because ATCO is designed to execute each test in

its own concurrent thread. So, if one thread performs, e.g., 90% of all the work, the greatest

performance gain would be e.g., 10%. While having 10 threads, each doing 10% of the work,

the greatest performance gain could be closer to 90%.

There is a way to alleviate this issue. All the threads, used to execute the JUnit tests,

Stellenbosch University   http://scholar.sun.ac.za



CHAPTER 4. EVALUATION 89

are stored in a thread pool. At the moment, all threads are only used to execute the JUnit

tests. To avoid the bottleneck, the management of the thread pool needs to be changed. A

possible option is to have two types of tasks to be assigned to threads. The first and highest

priority task, is the execution of the JUnit tests. Whenever constraint solving is required for

coverage calculation, ATCO should first check whether any threads are idle, with idle threads

indicating that no new tests need to be executed. If no idle threads are present, perform

constraint solving with the current, sequential process. If idle threads are present, create a

thread task for every required constraint solving operation. These operations will then execute

in parallel. This solution utilises the concurrent execution of the JUnit tests, and benefits from

idle threads when there are tests that require large numbers of constraint solving operations.

Unfortunately, due to time constraints, this solution was never implemented in ATCO.

4.5 Effectiveness of Generated Test Cases

The third set of experiments aims to indicate the effectiveness of the automatically generated

test cases when ATCO uses the SET with the coverage results, to generate test cases for

uncovered areas of an application. However, the test generation engine, still under development

at the time of evaluation, imposed various limitations. These limitations caused that only the

SimpleComparisons application can be used for this evaluation.

Results

Table 4.9, p. 90, presents the effectiveness of the test generation from the coverage results. The

experiment was executed two times. The purpose of the first execution is to measure code

coverage of the initial test suite, and automatically generate JUnit test cases. The second

execution uses both the original test suite, together with the newly generated test cases, to

measure the code coverage of the resulting test suite.

Evaluation

Although this experiment is small and basic, it does give an indication of the effectiveness

of using symbolic execution, with coverage calculation, to automatically generate test cases.

The initial JUnit test suite tests every method, but poorly tests the various branches in those
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Before Test Generation

Gen Cl Me Br Ln RH TR

3 100% 83.33% 62.5% 76.19% 6 54.55%

After Test Generation

Gen Cl Me Br Ln RH TR

0 100% 83.33% 100% 90.48% 8 50%

Table 4.9: The evaluation the automatically generated test cases through ATCO, by per-
forming coverage calculation, and automatically generating test cases for uncovered areas. The
table headers indicate the phase of the experiments, the one phase being before test generation
the other being after test generation. The first column contains the number of generated test
cases (Gen). Then, the columns contain the coverage statistics, which include Class coverage
(Cl), Method coverage (Me), Branch coverage (Br), and Line coverage (Ln). The next col-
umn indicates the number of symbolic states that are redundantly hit during testing (RH),
while the last column contains the test redundancy statistics (TR), as before, indicating the
percentage of states, hit during testing, that were already hit, i.e., redundant.

methods. The coverage calculation results indicate these uncovered branches in the SET, and

tests are generated for each uncovered branch. The resulting test suite fully covers all the

branches of the application.

There are still a number of uncovered lines in the application, however these are in the main

method, which has a String array input parameter, that is not supported by the current test

generation engine.

Notably, a reduction in test redundancy is detected, while an increase in the number of

redundantly hit symbolic states is observed. This indicates that the resulting test suite does

generate some redundant tests, but an overall net gain is observed.
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Conclusion

This thesis investigated the practical applicability of using the static analysis formal method

known as symbolic execution, to calculate code coverage of an existing JUnit regression test

suite. The goal of this investigation was to determine whether this information could be used

to generate thorough and efficient regression test suites, by automatically generating JUnit test

cases for areas of a program currently not covered by its regression test suite. To achieve this

goal, a tool named ATCO was implemented. ATCO is an acronym compiled from Automated

Test Coverage Calculation and GeneratiOn.

ATCO has shown that coverage calculation could be performed with symbolic execution.

The symbolic execution information, stored in a Symbolic Execution Tree (SET ), represented

each method as a symbolic model of all its execution paths. With the SET, code coverage

of various common testing requirements, such as class coverage, method coverage, branch

coverage, and line coverage, could be measured accurately for methods with primitive data

types and branching conditions. The use of the SET, together with execution tracing, used to

measure the coverage, also allowed for an uncommon testing requirement, i.e., loop coverage,

to be measured accurately. However, coverage cannot currently be calculated for non-primitive

data types, such as Objects and arrays, because the current symbolic execution engine does not

support non-primitive data types. When ATCO, while executing a test, reaches a branch with

a condition that includes non-primitive data types, and the branch is represented by more than

one symbolic state, the current symbolic execution engine cannot be used to identify which of

these symbolic states was actually hit. In such cases, none of the states are marked as hit, even

though the branch was actually hit.

91
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One of the objectives was to use concurrency to reduce the time it takes to execute the

coverage calculation phase. This is because constraint solving is an expensive computation.

Constraint solving is used to determine which symbolic state is hit during testing, by solving

the constraints on the path condition of the symbolic state, with the input parameters of the

method, received during testing. If the input parameter values satisfy the path conditions of

a symbolic state, that state may be marked as hit. ATCO was designed to perform coverage

calculation concurrently, by executing each JUnit test case in its own concurrent thread. The

results have shown significant performance gains with this concurrent design, indicating up to

a 54% reduction in execution time. However, a bottleneck could be observed with this design,

as the maximum performance gain is restricted by the execution time of the longest running

test case. A solution to the bottleneck was proposed, but never implemented in this thesis.

Together with the concurrent design, further attempts to optimise the execution of coverage

calculation included reducing the number of constraint solving operations, required to measure

coverage. The first step was to only perform constraint solving if a branch has more than

one symbolic state representing it, as in the case of nested or sequential if statements in a

method. The second step was to ignore a symbolic state if it was previously marked as covered.

Therefore, constraint solving would only be performed on a symbolic state if there was more

than one symbolic state representing a branch, and if the state has not already been hit. These

two steps yield significant decreases in constraint solving operations, in some cases reducing

the number of operations from 269694 to 26, while still yielding identical coverage results to

the case where constraint solving is always performed. However, this eliminates the ability

to indicate how many times each symbolic state is hit during testing. Since this information

is useful for other features, this constraint solving reduction can be activated or deactivated.

Knowledge of how many times each state was hit during testing could be used to perform test

redundancy detection.

Test redundancy detection was implemented to improve the efficiency of the regression test

suite by identifying the level of redundancy of the current regression test suite. It is used to

indicate how many of the symbolic states, hit during testing, were hit redundantly. This could

be used to determine if there are tests in the regression test suite that do not test any new

areas of the program. Identifying these test cases, and removing them from the suite, improves

the efficiency of a test suite.
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One of the main aims of this thesis was to automatically generate JUnit test cases for the

areas of a program, not being tested by the current regression test suite. The current test

generation engine, still under development at the time, has limited functionality, and thus, the

experiments to evaluate this feature was very basic. However, the experiments indicated that

the SET and the coverage information could be used to accurately identify areas that are not

covered, and tests could be effectively generated for only those areas. This information ensures

that all the generated tests hit at least one previously uncovered state, during testing.

To improve the usability of ATCO, it was integrated into Eclipse as a plug-in, utilising the

graphical user interface (GUI ) extensions, provided by Eclipse. This showed many usability

improvements, provided by Eclipse, that analysis tools can use to encourage developers to use

such tools. These usability improvements include easy file and test selection, configuration

menus, persistent configurations that remain after Eclipse is closed and re-opened, and list

views to display coverage results. All these improvements make such a tool easier to use,

configure, and display the results in an easy-to-view format.

5.1 Future Work

This thesis provides a number of avenues for future development. These avenues include:

• The symbolic execution engine and test generation engine, used in this thesis, currently

only supports primitive data types. An important avenue of future work is to extend

the symbolic execution engine, and test generation engine, to include support for non-

primitive data types.

• ATCO executes in three distinct phases. This requires all the information of each phase

to be stored, which greatly increases the resource requirements of the tool. Future de-

velopments may involve finding efficient methods of reducing the resource requirements,

without significantly increasing execution times, by having the three phases interact more

closely.

• This thesis used run-time information collection, in the form of execution tracing to

measure coverage. However, as discussed in this thesis, there are other methods available

to measure coverage. These are source code instrumentation, and intermediate code
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instrumentation. Experimenting with various methods of coverage calculation may yield

interesting results, with regards to execution times.

• This thesis performs its analysis from Java byte code. This reduces the complexity of

the code to analyse. However, useful information such as the actual Java source code

statements, are hidden from the analysis tool. This prevents ATCO from measuring other

forms of coverage criteria, such as assertion coverage. An avenue of future development

involves extending the current implementation of ATCO to perform its analysis directly

from the Java source code.

• The JUnit test cases currently generated by ATCO only attempt to reach the symbolic

state. An avenue of future development would be to extend the test generation in ATCO

to evaluate the values returned from the invoked methods. These returned values may

then be used to generate assertion statements for use in the JUnit test cases. This

will allow for fully usable regression test suites, complete with assertions for the current

functionality of an application, to be generated automatically.

• The monitoring of a manual execution with ATCO currently only aims to measure code

coverage of that execution. However, there is sufficient information in the SET, and

additional information may be collected during execution tracing, to generate JUnit test

cases that mirror the behaviour, exhibited during manual execution. Possible research in

future may involve studying the effectiveness of generating such tests. This may enable

users unfamiliar with the JUnit test framework, and, in fact, the Java programming

language, to generate JUnit test cases, by simply testing the program manually.
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