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Automated defect analysis in electron microscopic images
Wei Li 1, Kevin G. Field2 and Dane Morgan 1

Electron microscopy and defect analysis are a cornerstone of materials science, as they offer detailed insights on the microstructure

and performance of a wide range of materials and material systems. Building a robust and flexible platform for automated defect

recognition and classification in electron microscopy will result in the completion of analysis orders of magnitude faster after

images are recorded, or even online during image acquisition. Automated analysis has the potential to be significantly more

efficient, accurate, and repeatable than human analysis, and it can scale with the increasingly important methods of automated

data generation. Herein, an automated recognition tool is developed based on a computer vison–based approach; it sequentially

applies a cascade object detector, convolutional neural network, and local image analysis methods. We demonstrate that the

automated tool performs as well as or better than manual human detection in terms of recall and precision and achieves

quantitative image/defect analysis metrics close to the human average. The proposed approach works for images of varying

contrast, brightness, and magnification. These promising results suggest that this and similar approaches are worth exploring for

detecting multiple defect types and have the potential to locate, classify, and measure quantitative features for a range of defect

types, materials, and electron microscopic techniques.
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INTRODUCTION

Electron microscopy is one of the most important methods for
studying the structural and morphological properties of materials
from the micrometer to the angstrom scale. Electron microscopic
images provide researchers rich information on both repeated
structural units (e.g., unit cells of crystals) and defected regions
(e.g., grain boundary, impurities, defect clusters) by showing the
responses of electrons interacting with the material. In this work,
we focused on a particular but widely used application of electron
microscopy, which is analyzing the locations and sizes of defects
of metal alloys under irradiation.1 While we focused on defects
from radiation damage, the tools developed herein could be
readily modified to assess many types of features in microscopic
images, from counting nanoparticles to identifying line
dislocations.
Irradiation damage in materials for nuclear applications greatly

affects the durability of existing nuclear reactor facilities and
advanced reactor designs. Understanding the effects of irradiation
on materials properties and performance is critical to safe and
reliable nuclear reactor operation. Study of irradiation damage
processes and mechanisms, as well as testing of new nuclear
materials, requires several series of experiments with irradiated
materials and repetitive data generation using electron micro-
scopy. The repetitive generation of microstructure images is
needed to obtain statistically significant information on the total
number and distribution of different types of preexisting and
radiation-induced/-enhanced defects, such as grain boundaries,
precipitates, dislocation lines and loops, stacking fault tetrahedral,
voids, bubbles, and “black-spot” defects.1,2

Manually identifying defects and counting the relevant proper-
ties to obtain statistically accurate values has four major issues. (1)
Manual identification can be time-consuming, especially for a
large data set of microscopy images (e.g., >25–50 images),

requiring typically anywhere from just a few minutes to about
an hour per image. (2) Manual identification is error prone, as it is
easy to miss a defect or identify one incorrectly. (3) Manual
identification lacks consistency and reproducibility. Analysis can
be significantly impacted by the human bias and training of a
given researcher, making it difficult to compare results across
groups or determine absolute behavior. (4) Manual identification
does not scale well. New high-speed detectors have enabled
electron microscopes to take from tens up to thousands of images
per second,3 and automated sample exploration might generate
data sets with thousands or millions of images. Even at just
minutes per image, automated analysis is essential to take
advantage of these emerging and inevitably increasing data
generation capabilities. The development of image analysis tool
for defect detection could reduce the time required for analysis to
almost zero; provide accurate, consistent, and unbiased results;
and scale approximately linearly with available computational
resources.
Early image recognition system(s) mainly used scale-invariant

feature transform,4 binary feature histogram,5 and histogram of
oriented gradients (HOGs)6 to extract the image features and then
entered these image features into a classifier. In recent years, there
has been continuing development of the computer vision field
and a series of successes in achieving human accuracy in various
image recognition tasks.7–12 One of the more successful
approaches was developed by Paul Viola and Michael Jones,
who proposed a fast object detection structure known as the
“cascade object detector for face detection” application.8,13 More
recently, convolutional neural networks (CNNs)14 have emerged as
a very powerful approach to image recognition tasks.15–17 A CNN
—a kind of artificial neural network that operates convolution
directly on raw pixel intensity data—consists of several repeating
layers of convolution, nonlinearity, and pooling, followed by fully
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connected layers.18 CNN is a rapidly developing field, and new
CNN structures are still being proposed.17,19–23

Recent advances in computer vision and machine learning (ML)
have been introduced into the electron microscopic field for
image analysis, such as detection and segmentation in medical
images,24–26 unsupervised statistical representation of microstruc-
ture images,27 clustering or classification in various materials
images,28–30 chemical identification and local transformation
tracking at the atomic level in scanning transmission electron
microscopic (STEM) images,31 and analysis of electron diffraction
patterns.32 To our knowledge, there is very limited published
research work on using computer vision or deep learning
approaches to recognize locations and extract quantitative
information for nanoscale and mesoscale defects in microscopic
images. Ziatdinov et al.31 recently reported their work on using
deep learning to detect location of the atomic species and type of
lattice defects for atomically resolved images, but their approach
did not detect defects at a larger scale (>1 nm) or extract
quantitative shape or contour information of the defects. There
exist two main challenges to detecting defect structures in
microscopic images: (1) the lack of sufficient annotated micro-
graphs for training and (2) the difficulty of extracting an accurate
defect contour in an automated way. With respect to the first
issue, we have used a fairy large manually labeled database
combined with image augmentation approaches, but we note
that direct simulation of TEM images could provide much larger

data sets, although they would not be from physical material
measurements. With respect to the second issue, existing image
analysis tools, like edge extraction and/or Hough transform, often
involve manual adjustments of image contrast or brightness,
multiple parameter inputs, and slow image processing speeds.
Current ML approaches recognize objects in the image accurately
but do not have mechanisms for extracting quantitative defect
structure and defect distribution information, such as defect
dimensions and areal number density.
Herein an approach is developed for automated defect

detection and analysis that breaks the task into three stages. We
applied different computer vision techniques in each stage and
thereby achieved the combined advantages of several methods.
Figure 1 portrays the essential steps involved in the automated
detection workflow: (1) detection module I with cascade object
detector; (2) screening module II with CNN; (3) and analysis
module III with two local image analysis methods—a watershed
flood algorithm to find the defect contour and a region property
analysis to obtain size information for the defect contour.

RESULTS

Microstructural images of irradiated steels typically contain several
prominent types of defects: open circular/elliptical loops with
matrices inside, closed circular/elliptical solid loops, and line
dislocations. Micrographic images can have various contrast,

Fig. 1 Schematic flow chart of the proposed automated detection approach. Input micrographic images go through the pipeline of module I
—Cascade Object Detector, module II—CNN Screening, and module III—Local Image Analysis. After module I, the loop locations and
bounding boxes are identified and then further refined to remove false positives using module II. Then module III determines the loop shape
and size

Fig. 2 Selected bright-field scanning transmission electron microscopy (STEM) image of ferritic alloys showing the common defect types: (1,
2) closed circular/elliptical solid loops, (3) open ellipse loops, (4) open circular loops, and (5) line dislocation segments. Open ellipse loops (3)
were selected for automated detection. Image size: 1024 × 1024 pixels; insets scaled arbitrarily
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brightness, and degrees of focus (sharpness) and sometimes
contain different types of defects that might distract from one
another. Figure 2 shows a sample micrographic image obtained
from a ferritic alloy irradiated in materials test reactor to introduce
various defect sizes and number densities. Among all types of
defects in electron microscopic images, open elliptical loop defect
detection, inset 3 in Fig. 2, is a particularly challenging task. Here
we define an open elliptical loop, which is a a/2〈111〉 dislocation
loop for the studied material, as a defect with white–black–white
contrast across a loop segment and shows notable reduced pixel
intensity within the interior of the defect. A perfect closed ellipse
is not essential, partial loops are also defined as open ellipse loops
as these truncate the free surface of the specimen. At reduced
loop sizes—typically <10 nm, the distinction between open
ellipitical loops and black dots, inset 1 in Fig. 2, becomes
ambiguous and open to interpretation. Here, as discussed in
detail later, we use the expertise of two seasoned researchers to
limit ambiguous distinctions in the definition of open elliptical
loops within the training data sets. Open circular loops that are in-
plane a 〈100〉 loops, inset 4 in Fig. 2, are easily distinguishable as
they exhibit distinct white–black–white–black–white contrast
across a singular section of the loop.
Open elliptical loops have the disadvantages of limited effective

information (only pixels on or near the loop contour are useful
pixels), heavy background noise, blurred patterns, and distracting
patterns (line dislocations, open circular loops, and closed loops).
Therefore, in demonstrating the effectiveness of the automated
defect analysis approach on open elliptical loop defects, we are
demonstrating it on one of the most difficult defect detection
problems in irradiated materials, suggesting the method is likely
to also work on other defect types.

Strategy

Figure 1 shows the steps that are crucial for successfully extracting
and characterizing all the open ellipse-like loop defects in the
micrographic images in Fig. 2, organized by modules. In module I,
we trained a cascade object detector for defect recognition to
enable it to accurately determine bounding boxes that contain a
single loop defect inside. The detector located almost all the
defect positions in the image but was specifically tuned to have a
high false detection error. Tuning for lower false detection errors
caused the detector to miss larger numbers of real loops within
the image. A screening method was added in module II to
effectively decrease the false detection rate. The defect screening
method was fundamentally a binary image classification problem
based on the features of single defect images. The screening
method consisted of a 15-layer CNN, including an image input
layer, three convolutional layers, four nonlinearity layers, and three
pooling layers with two fully connected layers, one softmax layer
and one class-output layer (see Methods section for more
information.).
After running modules I and II, we obtained a list of bounding

boxes that each ideally contained one loop. To extract the loop
shape from the detected bounding boxes in module III, we
adapted a watershed flooding algorithm from the algorithm
introduced by Luc Vincent and Pierre Soille.33 The watershed
algorithm is an image segmentation method based on an
immersion process analogy, in which the flooding of the water
in a picture is efficiently simulated using a queue of pixels. We
implemented our own watershed flood algorithm specifically for
microstructure loop defects and achieved high accuracy for
extracting defect edges, regardless of the original image bright-
ness and contrast. We also included region property analysis,
using the Matlab regionprops tool,34 in module III to fit the
extracted loop shape with an ellipse to obtain the shape metrics of
loops, such as length of the long axis and orientation of the loop.
Through the pipeline of all three modules, we managed to identify

loops and extract the interested loop shape information in an
automated way with minimal tunable parameters.

Data preparation and augmentation

We collected a data set of 298 micrographic images with a human
count of 9566 total loop defects, which consisted of several ferritic
alloys irradiated under varying experimental conditions to
introduce various defect sizes and number densities. All images
were generated using the on-zone STEM imaging technique,
which reduces background variations and increases signal-to-
noise ratios35 (see Methods section for more information). The
data set was split into a training set and a test set at a fixed 9:1
ratio. The test set was selected at random from the complete
image library. Note that there is no method of judging absolutely
rigorously whether a pattern is a loop, and different researchers
can disagree regarding ambiguous patterns. However, to assess
performance we must set some “ground truth” labeling as the true
correct labeling. Therefore, both the training and test data sets
were manually labeled by two researchers experienced in loop
labeling who worked together; and the labeling in the test data
set was revisited multiple times by the two researchers in an
attempt to ensure correct labels. The agreed-upon labeling from
these two researchers served as the ground truth for testing the
performance of the automated detection model. After data set
splitting, we obtained a training set of 270 images and test set of
28 images, containing 8424 and 1142 human-identified loops,
respectively. The training data set of micrograph images was
augmented to a total of 1605 images (39,596 human-identified
loops) using rotating and mirroring operations on images. Image
augmentation can provide more training instances for the model
and make the model invariant to rotated or flipped image inputs.
The image augmentation improved the overall performance of the
cascade object detector by both adding more training examples
and enabling the cascade object detector to use more stages.18,36

We also collected a data set of about 500 micrographic images
without loop defects to serve as negative images for the computer
vision model. Images were either collected using the same
electron microscopic technique as the positive images or
generated from positive images on which loop areas were
covered by patches. The patches were cropped and rotated/
flipped from nearby regions around the loop areas. The function
of negative images is to provide negative instances to train the
model in identifying non-loop regions. The negative images were
augmented to >15,000 images by rotating, resizing, and mirroring
operations.

Evaluation metrics on detection accuracy

To evaluate the performance of the automated defect analysis
approach, as well as the accuracy of each module chained in the
approach, we used two sets of evaluation metrics: (1) recall and
precision metrics37 to define the capability to find correct
positions of the loop defects inside the image; and (2) defect
size distribution metrics, including the total number of defects in
the image, the average diameter (length of the major axis) of the
loop defects in the image, and the standard deviation of the
diameters of the loop defects in the image. These metrics were
used to define the capability to correctly gather statistical
information on loops in the image, which will eventually be used
for materials characterization and analysis. Recall is defined as the
percentage of correct predictions in all human-labeled loop
positions. Precision is defined as the percentage of correct
predictions in all the machine-labeled positions. A loop position
was given according to the center of the loop bounding box, and
agreement was considered to be obtained if two values were ≤20
pixels apart in both the X and Y directions. This value allows for the
fact that there is some uncertainty in loop positions of the ground
truth. The value is about 2% in each direction of the total image
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grid sizes of 1024 × 1024 pixels. Twenty pixels roughly equated to
2.84–9.48 nm within the images, so this metric required nan-
ometer precision for the loop predictions. Overall, recall measures
how well the machine can avoid missing human-labeled loops,
and precision measures how well the machine can avoid giving
false identifications (marking a non-loop pattern as a loop defect).
Because modules I and II provided the loop positions as output,
they were each evaluated by the first set of recall and precision
metrics. Because module III provided the actual defect size
distributions, it was evaluated using the second set of defect size
distribution metrics. The overall performance of the automated
defect analysis approach was the combination of the recall and
the precision from the combined modules I and II and the image
analysis results from module III.

Cascade object detector

The cascade object detector used cascading to assemble multiple
stages of classifiers, using all information collected from the
output from a given classifier as additional information for the
next classifier in the cascade. The training of the cascade object
detector involved feeding the detector with a set of images with
loops and the corresponding bounding box coordinates, as well as
a set of images with no loops as negative examples. After the
detector is trained, it can be applied to an image and detect the
loops in the image. To search for loop defects in the entire frame,
search windows of various sizes can be moved across the image
and check every location for the detector. The examined windows
that successfully pass through all stages in the cascade object
detector are then output as the detected loops in the image.
A 40-stage cascade object detector was trained on the

augmented image training data set of 1605 images. After training,
the cascade object detector was applied to the non-augmented
test image set of 28 images. The average recall of all the images in
the test set was 0.904, and the average precision of all the test
images was 0.639. These results indicated that, on average, 90% of
the loops in each image were detected, and 64% of the detected
loops were also identified as loops by manual labeling by a human
researcher. These data are included in the summary shown in
Table 1.

CNN screening

A 15-layer CNN was added after the cascade object detector. The
CNN screening improved the precision of the loop recognition
and added the flexibility of tuning the precision and recall score of
the detector. To train a CNN for loop/non-loop image classifica-
tion, we constructed a CNN training set of cropped images with/
without a loop inside by applying the cascade object detector on
the augmented training data set. We built a CNN consisting of an
input layer, three convolution layers, four nonlinearity layers, three

maximum pooling layers, two fully connected layers, one softmax
layer, and one class-output layer. The convolution layer is a feature
extraction layer that uses various kernels to convolve the whole
image, as well as the former feature map to get new features.
Nonlinearity layers decide how the extracted features can be
passed to the next layer, and pooling layers reduce the feature
dimension by down-sampling the features extracted by convolu-
tional layers. The unique advantage of CNN compared with other
machine-learning-based methods lies in its effective feature
extraction due to sparse connectivity and shared local weights,
which both reduces the memory requirements of the model and
improves its statistical efficiency.18

To test the effectiveness of the CNN, we first collected all the
bounding boxes produced by the cascade object detector on the
test image set. Each bounding box was considered to contain one
loop defect, as predicted by the detector. Each candidate box was
then fed into the CNN to determine whether it was a true loop or
false loop. The CNN screening greatly improved the performance
of the cascade object detector by adding an additional screening
stage with a more powerful self-learned feature representation
compared with the local binary pattern (LBP) used by the cascade
object detector. The chained approach using the cascade object
detector and CNN on the 28 test images resulted in an average
recall of 0.858 and an average precision of 0.865. These results are
summarized in Table 1. With CNN screening added to the cascade
object detector, we improved the average precision from 0.639 to
0.865, with only a small sacrifice in average recall from 0.904 to
0.858.

Defect extraction and comparison with human average

After loop detection and screening with modules I and II, in
module III, we extracted the loop edge and shape information
using a watershed flood algorithm and region property analysis,34

respectively. The watershed flood algorithm was modified in this
work for loop edge extraction and was intended to work for every
image with a single loop inside, regardless of image-to-image
variations in brightness, contrast, and noise level. The modified
flood algorithm worked in four steps: (1) find the centroid position
of the loop and set it as the inside region; (2) set the edges of the
bounding box as the outside region; (3) gradually and separately
increase the pixel intensity value threshold and expand the inside
and outside regions by adding neighboring pixels with pixel
intensity below the threshold; and (4) mark the meeting point of
the inside and outside regions as the loop edge. For region
property analysis, we used connected component analysis
(grouping image pixels into components based on pixel
connectivity)38 to obtain the loop region and measure loop shape
information such as centroid point and major/minor axis length, as
well as the angle between the major axis and the image x axis. The
region property functions “regionprops”34 were used directly from
the image processing toolbox in Matlab for the connected
component analysis.
To evaluate the accuracy of loop shape information results, we

compared the human analysis result and machine recognition
result for loop density, mean major axis length of loop defects,
and standard deviation of the major axis length. To assess the
impact of ambiguous defects that might be either loops or not
loops and of human labeling mistakes, we selected six represen-
tative images from the test image set and collected the labels
assigned to the six images by five seasoned experts (>5 years in
the field) working in the field of characterization of radiation
damage. All five researchers were given standard training in loop
labeling, using the same common image analysis software for
electron microscopic images (ImageJ39) through the same tutorial
video (see Supplementary information Section II). For the defect
size distribution metrics comparison, we collected the number of
loops, mean major axis length, and standard deviation of major

Table 1. Summary of recognition accuracy of loop position evaluated

using precision and recall metrics

Module Test set of 28 images
(complete)

Test set of 6 images
(selected)

Recall Precision Recall Precision

Module I 0.904 0.639 — —

Modules I and II 0.858 0.865 0.842 0.837

Human average — — 0.804 0.790

The test set of 28 images indicates the complete test data set, and the test

set of 6 images consists of 6 representative images selected from the

complete test set that are used for comparison of machine labeling and

human labeling. “Human average” represents the average performance of

five researchers (discussed later in this section)
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axis from all the research labeling and the machine labeling for
each image. For the recall and precision metrics, we compared all
the human labeling and machine labeling with the ground truth,
which was generated by two experienced researchers in loop
labeling (see the “Data preparation and augmentation” section).
Note that these two researchers were not in the group of five
researchers who generated the human comparison; thus these
two researchers were not used in assessing recall and precision vs.
the ground truth, as their assessments were used to determine the
ground truth.
Figure 3 shows the comparison of defect size distribution

metrics analyzed by five researchers and by our automated
program. Figure 4 shows the defects recognized by the

automated program on the six images selected from among the
test images and used for the human/machine comparison. We can
see that overall the machine did an excellent job of determining a
total loop number similar to that provided by human labeling. For
mean diameter, the automated defect detection algorithm also
showed excellent agreement with the human labeling, except
perhaps in images 3 and 4. The automated defect detection
algorithm obtained a slightly lower value in image 3, as it made an
error and missed a very large loop with a high aspect ratio.
The reason that the program missed the large loop could be

inadequate training instances of large loops with high aspect
ratios, as this type of defect is uncommon in the provided
micrographic images. While more image augmentation targeted
at larger loops could potentially reduce this error, we believe
further optimization is better left to a future study that also
explores additional methods, multiple defects, and larger and
more varied input data sets (e.g., from multiple instruments and
materials). The algorithm obtained a slightly lower value in image
4 because the machine tends to give more loop predictions for
this type of dark, blurred image, and usually these loops have
smaller diameters than the average.
To obtain more detailed understanding in how errors in

predictions correlate with test image characteristics, we evaluated
the automated model recall and precision score for loop defects
with varying brightness, contrast, and loop size. The analysis
revealed that there was no direct correlation of model perfor-
mance with the variables. The model performance was rather
highly influenced by the frequency of loops in the data set, i.e., the
more frequent a certain type of loops appears (e.g. loops of typical
brightness) in the data set, the better the automated model
performs for that type. Figures with recall and precision scores as a
function of different image characteristics for the test images are
provided in the Supplemental Information (SI) Section I. Another
possible source of error is the overlapping loops. The automated
model gets correct identification for small overlaps or closely
touching loops that we have in the test data set (see some loops
in Fig. 4b(2) and Fig. 4b(4)). However, we can also see that the
automated model can experience systematic issues with large
overlaps of loop defects. Large overlapped loops are rare in our
data set but we do find that our model was only able to identify
one of the large overlapped loops in some examples we
considered (See one example in Fig. 4b(5)).
The machine also was in very good agreement with human

labeling for standard deviation, again except perhaps for image 3.
The error in the standard deviation for image 3 determined using
the algorithm can be explained in the same way as the observed
issue in diameter for image 4—there were few large, outlier loop
sizes. Although these discrepancies suggest ways to improve the
machine labeling, the predictions from the model were approxi-
mately within the range for the distribution of the five human
predictions for every case except the loop diameter for image 3.
These results demonstrate the capability of the model to obtain
reasonable results regarding loop shape properties over a wide
range of images.
Figure 5 compares the recall, precision, and time efficiency of

the labeling from the five researchers and the machine compared
with the ground truth labeling (see “Data preparation and
augmentation” section). The average recall of the five researchers
over six images was 0.804 (±0.029) (parentheses represent one
standard deviation from the mean), and the average precision of
researchers was 0.790 (±0.023). The average recall of the machine
was 0.842 (±0.054) and the average precision of the machine was
0.837 (±0.031). These larger values for recall and precision for
machine vs. human demonstrate that the machine had higher
performance than the human average on the six-image test set.
The success of the machine performance vs. human performance
clearly demonstrated the high quality of the machine model vs.
the ground truth, and it also demonstrated the limitations of

Fig. 3 Comparison of amean loop diameter, b standard deviation of
mean loop diameter, and c number of loops derived from both the
human and machine labeling. Data are from domain expert
researchers (open circles), the ground truth labeling developed by
the authors (blue diamonds), and the automated machine labeling
(red rectangles). The image number corresponds to the image
number in Fig. 4

Automated defect analysis in electron microscopic images

W Li et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2018)  36 



Fig. 4 a Images selected from the complete test set. The selected images were also analyzed by five researchers for the comparison with
machine labeling. b Fitted ellipse labeled by the automated machine learning program on the six selected test images. Image size: 1024 ×
1024 pixels for all images except image 4, 2048 × 2048 pixels for image 4
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human assessment. Specifically, different researchers have large
discrepancies in defect labeling. A major cause of this discrepancy
is likely that researchers differ in how they analyze ambiguous
loops and given researchers might have differed in the way they
treated ambiguous loops in the ground truth labeling. Based on
Fig. 5c, the average time for detection for the researchers is 2440
(±555) s, and the average time for detection for the ML approach
is 27 (±1) s, >80 times faster than human labeling (values in
parentheses represent the standard deviations of the times).
Machine labeling can be further accelerated by allowing more
central processing unit (CPU) and graphics processing unit (GPU)
cores to compute in parallel. The comparisons in Figs. 3 and 5
prove that automated image analysis can perform comparably to
the human average. The comparison also indicates that the
automated machine tool provides more consistent analysis results
—reliable, reproducible results across different sets of micro-
graphs, microscopes, and research facilities—compared with the

large human variability in labeling test images for which the
microscopic technique and research facility were held constant.
Furthermore, while this test is not definitive regarding the relative
accuracy of the automated vs. manual labeling, it does show how
the ML approach can be trained to represent the skills of the most
experienced researchers. With careful training, this characteristic
can be a significant advantage over manual labeling, especially for
beginners within the field.

DISCUSSION

This study demonstrated and evaluated an automated approach
to dislocation loop defect detection using contemporary ML,
computer vision, and image analysis techniques. The developed
approach achieved similar performance to the human average
across the same data set. Our results indicate that computer vision
techniques are very promising for microscopic image analysis to
replace human labor and produce standard analysis output.
Developing automated image analysis techniques could greatly
reduce human labor and time in labeling images and reduce
variability compared with human labeling, both of which would
benefit the microscopic community.
The current model was trained with only a limited number of

micrographic images, and the performance could be further
improved by supplying more well-annotated images. We can also
envision that the automated model can become more robust to
systematic issues when trained with more micrographs of various
brightness, contrast, focus, and defect size scales produced by
different researchers for a range of materials, instruments, and
imaging modes. We note that the model has only been trained on
one material and evaluated on the same material. For materials
with similar looking micrographs, we would expect good
performance of the model. But for materials that have defects
that look similar to loops in some way, e.g., extensive background
dislocations, or that have very different environments (e.g., many
overlapping black dots or precipitates on the loops), the model
might give very poor results. However, we expect that, as models
like this are further developed and exposed to orders of
magnitude more data, transferability to new materials, micro-
scopes, irradiation conditions, etc., will be very robust.
The current model was developed using only a single CPU and

GPU. Increased CPU/GPU performance and parallel image proces-
sing could further accelerate the speed. Speeds could potentially
be increased sufficiently to allow real-time image recognition,
which could be embedded in the electron microscopic system and
provide in situ analysis directly on the monitor screen. Such a
system would enable researchers to adjust their characterizations
in real time in response to the data. Although our approach was
primarily built for loop defect recognition, creating new models to
detect other types of defects or patterns in micrographic images is
worth exploring if micrographic images containing those types of
defects can be obtained experimentally or simulated with high
fidelity. We propose that an online system in which any researcher
can contribute annotated images for training the model could be
an effective way to develop such models. We envision that
automated image recognition can dramatically change the current
microscopic characterization workflow by allowing orders of
magnitude more images to be fully analyzed automatically and
nearly instantly.

METHODS

Data set collection

Data set collection was completed as part of a large-scale effort to
characterize iron–chromium–aluminum (FeCrAl) materials neutron-
irradiated within the High Flux Isotope Reactor at Oak Ridge National
Laboratory. The date set comprises a series of published40–43 and
unpublished data. Collection was completed over 3 years and spans a

Fig. 5 Comparison of a recall, b precision, and c time efficiency of
both the human and machine labeling. The image number
corresponds to the image number in Fig. 4
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range of different FeCrAl alloys, including model, commercial, and
engineering-grade alloys irradiated to light water reactor–relevant condi-
tions (e.g., <15 displacements per atom and temperatures of nominally
285–320 °C).
All images were generated from focused ion beam–prepared samples

with thickness in the range of 40–175 nm and imaged using a JEOL JEM-
2100F field emission gun STEM (FEG-STEM) operating at 200 kV. Similar
imaging has been completed using other FEG-STEM instruments but was
not included in the database. Various techniques can image the elliptical
loops that were of interest in this study, including two-beam and weak-
beam dark-field imaging,1,44 but these more conventional techniques are
prone to background variation due to elastic contrast. To quickly and
rapidly provide images with thousands of dislocation loops over large
areas (>1–5microns) over a wide range of magnifications (100–500k×), the
on-zone STEM imaging technique was applied.35,45 All images within the
data set were collected by imaging down the [100] zone axis, which
allowed radiation-induced defects with a Burgers vector of a/2 〈111〉 to be
imaged as ellipses in the two-dimensional projection of the volume.46 All
images were taken using the bright-field detector, resulting in defects
appearing as black foreground on a white background. Images were taken
with varying magnification, detector resolution, and pixel dwell time to
limit instrument biasing into the data set. Negative images were taken in
the same manner on unirradiated reference samples.

Data set preparation

For the data set used to train the cascade object detector, we used an
open-source software called ImageJ39 to manually annotate the positions
of loop defects on the microscopic images. We generated labeled files
containing the bounding boxes of loops for each corresponding image. For
the data set used to train the CNN, we applied the cascade object detector
to the micrograph images in the augmented training set and compared
the detector predictions with ground truth labeling. Each micrograph
image had 10–200 loops inside. We grouped the correct predictions as a
set of cropped images with loops and grouped the false predictions as a
set of cropped images without loops. The CNN training set had 60,000
images of 64 × 64 pixels in total, among which 30,000 images contained
loops and 30,000 images contained no loops. Typically, a CNN can take
images with red, blue, and green channels through an input layer of width
by height by number of channels. Here, as our microscopic images was
gray-scale (only one channel of intensity), we provided more information
to the CNN by adding two more layers to each image—an increased-
contrast image with 8% pixel intensity saturated to maximum/minimum
and a Gaussian blurred image. Thus the size of each image was 64 × 64 × 3.
The purpose of adding two more layers in each image was to provide more
information regarding various contrast levels or blurring.

Model training

The cascade object detector used integral image representation for fast
feature extraction16 from original images, and it trained simple and
efficient classifiers using the adaptive boosting (AdaBoost) method8 to
select a small number of important features. Successively, more complex
classifiers were then combined in a cascade structure, which dramatically
increased the detection speed by focusing attention on promising regions
of the image. For the feature extraction method, the LBP47 was used as the
feature type to encode local edge information into feature vectors. The LBP
feature was selected as a compromise between training time and detector
performance, compared with the slower Haar16 and faster and less
accurate HOG6 feature extraction methods. We trained a 40-stage cascade
object detector with the augmented training set and negative images. We
set the maximum false positive rate to 0.3 and the minimum true positive
rate to 0.997 to make the overall true positive prediction as high as
possible and obtain fair precision performance. We used the cascade
object detector training function provided by Matlab computer vision
toolbox.48 The detector training time grew with the number of images in
the data set. With the augmented training data set, we trained the 40-
stage cascade object detector on a 6-core Intel Xeon E5-1650 CPU for
about 6 days.
The CNN was trained within the deep learning package from Matlab. We

trained the network on a single GTX 1070 GPU. We constructed our own
neural network structure based on Matlab’s deep learning tutorial.49 We
tuned our network structure by varying the number of layers, size, and
stride of filters in each layer, the number of maxpool layers, and the size of
fully connected layers to find the best model for micrographic screening

purpose. We determined the final CNN structure by the performance on
the validation set. We constructed our CNN as one input, three
convolution, four nonlinear, three maximum pooling, two fully connected
layers, one softmax layer, and one class-output layer. The size of the image
input layer was 64 × 64 × 3 with zero center normalization, followed by
convolution layers containing 64 filters with size of 10 × 10 × 3, stride [1 1],
and padding [2 2]. We used the ReLu (rectified linear unit) function to
provide nonlinearity after convolution layer, and we applied maximum
pooling with a filter size of 3 × 3 and a stride of [2 2] and padding [0 0] after
ReLu layer. We repeated the block of convolution, ReLu, and maximum
polling layers twice. The filter size, stride, and padding for each repeated
layer were the same as the corresponding layer in the first block, except
the next convolution layer contained 64 filters with size of 10 × 10 × 64 and
the last convolution layer contained 128 filters with the size of 10 × 10 × 64.
After three blocks of convolution–ReLu–MaxPool layers, we used a fully
connected layer of 64 nodes followed by a ReLu layer and another fully
connected layer of 2 nodes as the classification layer with the classes of
loop and non-loop. For the final output node, we used the softmax
function to give the output category for each input image. We trained the
CNN on the CNN training set generated using the 40-stage cascade object
detector. We started training the CNN initialized with randomly assigned
weights, and data were fed into the CNN in a mini-batch size of 128. The
cross-entropy loss for binary classification was optimized with Stochastic
Gradient Descent with Momentum as the optimizer, with the momentum
set to 0.9 and L2 Regularization set to 0.08. The initial learning rate is 0.001
with the learning rate drop factor of 0.05 and learning rate drop period is 8.
Considering human mistakes in the training set labeling, we set the
training accuracy stop threshold to 0.95 to avoid over-fitting. The total
training finished in 5 h on a Nvidia GTX1070 GPU.

Data availability

The data of training images and the source code that support the findings
of this study are available in Materials Data Facility with the identifier
doi:10.18126/M2692Z.50 The source code is also available on Github
(https://github.com/uw-cmg/MATLAB-loop-detection).
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