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Abstract— As contemporary VLSI designs grow in complexity,
design debugging has rapidly established itself as one of the
largest bottlenecks in the design cycle today. Automated debug
solutions such as those based on Boolean Satisfiability (SAT)
enable engineers to reduce the debug effort by localizing possible
error sources in the design. Unfortunately, adaptation of these
techniques to industrial designs is still limited by the performance
and capacity of the underlying engines. This paper presents a
novel formulation of the debugging problem using MaxSat to
improve the performance and applicability of automated debug-
gers. Our technique not only identifies errors in the design but
also indicates when the bug is excited in the error trace. MaxSat
allows for a simpler formulation of the debugging problem, re-
ducing the problem size by 80% compared to a conventional SAT-
based technique. Empirical results demonstrate the effectiveness
of the proposed formulation as run-time improvements of 4.5×

are observed on average. This work introduces two performance
improvements to further reduce the time required to find all
error sources within the design by an order of magnitude.

I. INTRODUCTION

The complexity of digital designs in the semiconductor

industry has increased exponentially over the last few decades.

Even though innovations in design tools and methodologies

have made significant progress in reducing human error, de-

signing a circuit free of functional errors remains a challenge.

Functional verification and debugging tasks have established

themselves as major bottlenecks in the design process, requir-

ing up to 70% of the total design effort [1].

Due to the risk inherent in today’s highly complex design

flows, engineers are increasingly adopting automated design

and verification tools to ensure correctness [2], [3]. However,

once verification fails, localizing and rectifying the erroneous

behavior (debugging) remains a predominantly manual task

lacking sufficient automation. As design complexity increases,

larger design and verification teams and the usage of third

party IP further complicate the debugging task. It is therefore
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not surprising that on average 60% of the verification effort is

spent on debugging [4] and the costs of identifying the root

cause of an error are growing rapidly. Automated debugging

solutions are essential to accelerate these tasks.

Techniques based on simulation [5], path tracing [6], and

Binary Decision Diagrams (BDDs) [7] have been proposed in

literature to enhance the efficiency of error localization and

diagnosis. More recently, the performance of engines based

on Boolean Satisfiability (SAT) [8] have encouraged further

research into formal debugging techniques. The purpose of

these techniques is to automatically identify the source of

functional errors based on constraints specifying the circuit’s

expected behavior.

In the SAT-based debugging approach presented in [8],

design errors are located by first adding correction models

to the circuit implementation. A correction model can be

dedicated hardware that indicates whether a circuit component

can be rectified to correct the circuit. The problem is then

transformed into a Boolean formula in Conjunctive Normal

Form (CNF) and constrained using the expected behavior of

the circuit. Solving the CNF problem using a Boolean SAT

solver implicates a set of suspect error locations which could

be responsible for the error.

Based on the above formulation numerous derivative works

such as [9], [10] and [11] have significantly improved the

performance and scalability of automated debuggers to make

them applicable for industrial designs. However, enhancing

the performance (run-time) and capacity (memory) of these

techniques remain an ongoing challenge. Contemporary de-

buggers still have difficulty handling large industrial designs

and the correction models greatly increase the size of the

CNF problem. Moreover, existing techniques are limited to

identifying where the most likely error locations are in the

design (spatial error locations). They do not determine when

in the error trace the bug occurs (temporal error locations).

Temporal information is very important for diagnosing and

correcting the design [12] as they allow the designer to track

down more easily when in the error trace the error occurs.

In this paper a novel approach to design debugging us-

ing Partial Maximum Satisfiability (Partial MaxSat) is pre-

sented [13], [14]. Similar to SAT problems, Partial MaxSat

problems are Boolean Satisfiability problems expressed in

CNF. However, instead of finding an assignment to a satisfiable

CNF formula, MaxSat solvers find the largest satisfiable subset

of CNF clauses in an unsatisfiable problem. In essence, the

inverse of that subset identifies a set of error locations which

could be responsible for the bug. Our novel formulation
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allows us to identify all errors locations both spatially and

temporally, while significantly reducing the size of CNF prob-

lems compared to SAT-based debugging. Our Partial MaxSat

formulation can improve the performance of debugging while

providing solutions at a finer granularity.

In addition, this paper also proposes two techniques to

improve debugger performance. First, we present a method

to quickly enumerate similar Partial MaxSat solutions based

on results obtained from the solver. These allow us to reduce

the number of solver iterations required to find all solutions.

Next, we show how tuples of related clauses can be grouped

such that they are treated as a single high-level constraint.

These tuples increase the granularity of the solutions and

reduce the search space of the problem, improving run time.

Groupings based on modules and time frames allow for more

relevant solutions to be found at lower error cardinalities.

We demonstrate how groupings can be used to implement

hierarchical debugging [15] with Partial MaxSat to find both

module-level and gate-level error locations.

Experimental results show that our approach can find error

locations 4.5× faster on average and using 80% smaller CNF

problems. The optimization techniques presented allow us

to identify all MaxSat solutions using 87.5% fewer solver

iterations while improving the run time per iteration by 1.6×.

As the performance of MaxSat solvers is still improving at a

rapid pace [16], our formulation will become more effective

as engine technology progresses.

The remainder of this paper is structured as follows. First,

some background information on SAT-based automated de-

bugging and MaxSat solvers is provided. Then our MaxSat

formulation for combinational circuits is presented in Sec-

tion III. The formulation is extended to finding spatial and

temporal error locations in sequential circuits in Section IV.

An algorithm to reduce the number of MaxSat iterations to

find all solutions is presented in Section V. Section VI uses

groupings to leverage the hierarchical structure of the circuit to

improve performance. Finally the experiments, related works,

and conclusions are provided in Sections VII, VII and IX

respectively.

II. BACKGROUND

A. SAT-based Automated Debugging

Functional design debugging occurs at the stage of the

design cycle when the Register Transfer Level (RTL) imple-

mentation of the design has failed verification (simulation or

formal). The output of the verification effort is an error trace

proving the existence of a bug. In the context of this paper,

design debugging seeks to locate all possible error sources in

the implementation.

In the SAT-based debugging formulation presented in [8],

the circuit is first enhanced with a correction model by adding

a multiplexer at the output of each gate or module. The select

line of the multiplexer controls whether the correction model is

active or inactive. If the correction model is inactive, the circuit

behaves according to its implementation. If the correction

model is active, the output of the gate is left unconstrained

and can be replaced with a value that can correct the error.

For sequential circuits, an Iterative Logic Array (ILA) [6] is

constructed by unrolling the circuit for the length of the error

trace. The correction model is added as in the combinational

case but multiplexer select lines for the same gate are shared

across all time frames. The problem is converted into CNF and

constrained using the the stimulus vector and the expected

output values from the error trace. Additional constraints

(usually implemented using an adder) limit the number of

correction models that can be simultaneously activated. This

number is also known as the error cardinality Ng of the

problem.

Finding all satisfying assignment to the resulting formula

effectively finds a set of functionally equivalent error locations,

that if corrected could fix the bug. Sets of error locations are

said to be functionally equivalent if they cannot be functionally

distinguished from each other under a given stimulus trace [6].

The debugger is limited to finding the set of all functionally

equivalent error locations.

Based on this formulation numerous advances to enhance

the performance of debuggers have been proposed. The work

from [9] presents a QBF based debugging formulation using

universal quantifiers which allows for sequential circuit de-

bugging without the need for an ILA. In [11] the concept of

abstraction refinement is used to reduce the size of the SAT

problem and improve performance. In [10], the authors take

advantage of unsatisfiable cores to speed up the debugging

process for multiple fault diagnosis problems. This approach

extracts a set of unsatisfiable cores from the CNF problem

and prunes potential error locations not contained in any of

the cores. A SAT-based exact debugger then finds the error

locations from the reduced problem.

B. Maximum Satisfiability

This section reviews MaxSat [16] and its extensions, and

briefly overviews recent algorithms for MaxSat, capable of

handling large complex problem instances. Given an unsat-

isfiable CNF formula Φ, the MaxSat problem consists of

identifying an assignment to the problem variables such that

the number of satisfied clauses from Φ is maximized [17].

The MaxSat problem is a well-known NP-Hard optimization

problem.

In the Partial MaxSat [18] problem the CNF formula is

organized into a set of hard clauses, which must be satisfied,

and a set of soft clauses, which may or may not be satisfied,

i.e. Φ = ΦH · ΦS . For Partial MaxSat problems the objective

is to find an assignment that satisfies all the hard clauses and

that maximizes the number of satisfied soft clauses.

In the remainder of this paper, hard clauses will be repre-

sented in square brackets and soft clauses in round brackets.

For example, consider the following formula:

Φ = [x1 + x2][x3] · (x1)(x2)(x3 + x1) (1)

The first two clauses are hard clauses, and so must be satisfied,

whereas the remaining three clauses are soft clauses and may

or may not be satisfied.

In the recent past [17], the most effective MaxSat algorithms

have been based on branch-and-bound (B&B), supported by
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Fig. 1. Correct and erroneous combinational circuit

effective lower bounding and dedicated inference techniques.

Nevertheless, most of the experimental evaluation associated

with B&B MaxSat solvers assume random and handmade

problem instances, which unfortunately often bear little re-

lationship with hard industrial instances. Recent work has

addressed alternative approaches, aiming the use of MaxSat

algorithms in industrial settings, and focusing on instances de-

rived from realistic applications. The most effective algorithms

are based on solving MaxSat with unsatisfiable sub-formula

identification and relaxation [18]–[20].

III. CLAUSE LEVEL DEBUGGING OF

COMBINATIONAL CIRCUITS

In this section the MaxSat debug formulation for combina-

tional circuits is presented. In order to express the debugging

problem as a MaxSat problem, the circuit must first be

converted into CNF. For the purpose of this paper we assume

that circuits consist of single-output logic gates and CNF

conversion occurs on a per gate basis in linear time [21],

[22]. The goal of our debugging formulation is to identify a

tuple of clauses in the CNF representation that are most likely

responsible for the failure.

A. Partial MaxSat Formulation for Combinational Circuits

The Partial MaxSat formulation to debug a combinational

circuit C given a correct specification is as follows:

Φ = [I][O] · CNF (C) (2)

where CNF (C) is the CNF representation of the erroneous

circuit, I represents the input constraints, and O are the

corresponding expected output constraints. The input and

expected output constraints are modeled using hard clauses (as

indicated by the square brackets) as their values are assumed

to be correct. Since I excites the erroneous behavior of C
which is eventually observed at the output, the actual output

of C does not match the expected output O. The formula Φ
is therefore inherently unsatisfiable.

A MaxSat solver finds an assignment to Φ such that the set

of satisfied clauses is maximized. The complement of this set

represents the minimum set of clauses whose removal makes

Φ satisfiable. These clauses are the most likely error sources

responsible for the unsatisfiability of the problem. For the

remainder of this paper this complement set will be referred

to as the MaxSat solution. Each of these clauses in turn can

be mapped to a set of gates that could be the cause of the

erroneous behavior. Note that these clauses can originate from

the same or different gates.

Example 1 Consider the circuit given in Figure 1. Figure 1(a)

represents the correct circuit implementation according to the

specification. In the erroneous circuit of Figure 1(b) the NOR

gate at the output is mistakenly implemented using an OR

gate. Given the input stimulus {i = 1, j = 1, k = 0} the

actual output of the erroneous circuit is c = 1. The expected

output response is c = 0. The MaxSat debug formulation of

this circuit expressed in CNF is given as follows:

[i][j][k][c]
A: (i + a)(j + a)(i + j + a)

B: (k + b)(k + b)
C: (a + c)(b + c)(a + b + c)

For clarity we included the gates represented by each set of

clauses in the above CNF.

Since the erroneous circuit cannot produce the expected

response the problem is unsatisfiable. The maximum number

of clauses that can be satisfied for this problem is 10 out of

12. A Partial MaxSat solution for this problem consists of two

UNSAT clauses. One of the solution sets that may be returned

by a Partial MaxSat solver is:

S1 = {C : (a + c), C : (b + c)}

For clarity the gate to which each of the solutions map to is

given before each clause. Both clauses in S1 correctly imply

that somehow correcting gate C will fix the observed failure.

We refer to this method of debugging as clause-level debug-

ging. The number of clauses in the solution is known as the

error clause cardinality of the solution. Clause-level debugging

differs from SAT-based gate-level debugging techniques in that

it seeks to find a set of erroneous clauses instead of a set

of erroneous gates. However, the motivation behind both of

these techniques is identical. Just as gate-level debugging finds

erroneous gates in order to map them to bugs in the RTL code,

clause-level errors can also be mapped to gates in the netlist

or code in the RTL.

Clause-level debugging solves the debugging problem at a

lower level of granularity since a single gate requires multiple

clauses to specify its behavior. Intuitively this means that

instead of the gate, rows in the gate’s truth table are identified

as erroneous. A single erroneous gate may result in multiple

UNSAT clauses in the MaxSat solution. Consequently, while

the cardinality of the clause-level solution is indeed minimal,

the number of gates in the corresponding gate-level solution

(its gate-level cardinality) might not be minimal.

For instance, in Example 1, the solver could have alterna-

tively returned one of three other possible solutions:

S2 = {A : (i + j + a), C : (b + c)}
S3 = {C : (a + c), B : (k + b)}

S4 = {A : (i + j + a), B : (k + b)}

All solutions are of minimum error clause cardinality 2.

However, the corresponding cardinality of gate-level solutions

may vary. For S2 (gates A and C), S3 (gates B and C) and

S4 (gates A and B) the gate-level cardinality is 2 whereas for

S1 (only gate C) the gate-level cardinality is 1. The maximum

number of UNSAT clauses due to a single gate is given by



4

the following theorem.

Theorem 1: Let G be a single-output logic gate that can

drive both a value of 1 and 0 at its output. Then the maximum

number of clauses that can be UNSAT in CNF (G) is mg−1,

where mg is the number of clauses in the CNF representation

of the gate.

Proof: Let y be the output variable of gate G. In order

to force y to a value of 1, CNF (G) must include a clause

with literal y. Similarly, to force an output value of 0, one of

the clauses in CNF (G) must include the literal y. Both the

literals y and y must appear in CNF (G) at least once and

they cannot appear in the same clause. Therefore, assigning

any value to y causes at least one clause in CNF (G) to be

satisfied. Thus MaxSat can return a maximum of (mg − 1)
clauses per gate.

For instance, in Example 1, the behavior of gate A is

represented by three clauses in the CNF. Thus mg = 3
for A. The maximum number of clauses given any variable

assignment to the CNF for gate A is 2.

B. Finding all MaxSat solutions

In practice, Φ has multiple solutions of minimum cardinality

but the cardinality of the desired solution may not minimal.

Conventional SAT-based debuggers find all solutions of a given

error cardinality Ng to ensure completeness. Ng is defined as

the maximum number of distinct gates contained in a solution.

Similarly, clause-level debuggers need to find all solutions up

to a maximum cardinality Nc. As with Ng the error clause

cardinality Nc is the maximum number of clauses in Φ that are

responsible for the bug. Existing MaxSat solvers can iteratively

provide these solutions but a mechanism to block previous

solutions is needed to avoid duplicates.

For solutions of cardinality one (i.e. the MaxSat solution

only contains one clause) converting the single clause to a hard

clause effectively blocks the solution. For cardinality m > 1
however, converting each clause to a hard clause would prevent

these clauses from occurring in other solutions.

To illustrate this fact consider again Example 1. Suppose

that the solution S2 is found in the first MaxSat iteration.

Then converting the clauses (i + j + a) and (b + c) to hard

clauses would not only block S2 but also the solutions S1

and S4 since each of these solutions contains one of those

clauses. Relevant solutions might be inadvertently overlooked

depending on the order in which solutions are found.

Instead, the Partial MaxSat problem must be reformulated

such that at least one of the solution clauses evaluates to true.

To prevent a specific set of clauses {Cl1, Cl2, . . . , Clm} from

being returned as a MaxSat solution, the following hard clause

must be added to the CNF problem:

Clb = [Cll1 + Cll2 + · · ·+ Cllm] (3)

In the above equation, we let Clli denote the sets of literals

in the respective Cli clause. Since the set of literals in Clb
is the union of literals from all the solution clauses, at least

one of the clauses in {Cl1, Cl2, . . . , Clm} must be satisfied.

For instance in Example 1 the solution S2 can be blocked by

adding the clause [i + j + a + b + c] to Φ.

All solutions of cardinality ≤ Nc can be identified by con-

tinuously blocking solutions of minimum cardinality. Using

Nc we can guarantee that all solutions of a certain gate-level

cardinality Ng are found. The relationship between the solu-

tions obtained when using either Nc or Ng for combinational

circuits is given by the following theorem.

Theorem 2: Let mcl be the largest value of mg for any gate

in the circuit and let Eg be the set of all MaxSat solutions of

gate-level cardinality Ng. Let Ec be the set of all solutions of

given a maximum error clause cardinality Nc = Ng ·(mcl−1).
Then Eg ⊆ Ec.

Proof: By contradiction. Suppose that S ∈ Eg is a solution

such that S /∈ Ec. Then |S| > Ng · (mcl − 1) where |S|
denotes the number of clauses in S. However, the maximum

number of clauses that can be UNSAT for a single gate is

mg − 1 and mcl ≥ mg. Since Sc is of gate-level cardinality

Ng, |S| ≤ Ng · (mcl − 1). Therefore Sg ∈ Ec contradicting

our initial assumption.

For Example 1, the highest value of mg is 3 so mcl = 3.

To find all gate-level solutions of cardinality 1, Nc must be 2.

Note that the gate-level cardinality of the solutions can vary

between Nc and Ng.

IV. CLAUSE LEVEL DEBUGGING OF

SEQUENTIAL CIRCUITS

A. Partial MaxSat Formulation for Sequential Circuits

In this section the MaxSat formulation for combinational

circuits is extended to sequential circuits. Our formulation

takes as its inputs the sequential circuit C, a sequence of

stimulus vectors I1, I2, . . . , Ik and expected output sequence

O1, O2, . . . , Ok. The variable k is the number of clock cycles

in the error trace over which the behavior of C is modeled.

The problem is also constrained by an initial state vector

IS. The Iterative Logic Array (ILA) of the circuit, otherwise

known as the time frame expansion model, is constructed by

unrolling the combinational portion of the circuit k times. This

effectively translates the sequential problem into a combina-

tional one. The ILA can then be converted into a Boolean

Satisfiability instance in CNF. The input to the MaxSat solver

Φ is given by:

Φ =
k∏

i=1

[Ii][Oi] · [IS] · CNF (ILAk(C)) (4)

where ILAk(C) denotes the time frame expansion of C for

k time frames.

Example 2 Consider the erroneous circuit in Figure 2(a). The

correct circuit is derived by replacing gate A with an OR gate.

The ILA representation of the circuit for three clock cycles is

given in Figure 2(b). For clarity some irrelevant gates and

constraints are omitted in the figure.

The initial state of the circuit is given by a0 = 0 and b0 = 0.

The input vectors [i1 = 0, j1 = 1] and [i2 = 0, j2 = 1] cause

the value at the fanout of gate A to differ from the correct

values in time frames 1 and 2. The effects of these two error

excitations are then propagated and observed in time frame 3

where the actual output (out3 = 1) of the trace differs from the
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Fig. 2. Erroneous circuit and its ILA representation

expected output (out3 = 0). The MaxSat solutions for Nc = 2
are as follows:

S1 = {A1 : (i1 + a1), A2 : (i2 + a2)}
S2 = {A1 : (i1 + a1), B3 : (a2 + b3)}
S3 = {A1 : (i1 + a1), C3 : (b3 + c3)}
S4 = {B2 : (a1 + b2), A2 : (i2 + a2)}
S5 = {B2 : (a1 + b2), B3 : (a2 + b3)}
S6 = {B2 : (a1 + b2), C3 : (b3 + c3)}
S7 = {C3 : (b2 + c3), A2 : (i2 + a2)}
S8 = {C3 : (b2 + c3), B3 : (a2 + b3)}
S9 = {C3 : (b2 + c3), C3 : (b3 + c3)}

From these solutions, S1 correctly implicates gate A as the

source of the bug. The remaining solutions result from the

presence of two propagation paths from the error excitations to

the output signal out3. One propagation path passes through

the gates A1 → B2 → C3 → out3 while the other path goes

through A2 → B3 → C3 → out3.

In the worst case the error could be excited in every clock

cycle. Since a gate is replicated k times in ILAk(C) and the

maximum number of clauses per gate is mcl, an error clause

cardinality of Nc = Ng ·(mcl−1)·k would be required to find

all solutions of cardinality Ng. It is clear that the performance

of the Partial MaxSat formulation depends on the number of

error excitations where the erroneous behavior is propagated

to an output. Previous work [23] show that errors in simulation

traces are excited in temporal proximity to the outputs at which

the bug is observed. From our experiments we also find that for

the majority of cases the error is excited for only a few clock

cycles (often only once or twice) before its effects can be first

seen at the outputs. This experimental observation obviously

works in favor of our formulation as MaxSat finds the least

number of error excitations required to observe the bug.

Moreover, unlike conventional gate-level debuggers, our

MaxSat formulation is not limited to finding a set of erroneous

gates for a given error cardinality. Errors from the same or

different gate-level sources are not distinguished at the clause

level. For instance in Example 2 solution S1 implicates two

excitations of gate A as the cause of the problem. Solution S2

indicates that an excitation of gate A followed by an excitation

of gate B could be the bug. In both cases the number of

excitations is two but no distinction is made whether these

excitations come from the same or different gates. As a result,

once an error clause cardinality Nc is specified, all clause-level

errors are found irrespective of their corresponding gates. Nc

can be more appropriately specified as:

Nc = Nep · (mcl − 1) (5)

where Nep is the maximum expected number of gate-level

error excitations and propagations for a given stimulus trace.

Note that Nep and Ng describe two different concepts. Ng,

describes an estimated number of spatial error locations that

exist in the design irrespective of time frames or clock cycles.

Nep, however, describes an estimate of the maximum number

of times the error is active in a particular error trace. In other

words, the value of Ng relates to number of error location

of the bug in the RTL, while Nep relates to the observed

erroneous behavior of a particular simulation trace. Similar

to Ng, the user can provide an estimate for Nep based on

trace length and the complexity of the problem [8].

B. Extracting Temporal Information

An advantage of clause-level debugging is that both gate-

level error sources and temporal bug information is provided.

Since the circuit is replicated once for every clock cycle,

each clause in the MaxSat solution of Φ represents an error

location both spatially and temporally. Thus each solution

clause automatically indicates when during the error trace the

bug is active. For instance in Example 2, the clause (i1 + a1)
in S1 indicates that gate A in time frame 1 could be one of the

causes of the bug. The solution S1 therefore states that gate

A must be active in time frames 1 and 2 to cause the error.

Another advantage of the temporal information provided

is that it establishes a more specific relationship between

each of the gates in the solution. In gate-level debugging,

when considering higher cardinality solutions, we can only

determine that the locations in the solution act together to

cause the error. However, the order in which each of these

error locations act is unknown. Since temporal information

is included in our MaxSat formulation, we can determine the

sequence in which the individual gates are related. For instance

solution S2 in Example 2 indicates that an excitation of gate

A in time frame 1 followed by an excitation of gate B in time

frame 3 may be the cause of the error in the design. In contrast,

traditional SAT-based debugging would only indicate that the

gates A and B can act together to cause the bug.

Another approach is to aggregate the error information from

all MaxSat solutions by creating a histogram showing the

number of suspected error sources found for each time frame.

The frequency of solutions per time frame can provide hints

about when the errors are excited in the trace. The error is

more likely to be propagated through circuit elements close to

the actual error excitation so generally the time frames with

the highest frequency of solutions are the best candidates. This

aggregate temporal information can help the designer analyze

the error trace [14]. Example graphs for different circuits are

provided in Section VII for the Experiments.
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V. REDUCING MAXSAT ITERATIONS FOR

ALL SOLUTION MAXSAT

A. Finding Additional Unsat Clauses

Since our formulation improves the granularity of the error

model and finds time frame information, the search space

for solutions is significantly larger compared to SAT-based

debugging. Every gate is replicated over all time frames

and each gate requires multiple clauses to represent. The

number of MaxSat iterations required to find all solutions of

cardinality ≤ Nc can be considerable. The purpose of this

section is to improve on the technique given in Section III-B

by applying a local search algorithm to explore the solution

space [24]. In detail, we introduce a set of heuristics to

derive more solutions based on existing MaxSat solutions that

originate from previous iterations of the basic algorithm.

Consider again Example 2. The solutions S1 to S9 are due

to the two propagation paths from the erroneous gate to the

output. The respective variable assignments of each of these

solutions only differ by a few variables. For instance, solution

S1 only differs from S2 by the assignment to variable a2.

However, in order to find all of these solutions a total of nine

MaxSat iterations is required. For larger circuits, each of these

iterations can be computationally intensive.

Consider an UNSAT clause clu ∈ Φ for a given MaxSat

assignment. Since clu is UNSAT each of its literals evaluate

to 0. Inverting the variable assignment for one of its literals

would cause clu to become satisfied. However another set of

clauses clsi ⊂ Φ with |clsi| ≥ 1 would become UNSAT. If

this set only contains a single clause clsi = {cls} then the new

assignment is another MaxSat assignment for Φ. The number

of UNSAT clauses in the new assignment remains the same

as in the original assignment and is therefore minimal. That

is clu can be replaced with cls in the MaxSat solution since

the solution cardinality remains unchanged. We say that cls is

a substitute solution clause for clu.

An informal description of the technique applied multiple

times to Example 2 is given below. Suppose the first MaxSat

solution obtained is S1. The clauses (i1 + a1) and (i2 + a2)
are UNSAT. The variables a1 and a2 are therefore both set to

1 (i1 and i2 are constrained by hard clauses).

The clause (i1 + a1) can be satisfied by setting a1 = 0. As

a result exactly one other clause, (a1 + b2), becomes UNSAT.

The clause (a1 + b2) is therefore a substitute solution clause

for (i1 + a1) in S1. Using this reasoning, the solution S4 can

be directly derived from S1. Continuing from this new MaxSat

assignment it is then possible to find another substitute solution

clause, (b2 + c3), by setting b2 = 1. Similarly the clauses

(a2 + b3) and (b3 + c3) can be found as substitute solution

clauses for (i2 + a2). These two sets of substitute clauses

effectively identify S2, S3, S4 and S7 as additional solutions.

The algorithm to perform this local search is described

in Algorithm 1. It takes an UNSAT solution clause clu, the

MaxSat variable assignment va and the CNF problem Φ as

its inputs. The output of this algorithm is a set of substitute

clause and assignment modification pairs. An assignment

modification mod consists of a subset of variables from Φ.

Applying a modification mod to a variable assignment means

Algorithm 1: The find substitutes algorithm

Data: The CNF problem Φ, an UNSAT clause clu, and

variable assignment va
Result: A set of substitute clauses and modifications to

va for each clause

find substitutes(Φ, clu, va)1

begin2

stack.push([clu, Ø])3

subs← [clu, Ø]4

while stack 6= Ø do5

[clt, mod]← stack.pop()6

invert assignment(va, mod)7

clsc = get connected clauses(Φ, clt)8

foreach literal l ∈ clt do9

n← 010

foreach clause cl ∈ clsc do11

if sat literals(cl, va) = {l} then12

n← n + 113

cls ← cl14

end15

end16

modl ← mod ∪ l17

if n = 1 and (subs ∩ [cls, modl]) = Ø) then18

subs← subs ∪ [cls, modl]19

stack.push([cls, modl])20

end21

end22

invert assignment(va, mod)23

end24

remove hard clauses(subs)25

return subs26

end27

that all the variables in mod are inverted to obtain a new

assignment. In this case, the assignment modifications can be

applied to va to obtain new MaxSat assignments.

A stack is used by the algorithm to keep track of pairs that

have not yet been examined by the algorithm. Whenever a

new UNSAT clause clt is removed from the stack, a call to

invert assignments on line 7 modifies va such that clt is

UNSAT under va. These modifications are reverted on line 23.

The search for solution clauses connected to clt is per-

formed within the loop on line 9. The get connected clauses
function finds all clauses in Φ which have variables in common

with clt. For each literal l ∈ clt and every connected clause

cl ∈ clsc, the function sat literals finds all satisfied literals in

cl given va. If l is the only satisfied literal in cl, then inverting

the variable assignment of l would convert cl into an UNSAT

clause. If only a single clause cls ∈ clsc becomes UNSAT,

then cls is a substitute solution clause for clt.

The set of substituted clauses found by the algorithm is

stored in subs. To avoid revisiting previously found solution

clauses, line 18 checks cls against previously found solutions

before adding the new solution to the stack. Finally, line 25

removes any hard clauses from the result.

Note that the find substitutes function is limited to find-
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Fig. 3. Deriving solutions from substitute clauses example

ing MaxSat solutions which only differ by a single variable

assignment from each other. Since we assume that our circuit

consists of only single-output gates this method effectively

finds clauses on an error propagation path consisting of

functionally equivalent error locations.

B. Deriving More Solutions using Substitute Clause Sets

Using the function find substitutes a new MaxSat solu-

tion can be derived for each new substitute clause found. In

this section we examine how further solutions can be derived

from combinations of substitute clauses.

Consider for example a cardinality two MaxSat solution:

{clsa, clsb} and suppose that clta and cltb are substitute

clauses for clsa and clsb respectively. Then based on the

find substitutes algorithm it is possible to obtain the so-

lution {clta, clsb} by inverting a set of variables moda in the

MaxSat assignment. Similarly, {clsa, cltb} can be obtained by

inverting a set of variables modb. From these observations we

can deduce that inverting the set moda ∪modb will convert

{clsa, clsb} into satisfied clauses and {clta, cltb} into UNSAT

clauses. Thus {clta, cltb} is a MaxSat solution unless there

exists some other clause that becomes UNSAT due to the

inversion of moda ∪modb.

For instance the set of cardinality 2 solutions for Example 2

is essentially the cross product of the two substitute clause sets:

{(i1+a1), (a1+b2), (b2+c3)}×{(i2+a2), (a2+b3), (b3+c3)}

The MaxSat assignment for each solution is obtained by

combining their respective assignment modifications. Note that

solutions obtained in this manner are not guaranteed to be valid

MaxSat solutions. Consider the following example.

Example 3 The CNF of the circuit given in Figure 3 is

expressed as follows:

[i][j][c][d][e]
A: (i + a)(i + a)
B: (j + b)(j + b)
C: (a + c)(a + c)

D: (a + d)(b + d)(a + b + d)
E: (b + e)(b + e)

Suppose that the initial solution is S1 = {A : (i + a), B :
(j+b)}. Then finding the substitute clause (a+c) for (i+a) by

setting a = 1 will yield the solution S2 = {(a + c), (j + b)}.
Similarly, setting b = 1 will yield S3 = {(i + a), (b + e)}.
Setting both a = 1 and b = 1, however, increases the number

of UNSAT clauses to three since (a + b + d) is now UNSAT.

Example 3 illustrates that combinations of substitute clauses

may not be valid solutions. However, in practice most combi-

nations of clauses derived in this manner are MaxSat solutions.

To take advantage of this derivation method, we must check

the validity of each derived solution. Since the number of

clauses affected by the assignment modifications is generally

small, the run time required should be negligible.

The optimized clause-level debugging algorithm to find all

MaxSat solutions of cardinality Nc is given in Algorithm 2.

After each iteration of the MaxSat solver, find substitutes
obtains a substitute clause set for each solution clause. The

cross product of all substitute clause sets represents an over-

approximation of alternative MaxSat solutions. The function

remove invalid solutions removes derived solutions whose

assignment modifications increase the number of UNSAT

clauses. On line 12 the derived solutions stored in Et are then

added to the solution set Es. The function block solutions
blocks all solutions in Et as described in Section III-B. The

algorithm terminates once a MaxSat solution of cardinality

higher than Nc is found.

VI. DEBUGGING USING CLAUSE GROUPINGS

Clause-level debugging can be a very powerful technique for

locating temporal and spatial error locations that are excited

infrequently. However, depending on the type of bug, the

error cardinality required to find the relevant solution can be

large. Increasing the error cardinality can reduce debugger

performance since it is exponentially related to the complexity

of the debugging problem [25]. If a large number of gates in

the ILA representation are responsible for the error, a higher

granularity error model might be required.

This section presents a technique for increasing the granu-

larity of our error model by grouping a set of clauses such that

they are treated as a single high level constraint. The concept

of clause groupings is introduced for the general MaxSat case

in [13]. Groupings can be created based on gates, modules and

time frames. This allows us to increase the performance of our

debugging algorithm at the cost of reducing the resolution of

results. We can also use groupings to improve the performance

of clause-level debugging by iteratively reducing the size of

groups using hierarchical debugging from [15].

A. Creating Clause Groupings

From the MaxSat solver’s point of view, the cost of setting

all the clauses in the group to be UNSAT should be the same as

the cost of allowing a single clause to be UNSAT. Groupings

of clauses can be created by adding a single clause-selector

literal to each clause in the group. To ensure that the problem

remains UNSAT a unit clause consisting of the inverse of that

literal is then added to Φ.

Consider for instance two clauses cl1 = (l1 + l2 + l3) and

cl2 = (l4 + l5) where cl1, cl2 ∈ Φ. To create a grouping

consisting of cl1 and cl2 the CNF is supplemented with an

additional unit clause (y). In the new CNF Φ′ cl1 and cl2 are

replaced with the following clauses:

cl′
1

= (l1 + l2 + l3 + y)
cl′2 = (l4 + l5 + y)

Suppose Φ is satisfiable if cl2 and cl1 are removed. Then Φ′ is

satisfiable if the clause (y) is removed since setting the y = 1
will allow both cl′

1
and cl′

2
to be satisfied.
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Algorithm 2: The maxsat clause debug algorithm

Data: Partial MaxSat problem Φ and maximum

cardinality Nc

Result: A set of suspect error sources Es

maxsat clause debug(Φ, Nc)1

begin2

Es ← Ø3

[va, clss]← solve maxsat(Φ)4

while |clss| ≤ Nc and clss 6= Ø do5

Et ← 16

foreach clause cl in clss do7

subs = find substitutes(Φ, cl, va)8

Et ← Et × subs9

end10

remove invalid solutions(Φ, va, Et)11

Es = Es ∪ Et12

block solutions(Φ, Et)13

[va, clss]← solve maxsat(Φ)14

end15

return Es16

end17

Using this method to group connected gates, we can isolate

regions in the circuit which could contain the bug. Bugs

involving multiple clauses can therefore be identified without

increasing the maximum cardinality. This technique effectively

allows us to trade-off (i.e., improve) run time at the expense of

resolution. The granularity of the error model can be modified

by varying the number of gates in each of these groups.

B. Groupings based on Gates

One application of groupings is to include clauses belonging

to the same gate in a group. This effectively sets Nc to be the

same as Nep. Gate-level groupings for the circuit in Example 1

can be created as follows:

[i][j][k][c]
A: (i + a + ya)(j + a + ya)(i + j + a + ya)

B: (k + b + yb)(k + b + yb)
C: (a + c + yc)(b + c + yc)(a + b + c + yc)

(ya)(yb)(yc)

The variables ya, yb and yc are the clause-selector variables.

Removing any of the unit soft clauses will satisfy all the

clauses in its respective gate.

One disadvantage of using gate-level groupings is that the

find substitutes algorithm from Section V cannot detect

additional solutions if the number of clauses in the group that

would otherwise be UNSAT is larger than 1. For instance for

our above example, the first solution returned by the MaxSat

solver is (yc). Using the find substitutes algorithm with

clu = (yc) would yield no substitute clauses since setting

yc = 0 would unsatisfy more than one clause ((a + c) and

(b+ c)). The benefit of gate groupings in this case is that they

allow the Partial MaxSat solver to find the error location at a

lower cardinality.

Fig. 4. Different implementations of module level groupings

C. Groupings based on Time Frame

For sequential circuits, groupings can be created not only

according to circuit structure but also across time frames. Thus

instead of creating a new group for each time frame, groups

can span across fixed timing windows. The size of these timing

windows represents a trade off between the accuracy of the

temporal bug information and the complexity of the CNF

problem. Ideally the window size should reflect the expected

number of consecutive bug excitations to reduce the cardinality

of the solution. If no temporal bug information is desired, a

single window may encompass the entire trace.

D. Groupings based on Modules

A more sophisticated approach to groupings can be used

for designs that are synthesized from RTL code. Hardware

Description Languages (HDLs) such as Verilog and VHDL

naturally group related design elements into modules or func-

tions. Instead of identifying errors at the gate-level, module

level groupings can be used to identify erroneous modules.

These modules do not necessarily have to be explicit user

defined modules but could also arise due to a simple add or

subtract statement, or an if-else block. A combinational design

consisting of two modules A and B is shown in Figure 4(a).

There are multiple approaches to creating a grouping for a

module. The most intuitive way is to include all the gates of a

module in a group as shown in Figure 4(a). We can derive an

alternative encoding for module-level groupings if we consider

that modules in an RTL design represent implications between

the input and output signals of the module. Module level

debugging operates under the premise that removing the input-

output relationship imposed by the module would satisfy the

problem. In order to remove this relationship from the circuit

however, it is not necessary to remove every clause in the

module. Removing only the clauses at either the inputs or

the outputs of the module will achieve the same result. The

remainder of the module then can be expressed as hard clauses

to reduce the search space for the MaxSat solver.

Figure 4(b) and (c) illustrate groupings using input and out-

put gates respectively. Empirically, we observe that grouping

the gates at the module outputs yields the best performance

results. While Figure 4 demonstrates module groupings for a

combinational circuit, the technique can be easily extended

to the sequential case. Time frame groupings can be used in

conjunction with module groupings to improve efficiency.
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Algorithm 3: The hierarchical debug algorithm

Data: The circuit graph C, Partial MaxSat problem Φ,

maximum clause-level cardinality Nc, maximum

module-level cardinality Nm and maximum

hierarchical depth L
Result: A set of module-level and clause-level error

locations in the circuit

hierarchical debug(C, Φ, Nc, Nm, L)1

begin2

module solns← Ø3

clause solns← Ø4

t← top level module(C)5

queue.enqueue(t)6

while queue 6= Ø do7

q ← queue.dequeue()8

p← nested modules(C, q)9

if level(q) ≤ L and p 6= Ø then10

M ← module debug(C, Φ, p, Nm)11

module soln← module soln ∪M12

foreach module m ∈M do13

queue.enqueue(m)14

end15

else16

c← clause debug(C, Φ, q, Nc)17

clause soln← clause soln ∪ c18

end19

end20

return [module solns, clause solns]21

end22

E. Multiple Pass Debugging

Generally modules in digital designs are structured hierar-

chically with sub-modules nested inside parent modules. The

simplest method to debug hierarchical designs is to create

a new group for each nested module. To further boost per-

formance, module-based hierarchical debugging [15], which

iteratively traverses the module hierarchy by depth, can be

used. Once a module-level solution of sufficient depth has been

identified, clause-level debug can further refine the solution by

identifying the exact erroneous gates and time frames.

The advantage of this hierarchical approach is two-fold.

Firstly, since the intermediate results of this algorithm are

suspect error modules, they can be immediately used by the

designer for debug. Secondly, the search space for clause-level

debugging is considerably smaller if only a few modules are

being considered. Effectively, module-level debugging can act

as a preprocess to speed up debugging for large circuits [10],

[13]. Example 4 demonstrates how hierarchical debugging

works for a circuit simulated for three clock cycles.

Example 4 Consider the circuit given in Figure 5. For the first

iteration (Figure 5(a)), two groups, one for each of the two top

level modules, are created. The modules are grouped across

all time frames, hence no temporal information is obtained

from the solutions. Using Partial MaxSat, group GA is then

identified as the only solution at this level. Since we only wish

Fig. 5. Multiple pass debugging example

to find solutions in module for A in the next iteration, module

B is specified using only hard clauses.

Suppose now that module A consists of the two sub-modules

C and D. The groups GC and GD are created as shown

in Figure 5(b). In this iteration module D is identified as

erroneous. Consequently, the clauses in group GC are also

converted into hard clauses.

Note that the search space for each of these iterations

consists of only two modules. If all modules were assigned a

group on the first iteration and assuming module B contains

no nested modules, the search space would consist of four

groupings on the first iteration and three on the second.

Figure 5(c), shows the case where clause-level debugging

is performed for the last iteration. Since only the clauses in

module D are soft clauses, the solver will exclusively return

solutions from that module. The last iteration also provides

the temporal error locations through its solutions.

The hierarchical debugging algorithm which finds all

module-level and gate-level solutions to an erroneous circuit

C is given in Algorithm 3. The algorithm performs a traversal

of erroneous modules in the design hierarchy using a queue

starting with the top level module as shown on line 5. During

each iteration of the loop, the algorithm finds the nested

modules p to a set of erroneous modules q. The function

module debug on line 11 then performs module level de-

bugging by creating output groupings for modules in p as

described in Section VI-D. Similar to clause-level debugging,

the MaxSat solver is then used to iteratively find all module

level solutions ⊆ p given the module-level cardinality Nm. A

module level solution can be blocked by simply removing the

grouping and converting all the clauses in the group to hard

clauses.
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TABLE I
PROBLEM SIZE AND RUN TIME COMPARISON BETWEEN SAT-BASED GATE-LEVEL DEBUGGING, CLAUSE-LEVEL DEBUGGING USING MAXSAT, AND

GATE-LEVEL DEBUGGING USING MAXSAT

Error Trace SAT-Based Debugging Clause-Level Debugging Gate-Level Groupings

circuit
# # time # # time # # % clause time speed

Nc

time speed
Nggates frames lits clauses in sec. lits clauses reduction in sec. up in sec. up

divider 1 6291 40 9454k 3734k 39.31 1830k 736k 80.29% 11.32 3.47 1 11.87 3.31 1

divider 2 6291 40 9641k 3807k 37.59 1869k 751k 80.27% 13.72 2.74 1 13.96 2.69 1

fpu 1 86020 40 153191k 60804k 2182.57 27424k 10313k 83.04% 462.12 4.72 3 250.78 8.7 1

fpu 2 87144 19 6013k 2441k 20.24 774k 316k 87.05% 8.64 2.34 2 6.43 3.15 1

hpdmc 1 18444 28 4677k 1859k 24.19 794k 319k 82.83% 3.39 7.14 1 4.64 5.21 1

hpdmc 2 18444 58 7464k 2896k 45.26 1724k 696k 75.97% 11.67 3.88 1 9.6 4.71 1

mem ctrl 1 55174 40 92935k 37173k 358.45 14657k 5896k 84.14% 26.95 13.3 1 48.39 7.41 1

mem ctrl 2 55174 40 96131k 38441k 422.53 15206k 6113k 84.10% 31.86 13.26 2 36.66 11.53 1

mips789 1 73600 32 131773k 53315k 606.4 17342k 6954k 86.96% 96.01 6.32 1 120.07 5.05 1

mips789 2 38524 158 8569k 3280k 47.04 2293k 957k 70.82% 278.51 0.17 1 49.36 0.95 1

mrisc 1 22452 42 40694k 16164k 361.79 6973k 2755k 82.95% 15.57 23.24 1 25.06 14.44 1

pipeline 1 5843 181 24776k 9306k 122.96 7039k 2779k 70.14% 22.52 5.46 1 63.71 1.93 1

pipeline 2 6318 69 14377k 5581k 70.25 3203k 1302k 76.67% 11.35 6.19 1 14.08 4.99 1

rsdecoder 1 15738 50 31771k 12623k 632.56 5458k 2250k 82.17% 17.87 35.4 1 26.76 23.64 1

rsdecoder 2 15732 100 49634k 19286k 509.02 10913k 4500k 76.67% 1616.14 0.31 1 912.37 0.56 1

spi 1 3427 14 3005k 1223k 19.76 351k 141k 88.47% 2.95 6.7 2 4.1 4.82 1

spi 2 3357 143 13697k 5207k 228.08 4036k 1635k 68.60% 142.45 1.6 1 489.97 0.47 1

sudoku 1 46668 61 102302k 40551k 435.44 18469k 7587k 81.29% 40.96 10.63 1 52.93 8.23 1

Average: 79.92% Average: 4.49 Average: 4.04

Clause-level debugging (line 17) is performed instead of

module-level debugging once the module depth exceeds a

certain user defined value L or if the module does not

contain any other sub-modules. The clause debug function

is a modified version of the maxsat clause debug algorithm

from Section V-B which also takes the set of modules q and

the circuit graph C as its input. Only the gates in q are

specified using soft clauses while the remainder of the circuit

is expressed with hard clauses. Thus only solutions involving

clauses from q are returned by the solver. Since the number of

gates in the modules of q are a fraction of C’s total number

of gates, the run time per iteration is reduced.

VII. EXPERIMENTS

In this section we experimentally demonstrate the effective-

ness of our debug techniques. The techniques described in this

paper are implemented using C++ using the solver from [19]

as the underlying MaxSat solver. All experiments are run on a

2.20GHz Intel Core2 Duo machine with 4GB of memory. For

the remainder of this section, unless otherwise stated, averages

are calculated by taking the geometric mean of the results.

In total two educational circuits (pipeline, sudoku) and

eight circuits obtained from OpenCores.org [26] (divider,

fpu, hpdmc, mem_ctrl, mips789, mrisc, rsdecoder,

spi) are presented. A single Verilog bug is inserted into

each circuit at the RTL level. These may include inverting

the condition in an if-statement, changing the operator in an

expression or modifying a state machine to transition to an

erroneous state. In rsdecoder_1 for instance the increment

of a counter is changed from 1 to 2.

Each circuit is simulated using a testbench comparing the

simulated output values with the expected output values of the

circuit. As soon as an inconsistency is detected between the

expected and observed values of the circuit, the simulation

is terminated and the trace is recorded. The circuit is then

synthesized and converted into CNF using the method in [21].

Some basic dangling logic removal is performed to reduce the

problem size. The CNF is constrained using input and expected

output values from the simulation of the correct circuit model

as described in Section IV-A.

Table I compares the effectiveness of our clause-level (Sec-

tion IV-A) and gate-level (Section VI) debugging technique

against SAT-based debugging [8] with MiniSat2 [27]. The

formulation of [8] most closely resembles our technique since

results are returned in terms of gates. To allow for a closer

comparison, gates are grouped across all time frames since

results obtained in this manner are identical to the error

locations obtained using [8] for a given Ng .

Columns 1 to 3 give the instance of the buggy circuit, the

number of gates in the design, and the number of time frames

in the ILA. Columns 4 to 6 then provide the number of literals,

clauses, and the run time to obtain a single solution from of

the debugging algorithm of [8].

The results for our MaxSat debugging algorithm are given

in columns 7-12. The first two columns show the number of

literals and clauses in the MaxSat formulation. The reduction

in the number of clauses compared to [8] is given in the third

column. The run time results for a single MaxSat iteration are

given in the next column and the speed up compared to [8] is

provided in column 11. The error clause cardinality is given

in column 12. Finally, the results for our MaxSat formulation

with gate-level groupings across all time frames are provided

in columns 13-15.

Looking at instance fpu_1 the number of gates is 86020

and the number of time frames in the error trace is 40.

The problem formulation for gate-level SAT-based debugging

consists of 153191 thousand literals and 60804 thousand gates.

The time it takes to solve this problem with MiniSat is 2182.57

seconds. Expressing this debugging problem using our Partial

MaxSat problem we see a reduction of 83.04% in the number

of clauses. The time it takes to solve this problem with Partial

MaxSat is 462.12 seconds, 4.72 times faster than the SAT-

based solution. The error clause cardinality is 3. Using gate-

level groupings, the run time is further reduced in this case

to 250.78 seconds, an 8.7 times speed up. Note also that the



11

TABLE II
ITERATIVE SOLVING RESULTS

design # iter # soln total time soln/iter time/iter

divider 1 10 65 111.22 6.5 11.12

fpu 1 3 68 1088.68 22.67 362.89

hpdmc 1 8 26 30.82 3.25 3.85

mem ctrl 1 8 14 231.7 1.75 28.96

mips789 1 33 312 3049.83 9.45 92.42

pipeline 1 21 195 825.64 9.29 39.32

rsdecoder 1 2 2 49.68 1 24.84

Average: 8.02 32.78

cardinality for this solution is reduced from 3 to 1 compared

to clause-level.

Recall that for SAT-based debugging each gate is enhanced

with a correction model (in the form of a multiplexer) and

constraints are included in the CNF to limit the cardinality

of the solution. The size of these constraints is quadratic

with the number of gates in the circuit. Thus the number of

clauses in our MaxSat formulation is considerably smaller in

comparison. For the instances evaluated the size reduction is

80% on average.

It should be noted that the SAT-based debugging technique

from [8] could be modified to also include time frame infor-

mation. In the original formulation of [8] multiplexer select

lines for the correction model are shared for the same gate

across all time frames. As a result, the number of inputs to

the constraints logic enforcing error cardinality is equal to

the number of actual gates in the circuit. In order to obtain

time frame information, however, each of these select lines

needs to be a separate signal. This increases the number of

inputs to the constraints circuitry to (number of gates) ∗
(number of time frames). We did not include any exper-

iments for this modified SAT formulation because for most of

our circuits the CNF problem could not be loaded into memory

due to the increased size of the constraints logic.

Comparing against the original formulation [8], MaxSat

consistently outperforms SAT-based debugging for short

traces. For longer traces however, the run time improvements

can show greater variability due to the increased difficulty

of the problem. For instance, for mips_789 and rsde-

coder_2, whose trace lengths are 158 and 100 clock cycles

respectively, MaxSat performs significantly worse than SAT. In

the case of spi_2, whose trace length is 143 cycles, gate-level

debugging using MaxSat is slower than SAT-based debugging

even though clause-level debugging is still faster. On the other

hand, pipeline_1 still shows a significant improvement in

run time a trace length despite a trace length of 181 clock

cycles. The geometric mean of the speed up for all examples

compared to SAT-based debugging [8] is 4.49× and 4.04×
for clause-level and gate-level debugging respectively.

The number of clauses and literals for gate-level MaxSat

is not given in the table but can be easily calculated. From

Section VI, each clause in the group will have one additional

literal. Each gate in the design will belong to its own group

and one new unit clause is added for each gate since the group

spans all time frames. Therefore, the number of literals is

increased by the number of clauses and the number of gates

in the design from clause-level formulation. The number of

clauses is only increased by the number of gates in the design.

A. All Solution Partial MaxSat

Sections III-B and V discuss how all solutions for a given

cardinality can be obtained. Table II summarizes the results for

seven of our sample instances. Columns 2-4 give the number

of MaxSat iterations, the number of solutions found and the

total run time required to find all solutions. The average of the

number of solutions per iteration and the run time per iteration

are given in column 5 and 6 respectively.

Considering all the circuits in Table II, the number of

solutions found per iteration is 8. The time required to run

find substitutes algorithm and verify the cross-product of

substitute sets is negligible. Since each solution would have

required a separate MaxSat iteration the total run time is

significantly reduced. Our method is effective since errors

are often propagated to a single fanout gate. In other cases,

the value of the output can be changed by manipulating a

single input without affecting the remainder of the circuit. For

bugs with lower error clause cardinality and where the error

propagates to multiple gates in its proximity, the method can

be less effective.

In our best case, all 68 solutions of fpu_1 are found

using only 3 MaxSat iterations. However, one reason why the

number of solutions in this instance is large compared to other

instances is related to the cardinality of the MaxSat solution.

With an error clause cardinality of three, many of the solutions

for fpu_1 are different combinations of the same gates. The

actual number of distinct error locations for fpu_1 is 29.

B. Visualizing Temporal Information

As described in Section IV-B, providing temporal debug

information is crucial in design debugging. The aggregate tem-

poral information extracted by our technique for the circuits

mips789_1, hpdmc_1, and mem_ctrl_1 is illustrated in

Fig. 6. The frequency each time frame is implicated by a

solution clause is shown in the histograms in Fig. 6. The

likelihood of an error being active during the time frame

is indicated by the height of the bars. The scatter plots

underneath the histograms plot error locations vs. the time

frame for which they are found. The purpose of these is to

illustrate which error locations are implicated multiple times

for different time frames by the debugger. The y-axis lists all

unique error locations found by the algorithm and the x-axis

shows the time frames during which these locations can be

excited to cause the error.

For instance the bug in hpdmc_1 is created by removing a

signal assignment in the RTL of a state machine. The actual

error excitation occurs in time frame 24 since the removed

signal was not assigned the proper value. The graph shows

three highly likely erroneous time frames (23 to 25) and two

less probable ones (20 to 21). For this case, a total of 20

distinct error locations are found. Many error locations in time

frame 24 are also solutions in time frame 25.

For mem_ctrl_1 one of the select signals of a MUX that

controlled the data path is erroneously inverted. The solutions
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Fig. 6. Aggregate histograms and scatter plots for hpdmc 1, mem ctrl and mips789 1

indicate that the bug could be fixed in time frame 34 when

the error is excited before the data is propagated to the output.

Since the data propagates through different gates in each time

frame the solution gates are mostly unique as indicated in

Figure 6(b). As the error propagates through the datapath the

number of possible error sources also decreases. These graphs

can allow the engineer to focus on specific regions in the

design during specific time frames to correct the problem.

It is not always the case, however, that the height of the

histogram provides the actual error excitation. The bug for

mips789_1 is created by changing the default assignment of

a signal to a wrong value. From the scatter plot of Figure 6(c)

we see that some error locations are implicated multiple times

by the debugger until time frame 19. In this case examining

these suspected locations instead of time frame 19 would

be more beneficial. Nevertheless, the shape of the graph can

provide valuable information to the engineer about the nature

of the problem.

C. Grouping Clauses

Figure 7 depicts the average run time given different group

sizes for all the circuits in Table I. Group sizes are given

in terms of the number of gates in the group and groups

span across all time frames. All the gates in the group are

connected but groupings are created randomly. Figure 7 shows

that the average run time generally decreases as the size

of the group increases. The largest performance gain occurs

when increasing the group size to 50 gates per group but the

marginal gain is relatively small when increasing the size of

groups further.

D. Hierarchical Debugging

Table III summarizes the results of our hierarchical debug-

ging algorithm from Section VI-E. The table only shows run
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times for problem instances where the actual error location

is located within a user defined sub-module of the design

since the outputs of those are clearly defined. The purpose

of these results is to compare the performance of clause-level

debug with and without a hierarchical search. We show the

time to find the actual erroneous module and time to find all

clause-level error locations within that module. The number of

gates in the targeted module is given in column 2. The time

required to find the module using groupings as described in

Section VI-D is given in column 3.

In our best example (fpu_1) the search space is reduced

to 8320 gates (10% of total) and the search time is reduced by

5.4×. In all instances, the reduction in run time is sufficient to

compensate for the additional time required to find the module.

Comparing the average time per iteration from Table III

against Table II a further speed up of 1.56× is observed.

VIII. RELATED WORKS

Debugging techniques based on formal engines have gar-

nered much attention from the research community since SAT-
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TABLE III
HIERARCHICAL DEBUGGING RESULTS

design
Module Level Debug Clause Level Debug of Module

# search # total time speed
gates time iter time /iter up

divider 1 5384 6.35 10 86.4 8.64 1.29

fpu 1 8320 2.89 2 133.92 66.96 5.42

hpdmc 1 6930 3.88 8 25.79 3.22 1.2

mem ctrl 1 11035 25.24 7 198.59 28.37 1.02

mips789 1 66240 9.27 16 1141.12 71.32 1.3

pipeline 1 1578 12.33 17 446.32 26.25 1.5

rsdecoder 1 8499 60.4 2 36.82 18.41 1.35

Average: 21.04 1.56

based debugging methodologies were introduced [28]. In order

to extend the scalability of automated debugging techniques,

extensions and alternative formal debugging methods have

been proposed.

Many contributions to the debugging problem focus on

reducing the size of the CNF problem and can also be applied

to the MaxSat formulation presented here. In [10] for instance,

unsatisfiable cores are used to speed up the debugging process

for multiple fault diagnosis problems. This approach extracts

a set of unsatisfiable cores from the CNF problem and prunes

potential error locations not contained in any of the cores. A

SAT-based exact debugger is then used to find the actual error

locations from the reduced problem.

Another powerful technique to improve scalability is Ab-

straction Refinement [11]. The technique proposed in [11]

”simplifies” design components according the design’s struc-

ture and a pre-determined abstraction level. The debugging

problem is then solved using the simplified model. Using

the solutions returned, a refinement process selectively re-

introduces abstracted components into the circuit and the

process is repeated until no further refinements are necessary.

To deal with long error traces, trace compaction tech-

niques [12], [29], [30] and interpolants [31] can be used

to reduce the number of time frames in the ILA. Trace

compaction techniques take as their input an error trace and

attempt to generate an alternative sequence of stimulus events

that expose the bug within fewer time frames. These shortened

traces can then be used by a automated debugger to locate the

actual error. In [31], the authors use interpolants to reduce the

number of time frames in the ILA by replacing sequences of

time frames with an over-approximation of their constraints.

This allows for a partitioning of the problem into smaller

sub-problems such that they can be solved more easily. The

majority of these techniques can be applied to improve the

scalability of the MaxSat formulation presented in this paper.

Other approaches rely on different solvers such as QBF [9],

[15] and SMT [32], [33] to improve scalability. The module

based debugging approach presented in Section VI-E is largely

based on the work of [15], which combines QBF and hierarchi-

cal debugging. The QBF based debugging approach [9] offers

the advantage of a much smaller problem formulation since

only a single time frame is instantiated.

More recently, debugging formulations using SMT solvers

have been proposed [32]. These formulate the debugging

problem at the word level and use SMT solvers instead of

SAT solvers to locate errors in the design. SMT solvers allow

for the debugging problem to be formulated at a higher level

of abstraction than Boolean. As with SAT-based debugging,

QBF and SMT formulations for debugging do not provide any

temporal debug information. Since these techniques use inher-

ently different formal engines, they present alternatives to the

proposed technique. Note that all alternative techniques tend

to compare directly against the original SAT-based technique

to provide a common reference.

IX. CONCLUSIONS

This work introduces techniques for debugging circuits

using Partial MaxSat. We introduce an iterative method which

accurately identifies all spatial and temporal error locations in

a sequential design given an error trace. Compared to SAT-

based debugging our formulation improves the granularity

of spatial error locations by identifying the entries in the

truth table of each gate as possibly erroneous. This paper

also provides additional techniques to speed up the process

of finding all MaxSat solutions. We describe a fast search

algorithm that quickly identifies multiple substitute clauses

and alternative solutions from a given MaxSat solution. A

technique to group related clauses is presented to further

improve performance using hierarchical debugging. Hierar-

chical debugging can quickly reduce the search space and

therefore the solve time for our Partial MaxSat solver. The

effectiveness of this method is demonstrated experimentally.

For clause-level debugging we observe a 4.5× improvement

in run time and a 80% reduction in problem size compared

to a conventional SAT-based approach. Our search algorithm

can find 8 additional MaxSat solutions per iteration with

little computational overhead. Hierarchical debugging further

improves the performance of clause-level debug by focusing

on specific modules in the design and reducing the search time

per iteration by 1.56×.
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