
Automated Design of Application-Specific Smart
Camera Architectures

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 4 februari 2008 om 15:00 uur

door

Wouter Caarls

doctorandus in de Kunstmatige Intelligentie
geboren te Amsterdam

Dit proefschrift is goedgekeurd door de promotoren:
Prof.dr.ir. L.J. van Vliet
Prof.dr.ir. P.P. Jonker

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. L.J. van Vliet, Technische Universiteit Delft, promotor
Prof.dr.ir. P.P. Jonker, Technische Universiteit Eindhoven

Technische Universiteit Delft, promotor
Prof.dr.ir. H.J. Sips, Technische Universiteit Delft
Prof.dr. H. Corporaal, Technische Universiteit Eindhoven
Prof.dr.ir. H. Bal, Vrije Universiteit Amsterdam
Dr. E. Visser, Technische Universiteit Delft
Dr.ir. R. Kleihorst, NXP Semiconductors
Prof.dr. I.T. Young, Technische Universiteit Delft, reservelid

This work was supported by the Dutch government in their PROGRESS research
program under project EES.5411, and carried out in the Quantitative Imaging
group of the Imaging Science and Technology department in the faculty of Ap-
plied Sciences of the Delft University of Technology.

Copyright c© 2007, Wouter Caarls, Delft. This work is licensed under a Creative
Commons Attribution 3.0 License. Reproduction, distribution, and derivation,
in whole or in part, is explicitly allowed, provided that the work is properly at-
tributed.
ISBN 978-90-9022688-0

Contents

1 Introduction 1
1.1 Smart cameras . 2
1.2 Algorithm-specific languages . 2
1.3 Automated design space exploration 3
1.4 Design flow . 3
1.5 Contributions and thesis outline 4

2 Embedded image processing 7
2.1 Application domain . 8
2.2 Processor architectures . 8
2.3 Algorithms . 14
2.4 Languages . 21
2.5 Constructing applications . 30
2.6 Discussion . 31

3 Designing architecture-independent applications 33
3.1 Architecture independence through algorithm dependence 34
3.2 Algorithmic skeletons . 35
3.3 Stream programming . 38
3.4 Stream kernels as skeleton inputs 44
3.5 Discussion . 46

4 Implementing skeletons using meta-programming 49
4.1 Functional requirements . 49
4.2 Meta-programming . 53
4.3 A meta-programming language for skeleton instantiation 58
4.4 Rewriting . 61
4.5 Partial evaluation . 65
4.6 Skeleton merging . 70
4.7 Results . 75
4.8 Discussion . 77

5 Implementing stream programming using RPC 81
5.1 Remote procedure call . 81
5.2 Run-time environment . 85
5.3 Mapping . 87

iv CONTENTS

5.4 Performance prediction . 93
5.5 Buffer management . 99
5.6 Results . 101
5.7 Discussion . 105

6 Exploring the SmartCam design space 107
6.1 Architecture template . 108
6.2 Benchmarking . 111
6.3 Application simulation . 113
6.4 Pareto optimization . 116
6.5 Results . 120
6.6 Discussion . 125

7 Conclusions 127
7.1 Discussion . 128

Glossary 131

Bibliography 135

A Modeling language 147
A.1 Data structure . 147
A.2 Semantics . 147
A.3 Syntax . 150

B Language syntax 155
B.1 SmartCam-C . 155
B.2 PEPCI . 155

C Examples 159
C.1 Stream program . 159
C.2 Skeleton . 165
C.3 Meta-skeleton . 166

Summary 175

Samenvatting 177

Acknowledgements 179

Curriculum Vitae 181

Chapter 1

Introduction

Common wisdom dictates that having the right tool is half the job. The trouble is
finding the right tool – or even being aware that it exists! – and learning how to use
it. This holds double in computer science, where the number of tools practically
exceeds the number of uses. However, often we stick to what we know, and use a
programming language and processor architecture that we are familiar with. Only
when it becomes apparent that our favorite tools are not sufficient do we start
looking for other solutions, leading to costly redesign efforts.

Fortunately, the tools in computer science are much more flexible than those
used in crafts. In computer science, if you know how to hammer in a nail, you only
need an appropriate compiler to use the same algorithm for screwing in a screw. In
the past, it has therefore been enough to know just one or a few general-purpose
programming languages. But the increasing demands of high data throughput
applications such as computer-assisted camera surveillance require radically dif-
ferent, parallel processing architectures. The large semantic gap between language
and architecture makes programming akin to actually hammering in the screw.

The common approach to closing this gap is learning a new, architecture-
specific language. However, this is not portable and therefore does not solve the
redesign problem when the chosen architecture proves insufficient, nor does it help
us finding the right architecture in the first place. We need to structurally expand
a programmer’s toolbox to include many current and future architectures, and –
since we cannot expect the programmer to have the knowledge necessary to choose
between architectures he does not know – automate the architecture selection.

Instead of bringing the language closer to the architecture, we propose to bring
it closer to the algorithm, as the programmer certainly is intimately familiar with
that. Such an algorithm-specific language (ASL) is easy to use because it caters
to the specific needs of the algorithm, and it allows the program to run on any
processor which implements its interface. Instead of choosing an architecture, the
programmer now chooses an ASL to use, which can be done in a much more defined
and informed manner.

As the program is now architecture-independent, we can automatically select
an appropriate architecture after developing the application. The result is a pro-
cessing architecture tailored to the application: the right tool for the job.

2 Chapter 1. Introduction

1.1 Smart cameras

The drive for our research is the field of embedded image processing. Even though
the miniaturization and associated performance increase of microprocessors has
been phenomenal, analyzing images delivered by current sensors at video speed
(thirty frames per second) is still a daunting task. Specialized parallel architec-
tures, such as single-instruction multiple-data (SIMD) processors, are necessary to
maintain the required performance at an acceptable level of power consumption.

It is important to note that we are not targeting multimedia tasks such as video
compression and image enhancement, which are static and often implemented in
application-specific integrated circuits (ASICs) or vendor-supplied libraries. We
are interested in the extraction and analysis of information from the images, which
can then be used to make control decisions.

A device which integrates an image sensor with a processing architecture for
analyzing the images is called a Smart Camera (SmartCam). The output of the
processing is often not an image but image features, measurements, or control
decisions. Such a device must be able to handle low-level pixel processing (noise
removal, edge detection, segmentation) as well as feature extraction and high-level
decision making. These tasks place vastly different requirements on the processor
architectures implementing them. Consequently, there is no single architecture
that is best in all situations, and an efficient SmartCam solution will have to be a
heterogeneous multiprocessor.

Parallel programming is notoriously hard, even more so if the processors are
heterogeneous. Heterogeneous multiprocessors are therefore usually not part of a
programmer’s toolbox, even if they offer the most efficient solution to the problem
at hand. Algorithm-specific languages allow us to add any such architecture to
the toolbox, and to automatically determine the optimal configuration.

1.2 Algorithm-specific languages

Architecture-independent programming is not a new concept; general-purpose lan-
guages such as C and Java can be compiled and executed on a large number of
processors. Unmodified, however, their use is limited to sequential processors. Al-
though there have been many attempts to automatically translate a C program to
a parallel architecture, they are invariably inefficient, or efficient only for a small
subset of C programs.

Once we realize that there is no reliably efficient way to translate a general-
purpose sequential language to a parallel implementation, it makes sense to look
at special-purpose sequential languages. By specializing a language to just those
concepts necessary for the implementation of a particular class of algorithms, we
accomplish two things: the language becomes easier to use, and can be efficiently
translated to more (parallel) architectures.

The efficiency of the translation depends on the size of the language subset that
a particular algorithm requires. Simple algorithms which use only a small subset
can be translated very efficiently and can run on very simple processors. Complex
algorithms using large subsets will generally be able to exploit less parallelism and
can only run on more flexible processors.

1.3 Automated design space exploration 3

We must therefore provide a range of algorithm-specific languages, each for
a different class of algorithms, and each providing a different trade-off between
generality and efficiency. If the user then chooses the most restrictive language in
which his algorithm can be specified, it will execute the most efficiently and on
the largest range of processors.

Of course, an application consists not of a single algorithm, but of many dif-
ferent algorithms connected together. Each algorithm may use its own language;
this provides the ultimate freedom and flexibility to map the application onto an
architecture, as it imposes the least number of requirements on the individual ar-
chitecture components. In turn, this leads to efficient execution on heterogeneous
multiprocessor systems.

1.3 Automated design space exploration

Choosing the right heterogeneous multiprocessor architecture for an application
is not an easy task. Apart from choosing the characteristics of the individual
processors, we need to determine how many of each processor type to take and
how they are to be connected. Each architecture constitutes a trade-off between
the objective variables: performance (speed/latency), power consumption and chip
area.

Again, there is no single best architecture, even for a single application. Which
architecture is more desirable depends on the relative priorities of the objective
variables. Since these are hard to specify beforehand, we need to present the user
with a set of optimal trade-offs (Pareto points) among which he can make the final
decision himself.

It is of course impossible to actually execute the program on all architectures
in the design space. In the first place, we will need to simulate the application, as
the hardware is not available during the design phase. To reduce simulation time,
we use the fact that our model of computation splits the program into separate
algorithms which can be simulated individually.

Secondly, the design space is too big to explore using a brute-force method. We
use a multivariate heuristic technique to limit the search space while still providing
a reasonable approximation of the optimal trade-offs. By repeatedly choosing an
architecture, simulating it, and refining the choice, we move towards successively
better approximations. Because the design space is highly irregular, the heuristic
that we use is based on genetic algorithms, since they do not assume a smooth
objective space.

The design space is further limited by the use of an architectural template.
The template contains the modes in which the architecture is allowed to change,
such as word size, type and number of execution units, memory organization,
interconnection, etc. Each architecture is an instantiation of this template.

1.4 Design flow

We can now construct the central design flow of our framework, illustrated in
figure 1.1. A programmer starts by selecting the appropriate languages and us-

4 Chapter 1. Introduction

Algorithms
Language

Library

Application SimulatorMapping

Architecture Measurements
Template

Architectural

Figure 1.1: Design flow for the development of SmartCam applications. The dotted
line denotes the manual restructuring of code if none of the presented architectures
are sufficient.

ing these to construct his algorithms. The algorithms are connected to create an
application, which is then mapped onto an instantiation of the architectural tem-
plate. Simulating the application provides performance measures that can be used
to refine the architecture.

It is possible to incrementally restructure an existing application to use our
framework. In this case, the programmer starts by only rewriting the most com-
putationally intensive inner loops of the application. If the trade-offs found by the
design space exploration are not to his liking, he can rewrite more parts of the
application.

1.5 Contributions and thesis outline

Chapter 2 of this thesis gives an introduction to the field of embedded image
processing, its typical applications, processor architectures, algorithms and pro-
gramming languages. We present a set of algorithm classes and match those to
architectural features using a processor taxonomy. This supports the conclusion
that there is no single best processing architecture, and that we need architecture-
independent programs to be able to efficiently exploit all the options.

Chapter 3 presents the novel concept of algorithm-specific languages by relating
them to functional programming and algorithmic skeletons. It then introduces
stream programming as a way of connecting the algorithms, and explains how
algorithm-specific languages can be seen as a generalization of the kernel languages
used in stream programming.

Chapter 4 contains details about our implementation of algorithm-specific lan-
guages. We have created a new meta-programming language especially designed
for the source-to-source translation of C-like languages into (parallel) C derivatives.
This allows advanced programmers to add support for new algorithm classes or
processor architectures. The language uses a novel technique which we call pseudo-

1.5 Contributions and thesis outline 5

dynamic meta-programming to blur the distinction between the meta-level and
source-level parts of the code.

In chapter 5 we discuss the execution of an architecture-independent program
on a multiprocessor architecture, especially the problem of mapping operations
to processors under dynamically changing conditions. We introduce a new per-
formance prediction technique that incorporates both task cooperation and task
dependencies, and present results on the efficiency of our approach.

Chapter 6 details how the architecture independence of an application program
and properties of the streaming model of computation can be used to efficiently
explore the design space of possible processing architectures using Pareto opti-
mization of performance, energy and area. To our knowledge, such a complete
integration of the trajectory from source code to a suitable parallel heterogeneous
architecture has not been shown before. Results are presented on the convergence
and coverage of the exploration, using simulated robotic soccer and augmented
reality case studies.

Finally, in chapter 7 we summarize our work and discuss the results.

Chapter 2

Embedded image processing

Embedded systems are special-purpose computer systems designed to perform a
dedicated function. Often, this function includes measuring a property of the
environment and acting upon it. For example, a home thermostat measures the
air temperature in a room and controls the gas valve and water flow in a central
heating system. Such control functions have real-time constraints, meaning that an
action has to be taken within a certain period after the change in the environment.

In embedded image processing applications, this period is often in the order
of 10-100 milliseconds (though it depends on the properties of the dynamic sys-
tem that is being controlled). In this time frame, many algorithms dealing with
noise reduction, segmentation, feature extraction and decision making have to be
performed. Since video sequences contain vast amounts of data, processing all the
information takes a lot of computing power, often more than is available in regular
microprocessors.

In terms of power consumption and speed, an application-specific integrated
circuit (ASIC) solution will always be the most efficient. However, the non-
recurring engineering (NRE) cost is very high, because on the one hand the design
is time-consuming, and on the other the cost of making a leading-edge lithographic
mask set already exceeds a million US dollars [125]1. Both of these problems are
only likely to grow in the future, as designs are getting larger and features sizes
smaller [67].

The high NRE costs make ASICs unsuitable for small production runs. Fur-
thermore, they make it uneconomical to modify the implementation based on new
conditions or algorithmic insights. Finally, if an application consists of many dif-
ferent possible operations, only a few of which are active at one time, an ASIC
requires hardware to be available for all operations, leading to high area overhead.

We are interested in applications for which a single general-purpose CPU is not
fast enough – or too inefficient in terms of power consumption –, and which are
too specialized, unstable, or dynamic for ASIC implementation. We will describe
common image processing algorithms used in such applications, analyze what re-
quirements they put on the processor architecture implementing them, and discuss

1Multi-project wafers or limited-custom masks such as sea-of-gates designs can bring this
figure down, at the expense of per-unit cost.

8 Chapter 2. Embedded image processing

the languages that may be used to program those architectures.

2.1 Application domain

Many current image processing applications, especially those in machine vision
tasks such as industrial inspection, operate in a well-controlled, static environment.
Because the environment does not change (except for the properties that have to
be measured), they can manage with a static succession of algorithms. These
applications are most suitable for an ASIC implementation.

In other situations, the task of the vision system depends on the environment.
A photocopier might select different algorithms depending on whether the input is
color or black-and-white, text or graphics. A digital video recorder needs to either
compress or decompress video depending on whether it is recording or playing
back. Still, such use cases are themselves static, and switching between them is
sporadic. However, performance demands may still require the use of multiple
processing devices, each specialized for a certain use case.

The most interesting application domain, and the one we will focus on, requires
dynamic reactions to the environment on a frame-by-frame basis. This can be
limited to just the front-end vision (such as adjusting noise reduction algorithms
based on the signal to noise ratio and scene content), but can also change the
entire control behavior of the system [11, 91]. Often, the dynamic environment
also leads to many algorithmic changes over the lifetime of the system, thereby
requiring a programmable solution.

It may be clear that dealing with this dynamic behavior is mostly a matter of
being able to quickly change the way in which the algorithms inside an application
are configured and interconnected. Apart from that, however, the fact that the
environment is dynamic also has an impact on the types of algorithms that are
used. Most importantly, the algorithms should be robust against variable lighting
conditions, occlusions, motion, and other factors not under the control of the
system.

Note that guaranteeing a reaction within a certain timeframe is hampered by
the dynamic task connections. We will not address such guarantees in this study,
and use the performance constraints as a guideline only. Because devices that
operate in a dynamic environment are often untethered, energy consumption is
typically constrained to hundreds of milliwatts to a few watts.

2.2 Processor architectures

Having restricted our scope to applications requiring programmable solutions and
robust algorithms, there is still a very large range of processors to choose from.
The main factors that exert an influence on the decision (apart from cost) are the
speed at which the device can execute the algorithms, and the amount of energy
it needs for the execution.

Speed and efficiency are largely a function of the amount of parallelism that can
be exploited, as increasing the clock speed of a single processor is limited by heat
production and power dissipation [51]. This parallelism comes in many different

2.2 Processor architectures 9

flavors, such as bit-level (doing an addition on 8 bits at a time), instruction-level
(executing an addition and a multiplication simultaneously), data-level (multiply-
ing many different values at the same time) and task-level (convolving one image
while segmenting another). All these need to be exploited for optimally efficient
execution.

Section 2.3 will analyze the requirements of common image processing algo-
rithms for efficient execution on a parallel processor architecture. Because we are
investigating single algorithms, we will ignore task-level parallelism (that is the
subject of section 2.5). We will also ignore bit-level parallelism, because we will
assume all architectures allow the concurrent processing of entire bytes or words.
This leaves us with instruction and data-level parallelism, for which we will need
a consistent description of architectural support in the form of a taxonomy.

2.2.1 Taxonomy of parallel computing

The most common taxonomy for (parallel) computation is that by Flynn [50].
Flynn distinguishes four classes of computers:

• Single instruction stream - single data stream (SISD, sequential computa-
tion)

• Single instruction stream - multiple data stream (SIMD, vector computing)

• Multiple instruction stream - single data stream (MISD, not generally used)

• Multiple instruction stream - multiple data stream (MIMD, cluster comput-
ing)

This taxonomy makes essentially two distinctions: whether there are one or more
instruction sequencers, and whether an instruction addresses multiple memories
or only one. The main problem of this system is that it is not detailed enough for
our purposes – having only two classes for parallel computers (SIMD and MIMD).

Whether an algorithm can be efficiently executed in parallel depends on many
more factors. One important aspect is the degree of local autonomy in the pro-
cessors, which can take a number of different forms [54, 83]. Essentially, these
constitute different dimensions, spanning a space that encompasses everything
from truly centralized (SIMD) to truly distributed (MIMD) autonomy. The most
efficient execution architecture for a certain algorithm, then, is the one which
distributes only as many resources as is necessary to exploit the parallelism inher-
ent to the algorithm, while centralizing the rest. We will consider the following
dimensions:

• Number of processing elements (PEs). This determines how many instructions
may be executed in parallel.

• Homogeneous or heterogeneous processing elements. This specifies whether
all processing elements are the same or not. There may be differences in
instruction set, frequency, memory, access to external resources, etc.

10 Chapter 2. Embedded image processing

• Local or global instruction sequencing. This specifies whether each processing
element may branch independently; local instruction sequencing means there
are multiple instruction streams.

• Instruction synchronization. Even with only one instruction stream (global
instruction sequencing), processing elements may execute different parts of
the stream at different times (buffered execution). Conversely, locally se-
quenced processing elements will include “barrier” instructions which are
executed concurrently by all elements.

• Shared or distributed memory. If each processing element has its own mem-
ory, the memory bandwidth is higher. On the other hand, accessing non-local
memory becomes more difficult.

• Local or global memory address generation (per-processor indirect memory
addressing). Local memory address generation with global instruction se-
quencing means that, while every processor executes the same load, they
may read from different parts of memory. Shared memory always implies
local memory address generation.

• Interconnect organization. This describes how the processing elements are
connected. It has a large impact on the communications bandwidth. Pop-
ular choices are rings, meshes, and crossbars. Often, a separate broadcast
capability is also included.

• Local or global communication address generation. Analogous to memory
address generation, a communication operation may require each processor
to communicate with the same relative address (such as their left neighbor
in a ring interconnect), or it may compute the address locally.

• Communication latency. Tightly coupled systems can communicate with
single cycle latency. Shared memory coupled systems typically require tens to
hundreds of cycles. Finally, networked systems need many tens of thousands
of cycles.

Figure 2.1 illustrates how these components interact in a generalized parallel
system.

2.2.2 Examples

Table 2.1 categorizes a number of contemporary processing architectures in terms
of our taxonomy. While superscalar processors such as the Intel Core 2 microar-
chitecture (Intel Corporation, USA) are not generally considered to be a parallel
system, they exploit a considerable amount of instruction-level parallelism through
wide execution paths.

Furthermore, the nodes of the DAS2-TUD (Advanced School for Computing
and Imaging, The Netherlands) cluster themselves consist of Intel Pentium proces-
sors, while the IMAP-CE (NEC Corporation, Japan) processing elements contain
multiple (heterogeneous) function units. The TriMedia (Philips Semiconductors,
The Netherlands) contains instructions which allow the bytes in a 32-bit data

2.2 Processor architectures 11

PE 0

Address
Generator

Memory Instruction

Sequencer

Address
Generator

Comms

Function

Instruction

Buffer

Unit(s)

Distributed memory

Data

DataAddress

Instr.DataAddress

Global
Instruction
Sequencer

DataData Instr.Address

Shared

Memory

Address Data

PE N

Address
Generator

Memory Instruction

Sequencer

Address
Generator

Comms

Function

Instruction

Buffer

Unit(s)

Distributed memory

Data

DataAddress

Instr.DataAddress

Broadcast bus

Instruction bus

Interconnect Interconnect

Broadcast bus

Instruction bus

Figure 2.1: Generalized view of a parallel system. Many components can be either
present or absent (such as the local address generators) or may have different
properties (such as the interconnect or the function units).

12 Chapter 2. Embedded image processing

word to be treated as single values, offering a limited form of data parallelism.
The taxonomy could therefore apply to multiple levels of abstraction. For each
architecture, we will only consider the level that exposes the largest degree of
parallelism.

Intel Core 2 microarchitecture

The Core 2 [135] is Intel’s latest microarchitecture to implement the x86 instruction
set. It is a 5-issue out-of-order superscalar processor. This means that while
the instruction stream is one dimensional, different parts of it are executed by
different execution units, not necessarily in the order in which they appear in the
stream; each execution unit has its own instruction queue. The execution units
are heterogeneous (for example, one can only do loads from memory), and can
forward results using a fully connected bypass network.

Intel produces chips with multiple of these cores on a single die, in a shared
memory configuration. The number of cores per die is expected to grow in the
future.

Philips TriMedia

The TriMedia [118] is a 5-issue VLIW processor. This is a different approach from
superscalars but achieves the same result: a number of heterogeneous execution
units is fed from a single instruction stream. In VLIWs, however, the instructions
are scheduled by the compiler instead of the processor: each instruction in the
stream contains a sub instruction for every execution unit, and these are executed
in lock-step, reducing hardware complexity and power dissipation.

The main drawbacks of this approach are the large code side and the inefficiency
of branching instructions.

Philips XeTaL

XeTaL (Philips Research Laboratories, The Netherlands [1]) is an SIMD processor
specifically targeted to near-sensor processing such as fixed pattern noise correction
and color reconstruction, but due to its fully programmable nature it can also be
used for tasks like segmentation and stereo vision (through block matching between
a left and a right camera image). It contains 320 10-bit fixed-point PEs with little
local autonomy and small memories (16 image lines at a horizontal resolution of
640 pixels). Notably, the PEs have no indirect addressing capability, and only one
of the operands of a multiplication may be local. The PEs are connected in a line
(broken ring), and have access to a broadcast bus.

The control processor has a 12-bit integer ALU and 30 registers. The program
memory is limited to 1024 instructions.

NEC IMAP-CE

The IMAP-CE [85] SIMD processor is similar to the XeTaL but has less, more
powerful, PEs. Each of its 128 8-bit PEs is a 4-way VLIW with 24 registers and
2KB of local memory. The control processor is 16 bit, with 26 registers, 2KB local

2.2 Processor architectures 13

data memory and 32KB program memory. An external 256MB SDRAM can be
used if more memory is required. Data from this memory can be copied under
DMA.

The IMAP-CE’s PEs are interconnected using a ring. For binary operations,
it supports neighborhood parallelism by gathering the data of the 8-connected
neighborhood of a pixel in a single cycle. Each PE may generate its own memory
address, but not the communication address.

A redesign of the IMAP-CE, called the IMAPCAR, uses 16-bit instead of 8-bit
PEs.

TU/e DC-SIMD

The DC-SIMD [49] architecture is a prototype linear SIMD array that brings
instruction buffering to SIMD processors with local communication address gen-
eration. Instruction buffering was introduced to avoid the long delays associated
with dynamic communication in other architectures [68, 16]. In this case, execu-
tion is not fully synchronous, as each processor may wait a different amount of time
depending on communication distance. If these distances are evenly distributed
(so that a processor waiting for a long-distance communication is later likely to
require only a short waiting time), DC-SIMD is faster than repeated shifting.

NVidia G80

Graphics Processing Units (GPUs) used for 3D visualization have become pro-
gressively more capable of scientific computing. Their processing elements started
as configurable fixed-function units specifically for pixel (fragment) and triangle
(vertex) operations. Later, they became programmable, and the G80 (NVidia Cor-
poration, USA [40]) is the first such architecture to provide homogeneous scalar
processing elements, unifying the fragment and vertex processors.

The G80 actually consists of 16 SIMD processors with 8 processing elements
each. Instead of memory local to the PEs each processor has 16KB of shared
memory, divided in 16 banks. As long as there are no bank conflicts, memory
access is as fast as using registers. This is not the case for access to global memory,
which has a 200-300 clock cycle latency. To hide this latency, a thread scheduler
can switch to a different task while waiting for the transaction to complete. Using
global memory is the only way for the processors to communicate.

ASCI DAS2-TUD

MIMD systems created by connecting commercial off-the-shelf components (Be-
owulf clusters, [121]) have become very popular in the last decade. The Distributed
ASCI Supercomputer 2 (DAS2) consists of five such clusters, of which DAS2-TUD
is one. Each of its 32 nodes contains 2 1 GHz Intel Pentium III processors with 1GB
shared memory, and they are connected using Myrinet-2000 (Myricom, Inc., USA).
Myrinet-2000 allows any permutation of connections between nodes to communi-
cate bidirectionally at full 2Gb/s bandwidth using a Clos network. The minimum
communication latency is around 10.000 clock cycles.

14 Chapter 2. Embedded image processing

An new cluster, called DAS3, has now been installed. The TUD site contains
68 2.4 GHz AMD Opteron (Advanced Micro Devices, USA) processors connected
by 1Gbps Ethernet.

2.3 Algorithms2

Image processing is a very large field, even if we restrict ourselves to embedded
and real-time applications. It is therefore impossible to analyze all algorithms.
We will, however, present a number of popular algorithms in this sub domain.
Of course, what is possible in real-time is a shifting target as processors become
faster.

In our analyses, we will always assume an optimal distribution of the image(s)
over the available processors, and enough memory to store all relevant information.
The following notation is used:

• X, Y and Z are digital images, treated as partial functions which map a
pixel location to some value: X : N2 → R(X). The domain of X, that is,
all pixel locations for which X is defined, is denoted by D(X). Images are
assumed to be square, having |D(X)| pixels, where 2log

√

|D(X)| ∈ N. The
range (possible pixel values) is denoted by R(X), and can be an intensity, a
Cartesian product of intensities (in the case of tensor images), or any other
value.

• p, q and r are pixel locations. Xp is the value of the pixel in X at location
p.

• S and T are sets of relative pixel locations, used as a neighborhood or struc-
turing element around a pixel.

• R is a set of absolute pixel locations.

• f and g are functions.

• C is an array of constants.

2.3.1 Parallelism

We will classify the considered algorithms into categories which offer the same
amount of parallelism. On an algorithmic level, we are only interested in the
inherent parallelism of the algorithm, that is, the (average) amount of primitive
operations that may be executed in parallel assuming infinite resources. This can
be determined by counting the number of computational steps in the algorithm,
and dividing it by the number of steps a hypothetical infinitely parallel machine
would need to execute it.

Two operations may not be executed in parallel if, under transitive closure,
there exists a dependency between them. There are three kinds of dependencies
which affect the inherent parallelism of an algorithm [14]:

2The basis of this section was formed during an internship at NEC, Japan in May 2005

2.3 Algorithms 15

T
ab

le
2.

1
:

C
h
ar

ac
te

ri
za

ti
on

of
d
iff

er
en

t
p
ar

al
le

l
p
ro

ce
ss

in
g

ar
ch

it
ec

tu
re

s
ac

co
rd

in
g

to
th

e
ta

x
on

om
y

of
se

ct
io

n
2
.2

.1
C
h
ar

a
ct

e
ri
st

ic
C
o
re

2
T
ri
M

e
d
ia

X
e
T
a
L
-1

IM
A

P
-C

E
D

C
-S

IM
D

G
8
0

D
A

S
2
-T

U
D

P
E
s

5
5

32
0

12
8

32
0

12
8

2
4

H
et

er
og

en
eo

u
s

Y
Y

N
N

N
N

N
In

st
ru

ct
io

n
se

q
u
en

ci
n
g

G
lo

b
al

G
lo

b
al

G
lo

b
al

G
lo

b
al

G
lo

b
al

C
lu

st
er

ed
p
er

8
P
E
s

L
o
ca

l

S
yn

ch
ro

n
iz

at
io

n
B

u
ff
er

ed
L
o
ck

st
ep

L
o
ck

st
ep

L
o
ck

st
ep

B
u
ff
er

ed
C
lu

st
er

ed
p
er

8
P
E
s

F
re

e

M
em

or
y

or
ga

n
iz

at
io

n
S
h
ar

ed
S
h
ar

ed
D

is
tr

ib
u
te

d
D

is
tr

ib
u
te

d
D

is
tr

ib
u
te

d
S
h
ar

ed
p
er

cl
u
st

er
D

is
tr

ib
u
te

d

M
em

or
y

ad
d
re

ss
ge

n
er

at
io

n
G

lo
b
al

G
lo

b
al

G
lo

b
al

L
o
ca

l
L
o
ca

l
L
o
ca

l
L
o
ca

l

In
te

rc
on

n
ec

t
or

ga
n
iz

at
io

n
F
u
ll

F
u
ll

R
in

g
R
in

g
R
in

g
U

si
n
g

gl
ob

al
sh

ar
ed

m
em

or
y

(8
,
8
,
8
)-

C
lo

s

C
om

m
ad

d
re

ss
ge

n
er

at
io

n
G

lo
b
al

G
lo

b
al

G
lo

b
al

G
lo

b
al

L
o
ca

l
L
o
ca

l
L
o
ca

l

C
om

m
u
n
ic

at
io

n
la

te
n
cy

(c
yc

le
s)

1
1

1
1

1
≈

10
0

≈
1
0
.0

0
0

16 Chapter 2. Embedded image processing

• Flow dependencies arise when an operation writes a variable which is read
by an operation occurring later in the algorithm description.

• Anti dependencies are those where an operation writes a variable which is
read by an operation preceding it in the algorithm description.

• Output dependencies occur when two operations write to the same variable.

Often, the algorithm can be rewritten to avoid anti and output dependencies,
but flow dependencies are really inherent. Whether the inherent parallelism is
exploitable depends on the amount of available processing elements, their capabil-
ities and interconnections. In short, it depends on whether the pattern in which
the algorithm accesses the pixels is supported by the hardware. We will therefore
define our categories based on these access patterns.

2.3.2 Low-level operations

Low-level operations work on entire images. They take images as input and pro-
duce images as output. This means that essentially all pixels in the input image
will be visited by the algorithm.

Pixel to pixel operations

∀p ∈ D(Y) : Yp ← f(Xp) (2.1)

Pixel operations, such as binarization and addition, contain trivial parallelism.
Each pixel may be processed completely in isolation, resulting in parallelism
|D(Y)|. Depending on f , it may be possible to exploit instruction-level parallelism
within each pixel. For example, computing an arctangent is often implemented as
a multi-linear approximation, some parts of which may be executed in parallel.

Anisotropic pixel operations

∀p ∈ D(Y) : Yp ← f(p) (2.2)

Anisotropic operations have access to the pixel coordinates. These are often
used to generate images for use in later operations, such as ramps and subsampling
maps. Apart from requiring each processing element to know which pixel locations
it is processing, this does not affect the available parallelism.

Pixel lookup operations

∀p ∈ D(Y) : Yp ← f(Xp, Z) (2.3)

Lookup operations can access a lookup table (Z) to determine the value of a
pixel. This category includes such operations as color mapping and segmentation,
but if X is a displacement map and Z an image, it may also be used for lens
distortion correction. The inherent parallelism is still |D(Y)|, but implementations
may suffer from read contention on Z. If the added latency due to such accesses
can not be sufficiently amortized through duplication, pipelining, or instruction
buffering, this may severely limit the exploitable parallelism.

2.3 Algorithms 17

Lookup operations require local memory address generation for efficient imple-
mentation. Additionally, 2D lookups (such as displacement maps) require local
communication address generation.

Pixel to global operations

∀p ∈ D(X)∀q ∈ g(Xp) : Yq ← f(Xp,q) (2.4)

This is the dual of the pixel lookup class, generating multiple output pixels per
input pixel. Clearly, this suffers from output dependencies if the sets of output
pixels generated by g are not disjoint. Even if the sets are disjoint, write contention
on Y limits exploitable parallelism; efficient implementations therefore require the
memory to be distributed according to g. In addition, pixel to global operations
have the same address generation requirements as pixel lookup operations. An
example is the Hough transform, where each pixel of an image generates a curve
in Hough space.

Neighborhood to pixel operations

∀p ∈ D(Y) : Yp ← f({Xp+q|q ∈ S}) (2.5)

Any neighborhood operation, from mathematical morphology to convolution.
Again, without further knowledge of f , inherent parallelism is still |D(Y)|. How-
ever, if S is not contiguous (for example, because the convolution kernel contains
many zeroes), exploiting this parallelism requires a denser interconnect than rings
or meshes.

Recursive neighborhood to pixel operations

∀p ∈ D(Y) : Yp ← f({Xp+q|q ∈ S}, {Yp+r|r ∈ T}) (2.6)

A recursive operation allows access to certain parts T of the output image.
This introduces flow dependencies, and therefore an ordering and limitations on
parallelism. T might even be chosen such that no legal order can be found. In
the most popular recursive neighborhood operations, such as distance transforms
[18], T is the neighborhood that would be available assuming row-major iteration

(iterating over columns in the inner loop). Parallelism is limited to

√
|D(Y)|

2 ,
because at every step only a diagonal line of the output image can be calculated.
Full exploitation requires at least a tightly coupled ring connected system with
local memory address generation. Loosely coupled systems will lose too much
time waiting for the processed boundary values on which f depends.

Bucket processing

Y ← X

Bucket← R

while ∃p ∈ Bucket

Bucket← (Bucket \ p) ∪ g(Yp)

Yp ← f(Yp)

(2.7)

18 Chapter 2. Embedded image processing

A bucket is initialized with a number of seed points (R). For each seed point,
the output is updated using f , while new points can be added using g. There is no
explicit ordering on the treatment of the bucket elements. It may be implemented
as a stack, in which case the order is depth-first. An example operation which can
be implemented using bucket processing is the binary propagation of a seed over
a mask image, shown in figure 2.2.

By distributing the bucket over the available processing elements [100], each
PE reading from the bucket that contains the pixels it has in local memory, we
attain a parallel implementation. The inherent parallelism is limited by the size
of the bucket, which itself depends on g, and is thus data-dependent. Exploitable
parallelism is further limited by the process of writing remote buckets. For buckets
sizes larger than one, local memory address generation is necessary.

Ordered-iteration bucket processing

Y ← X

Stack← R

while Stack 6= ∅ :

∀p ∈ Stack :

Yp ← f({Xp+q|q ∈ S})
NewStack← Stack ∪ g({Xp+q|q ∈ S})

Stack← NewStack

X ← Y

(2.8)

Many wavefront propagation algorithms, such as skeletonization, require the
neighborhood of a pixel in order to determine the output value and update the
bucket. Anti-dependencies (where an updated value is erroneously read as part
of the neighborhood) must therefore be resolved by creating a temporary output
image and placing a partial ordering on which pixels may be processed: all pixels
in one iteration must be completed before starting the next.

Seed First propagation Final result

Figure 2.2: Successive stages of the binary propagation of a seed over a mask.
The first figure is the seed R; the middle figure illustrates the pixels that may be
reached by the first application of g, while the right figure is the final image.

2.3 Algorithms 19

Iteration ordering further limits parallelism (although, again, data-dependently),
while neighborhood addressing has the same requirements as in eq. 2.5.

2.3.3 Intermediate-level operations

Intermediate-level operations reduce the amount of data in an image, either by
selecting pixels or objects from an image, or by accumulating the pixels into a
scalar or vector by some statistical operation.

Scalar reduction

∀p ∈ D(X) : y ← f(Xp, y) (2.9)

Reduces an entire stream to a scalar value. As we have not defined an order
on X, f must be both associative and commutative. Many reduction operations,
such as maximum, minimum and addition, satisfy these conditions. From com-
mutativity also follows that R(X) = R(y). Such operations may be performed in
2 log |D(X)| steps using a reduction tree, leading to inherent parallelism |D(X)|−1

2log|D(X)| .

Full exploitation of this parallelism requires a tightly coupled interconnect
which can emulate a tree (such as full or hypercube interconnect). More restricted
forms, such as rings or meshes, have to spend time shifting the intermediate values.
A broadcast bus is then needed to avoid too many shifts at the upper levels of the
tree. In that case, ring parallelism is in the order of 1

3 |D(X)| 23 (see footnote3).

Vector reduction

∀p ∈ D(X) : YXp
← f(Zp, YXp

) (2.10)

Vector reductions are used to aggregate values for a number of different items
simultaneously, the most well-known being histogramming, with f = (+) and
Z = 1; in other cases, X is often an image of object indices. The amount of work,
and the inherent parallelism, is the same as scalar reduction. Full exploitation is
still possible, but now requires |D(Y)| (= |R(X)|) parallel reductions.

A naive ring implementation using the same method as for scalar reduction
requires |D(Y)| times more work, since all elements of Y have to be combined at
each node of the reduction tree. From a certain size of |D(Y)| onwards, it becomes
advantageous to distribute Y over the available processors (with each processor
creating a local version and combining them afterwards), leading to parallelism
1
2 |D(X)| 12 for |D(Y)| ≤

√

|D(X)|.

Filtering

Y = {Xp|Zp = true} (2.11)

3This may be achieved in three phases: first, reducing the values local to each processor. Next,
doing parallel reductions by shifting the data over increasing distances. Finally, a sequential

reduction by gathering the remaining data over the broadcast bus. Each phase takes |D(X)|
1
3

steps.

20 Chapter 2. Embedded image processing

Generates an output containing fewer elements than the input, such as in
subsampling. There are no dependencies, and inherent parallelism is |D(X)|. Ex-
ploitation efficiency depends on the time it takes to redistribute Y .

Contour following

∀r ∈ R : Yr ← (0, r)

while R 6= ∅ :

∀r ∈ R :

p← Snd(Yr)

Yr ← (Yr,p + f({Xp+s|s ∈ S})

(2.12)

This is similar to bucket processing, except that instead of updating the image,
for each seed a list of visited points is kept. In 2.12, this list is constructed as a
left-recursive tuple (Snd returns the right member of the tuple). Each contour
has to be followed sequentially, but different contours may be followed in parallel.
Inherent parallelism is therefore |R|.

2.3.4 High-level operations

High-level operations work on the features extracted from images by intermediate-
level operations, and generate new features, or decisions based on those features.
The data structures involved in these calculations are often not arrays, but lists or
trees. In many cases, efficient parallelization requires a different algorithm than
the sequential case.

Often, high-level algorithms are not specific to image processing, but rather
draw from fields such as linear algebra, optimization, pattern recognition, and
symbolic reasoning. We therefore only discuss two examples.

Sorting

The fastest sequential sorting algorithm in the average case is quick sort, requiring
O(NlogN) steps. For linear SIMD arrays, the theoretically optimal worst case
is O(N), because a value may have to be shifted from one end of the array to
the other. This theoretical optimum is reached by odd-even transposition sort
(which is a parallel version of bubble sort). On meshes, shear sort [113] can reach
O(
√

NlogN) by alternatively sorting rows and columns (although this requires
limited local communication address generation), and bitonic sort [13] reaches
O(log2N) on hypercubes.

Machines with large communication latencies (such as MIMD clusters) will
require N >> P for efficiency. In that case, each processor usually keeps a sorted
list. An algorithm that is often used in this case is sample sort [60], with time
complexity O(N

P
log N

P
).

Branch and bound search

Branch and bound search is common in optimization problems such as path finding
and machine learning. The concept is to start with a partial solution and move

2.4 Languages 21

towards the final goal, expanding upon that partial solution which minimizes a
certain cost function. Examples are depth-first search (evaluate first expanded
solution first), uniform cost search (expand solution with minimum cost) and A*
(expand solution with minimum incurred + predicted cost).

Because of its formulation, B&B search is sequential: only one partial solution
is expanded at a time. However, we may expand more than one in parallel, pro-
vided that the final solution is the same as in sequential expansion. Each processor
keeps its own priority queue of expanded but unevaluated partial solutions, and
the tops of these queues are regularly exchanged. Note that this means that non-
essential partial solutions are expanded, making it difficult to asses the inherent
parallelism.

The exchange of partial solutions can be done locally between neighbors [41,
140], and updating a local priority queue only requires local memory address gener-
ation. However, how a partial solution is to be expanded depends on the solution,
as does the number of children it generates. This makes B&B algorithms less suit-
able for implementation on machines without local instruction sequencing [79]. In
addition, the size of the priority queues will generally exceed the local memory of
SIMD processing elements.

2.3.5 Discussion

Image processing uses a wide variety of algorithms, displaying a large diversity
in the memory access patterns and inherent parallelism. How this parallelism
may be exploited depends on the architecture on which the algorithm is executed;
each architecture will require its own implementation in order to achieve the best
speedup.

Furthermore, which architecture is most suited to exploit the parallelism de-
pends on the algorithm in question. While an architecture with a large amount of
local autonomy and dense interconnect will support all the modes presented in this
section, the cost of these features will dramatically reduce the number of process-
ing elements that can be implemented, leading to a loss of exploitable parallelism
for less complex operations.

There is therefore no single optimal image processing architecture, but rather
a continuum of architectures, each of which is optimal for only a certain class of
algorithms.

2.4 Languages

We will now present a number of APIs and languages that can be used to program
parallel devices. In order to restrict our scope somewhat, we only describe C-
based languages, and have selected one representative from each of four categories
targeted at different architectures and applications. As in section 2.3, we will focus
on the execution of single algorithms.

22 Chapter 2. Embedded image processing

2.4.1 Shared memory: OpenMP

OpenMP [45] is a multi-platform application program interface (API) for shared-
memory parallel programming in C/C++ and Fortran. It consists of a set of
compiler directives (pragmas) for expressing fork-join parallelism and a library of
utility functions. Fork-join parallelism is characterized by a master thread which
executes the sequential parts of the program, and splits off worker threads in the
parallel sections. Once the parallel section is finished, the worker threads are
destroyed or suspended until the next parallel section.

Program 2.1 Example of the OpenMP parallel for directive.

int y, x ;
double out [height][width], in[height][width];

#pragma omp parallel for private(x)

for (y=1; y < height-1; y++)
for (x=0; x < width; x++)

out [y][x] = in[y-1][x] - in[y+1][x];

The most common form of parallelism is the data parallelism encoded in for-
loops. In program 2.1, a vertical gradient is calculated in parallel for all rows in
an image. Depending on the number of available processors, OpenMP spawns a
thread for each block of y values. Unless stated otherwise, all variables are shared.
Since each thread should have its own copy of x, it is declared private.

Other forms of parallelism are also possible, such as master-slave data par-
allelism or task parallelism. Program 2.2 illustrates how task parallelism is ex-
pressed: all the code in the block following the omp parallel directive is usu-
ally replicated over the threads, but the sections directive restricts this by only
spawning a thread to execute each section. Therefore, gauss dx and gauss dy

are executed in parallel.

Program 2.2 Task parallel gradient magnitude in OpenMP. The Gaussian
derivatives gauss dx and gauss dy are executed in parallel.

void gradmag(image t *in, image t *out)
{

image t dx, dy

#pragma omp parallel sections

{
#pragma omp section

gauss dx(in, &dx);
#pragma omp section

gauss dy(in, &dy);
}

norm(&dx, &dy, out);
}

2.4 Languages 23

Additional directives exist to express reductions, and to define critical sections,
which may only be executed by one thread at a time. Library functions allow
interaction with the OpenMP run-time system, such as adjusting the number of
worker threads, and querying the current thread identifier.

A key aspect of shared memory parallel programming systems is the absence
of a data distribution mechanism. As each processor may access any part of the
memory with the same latency, the location is unimportant except for caching.
While efforts have been made to implement OpenMP for distributed-memory sys-
tems [47], the lack of control over the data distribution can lead to a performance
loss compared to true distributed-memory programming environments.

OpenMP may be used for incremental parallelization. Because OpenMP is
a strict superset of the host language, any normal sequential program is a valid
OpenMP program. Furthermore, OpenMP directives may be added one at a
time, locally, without restructuring the rest of the program. This enables the
programmer to direct his parallelization efforts to only those parts of the program
where the benefit is largest.

2.4.2 MIMD clusters: MPI

The Message Passing Interface (MPI, [53]) is the industry standard for parallel
scientific computing. It is based on the single-program multiple-data (SPMD)
paradigm, where the same program runs on all processors of an MIMD cluster,
but each processor operates on different data elements and may follow a different
execution path. MPI is available for both C/C++ and Fortran.

MPI provides a library of communication routines that implement message
passing. This is an inherently distributed-memory approach, where no variables are
shared unless explicitly communicated by sending messages. The communication
primitives include both point-to-point and collective operations.

Program 2.3 illustrates this programming paradigm. The same program is run
on each processor, but they receive different values for rank (third line). These are
then used to process different parts of the image; each processor is allocated lines

image lines, plus one line of border both above and below (see figure 2.3). After
the local computation, a collective communication operation (MPI Allreduce) is
used to determine whether any pixels changed. Finally, the borders are exchanged,
first shifting up, and then down (MPI Sendrecv).

Unlike in OpenMP, it is not possible to incrementally parallelize a sequential
application. Data distribution is under explicit imperative program control, and
must be carefully thought out before writing a parallel program. While this creates
a significant hurdle to writing parallel code, the level of control that is possible
allows for efficient implementations.

Because MPI is so low-level, and because it is available for so many architec-
tures, it is often used to implement higher-level parallel languages or libraries. It
can be seen as the “assembly language” of parallel programming, abstracting over
different cluster interconnects.

24 Chapter 2. Embedded image processing

Program 2.3 MPI program for iterating a neighborhood operation until idem-
potence. Each processor is allocated a series of image lines to process, and the
image borders are exchanged during each iteration.

MPI Init(&argc, &argv);
MPI Comm size(MPI COMM WORLD, &nprocs);
MPI Comm rank(MPI COMM WORLD, &rank);
lines = HEIGHT/nprocs;

while (1)
{

int res, changed=0;

for (y=1; y < lines+1; y++)
{
/* Code to process local image stripe */

/* Set changed to 1 if any pixel changed */

}

MPI Allreduce(&changed, &res, 1, MPI INT, MPI SUM,
MPI COMM WORLD);

if (!res) break;

MPI Sendrecv(&img [1][0], WIDTH, MPI INT, prev(rank, nprocs), 0,
&img [lines+1][0], WIDTH, MPI INT, next(rank, nprocs), 0,
MPI COMM WORLD, &status);

MPI Sendrecv(&img [lines][0], WIDTH, MPI INT, next(rank, nprocs), 0,
&img [0][0], WIDTH, MPI INT, prev(rank, nprocs), 0,
MPI COMM WORLD, &status);

}

2.4 Languages 25

Original image First thinning iteration Border exchange

Figure 2.3: Border exchange for 2 processors during an iterative thinning algo-
rithm. We assume a cyclic vertical dimension, so that the upper neighbor of the
top image line is the bottom image line. Grey values indicate changed pixels; the
overlapping borders (dotted lines) are not updated until the communication step.

2.4.3 SIMD arrays: 1DC

Both MPI and OpenMP are intended for use on MIMD machines; MPI for dis-
tributed-memory systems, and OpenMP for shared-memory ones. They are es-
sentially control-oriented: the system (or programmer) distributes loop iterations.
SIMD languages, on the other hand, are data oriented. By introducing paral-
lel data types, they expose parallelism while still maintaining a single thread of
control.

1DC [86] is an extension of the C language that was designed for use with
the NEC IMAP-Vision SIMD processor [55] (the predecessor of the IMAP-CE). It
adds a new keyword “separate” to declare that a variable should be distributed
over all processors; calculations involving such a variable are done by all processors
at the same time. There are also a number of new operations on these variables
for accessing neighboring values.

Program 2.4 illustrates some of these operations. It implements bucket pro-
cessing in the spirit of eq 2.7 using stacks. The :|| global or operator is used to
check whether any of the stacks are nonzero (this requires a broadcast bus), and
the :< and :> operators access the right and left neighbor respectively. 1DC also
provides an :[i:] indexing operator to access the value of a single processing
element.

New control constructs are introduced to conditionally enable or disable PEs:
the code following mif is only executed by those PEs for which the condition
is true. This may sometimes require a rethinking of the intended algorithm. For
example, in program 2.4 it would be natural to add the left neighbor of a processed
pixel to the stack. However, in 1DC it is not possible to write something to a

26 Chapter 2. Embedded image processing

Program 2.4 1DC code for the stack-based 4-connected propagation of 255
(the seed) over 1 (the mask). Each processor keeps a separate stack, and iter-
ation continues until all stacks are empty. Note the use of indirect addressing
to deal with differing stack sizes. This code assumes the border to be zero.

#define push(img, y, stk, sp)\
mif (img [y] == 1) { img [y] = 255; stk [sp++] = y ; }

void propagate(separate uchar *img)
{

separate uchar stk [HEIGHT];
separate int sp = 0;
int i ;

for (i=0; i < HEIGHT; i++)
mif (img [i] == 255) stk [sp++] = i ;

while (:||sp) /* Any stack is nonempty */

{
separate int y = 0;

mif (sp)
{

y = stk [--sp];

push(img, y-1, stk, sp); /* Pixels above and below */

push(img, y+1, stk, sp);
}

push(img, y :<1, stk, sp); /* Pixels left and right */

push(img, y :>1, stk, sp);
}
}

2.4 Languages 27

neighboring pixel. Instead, each PE adds the pixel left to the one processed by his
right neighbor to his own stack.

1DC (and other SIMD languages, such as XTC [98] and HPF [52]) combine the
power of distributed data types with the familiarity of a single thread of control,
although care must be taken as to the proper distribution. They vary mainly in
the generality of the added operations, and the strictness with which they enforce
the distribution. For example, XTC does not allow indirect addressing, while HPF
allows non-local access as though the data were local (remote memory accesses will
simply incur a penalty).

2.4.4 Hardware compilation: Handel-C

Handel-C was developed to provide a familiar environment for creating synchro-
nous FPGA hardware designs. Instead of using a hardware description language
such as VHDL [9] or Verilog [63], the programmer writes a C-like program, which
is then compiled to the logic gate level. Handel-C is a derivative of the Occam [70]
language, which was itself heavily influenced by Hoare’s CSP [69].

All expressions in Handel-C are created using combinatorial logic, and may
not have side effects; the cycle time of the design therefore depends on the most
complex expression in the program. Assignments to variables take one cycle.
Parallelism is introduced using the par construct, which executes all its statements
at the same time. Variables in such constructs may not be written by more than
one statement. As assignment takes one cycle, reading a variable in the same par

construct as it is written to refers to its previous value.
Different parallel processes may communicate using FIFO channels (chan key-

word). This is the only reliable way of communications for statements in different
par constructs. “!” is the write operator, while “?” reads a value from the
channel.

Handel-C also adds a host of features dealing with the bit-widths of integer
variables, the placement of arrays (in RAMs or registers), RAM accesses, hardware
interfaces, clocking, signals and general issues of targeting a program to a specific
device.

Program 2.5 implements a streaming 3x3 convolution. Each cycle a pixel is
read from in, and a result is written to out. The code is pipelined to avoid too
many gate delays, so the output value is delayed for a number of cycles. The line
buffers are WIDTH-3 bytes long. An illustrative diagram of the resulting hardware
can be found in figure 2.4.

It can be seen from this example that Handel-C, although having a C-like
syntax, requires a clear vision of what the generated hardware is going to be and
a thorough understanding of the parallel semantics to be able to write efficient
programs. Especially the explicit pipelining needed to create a fast design calls
for a change of perspective.

2.4.5 Discussion

While all the languages we discussed are based on C syntax and imperative se-
mantics, they differ in the kind of parallelism that may be exploited. Even though

28 Chapter 2. Embedded image processing

Program 2.5 Pipelined 3x3 convolution in Handel-C. The do loop produces
one result every cycle, but the convolution of a particular pixel is only available
4 cycles after the bottom-right pixel of its neighborhood is read.

macro proc convolve (chan int in, chan int out, int mask [3][3],
chan int linebuffer [2][2])

{
int img [3][3], tmp[3][3], row [3], acc;

do
{

par
{

img [0][0] = img [0][1];
img [0][1] = img [0][2];
linebuffer [0][1] ? img [0][2];
linebuffer [0][0] ! img [1][0];
img [1][0] = img [1][1];
img [1][1] = img [1][2];
linebuffer [1][1] ? img [1][2];
linebuffer [1][0] ! img [2][0];
img [2][0] = img [2][1];
img [2][1] = img [2][2];
in ? img [2][2];

par (ii=0; ii < 3; ii++)
{

par (jj=0; jj < 3; jj++)
tmp[ii][jj] = img [ii][jj] * mask [ii][jj];

row [ii] = tmp[ii][0] + tmp[ii][1] + tmp[ii][2];
}

acc = row [0] + row [1] + row [2];

out ! acc;
}
} while (1);
}

2.4 Languages 29

linebuffer[0]
linebuffer[1]

in

out

tmp

img img

imgimgimg

img img img

mask mask

mask

maskmask

maskmask

mask

img

mask

row[2]

row[1]

row[0]

tmp tmp

tmp

tmptmp

tmptmp

tmp

acc

Figure 2.4: Hardware structure generated from the Handel-C code in program 2.5.
Each square box is a register, and each circle is an expression. The registers make
sure that the execution is pipelined. The gray registers contain the image.

30 Chapter 2. Embedded image processing

many are retargetable (even 1DC has been implemented for the MMX and SSE
SIMD extensions used in desktop processors), each has a specific type of archi-
tecture for which it is most suited, and also places firm restrictions on which
hardware features must be present. Apart from this, we must deal with the fact
that processor vendors generally support only one or at most a few languages.

Analogous to the discussion in section 2.3.5, it is difficult to choose a single
language for implementing image processing algorithms. The choice is dependent
on the architecture, which in turn depends on the specific algorithm.

2.5 Constructing applications

A typical application consists of many of the algorithms described in section 2.3,
connected in various ways. Often, the basic access patterns are first combined to
yield composite operations. For example, creating a run-length encoding (RLE) of
a binary image may be achieved by first replacing the pixels that are different from
their left neighbor by their linear index, filtering them out, and finally replacing
all elements with the difference to their left neighbor, creating a list of run lengths.
See figure 2.5.

As described in section 2.3.5, there is no single processor architecture on which
all of these algorithms can be optimally implemented. This means that if the ap-
plication is diverse enough (which is nearly always the case), it is beneficial to look
at architectures containing more than one type of processor. From section 2.4.5
we may infer that this also requires the use of multiple languages.

2.5.1 Heterogeneous multiprocessing

In order to make efficient use of a multiprocessor system, all the processors must
be kept busy with meaningful work (as opposed to waiting for data, or bookkeep-
ing). In a heterogeneous system, where each processor has different strengths and
weaknesses, this implies the exploitation of task parallelism. Note, however, that in
typical image processing applications, the amount of exploitable data parallelism
far outweighs the gains reachable by task parallelism. In our view, task parallelism
is therefore purely a way to make efficient use of a heterogeneous system, and does
not scale to more than a few (data-parallel) processors.

The main issue with the construction of task parallel heterogeneous systems is
one of interfacing. These interfaces may be arbitrarily complex. For example, we
might envision an SIMD and superscalar cooperating using shared memory and
locking, as is the case with the IMAP-CE PCI board. This allows intricate coop-
eration but is therefore also difficult to code for and debug, especially if different
languages are involved.

In signal processing systems, it is common to abstract these interfaces into
a process network. Each sub algorithm is considered a black-box process, and
communicates with other processes over channels. The properties of the channels
and the rules to which the processes must adhere depend on the particular model
of computation (MoC) that is being used. The application developer is now only
concerned with a software interface that may be implemented in any number of
ways.

2.6 Discussion 31

Original image Differing pixel coordinates Filtered

5 6

2 4 5 7

1 4

1

1

1

0

3

2 4

5

6

6

6

75

42

Difference

5 6 2 4 5 7 1 4

1 5 3 6 1 2 4 6

1 5 7 0 2 4 6

15 4 2 1 2 2 3

5 4 6 3 3 1 2 2

3 4 2 1 2 2 2

Figure 2.5: Run-length encoding as a combination of an anisotropic pixel operation
(finding the index), neighborhood to pixel operation (placing the index in the pixels
which are different from their left neighbor), filtering, and another neighborhood to
pixel operation (replacing the X coordinates with differences). Indices are shown
in X coordinates for simplicity.

We have already stated in section 2.1 that our application domain requires fast
dynamic reconfiguration based on changes in the environment. In the context of
a process network, this means being able to change the sources and destinations
of the channels. Typically, such changes do not affect the entire process network,
and in order to maintain sufficient task parallelism we would like to continue the
execution during reconfigurations.

2.6 Discussion

We have shown that there are many processing architectures available for em-
bedded image processing applications. However, not all of these architectures are
equally suited for all applications. Depending on which classes of algorithms are
used, and which requirements are put on factors such as performance, power con-
sumption and cost, different processors – or combinations of processors – are most
appropriate.

It may be clear that it is not always possible to choose the correct architecture
beforehand. However, we have seen that the language in which an application is
written already restricts the class of architectures which may be efficiently used.
Therefore, if we wish to make an unbiased decision about the most suitable archi-
tecture, the application cannot be written in any of the languages we discussed.

In this entire chapter we have deliberately made a distinction between algo-
rithms (which exploit data parallelism) and applications (which treat algorithms
as black boxes that need to be connected). The reason being that it allowed us
to discuss the different properties of each class of algorithms separately. From
this point of view, it is not a huge leap to think about using languages which
are dependent on the properties of the algorithm we wish to implement instead
of the architecture on which it will be executed, thereby achieving architecture
independence.

The next chapter will further detail this concept, and the rest of the thesis

32 Chapter 2. Embedded image processing

discusses an implementation and how it can be used to make an unbiased decision
about the most appropriate architecture for executing a certain application.

Chapter 3

Designing

architecture-independent

applications

There is a wide diversity of embedded image processing architectures. As was
discussed in chapter 2, none of these architectures is superior to all the others.
Which architecture is the most desirable is highly dependent on the application.
In current practice, therefore, the choice of architecture is generally based on an
estimate of the performance needed by the application.

However, a large bias is introduced against multiprocessor architectures and
processors that are not programmed in a general-purpose language, because of
the specialized knowledge that is necessary to effectively exploit their power. Fur-
thermore, if the performance estimate proves incorrect, porting the application
to a new architecture (especially if it consists of multiple processors) can be very
time-consuming.

In order to overcome the latter problem, we aim to automatically determine the
optimal architecture after the program has been written. As such, the application
needs to be written in an architecture-independent way, since the architecture is
unknown at design-time. As an additional benefit, the programmer does not need
specialized architectural knowledge, because this would break the architecture
independence. This removes the bias against multiprocessor systems.

We will describe how architecture independence can be achieved by using
algorithm-specific languages (ASLs), where each algorithm in an application can
be described with a different language. This requires the algorithms to be sep-
arated from each other, leading to a natural implementation on heterogeneous
multiprocessor systems. We will relate our approach to algorithmic skeletons and
stream programming.

34 Chapter 3. Designing architecture-independent applications

3.1 Architecture independence through algorithm

dependence

One of the main benefits of general-purpose languages such as C and Java has been
their independence of the instruction set architecture (ISA) of a microprocessor.
C achieves this by compiling the program to different architectures, while Java
goes a step further by compiling to a virtual machine architecture, which is then
emulated. Compilation to a virtual machine has the benefit of binary compatibility,
but this is rarely an issue in embedded systems.

The architecture independence provided by these general-purpose languages is
limited. First, they can only be compiled to architectures which observe a set
of minimum requirements, especially on the available addressing modes. More
importantly, however, they do not support data distribution, and can only be
efficiently compiled to a restricted set of architectures that match their execution
model.

That execution model is sequential, with variables holding intermediate re-
sults and control flow constructs such as conditionals and loops regulating a single
flow of execution. Programs written with such an execution model in mind tend
to have many dependencies, and for an efficient parallel implementation the al-
gorithm itself must be changed. The analysis required by this step will remain
beyond the capability of compilers for the foreseeable future. Furthermore, in-
direct addressing, pointer aliasing and global variables require that the compiler
make pessimistic assumptions about the content of variables and indices to guar-
antee that the program has the same result before and after transformation, which
leads to inefficiencies.

3.1.1 Algorithm-specific languages

One solution to this problem is to avoid the need for transformations from sequen-
tial to parallel code by letting the user write explicitly parallel programs, leading
to the languages described in the previous chapter. As we noted before, though,
such languages are architecture-class dependent. A better solution, therefore, is
to restrict the programming language in such a way that the assumptions can be
less pessimistic.

Of course, restricting a programming language reduces the possible functions it
can compute. To maintain generality, we must allow different sets of restrictions,
based on the operation the user is trying to implement. Each set of restrictions
defines a different algorithm-specific language (ASL), suitable for only a certain class
of algorithms. Simple algorithms – those that can be specified in a very restricted
language – can then be translated very efficiently and run on very simple and highly
parallel processors. More complex algorithms using less restrictive languages will
generally be able to exploit less parallelism and can only run on more flexible
processors.

We have thus replaced architecture dependence by algorithm dependence. This
is beneficial because the programmer is concerned with algorithms, not with archi-
tectures. Since the ASL is tailored to a specific class of algorithms, implementing
such algorithms is also easier than in a general-purpose language.

3.2 Algorithmic skeletons 35

We have discussed a number of algorithmic classes in section 2.3. They restrict
the access to data structures to a certain pattern, and define an implicit iteration
over the data structure. While this implicit iteration is not a necessary property
of algorithm-specific languages, it yields an easy parallelization strategy because
the data distribution is independent of the program. A nice conceptual way of
thinking about such an ASL is viewing it as a higher-order function. This is
precisely the view taken in the field of algorithmic skeletons, where higher-order
functions repeatedly apply an input function (also called kernel) to the elements
of some data structure. While the match is not exact, we will continue to use the
skeleton terminology, which we will introduce in section 3.2.

Using a different language for each algorithm implies that the algorithms are
defined separately, and not in one loop nest. This makes communication between
them explicit and encourages reusability. In fact, the program outside the al-
gorithms is only concerned with setting up these connections and global control
flow. Such a distinction between a kernel language and coordination language is
an important aspect of stream programming, which we will discuss in section 3.3.

3.2 Algorithmic skeletons

Algorithmic skeletons [36, 107] originated from the field of functional programming.
We will first briefly introduce functional programming and its notation, after which
we will introduce the concept of algorithmic skeletons and how they relate to
algorithm-specific languages.

3.2.1 Functional programming

Functional programming differs in two main ways from imperative programming.
First, there are no stored variables, and all functions are therefore pure: their
results depend only on their arguments. A program consists of one expression
leading to one result (although this may be a list or other data structure). Second,
and more important in our context, functions are first-class objects: they can be
passed as arguments, returned, and manipulated just like other values such as
integers.

Objects have a type. For example, in the Haskell [74] language, the type of 1
is Num, while the type of ′a′ is Char. Formally:

1 :: Num
′a′ :: Char.

(3.1)

Functions also have types. log, which takes the natural logarithm of a number,
has the type Num→ Num:

log :: Num→ Num, (3.2)

meaning that it is a function which maps a number to another number. In Haskell,
function application is written simply as sequencing, binding strongly from left to
right. If we want to create a function that applies the logarithm twice, we can

36 Chapter 3. Designing architecture-independent applications

define it as
twicelog :: Num→ Num

twicelog x = log (log x).
(3.3)

It is the power of functional programming, however, that we can define a higher-
order function that applies any function twice:

twice :: ((a→ a), a)→ a

twice (f, x) = f (f x)

twicelog x = twice (log, x),

(3.4)

where a is any data type. twice takes a tuple of two arguments: a function to
be applied twice, and the value to which to apply it. It returns the result of the
double application. Another definition takes advantage of the fact that we may
also return functions:

twice’ :: (a→ a)→ (a→ a)

twice’ f = \x→ f (f x)

twicelog’ = twice log.

(3.5)

twice’ now returns a function that applies f twice to its input, and therefore
twicelog’ returns a function that applies a logarithm twice to its input. This
creation of functions “on the fly” is the main difference between functional pro-
gramming and C function pointers.

Two of the first programming languages to develop such a functional style of
programming were APL [71] and LISP [95]. APL also introduced the concept of
array programming (where functions typically operate on many values at once)
later popularized by Matlab.

3.2.2 Separating structure from computation

Algorithmic skeletons are higher-order functions which take as argument a function
that works on some elements of a data structure, and return a function that applies
the input function repeatedly over the entire data structure.

One of the most well-known skeletons is the map skeleton, which returns a
function that applies a function f :: a→ b to all elements of a list:

map :: (a→ b)→ ([a]→ [b]), (3.6)

where [a] denotes a list of basic type a. The skeleton does not specify the order in
which the application is to take place, only that f will be applied to all elements
of the input. The restriction being that all applications of f are independent.

Another well-known skeleton is reduce, which returns a function that applies a
binary associative function g : (a, a)→ a to reduce a list to a single value:

reduce :: ((a, a)→ a)→ ([a]→ a). (3.7)

3.2 Algorithmic skeletons 37

Again, the order is not specified. Since g is associative, there are many possible
implementations, each resulting in a different order. Three possibilities are shown
in figure figure 3.1.

Because the ordering is implemented by the skeleton, and hidden from the user, al-
gorithmic skeletons separate the structure of a computation from the computation
itself. Many different operations can be implemented using a single skeleton, and
a single skeleton can be implemented on many different (parallel) architectures.

3.2.3 Skeletons as ASLs

The main difference between an algorithmic skeleton and an algorithm-specific
language is that the input function to an algorithmic skeleton is opaque: the
skeleton can only call the input function. As a result, the input function must be
specified in a language which is understood by the target architecture compiler.

In contrast, an ASL specifies its own compiler, allowing the operations written
in it to execute on many more target architectures. Naturally we cannot go about
designing an entirely new programming language and compiler for every class of
algorithms. Rather, we implement the compilation as a source-to-source translation
of the input function into the final operation.

Consider the map skeleton of eq. 3.6. In a traditional functional program, the
skeleton, its input and its output are all written in the same source language S:

map ::
〈

〈

a→ b
〉

S
→
〈

[a]→ [b]
〉

S

〉

S

. (3.8)

A traditional compiler translates any function in a source language S to a corre-
sponding function in the target language T. This is usually done by first translating
to a (possibly parallel) intermediate language I. The language in which the com-
piler is written is unimportant and therefore omitted:

frontend ::
〈

f
〉

S
→
〈

f
〉

I

backend ::
〈

f
〉

I
→
〈

f
〉

T

compile = backend . frontend.

(3.9)

a1 a2 a3 an...

(a) Folded from the left

a1 an−2 an−1 an...

(b) Folded from the right

a1 a3a2 an−1 anan−2... ...

(c) Tree

Figure 3.1: Different orderings for a reduction. 3.1(c) provides the largest degree
of parallelism.

38 Chapter 3. Designing architecture-independent applications

In the above equation, (.) is the function composition operator, and should be
read as “after.” The compiler therefore first executes the frontend, followed by the
backend.

As mentioned in section 3.1.1, it is necessary to limit the expressiveness of a
sequential program in order to effectively exploit the parallelism in it. In this case,
however, frontend is a general translator from S to I, and S itself is not limited; it
is the kernel that is limited. To exploit parallelism map will therefore have to be
a specialized frontend, translating from a subset of S to I:

map ::
〈

a→ b
〉

S
→
〈

[a]→ [b]
〉

I

compile = backend . map.
(3.10)

To a lesser degree, the same argument holds for backend. While I may be
annotated by the skeleton to communicate dependency information, it is often
easier to write a specialized backend for each skeleton, thereby avoiding the need
to define I. The choice depends on the relative difficulties of writing a number of
specialized translators versus writing a single general translator.

We have chosen to have the skeletons translate directly to T:

map ::
〈

a→ b
〉

S
→
〈

[a]→ [b]
〉

T
. (3.11)

Each skeleton is now a translator for an implicitly parallel algorithm specific subset
Si of S. Each skeleton will have multiple implementations, translating to different
target languages Ti, or run-time environments.

Because of backwards compatibility and adoption concerns, we would like the
kernels to be written in C, or some language closely resembling C. Furthermore, our
target processors are programmed in C or parallel C-derivatives. The skeletons are
therefore mostly concerned with generating and manipulating C code. Chapter 4
describes the language in which the skeletons themselves are written.

3.3 Stream programming

In stream programming languages [120], an application consists of a number of
kernels that work on streams of data elements, see figure 3.2. This promotes data
locality, as it makes the communication explicit: the programmer has to explicitly
connect the kernels together.

Because of this data locality, stream programs can be readily executed on
heterogeneous distributed-memory systems by mapping the kernels to the available
processors and the streams to the communication channels between them, see
figure 3.3. This mapping is not part of the program, which is therefore architecture-
independent.

Implementations of the stream programming concept differ in the way streams
and kernels are defined and connected. We will discuss the most important possi-
bilities below.

3.3.1 Streams

A stream is a series of data elements of a specific type. The type may be declared
as a part of the stream declaration, or derived from the kernel which generates the

3.3 Stream programming 39

Laplace

Stereo

capture

Left

Right

Laplace
Left

Laplaced

Right

Disparity

matching
Disparities Display

Laplaced

Figure 3.2: Stereo matching as a simple stream program. The left and right images
are filtered and combined into a disparity image. The ellipses represent kernels,
while the polygons denote streams.

Laplace

Laplace
Right

Laplaced Disparity

matching

Display

Disparities
Left

Laplaced
Left Right

Stereo

capture

Processor A

Display

Processor B

Interconnect network

Sensor

Figure 3.3: The stream program of figure 3.2 mapped onto an architecture. The
kernels are mapped to processors, and the streams are mapped to communication
resources (the interconnection network, or processor-local memories).

40 Chapter 3. Designing architecture-independent applications

stream. The stream declaration may also include a fixed length. Such fixed-length
streams mark a difference between two schools of thought.

In the first, all streams are bounded (although some may have variable bounds),
implying that the kernels interacting with those streams have a finite lifetime
determined by the stream lengths. In the other, conceptually infinite streams
mean that a kernel’s lifetime is infinite as well, unless limited by other means
(usually referred to as out-of-band signalling).

A stream in the purest sense is one-dimensional, a strict series of elements.
Since this may be too restrictive for dealing with multidimensional data, such as
images, streams are sometimes attributed a shape. A shape imposes a spatial view
of the stream, relating an element to its neighborhood.

In the Brook language [25], stream shapes are used in conjunction with stencils
to provide access to a stream element’s neighborhood. Stencilling creates a stream
of overlapping neighborhoods that can be used to implement local neighborhood
or finite difference operations (see figure 3.4). Stencil elements which would fall
outside the stream are generated using a border handling strategy such as clamping
or tiling. Program 3.1 shows the declaration and creation of a statically typed,
fixed-length stream of overlapping 2D 3x3 neighborhoods.

Program 3.1 Stream stencils using Brook. a is a 2d stream of floats, and
b is constructed as a stream of overlapping 3x3 neighborhoods of a. Each
neighborhood ranges from top left to bottom right (X and Y range from -1

to 1), treating accesses outside of the stream’s domain as if the stream were
periodic (STREAM BOUNDS PERIODIC, also called tiling).

float a<256, 256>;
float b<256, 256>[3][3];

streamStencil(b, a, STREAM BOUNDS PERIODIC, 2, -1, 1, -1, 1); .

We have distinguished three main stream properties: implicit vs explicit typ-
ing, finite vs infinite streams, and 1D vs multidimensional streams. For the highly
dynamic image processing applications we are targeting, it is evident that finite
streams with native support for multidimensional stream access are desirable. Fi-
nite streams allow us to decide which kernels to run for each image separately,
and multidimensional stream access greatly simplifies writing local neighborhood
operations.

In a language where stream connections are dynamic, implicit vs explicit typing

1 8 8

8

1

2

1

2

3

4

5

6 7

6

5 6

7

8

7

1

65432 7

3

4

54

3

2

Figure 3.4: 1D stencilling. A stream of elements is transformed into a stream of
neighborhoods.

3.3 Stream programming 41

is closely related to static vs dynamic typing. Statically typed programs are easier
to analyze and can generate compile-time typing errors, while dynamically typed
programs can be slightly easier to write.

3.3.2 Kernels

Kernels are functions that operate on streams. They read stream elements, do
some computation, and write new stream elements. The most significant charac-
teristic of a kernel language is whether the iteration over the stream elements is
implicit or explicit. An implicit iteration strategy facilitates parallel execution,
because there is no user-defined loop that can introduce false dependencies. On
the other hand, the operation may be incompatible with the provided mode of
iteration, such as a single loop over all elements.

Closely related to iteration is the concept of state. Explicit iteration naturally
allows information from one iteration to be used in a successive one by using loop-
carried variables (introducing dependencies). Implicit iteration can also support
state, but this must be strictly regulated in order to avoid the pitfalls described
in section 3.1 for automatic parallelization.

A third choice is between fixed or variable rates of production and consumption.
If each iteration produces and consumes the same number of stream elements, it
becomes possible to statically schedule multiple kernels, leading to efficient execu-
tion. Variable rates require dynamic scheduling techniques, which are inherently
less efficient.

Program 3.2 illustrates explicit, stateful iteration in KernelC [94]. KernelC was
specifically developed for the Imagine stream processor [78], which is an 8-way
SIMD architecture; the loop stream construct cyclically distributes the stream
elements over the processing elements. The reduction after the loop is specific to
an 8-way parallel architecture.

Program 3.2 A reduction in KernelC (from [94]) which calculates the sum of
a stream. “>>” reads an element from the stream. Note that the between-PE
summation of the total is specific to the 8-PE Imagine processor.

KERNEL sumStream(istream<int> in, uc<int> uc total)
{

int total = 0;
loop stream(in) {

int ini ;
in >> ini ;
total = total + ini ;
}
total = total + permute(LROTATE, total);
total = total + permute(LROTATE2, total);
total = total + permute(LROTATE4, total);
uc total = ucWrite(0, total);
}

Compare this to the implicit, fixed-rate stateless iteration of the Brook code

42 Chapter 3. Designing architecture-independent applications

in program 3.3.

Program 3.3 Brook code for a 2d average filter. The stencilled input stream
makes it easy to access the neighborhood, which is centered on index (1, 1).

void kernel average(float a<>[3][3], out float b<>)
{

b = (a[0][0] + a[0][1] + a[0][2] +
a[1][0] + a[1][1] + a[1][2] +
a[2][0] + a[2][1] + a[2][2]) / 9;

}

It is clear that explicit iteration is the most general strategy. However, this also
makes it the most difficult one to parallelize, as is shown by the awkward use of
SIMD communication primitives in KernelC. Static rates are the easiest to analyze
and schedule, but not all applications have static rates (run-length encoding is
an example). Stateless kernels are the easiest to parallelize, but again, not all
applications can be described using stateless kernels (infinite impulse response
(IIR) filters can not, for example).

Based on these considerations it is not easy to decide upon the most desirable
kernel language, because it depends on the algorithm. Skeletons and ASLs are
therefore a natural solution, and we will expand on this in section 3.4.

3.3.3 Connecting kernels

A stream program consists of a number of kernels, connected using streams. These
connections can be made by calling the kernels as functions that take streams as
arguments. The stream connections are thus made under imperative program
control. This means that they can depend on all variables that are available to
the stream program, including data dependent ones.

Alternatively, the stream connections could be specified in a declarative way.
A stream graph is constructed or specified once, and then allowed to execute; this
combines well with conceptually infinite streams, as changing the connections once
they have been set up is difficult (there is no “global control” to initiate such a
change). A possible solution to this is event-based reconfiguration [99].

StreamIt [123] is an example of a declarative stream programming language.
Program 3.4 shows how an iterative diffusion program can be written by combining
a file reader, a number of diffusion steps, and a file writer in a pipeline. The streams
in this code are implicit, because each stage of a StreamIt pipeline has only one
input and one output. The data types of the streams are therefore also implicit,
and derived from the kernels.

The declarative approach allows for straightforward whole-program optimiza-
tions, while these same optimizations require careful analyses before they can be
applied in imperatively connected stream programs. In an application where re-
configurations are frequent and data dependent, declarative programming becomes

3.3 Stream programming 43

Program 3.4 Iterative diffusion in StreamIt. The add keyword adds a stage
to the pipeline.

void→void pipeline IterativeDiffusion(int steps) {
int i ;

add FileReader<float>("input.raw");
for (i=0; i < steps; i++)

add Diffusion();
add FileWriter<float>("output.raw");
}

cumbersome however, as the concept of a stream graph loses much of its clarity
when the processes can change on a frame by frame basis.

Our application domain has this property, and in such situations an imperative
style is to be preferred. This means that optimizations must be restricted to those
parts of the program that do not depend on run-time values. Often, this is further
limited to program parts without branches or labels, called basic blocks.

3.3.4 Exploiting task parallelism

Stream computing can be used just for the exploitation of data parallelism by the
kernels. In that case, each kernel is fully executed before starting the next one. If
the stream program is to be mapped to multiple processors, though, they should
efficiently make use of the between-kernel task parallelism that is inherent to their
structure.

The most interesting form of task parallelism in this case is pipelining, where
two tasks run concurrently on different parts of the same stream. This is also used
on uniprocessors, in which case the stream is split into a number of strips, and
each strip is fully processed by all kernels before the next strip is taken. Such strip
mining reduces buffering and increases cache locality, saving memory bandwidth
to external memory.

It is difficult to apply strip mining across data-dependent branches, however,
since it is uncertain which kernels should be executed. This means that all ker-
nels within a basic block must finish executing (and their data stored to external
memory) before advancing to the next basic block, even if the data dependency is
resolved before that time. This reduces task parallelism to zero at each branch.

A dynamic approach to pipelining, such as data flow execution [3], does not
need static information about the kernels. In data flow execution, a kernel may
run as soon as its input is available: the flow of data determines which kernels can
be executed.

Strip mining, or another way of limiting memory usage, is clearly advantageous.
In dynamic applications, however, it is imperative that execution can continue as
much as possible over data-dependent branches. As data dependencies make the
mixture of kernels that are running at any one time indeterministic, it is intuitive
to schedule them dynamically based on the availability of their inputs, much like

44 Chapter 3. Designing architecture-independent applications

data-flow execution.
Chapter 5 describes how we have implemented stream definition, dynamic con-

nection, and the exploitation of task parallelism in an imperative environment
using asynchronous RPC.

3.4 Stream kernels as skeleton inputs

Brook’s stream kernels can be seen as functions that are passed to the map skele-
ton. Every element of the output stream is calculated separately from the others,
only using the corresponding input element.

If the kernel has multiple input or output streams, we can first zip correspond-
ing stream elements together into a stream of composite structures:

zip ::[[a]]→ [[a]]

zip [[a1, a2, . . . , an],[b1, b2, . . . , bn], . . . ,[z1, z2, . . . , zn]] =

[[a1, b1, . . . , z1],[a2, b2, . . . , z2], . . . ,[an, bn, . . . , zn]].

(3.12)

For kernels that need to access a neighborhood, we can stencil a stream to create
a stream of neighborhoods:

stencil :: (Int, [a])→ [[a]]

stencil (k, [a1, a2, . . . , an]) =

[[a1, a2, . . . , ak], [a2, a3, . . . ak+1], . . . , [an−k+1, an−k+2, . . . , an]].

(3.13)

Brook also supports reductions, by marking an output with the reduce specifier.
We can obtain the same behavior by first creating a stream of outputs using map,
and then processing this stream using an appropriate instantiation of reduce.

Program 3.5 Brook code to calculate the sum of the squares of a stream.

void kernel sumsquares(float a<>, reduce float b)
{

b = b + a*a;
}

The sum-of-squares Brook kernel in program 3.5 can be separated by first
generating the sum-of-squares stream, and then performing a reduction on it:

sumsquares :: [a]→ a

sumsquares = reduce (+) . map (∧2).
(3.14)

sumsquares first squares (∧2) all elements of the input stream, and then sums
them up (+).

Finally, Brook kernels can have variable-length output streams using the vout

specifier:
Program 3.6 returns the differences between adjacent stream elements for those

elements which differ by more than t. Again, we can separate the variability from
the generation of the output, by applying a filter skeleton. filter takes a function

3.4 Stream kernels as skeleton inputs 45

Program 3.6 Brook kernel function to return those gradients of which the
value is greater than a certain threshold

void kernel gradthres(float a<>[2], in threshold, vout[1] float b<>)
{

b = abs(a[0]-a[1]);

if (b > threshold)
push(b);

}

that determines for a stream element whether it should be kept or not, and returns
a function that keeps only those stream elements which satisfy the criterion:

filter :: (a→ Bool)→ ([a]→ [a])

diff :: [a]→ a

diff [x, y] = abs (x− y)

gradthres :: t→ ([a]→ [a])

gradthres t = filter (> t) . map diff . stencil 2.

(3.15)

First, we generate the stencil stream in order to have access to the neighborhood.
Next, we calculate the difference between the adjacent stream elements. Finally,
we filter out the differences that are smaller than the threshold.

We can view the Brook kernel language as a skeleton that places few restrictions
on its input function: stencils, reductions, and variable-length outputs are all
supported. This limits the exploitable parallelism, and means that general Brook
kernels can only be compiled to architectures which support all those features.

We observe that different aspects of Brook kernels can be separately imple-
mented using different skeletons. Each of these skeletons places different restric-
tions on its input function, and has different execution characteristics. If the user
chooses the most restrictive skeleton for each (sub)kernel, the largest amount of
parallelism can be extracted from the application, and the least amount of require-
ments are placed on the hardware.

3.4.1 Generalizing Stream Kernels

map, reduce and filter are just a few of the possible skeletons; looking at chapter 2,
recursive neighborhood operations and stack operations cannot be captured by
them. We can extend the applicability of stream programming by allowing different
types of skeletons to be used. These extensions come in three different modes:

1. They may generalize an existing skeleton, giving the kernel more freedom
but limiting the portability and parallelism. The progression from pixel
operation → neighborhood operation → recursive neighborhood operation

46 Chapter 3. Designing architecture-independent applications

is an example of this mode. A global operation, allowing random access to
both the entire input and the entire output, is the final stage.

2. They may specialize a more general skeleton in order to allow execution on
hardware with specific limitations. For example, the convolution function in
the FPGA platform depicted in figure 2.4 only supports linear neighborhood
operations. We can create a skeleton that only allows the specification of
kernel coefficients, and implements the convolution itself.

3. They may be specialized for the natural specification of a specific class of
operations. These operations can be specified using another skeleton or com-
bination of skeletons, but it would be cumbersome to do so. An example is a
propagation implemented by iterative (recursive) neighborhood operations.
This may be implemented in a loop, testing for idempotence every iteration,
but an integrated idempotence test would be both simpler and more efficient.

Since we can never be sure which hardware is going to be used, and which op-
erations are going to be executed on it, it is important that we do not restrict
the user to a certain set of predefined skeletons. Rather, we allow a specialized
programmer, if not the user himself, to add his own skeletons, to support new
hardware or new types of operations.

3.5 Discussion

In this chapter, we have explained how architecture-independence can be achieved
by using algorithm-specific languages and stream programming. Algorithm-spe-
cific languages were introduced as a generalization of algorithmic skeletons, allow-
ing the user to write stream kernels in an architecture-independent way by placing
different restrictions (and therefore hardware requirements and parallelization op-
portunities) on different kernels. This means we can efficiently map the stream
graph to a heterogeneous system.

Other systems have been used to write programs in terms of processing and
communication, such as TTL [128] (based on Kahn process networks). These sys-
tems generally view an application as a set of processes that communicate over
some channels, and place different restrictions on the allowable interactions. They
neither specify how the individual processes are to be written, nor do they allow
for the dynamic, data-dependent reconfiguration of the channels. Rather, recon-
figurations are seen as special events that happen infrequently [99].

Algorithmic skeletons have previously been applied in the field of image pro-
cessing by [119]. However, this work was limited to the map skeleton and homo-
geneous systems. It also suffered from communication inefficiencies, because data
was gathered to a control node after every processing step. Another approach,
based on an abstract parallel image processing machine, eliminates this overhead
but does not support task parallelism [114].

Algorithm-specific languages can be seen as a continuation of the trend towards
domain-specific languages (DSLs), where each algorithm class is its own domain.

3.5 Discussion 47

While it is not uncommon for more than one DSL to be used in a single program
[23], using a different one for each class of algorithms is.

Another related approach is that of active libraries [44] and interface compila-
tion [48], where a library (which can be seen as a domain-specific interface) takes
an active role in compilation. C++ template meta-programming [131] can be used
to write such libraries. Unlike stream kernels written in an ASL, however, they do
not support target architectures which cannot implement the full host language,
since only a single program is generated.

We will continue in chapter 4 by describing how we implement skeletons and
algorithm-specific languages in an extensible way using a technique we call pseudo-
dynamic meta-programming. Chapter 5 then details our implementation of stream
programming, and chapter 6 shows how we use the resulting architecture-indepen-
dent program to automatically find an appropriate heterogeneous multiprocessor
architecture.

Chapter 4

Implementing skeletons

using meta-programming

The task of a skeleton can be described as the source-to-source translation of a
kernel, written in an algorithm-specific language with an algorithm-specific interface,
into an operation, written in a target-specific language and interfacing with the
target’s run-time system (section 3.2.3). The skeleton’s algorithm-specific interface
generally specifies a computation on one element, while the resulting operation has
to perform this repeatedly to process an entire data structure, such as an image.

This chapter deals with how skeletons can transform a kernel into an operation,
and how kernels can be defined such that the run-time system has the information
that it needs. In section 4.1 we will first set the stage by defining a skeleton’s func-
tional requirements, that is, what its input and desired output are. Based on this
information, section 4.2 will review the field of meta-programming, and distill the
most convenient way of performing the necessary transformations. In section 4.3
we describe our approach, which we call pseudo-dynamic meta-programming and
which is based on the concepts of rewriting (section 4.4) and partial evaluation
(section 4.5). Section 4.6 discusses the merging of skeletons to improve efficiency,
and section 4.7 presents a performance evaluation of the skeleton approach. Fi-
nally, we discuss our results in section 4.8.

4.1 Functional requirements

The input to a skeleton is a kernel definition. As each kernel may be transformed
by a different skeleton, they should specify which skeleton to use. Continuing in
the terminology of section 3.2.3, this limits the subset of S that the kernel can
utilize. The output is a function definition, using a target processor’s run-time
system to perform the operation. A different skeleton implementation will have to
be written for each target language or run-time system.

50 Chapter 4. Implementing skeletons using meta-programming

4.1.1 Defining kernels

A kernel definition should contain the information that the run-time system needs
to set up the correct connections (see section 3.3.3). This includes which param-
eters are streams and which are scalars, which parameters are inputs and which
are outputs. It should also define the skeleton that is going to be called, and the
information the skeleton needs to perform the transformation, such as the data
types of the parameters.

Our kernel definitions resemble Brook [25] kernels (such as program 3.3), with
the major exception that they specify a skeleton. Program 4.1 shows an example
of an erosion kernel.

Program 4.1 Definition of an erosion kernel, using the NeighborhoodToPix-
elOp skeleton.

NeighborhoodToPixelOp()
erosion(in stream unsigned char src[-1..1][-1..1],

out stream unsigned char *dst)
{

int y, x ;
unsigned char p = 255;

for (y = -1; y <= 1; y++)
for (x = -1; x <= 1; x++)

if (src[y][x] < p)
p = src[y][x];

dst = p; // output smallest value in neighborhood

}

This kernel should be transformed by an implementation of the Neighborhood-
ToPixelOp skeleton, and has 1 stream input and 1 stream output, both unsigned

chars. The stream input accesses a 3x3 neighborhood stencil.
The kernel code itself closely resembles C. It references the stencil with a rela-

tive index. This relative indexing is the algorithm-specific interface of the Neigh-

borhoodToPixelOp skeleton, which has to implement it.

4.1.2 Generating operations

There will be multiple implementations of NeighborhoodToPixelOp, each trans-
lating the kernel into a different (parallel) C dialect. Program 4.2 shows a possible
output for the TriMedia processor, while program 4.3 is targeted towards the
IMAP processor. Both programs read from and write to FIFO buffers, in ac-
cordance with the run-time interface. The TriMedia program then loops over the
pixels, while the 1DC program processes them in parallel.

Consider the transformations that have to be made to the kernel definition in
order to produce the output. The most obvious is the addition of a great deal of
buffer interaction and looping code, identified in section 3.2.2 as the structure of
a computation. This is purely generated code, dependent only on the parameters

4.1 Functional requirements 51

Program 4.2 TriMedia version of the erosion operation, generated from pro-
gram 4.1. Lead-in and lead-out (for vertical border handling) are omitted for
clarity.

void NeighborhoodToPixelOp erosion(buffer *srcbuf, buffer *dstbuf)
{

int stride;
unsigned char *restrict src[3], *restrict dst ;

stride = bufferGetStride(srcbuf);
while (bufferPeek(srcbuf, &src[0], stride))
{

int i ;

bufferAllocate(dstbuf, &dst, stride);

#pragma TCS unroll=16

// Process stride elements

for (i=0; i < stride; i++)
{

int y, x ;
unsigned char p = 255;

for (y=-1; y <= 1; y++)
for (x=-1; x <= 1; x++)

if (src[y+1][i+x+1] < p)
p = src[y+1][i+x+1];

dst [i] = p;
}

bufferReleasePeeked(srcbuf, stride);
bufferReleaseAllocated(dstbuf, stride);

// Shift vertical neighborhood

src[2] = src[1];
src[1] = src[0];
}
}

52 Chapter 4. Implementing skeletons using meta-programming

Program 4.3 1DC version of the erosion operation, generated from pro-
gram 4.1.

void NeighborhoodToPixelOp erosion(buffer *srcbuf, buffer *dstbuf)
{

int stride;
sep unsigned char *src[3], *dst ;

while (bufferPeek(srcbuf, &src[0]))
{

int i ;

bufferAllocate(dstbuf, &dst);

{
int y, x ;
sep unsigned char p = 255;

for (y=-1; y <= 1; y++)
for (x=-1; x <= 1; x++)

if (src[y+1]:<x < p)
p = src[y+1]<:x ;

*dst = p;
}

bufferReleasePeeked(srcbuf);
bufferReleaseAllocated(dstbuf);

src[2] = src[1];
src[1] = src[0];
}
}

4.2 Meta-programming 53

of the kernel. For example, the number of lines that need to be shifted depends
on the vertical neighborhood size.

It is instructive to note that the TriMedia code includes the restrict qualifier
(signifying no aliasing), and an explicit loop unrolling pragma. These are required
for the compiler to generate efficient code. Thus, even while TriMedia is considered
to be ANSI C programmable, it requires special attention to efficiently exploit all
its features. Other “C” programmable processors will generally require different
measures.

The second part of the translation consists of rewriting the kernel to make use
of the provided structure, and possibly translating it into the output C dialect.
For the TriMedia version, this is limited to changing the mode of array indexing,
but the 1DC code requires some more work. First, the horizontal array indexing
has been replaced by the 1DC shift operator, and second, the local p variable
has been upgraded to a separate type, because its value depends on src and is
therefore different for each processing element.

Summarizing, we can distinguish three distinct transformations, presented in
order of increasing complexity:

• Code generation, for the specification of structure

• Pattern substitution, to translate the algorithm-specific interface to the in-
terface provided by the run-time system

• Program analysis and rewriting, to translate the kernel into the target C
dialect

Since our library of skeletons must be extendable, a skeleton implementation
should be able to easily specify all three kinds of transformations. This casts the
skeleton into the role of a meta-program: a program that manipulates other pro-
grams. We will introduce the field of meta-programming in section 4.2, and present
our own meta-programming language and tool, called PEPCI, in section 4.3.

4.1.3 Compilation flow

Recall the kernel definition in program 4.1. A stream program consists of a number
of those kernel definitions, plus glue code to connect them together. Each kernel
definition will have to be separately processed by a skeleton. The job of our com-
piler (called the SmartCam compiler), is to extract the kernel definitions and call
their skeletons, gathering all operations for each target in a coprocessor program.
Calling a skeleton means handing the kernel code and associated information to
our PEPCI meta-programming tool, yielding an operation.

After all kernel definitions have been processed, the remaining glue code is
plain C, which runs on a control processor to coordinate the execution. Figure 4.1
illustrates this basic compilation flow.

4.2 Meta-programming

Meta-programming [117, 42, 43] concerns programs that operate on other programs.
This is a very large field, encompassing many different approaches. We will there-

54 Chapter 4. Implementing skeletons using meta-programming

Smartcam−C

PEPCI

program

compiler

SmartCam

Stream program

Control processor

ANSI C

Coprocessor

program

Parallel C dialect

Parallel C dialect

Operation

Smartcam−C

Parameters

Kernel code

PEPCI

Skeleton

program

Parallel C dialect

Coprocessor

Operation

Parallel C dialect

Kernel code

Smartcam−C

Parameters

Skeleton

PEPCI

Parallel C dialect

Operation

Smartcam−C

Kernel code

Parameters

Skeleton

PEPCI

program

Coprocessor

Parallel C dialect

Figure 4.1: Compilation flow of the SmartCam compiler.

fore provide a brief overview and distill the most appropriate way of implementing
our skeletons.

We can distinguish three classes of meta-programs: program generators, which
generate a program based on some input parameters, possibly including an input
program as part of the output, program analyzers, which analyze an input program
and provide information about it, and program transformers, which analyze an
input program transforming it into an output program.

Depending on the situation, meta-programs can deal with three distinct lan-
guages. The source language, in which the input (or source) program is written, the
object language, in which the output (or object) program is written, and the meta
language, in which the meta-program itself is written. For program generators,
and many program transformers as well, the source language is the same as the
object language. Reflective languages, which use (run-time) meta-programming
to change themselves, generally use only one language.

Semantics-preserving program transformers with different source and object
languages are called translators. The most well-known program translators are
compilers, which translate a program written in a high-level language into a func-
tionally equivalent low-level assembly language.

This section is based partly on Sheard’s taxonomy of meta-programming sys-
tems [117], but we focus on systems which support C meta-programming.

4.2.1 Representation

The most important aspect of a meta-programming system is the way in which
the object program is represented in the meta-program. We will therefore first
discuss the three most important representations.

4.2 Meta-programming 55

Opaque

This means that the representation cannot be deconstructed by the meta-program
(it cannot be divided into parts). This representation is limited to program gen-
erators. Examples are the various web scripting languages (ASP [136], JSP [111],
PHP [2]), in which the meta-program is separated from the object program (an
HTML web page) using <% %> code render blocks. The object program code is
simply written out. Higher-order functions [20] also use an opaque representation,
as they cannot access the input function’s representation, only call it. Unless spe-
cific measures are taken, C++ template meta-programming [131, 84] falls into this
category as well.

String based

Object programs are represented as simple text strings, and can be manipulated
using standard string manipulation functions. While in principle this allows arbi-
trary manipulation and analysis, substitutions are made on a lexical instead of a
syntactic basis, and are therefore verbose and error-prone. Examples of this are
the M4 [77] macro language and sed scripts.

Abstract syntax trees

Abstract syntax tree (AST) describe how a program (fragment) is parsed, thus
providing a syntactic basis for manipulations (see figure 4.2). For many program
transformations this is the most natural form, and therefore almost all dedicated
meta-programming systems support it. Expression templates [130] are a way of
accessing the AST using C++ template meta-programming, by constructing a type
hierarchy. The Sh language [96] uses C++’s operator overloading to construct an
object hierarchy instead.

Unfortunately, AST manipulation requires knowledge of the language’s gram-
mar on the side of the meta-programmer, and this is a great disadvantage. To
avoid this, many systems allow programmers to quasi-quote [106] object language
code. The abstract syntax trees can thus be constructed implicitly using a con-
crete object syntax [134]. Assuming ‘ is the quasi-quotation operator, the concrete
object syntax for the syntax tree in figure 4.2 is simply ‘pi = 4 * atan(1);‘.

4.2.2 Levels and Staging

A program analyzer or transformer is, by definition, a multi-level language. This
means that variables may hold program code. A language is two-level if the pro-
gram code held in variables may not itself contain variables that hold code values.
Conversely, an N-level language allows variables at all levels to hold program code.
Code generators do not require variables to hold code values. They do require code
constants, however, be they strings, templates, code render blocks or abstract syn-
tax trees.

Stages arise when the execution of a program is distributed over different points
in time. The most common case is when a program is first compiled and then

56 Chapter 4. Implementing skeletons using meta-programming

Stat

Assign
P

P
PP

✏
✏

✏✏

Id

”pi”

Mul
P

P
PP

✏
✏

✏✏

IntConst

”4”

FunCall
❍

❍❍
✟

✟✟

Id

”atan”

[]

IntConst

”1”

Figure 4.2: Abstract syntax tree representation of the statement “pi = 4 *

atan(1);”.

executed: this is two-stage execution. If the program has to be generated first,
there are three stages, etc.

Often, staging is done manually. This means that the programmer has ex-
plicit control over which computations occur at which times. For example, C++
templates will always be instantiated at compile-time. In other cases this is not
so clear, as compilers will often apply optimizations such as constant folding and
propagation to speed up execution.

In the field of partial evaluation [73], which aims to carry these optimizations
through as far as possible, this automatic staging is called binding time analysis.
First, the inputs to a program or function are labeled as either static or dynamic.
By program analysis or abstract interpretation, a partial evaluation tool propa-
gates this information in order to discover which program fragments depend on
dynamic values, and which depend only on static values. The static program
fragments are then executed, while the dynamic parts are output as the residual
program.

The obvious advantage of automatic staging is that it is not necessary to man-
ually switch between the object and meta level. In situations where switching
is frequent, this can be very convenient. Examples of systems which implement
partial evaluation of C programs are Tempo [39] and C-Mix [10, 90].

4.2.3 Static versus dynamic

A meta-programming system can be either static or dynamic. Static meta-pro-
gramming systems (such as SUIF [4] and ANTLR [102]) run at compile-time and
cannot execute the programs they generate. Dynamic systems can analyze, create
and execute new programs at run-time.

Dynamic meta-programming has two main advantages. First, the program is
able to adapt to dynamic changes in the program’s environment. For example,

4.2 Meta-programming 57

it may create special, instantiated functions for oft-occurring values in the input.
Second, executing created programs instead of writing them to disk means working
in a different mind set. Instead of writing a program which generates a program
to process some input, the user just writes a program to process the input directly
(perhaps analyzing and creating programs on the way for faster execution). ‘C
(TickC, [105]) is a compiler and run-time system which provides dynamic meta-
programming for C.

A distinct disadvantage of dynamic meta-programming is the time it takes to
compile or interpret the generated programs at run-time.

4.2.4 Homogeneity

It has been noted that meta-programming systems can deal with up to three
different languages. We call meta-programming systems that use only one language
homogeneous. Homogeneous meta-programming systems have many advantages:

• The user has to learn only a single language.

• The system can be N-stage, where a meta-program itself can be subject to
meta-programming.

• Interaction between dynamically generated programs and the meta-program
is straightforward.

Since C does not natively support meta-programming in a convenient way,
it is necessary to extend the language in order to support homogeneous meta-
programming. A disadvantage is therefore that the basic imperative, control-flow-
driven design of C (and C++) is not ideal for meta-programming.

4.2.5 Typing

Type systems are an important tool for avoiding programmer errors. An untyped
object program representation may result in type errors when the object program
is compiled by a downstream compiler. Worse, the type errors may be suppressed
by explicit type conversions, resulting in an erroneous executable.

Meta-programming type systems range from very strict (such as MetaML
[122]’s strong static staged typing) to nonexistent (such as string manipulation).
We can distinguish four points at which type errors can be caught. First, as in
MetaML, they may be caught during compilation of the meta-program. This pro-
vides the most direct feedback. Second, they may also be caught during execution
of the meta-program, such as in SUIF, where typed abstract syntax trees are ma-
nipulated. A third point is during compilation of the object program. This is
where type errors from C++ template meta-programs are caught, and this can
result in cryptic error messages because it may be difficult to analyze which part
of the meta-program is responsible for the error. Finally, the type error may be
caught during execution of the object program. This may happen if the object
program language is dynamically typed. Of course, the error might not be caught
at all and result in erroneous outputs or memory corruption.

58 Chapter 4. Implementing skeletons using meta-programming

4.2.6 Discussion

Reviewing the previous sections we can distill, from a usability perspective, the
most convenient features for a meta-programming system for C skeleton instanti-
ation:

• The object program representation should be easy to construct, deconstruct
and manipulate. This means an AST representation that is accessible using
concrete object syntax.

• The program should be automatically staged. In a multi-level language, this
requires support for dynamic meta-programming.

• The language should be homogeneous.

• Type errors should be caught at the meta-program level.

Our source and object languages are C and C derivatives. This creates a
contradiction, since they do not support meta-programming. We therefore relax
our desire for the system to be homogeneous, instead stating that the metalanguage
should be similar to the object language while still naturally supporting meta-
programming.

Dynamic meta-programming, however, requires the metalanguage to run on
the target, and this is not possible. Thus, we require all meta-programming ex-
tensions to have static binding times, so that after automatic staging the residual
program contains only object language syntax. We call this psuedo-dynamic meta-
programming, and will detail our implementation in the next section.

4.3 A meta-programming language for skeleton

instantiation

Based on the design goals set out in the previous section, we have designed a
new meta-programming language for skeleton instantiation. This language, called
PEPCI, targets a virtual platform that supports dynamic meta-programming.
This platform is virtual, because none of our downstream compilers support dy-
namic meta-programming. Rather, we require all meta-programming to depend
on properties of the kernel, and not on the values supplied to it at run-time. Since
the kernel is available at compile time, we can use partial evaluation to evaluate
all meta-programming constructs at compile time, resulting in a single-stage pro-
gram. Using dynamic meta-programming as well as partial evaluation satisfies two
of our design goals: we do not need to switch between meta-level and object level
for code generation, and the generated program is guaranteed to be type-safe (as
the partial evaluator would complain otherwise).

Since our target languages are C derivatives, PEPCI is also based on C, thus
satisfying similarity. Multiple object languages are supported using the modular
SDF2 Syntax Definition Formalism [72, 132]. Adding a new object language thus
consists of writing a grammar for it, and adding the appropriate handlers to the
partial evaluator. This last aspect is simplified by the fact that all object language
extensions, by definition, have dynamic binding times.

4.3 A meta-programming language for skeleton instantiation 59

Appendix B.2 contains the syntax definition of the additions PEPCI makes to
the ISO/ANSI C99 standard [139], as well as the major restrictions. The syntax
is inspired by that of ‘C [105].

4.3.1 The code data type

PEPCI adds a new data type, code, to represent object program fragments. None
of the usual C operators are defined on this type, except assignment (values of
this type may therefore be passed to functions as usual). An object code fragment
may be constructed using the ‘ (backtick) quasi-quotation operator. These code
fragments are dynamically scoped; they simply represent untyped abstract syntax
trees. Interaction with these fragments can be made more structured by embedding
them in lambda expressions, structures that also provide the names and data types
of unbound variables in the code.

A consequence of dynamic scoping is that some code fragments will be am-
biguous. Consider the fragment ‘a * b;‘. The correct parsing of this code is
context-sensitive. If a is a type, it is a declaration of a pointer. If, on the other
hand, a is a variable, it is simply a multiplication after which the result is dis-
carded. Because the fragments may need to be manipulated before their scope is
clear, we restrict them to a context-free subset of the language.

In fact, all of PEPCI is context-free. We avoid ambiguities in C using a few
simple disambiguation rules:

• Prefer identifiers above type names. ‘a‘ is an identifier.

• Prefer declarations above statements. Thus, ‘a * b‘ is parsed as an expres-
sion, while ‘a * b;‘ is parsed as a declaration.

• Prefer function calls above typecasts. ‘(a)(b)‘ is a function call. Typecasts
of this nature must be specified using a cast library function.

• Whether the parameter of sizeof is a type or an expression is determined
at run-time.

• Old-style function prototypes are not allowed. ‘foo(a, b, c);‘ is a func-
tion call, and not a function prototype with implicit types.

4.3.2 Execution

Since PEPCI is a dynamic meta-programming language, we allow the execution
of code fragments. This is done using the code dereference operator “@”. This
evaluates the contents of a code variable in much the same way that a pointer
dereference accesses the contents of a pointer. A code dereference may occur in
most places where an identifier or type name is expected.

Since code fragments represent untyped parse trees, dereferencing them may
result in specialization-time type errors. For example, in program 4.4, the last line
will generate a type error if “f” is not a function. As all code dereferencing has to
have static binding time, all type errors will be caught at specialization time.

60 Chapter 4. Implementing skeletons using meta-programming

Program 4.4 Examples using the code dereference operator “@”.

code typeid = ‘int‘, id = ‘a‘, exp = ‘1 + 2‘, fun = ‘f ‘;

@typeid @id ; /* Declare a of type int */

@id = @exp; /* Assign 3 to a */

(@fun)(@id); /* Call f with parameter 3 */

4.3.3 Splicing

Until now, we have dealt with static code fragments. However, the point of code
generation is to create code programmatically. Templates (code fragments with
holes, similar to string format specifiers) have been described as an appropriate
way of doing this, and are supported by PEPCI using the splice operator “$”.
This operator may only occur within a code fragment, and results in splicing the
value of its meta-level variable argument into the code.

Program 4.5 Generating code using templates and the “$” splice operator.

code power(code c, int n)
{

if (n)
return ‘$@c * $@power(c, n-1)‘;

else
return ‘1‘;

}

int x = 4;
printf("x^3 = %d\n", @power(‘x ‘, 3));
// power(‘x ‘, 3) = ‘x * $@power(‘x ‘, 2)‘ = ... = ‘x *x *x *1‘

Note the use of $@ in line 4 of program 4.5. We are thus splicing the deref-
erenced value of c in the code. Otherwise, ‘x‘ would be inserted instead of x.
Because of scoping concerns, only statically bound variables may be spliced.

4.3.4 Lambda expressions

Untyped abstract syntax trees and dynamic scoping are dangerous concepts. It
is therefore encouraged to encapsulate code fragments in a lambda expression in
order to capture unbound variables.

Lambda expressions are supported using the library functions lambda and
apply. Program 4.6 shows how a specific exponential (3, in this case) can be
encapsulated and later applied using a lambda expression. The lambda expression
captures the variable x, so that the code no longer depends on the name x. If all
unbound variables are captured by the lambda expression, the scope of the code
is no longer dynamic.

4.4 Rewriting 61

Program 4.6 Encapsulating code fragments using lambda expressions. As-
sume power is defined as in program 4.5.

lambda t powerlambda(int n)
{

return lambda(power(‘x ‘, n), ‘int‘, ‘x ‘);
}

lambda t power3 = powerlambda(3);

printf("4^3 = %d\n", @apply(power3, 4));

4.4 Rewriting

The concepts described above do not allow the analysis and deconstruction of
code fragments: code is essentially opaque. Rather than adding more language
constructs, PEPCI provides a number of library routines to deal with code de-
construction and rewriting. These provide code comparison, pattern matching and
replacement, type inspection, etc.

Another problem with the presented metalanguage is that not all code frag-
ments can be constructed using just concrete object syntax. For example, it is
impossible to construct new identifier names, or a function call with a number of
parameters that is unknown in advance. PEPCI therefore has library routines
that provide these functionalities for the most common cases.

However, we recognize that for more involved transformations, a C-style library
is not the most suitable solution. And, of course, the question arises as to how
the library routines themselves should be implemented. In accordance with our
statement that the metalanguage should be natural for program transformation,
we have chosen to leverage a language that was specifically designed for it: Stratego
[133]. Although Stratego breaks the requirement that the metalanguage and object
language should be similar, it allows the simple specification of a wide range of
transformations in both concrete and abstract syntax.

There is thus a clean break between simple rewritings that can be expressed
using concrete syntax (these are accessible using library routines) and more com-
plex transformations that must be specified using abstract syntax (these are done
by calling Stratego). A skeleton writer only needs to learn Stratego if he needs
such complex transformations. To avoid too large a gap, PEPCI embeds Stratego,
allowing the specification and transparent calling of rewriting strategies.

4.4.1 The Stratego term rewriting language

Stratego [133] is a language for program transformation based on the paradigm of
strategic term rewriting. It makes a distinction between rewrite rules, and rewriting
strategies that repeatedly apply those rules. A rewrite rule consists of a pattern
that has to be matched, and a result term that will replace the pattern. A pattern
may contain free meta-variables that will be unified upon matching. These can
then be used in the result term.

62 Chapter 4. Implementing skeletons using meta-programming

Program 4.7 Stratego code to apply a simple math identity.

Simplify:
Add(e, IntConst("0")) → e

Simplify:
Add(IntConst("0"), e) → e

In program 4.7, Simplify is a rewriting rule that can match two patterns, both
factoring out addition with zero. The patterns are defined using abstract syntax,
e being a metavariable. Patterns may also be defined using concrete syntax, such
as in program 4.8. Here, ~: is an anti-quotation operator, meaning that e has to
be interpreted as a meta-level variable instead of an object program variable.

Program 4.8 Stratego code to apply a simple math identity using concrete
syntax.

Simplify:
|[1 * ˜:e]| → e

Simplify:
|[˜:e * 1]| → e

A rewriting strategy specifies which rules to apply, and in which order. This is
done by combining simple strategies in a number of ways. One of these strategies
is all(s), which applies a strategy s to all direct sub terms of an AST node.
Using all, we can define several common traversals:

Program 4.9 Defining traversals and using them to perform a transformation.

bottomup(s) = all(bottomup(s)); s
topdown(s) = s; all(topdown(s))
alltd(s) = s <+ all(alltd(s))

simplify = bottomup(try(Simplify))

The ; and <+ strategy combinators denote sequential composition and deter-
ministic choice, respectively. s ; t will first apply s, and then apply t to the
result. s <+ t will first try to apply s, and only applies t if s fails, that is, no
pattern can be matched.

bottomup(s) will first recursively apply itself to all of a node’s sub terms, thus
starting at the leaf nodes. Then, it applies s to result. topdown, on the other hand,
first applies s, and recurses afterwards. Finally, alltd is similar to topdown, but
only recurses if s fails. s is therefore applied along a frontier of a term.

We have chosen the bottomup strategy for Simplify. It will try to apply the
Simplify rewrite rule to all nodes of the AST, starting with the leaf nodes. try(s)
is defined as s <+ id, where id is the identity strategy.

This way of programming contrasts with implicit rewriting strategies (such as
innermost, which exhaustively applies a strategy to a term, starting with the in-
nermost sub terms) [21, 22], and defining the rewriting strategy within the rules

4.4 Rewriting 63

themselves (using explicit recursion). Custom rewriting strategies allow more op-
portunities for reuse by separating the structure of the rewriting from the specifics
in much the same way a skeleton separates the structure of a computation from
the computation itself.

4.4.2 Embedding Stratego

PEPCI embeds the Stratego language. By this we mean that Stratego syntax
is allowed in certain parts of a PEPCI program, and that the program transfor-
mations defined by those Stratego fragments can be transparently called by the
user. A Stratego transformation is written as a normal function definition, but
containing Stratego clauses instead of C declarations and statements.

Program 4.10 Embedded Stratego function to strip a pointer from a pointer
type. The type is passed as the current term of the main strategy, which tries
to apply the StripPointer rewrite rule to it.

code strippointer(code type)
{

strategies
main =

try(StripPointer)

rules
StripPointer:

TypeName(spec, Some(Pointer([p1,p2 |pointers], bounds))) →
TypeName(spec, Some(Pointer([p2 |pointers], bounds)))

StripPointer:
TypeName(spec, Some(Pointer([pointer], bounds))) →
TypeName(spec, bounds)

}

Program 4.10 shows a strategy that strips a pointer from a pointer type. The
function’s arguments are passed as the subject term of the strategy (if there is
more than one argument, it is passed as a tuple). The strategy tries to match a
TypeName with either one pointer or a list of more than one pointer. In both cases,
the first pointer is stripped off the type.

Additionally, the function’s arguments are available as pre-bound variables.
The main strategy may therefore be rewritten as in program 4.11. <s>(t) means
the application of strategy s to term t.

These kinds of embeddings are facilitated by using the modular SDF2 Syntax
Definition Formalism. An SDF2 specification consists of a number of modules
which together define a context-free grammar. We can combine two languages by
importing their respective modules, and writing extra productions which realize
the embedding. Program 4.12 shows the essence of how PEPCI embeds Stratego.

This module imports the PEPCI and Stratego grammar specifications, and
provides one production rule, stating that a function declaration followed by a

64 Chapter 4. Implementing skeletons using meta-programming

Program 4.11 Using pre-bound variables in an embedded Stratego function,
thereby making the application of StripPointer to type explicit.

stratego code strippointer(code type)
{

strategies
main =

<try(StripPointer)>(type)
...
}

Program 4.12 Embedding Stratego using SDF2. A new grammatical produc-
tion for the FunDef sort allows the use of Stratego syntax in a PEPCI program.

module P-Strategies
hiddens

imports P StrategoRenamed

exports
sorts FunDef
context-free syntax

FunDefDecl "{" StrategoDecl* "}" → FunDef {cons("StrategoDef")}

number of Stratego declarations enclosed in braces may be parsed as a function
definition, and is called a StrategoDef in the resulting abstract syntax tree. A
full grammar for the PEPCI language can be found in appendix B.

4.4.3 Interpreting embedded Stratego

In order to actually perform the transformations defined in PEPCI, we need to
execute the embedded stratego fragments. Figure 4.3 illustrates this.

Skeleton

PEPCI

parse−p

PEPCI

grammar

SDF

strc

extract−stratego

pepci−strategies

pepci

Kernel code

Parameters

Smartcam−C

Operation

Parallel C dialect

Figure 4.3: Information flow of the PEPCI interpreter.

4.5 Partial evaluation 65

At the start of interpretation, the program is parsed using the combined gram-
mar; the result is an abstract syntax tree in ATerm [126] format. The Stratego
definitions are extracted from the AST, pretty-printed, and gathered in a com-
bined Stratego source file. This file is then compiled using the Stratego compiler,
strc, resulting in an executable transformation tool which implements all of the
inline strategies.

The program code without Stratego definitions is passed to the interpreter.
When one of the strategies is called during interpretation, the subject terms are
converted to ATerm format, and the transformation tool is called, selecting the ap-
propriate strategy. The result is parsed into PEPCI’s native format and processed
further. A failing strategy will cause the interpreter to terminate.

All values are passed by their constant representation. For example, an inte-
ger value of 1 would be passed as if it were ‘1‘, with an AST representation of
IntConst("1"). Similarly, arrays are passed as if specified in a declaration initial-
izer such as ‘{1, 1, 2, 3, 5}‘. Consequently, neither addresses nor dynamic
values may be passed to a Stratego function.

4.5 Partial evaluation

Partial evaluation, also called program specialization, is mainly used to speed up the
execution of a program by computing as many values at compile-time as possible.
If the values of certain arguments to a function or program are known beforehand,
the program can be specialized with regard to those values, hopefully resulting in
a faster program.

Theorem 4.1 (Program Specialization) If pS is a two-input program written
in language S, then

out =
[[

pS
]]

S
(in1, in2), (4.1)

where
[[

·
]]

L
is the program meaning function for a program written in language L.

If pe(S → T) is a partial evaluator for S with target language T (itself written in
some unspecified language), and in1 is static, then

pin1
T =

[[

pe(S→ T)
]]

(pS, in1)

out =
[[

pin1
T

]]

T
(in2)

(4.2)

is the two-stage execution of p, where pin1
T is the specialization of p with regard

to in1.

Dynamic meta-programming, such as supported by Lisp and ‘C, is often asso-
ciated with the interpretative or code generation overhead. However, if the created
code depends only on values that are available at compile time, the interpretation
may be removed by the first Futamura projection [56].

Theorem 4.2 (First Futamura Projection) Consider int(S)L, an interpreter
for S written in L, that is, for all valid programs pS and inputs in

[[

pS
]]

S
(in) =

[[

int(S)L
]]

L
(pS, in). (4.3)

66 Chapter 4. Implementing skeletons using meta-programming

If such an interpreter is specialized with regard to a program, we get, by equation 4.2

int(S)
pS

T =
[[

pe(L→ T)
]]

(int(S)L, pS)

out =
[[

int(S)
pS

T

]]

T
(in).

(4.4)

Combining equations 4.3 and 4.4, we get

[[

pS
]]

S
=
[[[[

pe(L→ T)
]]

(int(S)L, pS)
]]

T
, (4.5)

that is, interpreter specialization amounts to translation.

Although theorem 4.2 does not guarantee speedup, the translated program can
be expected to be faster than interpreting the source, since most interpretation
overhead is dependent on p

S
, and not on in. This has been used in the context

of meta-programming by [92]. In their case, an object is associated with a meta-
interpreter, which interprets the object methods’ code upon invocation. These
meta-interpreters are specialized with regards to the object code, removing the
interpretation overhead.

4.5.1 Language specialization

As described before, PEPCI is extended with multiple object languages. Our L

is therefore the union of a core language P and an object language T:

L = P ∪ T. (4.6)

Instead of writing an interpreter for some kernel language S and specializing this
to a T-program, a PEPCI program uses term rewriting to translate the kernel into
a T-program fragment. Using dynamic meta-programming, the fragment is then
executed as part of the skeleton:

out =
[[

kernelS
]]

S
(in)

=
[[

skeletonL

]]

L
(kernelS, in).

(4.7)

Our targets do not support dynamic meta-programming, however. This means
that we do not have a direct way of determining the meaning of an L-program.
Rather, we have constructed a partial evaluator which evaluates static P-expres-
sions, and does not touch other code. If, for a program p

L
, P ∩ T̄ is static (that is,

all P-constructs that are not also T-constructs can be evaluated at compile time),

[[

pe(L→ L)
]]

(pL, in) = pin
T

. (4.8)

Our L-program is specialized to an L-subset, namely T. It is thus a hard requirement
that all meta-programming depends only on the kernel. This ensures that only T

constructs remain in the specialized program.
We rely on downstream compilers to optimize T programs. The performance

impact of not specializing T constructs is therefore limited, but extending the
partial evaluator with a new target language becomes much easier. Only the
syntax and a limited semantics (for correctly handling P expressions within T

constructs) are necessary.

4.5 Partial evaluation 67

4.5.2 Partial evaluation by interpretation

In section 4.2.2 we described partial evaluation as having separate binding time
analysis and evaluation phases. This is called off-line partial evaluation, and
means that the binding times cannot depend on the actual value of the inputs. As
our inputs can be programs that are dynamically executed, the partial evaluator
would have to be very conservative in determining the binding times.

The strategy we use, called on-line partial evaluation, does use the input val-
ues to determine the binding times. An online PE can be implemented as an
interpreter in which each variable in the symbol table can have a special value,
Dynamic. If a variable is Dynamic, all calculations with that variable will result in
a Dynamic value as well.

An interpreter can be seen as a function, reduce, reducing each expression to
a value and each statement or declaration to void. During reduction, side effects
such as changes to the symbol table or IO can occur. Calculations involving
dynamic values need to be residualized (output to the next stage as part of the
residual program), so in that case our reduce function returns an Expression

representing the calculation. Such an expression is treated as a Dynamic value in
further calculations, see figure 4.4.

Partial evaluation of assignments is more complicated. If the right hand side
is static no code needs to be produced, and if it is dynamic the assignment should
be residualized. However, any residual dynamic expressions might require assign-
ments that were static at earlier times to be residualized as well.

Consider program 4.13. If STATIC is defined, the residual program will consist
only of the last statement (because printf is an external function that cannot be
evaluated):

printf("Fibonacci number %d is %d\n", 5, 5);

But if STATIC is undefined (and x is therefore dynamic) the residual expression
a[x-1] must be entered into the program as part of the last statement. This
means that all previously generated elements of a must be residualized too, as
well as the declaration of a. If N equals 5, this leads to program 4.14.

Our partial evaluator enters all declarations and assignments into the resid-
ual program, but marks them tentative. All locations in the symbol table are
annotated with the declaration and most recent assignment that produced the

2 * 3 + 4 * a

6 ‘4*a‘

‘6+4*a‘

Figure 4.4: Reduction of the expression ‘2*3+4*a‘. Expressions involving only
static values are computed, while expressions with dynamic values are simply
returned.

68 Chapter 4. Implementing skeletons using meta-programming

Program 4.13 Program fragment to calculate the Fibonacci sequence. x is
either static or dynamic, depending on whether STATIC is defined.

int fib(int *f, int n)
{

int i ;

for (i=0; i < n; i++)
if (i < 2)

f [i] = 1;
else

f [i] = f [i -2]+f [i -1];
}

int a[N], x ;

fib(a, N);

#ifdef STATIC

x = 5;
#else

printf("Enter number (1-%d): ", N);
sscanf("%d", &x);

#endif

printf("Fibonacci number %d is %d\n", x, a[x -1]);

Program 4.14 Residual code of program 4.13, with STATIC undefined and N

= 5.
int a[5], x ;

a[0] = 1;
a[1] = 1;
a[2] = 2;
a[3] = 3;
a[4] = 5;

printf("Enter number (1-%d): ", 5);
sscanf("%d", &x);
printf("Fibonacci number %d is %d\n", x, a[x -1]);

4.5 Partial evaluation 69

contained value. If the variable occurs anywhere in a residualized expression, the
declaration and assignment are unmarked, and will thus be output as part of the
residual program.

4.5.3 Flow Control

Flow control constructs which depend on dynamic values introduce the complica-
tion that the modifications a dynamic branch makes to the symbol table must be
made Dynamic after the branch is evaluated, since we can not be sure that the
branch is taken. Additionally, both branches of a dynamic if statement must be
evaluated under the original symbol table. We therefore start the evaluation of
each branch with a copy of the symbol table (implemented as copy-on-write to
minimize overhead). After completion, all changed symbols are made Dynamic.

At this point, a symbol may have up to three assignments: the original one, and
one for each branch. When the symbol is used in a dynamic expression (since the
symbol itself is dynamic, all expressions including it will by dynamic as well), all
three will be residualized. Program 4.15 illustrates this. A symbol is represented
as a 3-tuple (name, value, assignments), and removing a symbol from the table is
defined as in equation 4.9.

ST \ x ≡ {(n, v, a)|(n, v, a) ∈ ST ∧ n 6= x} (4.9)

Program 4.15 Symbol residualization for dynamic branches. When y is used
as a dynamic value in line 9, all three assignments to it are residualized.

1 int x ; ST ← ST ∪ (‘x‘, Dynamic, {})
2 int y ; ST ← ST ∪ (‘y‘, Dynamic, {})
3 y = 0; ST ← ST \ ‘y‘ ∪ (‘y‘, 0, {3})
4 if (x) ST ′ ← ST
5 y=1; ST ′ ← ST ′ \ ‘y‘ ∪ (‘y‘, 1, {5})
6 else ST ′′ ← ST
7 if (y==0) (‘y‘, 0, {3}) ∈ ST ⇒ true
8 y=2; ST ′′ ← ST ′′ \ ‘y‘ ∪ (‘y‘, 2, {8})

ST ← ST \ ‘y‘ ∪ (‘y‘, Dynamic, {3, 5, 8})
9 printf("y=%d\n", y); residualize lines 3, 5 and 8

ST ← ST \ ‘y‘ ∪ (‘y‘, Dynamic, {})

Loops are fully unrolled as long as their condition is static. Once they become
dynamic (for example, because the loop variable is conditionally updated), their
body is evaluated in the same way as the branch of an if statement. Dynamic
flow control constructs themselves (such as the if .. else in lines 4 and 6) are
always residualized. Again, our primary goal is not to create an optimal residual
program (instead depending on downstream compilers to do the optimization),
but to specialize the language.

70 Chapter 4. Implementing skeletons using meta-programming

4.5.4 Dealing with pointers

Pointers are often said to be the worst enemy of C optimization, because aliasing
(where a memory location can be accessed through different names) hampers many
analyses. In the case of partial evaluation of the full C language, assignment to a
dereferenced dynamic pointer must make all values in the symbol table dynamic.
It is therefore imperative that pointers are not made dynamic unnecessarily.

We maintain a list of possible addresses for each pointer, in much the same
way that a symbol can have multiple assignments. After a dynamic branch, the
address list is merged. If such a pointer is written to later on, all symbols reachable
through the pointer are made dynamic. A pointer may be assigned to the address
of a dynamically indexed array. In that case, the whole array becomes dynamic.

Special care has to be taken with residualized function calls. Since we cannot
assume any behavior on part of the called function, the values reachable through
any addresses passed to such functions should be made dynamic, and the possible
address list of pointer values therein should be extended with those addresses.

This last aspect is currently not implemented in our prototype. We also do
not allow pointer arithmetic, and expect dynamic indexing to remain within the
memory block allocated for a single array. Furthermore, typecasting pointer values
is also not allowed.

4.5.5 Foreign functions

Most function calls to external libraries cannot be specialized even if their argu-
ments are all static, because they may have side effects such as I/O or the writing
of global variables. However, some targets do not support the floating point arith-
metic necessary to compute some mathematical functions, and we would like to
specialize such tasks as computing a Gaussian kernel of a specific standard devi-
ation. We therefore make an exception for (mathematical) pure functions such as
exp and sqrt.

Such a function must be declared extern, and will be called at specialization
time if all its arguments are static. It will be located in any number of dynamic
link libraries provided to the partial evaluator, and called through the ffcall [65]
foreign function call libraries.

An external function with static arguments that is not embedded in a dynamic
control flow statement is allowed to have side effects. This is used by our skeletons
to provide information about the kernel and the resulting operation through an
interface to write XML files. The information is used by the run-time system and
contains, among others, the amount of buffer space the operation requires for its
stream arguments.

4.6 Skeleton merging

Until now, we have discussed the implementation of single (data parallel) skele-
ton calls. In the skeleton literature, such skeletons can be incorporated into task
parallel skeletons such as farms and pipelines, creating a task graph. Optimiza-
tions can then be applied to manipulate this task graph. In our case, these task

4.6 Skeleton merging 71

parallel skeletons are replaced by the stream programming framework described
in section 3.3, but many optimizations still hold.

The most important optimization is replacing pipelines with farms [5], shown
in figure 4.5. There are two main reasons to do this optimization. First, each
connection between two skeletons uses a FIFO buffer to communicate the elements,
with the associated overheads. If the skeletons run on the same processor, this
overhead can be eliminated. Second, there are usually more values to process than
processing elements in a processor. To limit context switching, this means that in
the case of a pipeline, a processor will first loop over a number of elements of the
first operation before starting the next, and this limits instruction level parallelism
and data locality. It is more efficient to do multiple computations on one element
before moving on.

Replacing a pipeline with a composite farm is a specific case of skeleton merging,
combining two or more skeleton calls to create a single merged skeleton, reducing
overhead and improving efficiency. The two main challenges in performing this
optimization are how to find the skeletons that need to be merged, and how to
merge programs which, in principle, can do anything.

4.6.1 Extracting Skeleton Sequences

Merging two skeleton calls improves efficiency if the most efficient mapping maps
them to the same processor. However, by combining the skeletons it is no longer
possible to map them to different processors, limiting the mapping freedom. It is
therefore imperative that we only merge skeletons which can be expected to run
on the same processor. Additionally, skeletons can only be merged if the resulting
program is functionally equivalent to the original under all circumstances. This
places restrictions on the dependencies between the skeleton calls and the rest of
the program.

We recognize four conditions a skeleton call sequence must satisfy before it can
be merged: compatibility, colocation, control flow and data flow.

Compatibility

Since skeletons are generic programs, we can reason about their properties only in
very restricted cases. However, if operations are to be efficiently merged, we need
detailed information about the way in which they process their elements. This
is reminiscent of the difficulties of parallelizing compilers: without limiting the
properties of an operation using a skeleton, it is hard to determine the possibilities
for parallelization.

We therefore restrict the generality of a skeleton by using an optional meta-
skeleton. The meta-skeleton requires the skeleton to adhere to a certain interface
which enables it to be merged. All the operations in a sequence must use the same
meta-skeleton.

Colocation

In a simulation run, the operations must be mapped onto the same processor with
high probability. This calculation is complicated by the fact that all operations

72 Chapter 4. Implementing skeletons using meta-programming

(a) Pipeline of data parallel
skeletons.

(b) A composite farm equiva-
lent to 4.5(a).

Figure 4.5: Replacing pipelines with a farm to improve efficiency. The buffers
between tasks are removed, and each element can be processed completely without
switching context before the next one is read.

4.6 Skeleton merging 73

will run multiple times, and we are only concerned with the location of those tasks
that constitute a single sequence. As long as each separate sequence of tasks runs
on the same processor, it is not prohibitive that the location of each sequence is
different.

We define the colocation probability of an ordered pair of operations o1 and o2

as the average probability (measured during simulation) that a call of operation
o1 and the subsequent call of operation o2 are mapped to the same processor.
The colocation probability of a sequence of operations is then the product of all
pairwise colocation probabilities between neighboring operations in the sequence.

If the colocation probability of a sequence of operations is higher than a certain
threshold value, they may be merged.

Control flow

It must not be possible for the sequence to be called only partly. If the first
operation is called, so must all other operations in the sequence. To ensure this,
all operations must occur within the same basic block of the stream program; that
is, there can be no control flow constructs which affect only part of the sequence.

Data flow

The data dependencies between the operations in the sequence must be static, and
must be proven to be static at compile time. We perform a conservative static
data flow analysis to ensure this. The connections between the operations must
be streams with a constant flow of elements, and must be wholly contained within
the sequence: it is not allowed for two operations to be connected via an operation
outside the sequence.

Furthermore, variables produced by the sequence may not be used by state-
ments occurring between the operations of the sequence. This is important because
the merged sequence will be placed at the location of its last operation.

4.6.2 Meta-skeletons

As a skeleton provides an algorithm-specific interface for writing a certain kind of
operation, limiting its expressiveness, a meta-skeleton limits the expressiveness of a
skeleton. It is therefore a third-order function, receiving the code and parameters
of both the skeletons and their respective kernels. In the style of section 4.5.1:

out =
[[

kernelS
]]

S
(in)

=
[[

skeletonM

]]

M
(kernelS, in)

=
[[

meta–skeletonL

]]

L
(skeletonM, kernelS, in).

(4.10)

A meta-skeleton is written in much the same way as a normal skeleton: by
rewriting the skeleton and kernel bodies, and adding glue code between them.
Additionally, it is the responsibility of the meta-skeleton to statically schedule the
entire sequence, since it is now a single operation. The need for static scheduling
is what requires the skeletons to be limited in their expressiveness, since data flow
networks in general cannot be statically scheduled.

74 Chapter 4. Implementing skeletons using meta-programming

In the case of the linebyline meta-skeleton, which deals with skeletons that
have a granularity of a single image line, the composing skeletons are required to
consist of a prologue and epilogue, which read and allocate a statically known
number of image lines, and a repeated body, processing a single line. Buffer
interactions may only operate on whole lines at a time. This allows for a simple
repeated schedule (all skeletons process a single line in sequence), and only requires
some care during the prologue and epilogue.

We take an approach where the merged operations t communicate using light-
weight line buffers. For each operation in the sequence the prologue is executed,
followed by a number of normal iterations. This number of iterations is equal to
the difference between the number of initial image lines needed by downstream
operations (request) and the number of initial lines produced by the prologue
(initialp). In turn, the requested buffer size is equal to the number of image
lines consumed by the prologue (initialc) plus the number of iterations. A similar
strategy is used for the epilogues.

iterations(t) = max
c∈consumers(t)

request(c, t)− initialp(t, c)

request(t, p) = initialc(t, p) + iterations(t)
(4.11)

Note that because of the line granularity we do not create increased instruction-
level parallelism, but only increased data locality and decreased context switching
and buffer interaction overheads. Another meta-skeleton, called pixelbypixel,
increases data locality, but it is limited to operations with pixel granularity.

4.6.3 Language features for implementing meta-skeletons

A meta-skeleton must be able to apply a skeleton to a kernel and rewrite the result.
This is not possible with PEPCI as it has currently been described, because the
residual code of such an application cannot be accessed by the meta-skeleton. We
therefore provide a new built-in function, reduce, which executes a piece of code
and returns the residual.

reduce first creates a copy of the symbol table, and executes the code using
this copy. It then residualizes all variables which changed during the execution,
and returns the residual code. This ensures that if the result is executed, it makes
the exact same changes to the symbol table as directly executing the original code,
i.e. the symbol table after evaluating the original code is that same as that after
evaluating the residual:

∀c ST (@c) = ST (@reduce(c)). (4.12)

Another important aspect of merging skeletons is avoiding variable name
clashes. PEPCI provides a library strategy to uniquely rename all local variables
in a piece of code, assuring that no name clashes occur. Note that as the skeleton
may introduce new variables through meta-programming, variable renaming must
be applied to a reduced piece of code, and not to the original skeleton.

4.7 Results 75

4.7 Results

In order to determine the validity of the skeletonization approach, we need to find
out if the benefits, such as being able to use more exotic processor architectures
and multiprocessor systems, outweigh the overheads. Of course, a handwritten
program especially tailored to a certain application and processing architecture
will always be faster than a generalized approach. However, the time and effort
required to write such a program often excludes the use of certain architectures.

We will show the overhead of splitting an application into a number of kernels,
and writing these kernels using skeletons. In addition, we measure the performance
gain of the skeleton merging operation. All workstation experiments presented in
this section were conducted using a uniprocessor backend, thus only exploiting
instruction-level parallelism. Please refer to the next chapter for experiments on
multiprocessor systems.

4.7.1 Skeletonization overhead

In principle it is possible to write a separate skeleton for each operation, leading to
zero overhead. However, this defeats the purpose of the skeletonization approach.
It indicates, though, that the skeletonization overhead is determined by how well
the operation fits into the mold of the skeleton. Implementing a pixel multipli-
cation operation using a skeleton designed for recursive neighborhood operations,
while possible, is very inefficient. In general, the most restrictive skeleton that
supports the operation should be chosen.

We can see in figure 4.6 that this domain mismatch penalty is higher for par-
allel architectures than for sequential ones, as is to be expected. For example, a
recursive neighborhood operation on the IMAP-CE (rn2p) can exploit only half
the parallelism of a non-recursive neighborhood operation, and induces extra over-
head. In contrast, a sequential implementation suffers no extra penalty. lutn2p,
which implements linear local neighborhood operations using a weighted kernel,
suffers because of floating point conversion on the AMD Opteron. The other
architectures do not support floating point arithmetic.

In many cases the XeTaL processor can not even execute an operation, because
it does not have the necessary local autonomy to support those skeletons. This is
another reason to use the most restrictive skeleton.

The other interesting overhead is that of splitting an application up into many
separate kernels. This induces loop overhead, loss of instruction-level parallelism,
and less efficient use of a processor’s cache memory. Figure 4.7 shows that these
effects can be quite severe, approaching a factor of two in performance.

This highlights the need to recover ILP and cache locality using skeleton merg-
ing. Our current implementation supports two meta-skeletons: pixelbypixel, for
operations with pixel granularity (such as the pixel to pixel, anisotropic pixel and
pixel lookup operations from section 2.3.2) and linebyline for operations with
line granularity (neighborhood to pixel operations, and recursive neighborhood to
pixel operations on sequential architectures). As can be seen in figure 4.7, the
recovery for pixel operations is total, while for the neighborhood operations and

76 Chapter 4. Implementing skeletons using meta-programming

0

2

4

6

8

10

12

Skeleton

p2p
(2.1)

pl
(2.3)

pf
(2.11)

ap2p
(2.2)

lutn2p n2p
(2.5)

rn2p
(2.6)

bkt
(2.7)

glb

Domain mismatch penalty

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 p
2p

287

AMD Opteron 250
IMAP−CE
Xetal

Figure 4.6: Penalty for choosing a wrong (less restrictive) skeleton for a pixel
operation, relative to the execution speed of a pixel skeleton operation on the
same architecture. The numbers on the X axis refer to equations in section 2.3.

mul 3x3 avg ball
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Algorithm separation overhead

Program

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 h
an

d
co

di
ng

Handcoded
Kernelized
Merged

Figure 4.7: Overhead induced by separating the algorithms within an application,
plotted for three programs: eight pixel multiplications, eight 3x3 neighborhood
averages, and a ball following application described in [33] (a trace can be found
in figure 6.3). Experiments were carried out on an AMD Opteron 250.

4.8 Discussion 77

ball following application there remains a 20% performance loss, which we will
investigate in the next section.

4.7.2 Skeleton merging performance

Figure 4.8 shows the performance benefits of skeleton merging for an image ad-
dition operation. The first two bars show that one separate image addition takes
seven milliseconds for both the PixelToPixelOp and NeighborhoodToPixelOp

skeletons. If we count the additional execution time taken by a second addi-
tion which is merged with the first, we see that this is almost for free with the
pixelbypixel meta-skeleton, whereas it takes three milliseconds for the line-

byline meta-skeleton. Merging even more operations closes the gap, but pixel
merging is still more effective than line merging.

The reason for this discrepancy is twofold. First, pixel merging fuses the loops
of the separate operations, reducing loop overhead, and second, it eliminates mem-
ory traffic by passing intermediate results in registers, whereas line merging only
replaces main memory access with cache access.

The difference between merging a few operations (second group of bars) and
many (third group) is the result of increased instruction-level parallelism. If a
loop iteration contains more statements, more of the processor’s execution units
may be used; a loop iteration with only one addition is dominated by loop counter
arithmetic, keeping many execution units idle. In this case, adding additional
statements is free until the loop becomes dominated by the calculation instead of
the looping.

We have also investigated the cache effects of skeleton merging. Context switch-
ing for operations with much internal state (such as neighborhood operations with
large neighborhoods) is especially expensive due to cache trashing. While skeleton
merging does avoid OS context switches, the fine-grained interleaving of operations
on a line by line basis can reduce the performance gains.

Figure 4.9 shows the relative performance benefit of merging 8 neighborhood to
pixel operations with increasing neighborhood sizes. The number of instructions
is kept constant, but pixels are fetched from increasing distances. When access-
ing pixels vertically, this causes cache trashing for the larger neighborhood sizes,
leading to degraded performance (as the image is stored in row-major order).

The control case, using horizontal access, also shows a decrease in performance,
although of a different order than that of the vertical access. This is due to border
handling and other inefficiencies due to merging.

4.8 Discussion

We have introduced a language and tool, called PEPCI, for implementing skele-
tons based on pseudo-dynamic meta-programming and embedded term rewriting.
The pseudo-dynamic approach allows the mind set of writing a program to directly
process some input while actually generating such a program, and is achieved us-
ing partial evaluation. This makes it easy to implement the structure of the
skeleton. Embedded term rewriting, using the Stratego term rewriting language,

78 Chapter 4. Implementing skeletons using meta-programming

unmerged merged (initial) merged (steady)
0

1

2

3

4

5

6

7

8
Skeleton merging performance

E
xe

cu
tio

n
tim

e
of

 im
ag

e
ad

di
tio

n
(m

s)

pixelbypixel
linebyline

Figure 4.8: Performance of pixel and line merging meta-skeletons for image addi-
tion. initial means the added cost of merging a second addition, and steady is the
steady state cost of merging reached after a number of additions.

2 4 6 8 10 12 14 16
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

Size of the structuring element

R
el

at
iv

e
pe

rf
or

m
an

ce
 g

ai
n

of
 m

er
gi

ng

Cache trashing due to merging

Vertical access
Horizontal access

Figure 4.9: linebyline skeleton merging performance as a function of the neigh-
borhood size. The number of instructions for each measurement is constant, but
the distance from which pixels are accessed is different.

4.8 Discussion 79

allows both simple pattern substitution (through library calls) and more involved
program analyses and transformations (by writing inline Stratego programs).

The entire PEPCI language is based around the concept of layered complexity.
PEPCI programs may range from simple ANSI C (if no meta-programming is re-
quired, and just the speedup provided by partial evaluation is desired) to elaborate
Stratego programs directly modifying abstract syntax trees; it is not necessary to
understand a language concept if it is not needed in the program.

We introduced the concept of meta-skeletons, which limit the expressivity of
skeletons in order to allow us to reason about their execution, especially in order to
do merging and static scheduling to reduce overhead. Using skeleton merging, the
single-processor performance of a properly skeletonized application is only around
20% slower than a dedicated handcrafted version.

Traditional languages using algorithmic skeletons [116, 46, 97] treat them as
black-box components, unable to be modified by the user. This restricts their
flexibility. On the other hand, the skeletons are generally compositional (able to
be nested in arbitrary ways), and these compositions may be optimized by the
compiler. We do not support skeleton nesting, instead relying on the extensibility
of our skeleton library: if the provided patterns do not suffice, a (specialized)
programmer can add his own.

Chapter 5

Implementing stream

programming using RPC

Stream programming is a way of writing architecture-independent parallel image
processing applications. For our application domain, we have determined that we
wish to use imperatively connected finite, multidimensional streams. Furthermore,
the stream kernels should be mapped to a heterogeneous system and executed as
much in task parallel as possible. This task parallelism should continue across
dynamic stream reconfigurations.

In chapter 4 we presented our method of exploiting data parallelism using
algorithm-specific languages as skeletons. Data parallelism is the main source of
parallelism in image processing applications. The subject of this chapter is how
the instantiated operations are interconnected to exploit task parallelism across a
multiprocessing system. Our approach to this problem is based on the Remote
Procedure Call (RPC) mechanism known from distributed programming.

The basic method, with several extensions needed to improve parallelism, is
described in section 5.1. Section 5.2 describes the run-time environment that per-
mits stream programming using RPC, while sections 5.3-5.4 present the various
models needed by the run-time environment to find an appropriate mapping of
kernels to processors. The management of the stream buffers is presented in sec-
tion 5.5, and finally section 5.6 shows results verifying the amount of overhead and
achieved parallelism.

5.1 Remote procedure call

Remote procedure call (RPC) [138, 15] was introduced as a way of standardizing
command/response protocols in distributed systems. It extends the idea of func-
tion calls to remote functions, preserving the well-understood mechanics behind
local function calls. An RPC run-time environment (RTE) consists of a client pro-
gram, containing the RPCs, and a server program, running on a remote system.
The RPC functions provided to the client are stubs that perform the following
acts:

82 Chapter 5. Implementing stream programming using RPC

• Copy the arguments of the stub function to the server.

• Cause the server program to jump to a specific procedure, depending on the
RPC identifier of the stub.

• Wait until the remote procedure finishes execution.

• Read the result of the remote procedure, and return it as the result of the
stub.

Thus, the flow of control passes from the client to the server, just as it normally
passes from caller to callee in a single computer. Note that the remote function
lives inside another address space than the client, and therefore cannot access
global variables. All necessary information has to be passed using arguments.

Program 5.1 shows an example C++ RPC client program. We have bindings for
both C and C++ as the client language, as they are widely used in the embedded
systems world, and therefore provide for an easy migration path. All arguments are
passed by reference. A data flow graph of the interactions between the functions
is depicted in figure 5.1.

Program 5.1 Example RPC client program

// In In Out

localfunctionS (&s);
remoteFunctionA(&s, &a);
remoteFunctionB(&a, &b);
remoteFunctionC(&b, &c);
localFunctionD (&a, &d);
remoteFunctionE(&b, &d, &e);
remoteFunctionF (&c, &e, &f);
localFunctionQ (&f);

The Gantt chart [57] in figure 5.2(a) indicates how the flow of control passes
between client and server. In this basic, synchronous, implementation of RPC,
the client is waiting for the server to finish processing before proceeding. An
asynchronous implementation hands control back to the client immediately, and
returns a token that can be used to poll whether the computation has finished. This
allows the client to continue executing until the result is needed, see figure 5.2(b).

AS

F Q

D

B

C

E

Figure 5.1: Task graph belonging to program 5.1. Darkly colored boxes are local
functions.

5.1 Remote procedure call 83

S

A B C

D

E F

Q

(a) Synchronous RPC. The client program waits for the completion of each remote function.

A B C E F

QDS

(b) Asynchronous RPC. Note how the client can continue with D while the server is still pro-
cessing B.

S D

A B C E F

Q

(c) Asynchronous RPC using batched futures. Message latencies are avoided by sending batches
of calls to the server, and allowing them to reference each other’s results.

S D

A B E

C F

Q

(d) Using futures across multiple servers. The results of a remote function are directly copied to
the servers that need them.

S D Q

FCA

B E

(e) Using series of partial results allows us to pipeline computations. B can start after receiving
the first partial result of A. C can start after receiving the first partial result of B, etc. The local
functions are assumed to be non-pipelined.

Figure 5.2: Gantt charts for the execution of program 5.1 using increasingly effi-
cient implementations of remote procedure call (RPC).

84 Chapter 5. Implementing stream programming using RPC

5.1.1 Future-based RPC

If the token returned by an RPC call is an object that can be used to access the
result of the call (as opposed to simply relaying that some result has been written
to a buffer), it is also called a future [12] or promise [88]. Futures were introduced,
not within the context of RPC, but as a parallel, eager evaluation method for
functional programming languages in a shared-memory environment. For example,
in MultiLisp [66], futures could be used as normal variables, automatically blocking
the program if they were needed for a computation.

A first application of futures in a distributed environment can be found in
[88]. However, unlike their shared-memory counterparts, they could not be passed
to other RPC functions without first being claimed by the client program. As a
result, the client had to wait for an earlier RPC call to finish before passing the
result to a next call. In order to achieve parallelism, explicit threading had to be
used.

An extension, called batched futures [103], was designed to allow RPC calls
to reference each other’s results. The main reason for this extension was not to
exploit parallelism, but to avoid the latencies involved in bouncing messages back
and forth between client and server by sending them in batches. This is illustrated
in figure 5.2(c).

We can extend the concept even further by allowing futures to be used across
servers [7]. This introduces task parallelism between multiple servers, even if
some computations are dependent (see figure 5.2(d)). An even larger degree of
parallelism can be achieved if the remote functions generate a series of partial
results, allowing the use of pipelining (figure 5.2(e)).

With the addition of pipelining, we have now gained an RPC implementation
that satisfies all the requirements for a highly task parallel, imperatively connected
stream programming language. We can dynamically construct arbitrary acyclic
graphs of RPC calls and execute them on a heterogeneous multiprocessor system,
while retaining the semantics of sequential function calls.

5.1.2 Encapsulating local functions

A problem remains when the shape of the task graph itself depends on the result
of a remote function. In this case, further construction of the task graph is halted
until the offending future has been resolved, even those calls which do not depend
on that future. To solve this, we allow local functions to be encapsulated and called
as remote functions. This causes them to run asynchronously, so that further task
graph construction may continue. However, to ensure determinism it is required
that such asynchronous local functions – like the stream kernels themselves – have
no interacting side effects.

In program 5.2, localDecisionFunction decides whether to call remoteFunc-
tionC or remoteFunctionD, based on some local computation localFunctionB.
It is encapsulated using futurecall [109] so that the while loop can continue
iterating, allowing more pipelining. This results in an incomplete task graph,
since the part between a and cd is missing. Once the local computation finishes
and the task graph is completed, execution of it can continue.

5.2 Run-time environment 85

Program 5.2 Encapsulating dynamic task graph construction.

void localDecisionFunction(*a, *cd)
{

if (localFunctionB(a))
remoteFunctionC(a, cd)

else
remoteFunctionD(a, cd)

}

while (1)
{

remoteFunctionA(&a);
futurecall(localDecisionFunction, &a, &cd);
remoteFunctionE(&cd);
}

5.2 Run-time environment

A run-time environment’s tasks are: keeping track of the futures, mapping remote
function calls to servers, and managing stream transportation. It consists of the
following parts, which are schematically shown in figure 5.3:

• A frontend, which records all remote function calls as well as encapsulated
local function calls. It tracks futures to create the application’s task graph,
and blocks on unresolved futures. The frontend presents the run-time envi-
ronment to the user.

• A mapper that selects among the set of possible mappings of the task graph
to the architecture, with the help of

• an evaluator which predicts the performance of a particular mapping.

• A dispatcher which determines the needed stream buffer sizes and allocates
the necessary buffers and transports before dispatching the functions.

• A gatherer, collecting information about function completion, and signalling
future resolution to the frontend.

During kernel extraction and skeleton instantiation (see chapter 4), stubs are
generated for each kernel call, with corresponding server functions on all processors
which support the operation. These are linked by an RPC ID. The run-time
environment itself is a standard C-library, with a standard C and C++ API.

5.2.1 API

Our C++ API introduces a Future template class which implements the future
semantics for any data type. These scalar futures may be assigned to and used
in any expressions which require the original data type. The only difference is

86 Chapter 5. Implementing stream programming using RPC

Mapped task graph

Function IDs
Argument values
Buffer setup

Function completion
Buffer completion
Results

Future resolution

Communications layer

Frontend

Gatherer Dispatcher

EvaluatorMapper
Task graph

task graph
Mapped

Predictions

Figure 5.3: Components and data flow within the RPC run-time environment.

that a check is made to ensure that the future is resolved before the expression is
computed.

Streams must first be loaded into a standard C-array before their contents may
be accessed. They are dynamically typed, and instantiate the Future class using
the STREAM data type.

Program 5.3 Iterative diffusion until idempotence using future-based RPC
with a C++ API.

1 Future<STREAM> im, diff, absd ;
2 Future<int> s;
3

4 capture(&im);
5 do
6 {
7 diffuse(&im, &diff);
8 absdiff(&im, &diff, &absd);
9 sum(&absd, &s);
10 im = diff ;
11 } while (s > THRESHOLD);

Program 5.3 implements an iterative diffusion algorithm. A captured image is
subjected to diffusion until the difference between two successive steps is smaller
than a certain threshold. Note that assigning a future to another future (such as
in line 10) does not block the program, because the actual value is not used. When
it is used, like in line 11, the program blocks until the future is resolved.

5.3 Mapping 87

5.2.2 Tracking futures

Futures are tracked by their interactions with RPC stubs or local functions called
using futurecall. They are used to set up a task graph such as in figure 5.1: each
RPC stub creates a task vertex, and each use of a future creates an edge. Such
task graphs are always acyclic, as it is impossible for an operation to reference an
input future which has not been produced yet.

It is important to note that futures allow us to provide sequential call-by-value
semantics in an asynchronous environment. When a future is overwritten, it does
not change the task graph edges that have already been created. Instead, any
further references will simply use a new task graph vertex as the origin. As a
previously created part of the task graph is not changed by later calls, the result
is the same as if every operation finished execution before returning.

When a future is copied, such as when it is assigned to another future or when
it is passed as an argument of an encapsulated local function, a new reference is
created. These references may be used and overwritten independently, so that
they may eventually contain different values or point to different origins.

Figure 5.4 shows four stages in the execution of the iterative diffusion pro-
gram 5.3. Between 5.4(a) and (b), im is set to diff (line 10), thereby pointing to
a different origin but leaving the original task graph intact. During a later reas-
signment of diff (in the second execution of line 7), they again point to different
origins (5.4(c)).

The gatherer is responsible for writing the correct values into resolved scalar
futures. A value is only written into futures which still reference the produced
value. If no futures reference the result anymore, it is disposed. Resolved streams
are not automatically written to a future, because transporting all stream data
to the control processor would create a communications bottleneck. Instead, the
contents of a stream must be explicitly loaded into an array if they are needed in
the client program.

5.3 Mapping

The mapper has to find an efficient mapping of remote functions to servers. It
does this by constructing different mappings of the task graph to a model of
the architecture, and passing these to the evaluator. We will first describe the
architecture model and related information. Then, we will more formally describe
the task graph that is created by the frontend, called the stream task graph. Finally,
we will describe how the stream task graph is transformed by mapping it to the
architecture model, creating the Dependent Task Interaction Graph.

The mapping itself is based on a simple list scheduling technique with topo-
logical ordering. As such, in algorithm 5.1, priority is simply the order in which
tasks arrive at the mapper, while objective is the predicted execution time. If
time permits, the scheduling process can be iterated for a more accurate prediction
(because objective may then include tasks that were scheduled in the previous
iteration).

88 Chapter 5. Implementing stream programming using RPC

Ca

Di

Abs Sum
absd s

im

diff

(a) Before first execution of line 10

Abs Sum

Di

Ca
absd s

diff, im

(b) After first execution of line 10

Ca

Di Abs Sum

Di

SumAbs

diff

im sabsd

(c) Before second execution of line 10

Ca

Di Abs Sum

Di

SumAbs

diff, im

sabsd

(d) After second execution of line 10

Figure 5.4: Different stages in task graph construction for the iterative diffusion
in program 5.3

.

Algorithm 5.1 List scheduling. T is a set of tasks, while A is a set of targets.

for i← 1 . . . ‖T‖
choose t ∈ T which maximizes priority
schedule t on a ∈ A which minimizes objective
remove t from T

5.3 Mapping 89

5.3.1 Architecture model

The architecture model specifies which servers (targets) are available, and how they
are connected. Communication channels are modeled as servers as well, but they
can only run transport operations.

Figure 5.5 shows a model of the Inca+ architecture [80], consisting of a sensor,
XeTaL SIMD and TriMedia VLIW processor. The square boxes are communica-
tion channels, while the rounded boxes are targets that can perform an operation
other than transferring information. The arrows are the links connecting the var-
ious targets.

There are three channels going from the XeTaL to the TriMedia: one for each
of red, green and blue. These channels can only transport one stream at a time.
This is modeled by assigning each channel a stream resource, and having each
transport operation require such a resource. Mappings which violate the resource
constraints are automatically discarded.

Resources can also be used to model other constraints, such as a limited amount
of memory or the fact that a camera can only take one picture at a time. An
architecture model is therefore a directed graph, labeled with the presence of
resources.

Definition 5.1 (Architecture model) An architecture model AM is a tuple
(A,L,R, pres), where:

• A is a set of target vertices

• L ⊆ A×A is a set of link edges. (A,L) form a directed graph.

• R is a set of resources.

• pres : A × R → N defines the number of resources r ∈ R a target a ∈ A
provides.

Note that an RPC system only exploits task parallelism. Data parallelism is
exploited by executing the operations on data parallel targets; such targets (which
could be static aggregations of sequential processors) are single vertices in the
architecture model.

R

G

B

Sensor Xetal TriMedia

Figure 5.5: Inca+ architecture model. Note that data can flow in only one direc-
tion: from sensor to XeTaLto TriMedia.

90 Chapter 5. Implementing stream programming using RPC

5.3.2 Application specification

During compilation, information is extracted about the application, and entered
into an application specification. This data is gathered in four stages of the compi-
lation process.

Kernel extraction

The kernel extraction provides a set of available remote function operation types
(associated with RPC IDs), as well as the intent of an operation’s argument:
whether they will be used as input or output. This is used during future tracking.

Skeleton instantiation

As described in the previous chapters, skeletons are implemented for different
processor architectures. A skeleton compiling a kernel can therefore provide ar-
chitecture-specific information about the resulting operation. This information
consists of the number of resources that an operation requires of a certain target,
some information about argument buffer sizes (such as was used in section 4.6),
and the distribution of an argument’s stream elements over time.

The stream element distribution can be either regular or bulk. An operation
argument is called regular if the argument’s stream elements produced or con-
sumed by the operation are spaced regularly with respect to the operation’s use
of CPU time. It is called bulk if all the stream’s elements are consumed before
the operation starts, or of all the stream’s elements are produced only after the
operation finishes. We treat scalar arguments, which have only one element, as
bulk.

Trace generation

A simulation of the entire application generates a trace of the data flow, providing
the maximum stream length an operation will produce, which is important for
determining buffer sizes. We will assume that the simulation runs sufficiently long,
so that all dynamic paths through the program are taken, and the stream lengths
are real maxima. The trace generation is described in more detail in section 6.2.1

Benchmarking

After the trace generation, each operation is benchmarked individually on each
architecture it can run on, giving the CPU time it needs to complete its task.
This will be described in section 6.2.2.

Definition 5.2 (Application Specification) An application specification AS is
a tuple (O,OA, intent , rres, dist , len, time), where:

• O is the set of available operation types.

• OA ⊆ O× N is the set of operation arguments.

• intent : OA→ {in, out} is the intent of each operation argument.

5.3 Mapping 91

• rres : O×A×R→ R is the amount of required resources for an operation
on a specific target. A and R are taken from the architecture model.

• dist : OA×A→ {regular, bulk} is the distribution of stream elements for an
operation argument on a target.

• len : OA→ N is the maximum length of a stream produced by an operation
argument.

• time : O × A → R is the execution time of an operation on a target. For
transport operations, it specifies the time it takes to transfer a single byte.

The architecture model and application specification are passed to the run-time
system using a set of XML files, the syntax of which is detailed in appendix A.

5.3.3 Stream task graph

The stream task graph (STG) is formed during program execution by future track-
ing. It is a directed acyclic graph interleaving tasks and streams. Enqueueing a
remote function generates a task vertex, creating a new stream vertex and producer
edge for each output. For all futures the function references as inputs, consumer
edges are created from the appropriate stream to the task.

Figure 5.6 is an example stream task graph for an edge detection program.
The graph is annotated using the information gathered during compilation: tasks
are assigned the appropriate operation type, producer and consumer edges are
annotated with their stream distribution, and streams have a length based on the
maximum length of their producers.

Definition 5.3 (Stream task graph) A Stream Task Graph STG is a tuple
(T,S,P,C, optype, dist , len), where:

• T is the set of task vertices.

Capture Histogram

Normalize Gradmag Histogram Select

Threshold

256

1048576

1048576

1048576 256

1

1048576

Figure 5.6: Edge detection stream task graph. Regular edges have white arrows,
while bulk edges are black. The streams are annotated with their lengths.

92 Chapter 5. Implementing stream programming using RPC

• S is the set of stream vertices.

• P ⊆ T × S is the set of producer edges. A stream cannot have more than
one producer:

(t , s) ∈ P ∧ (u, s) ∈ P =⇒ t = u (5.1)

• C ⊆ S×T is the set of consumer edges.

• optype : T → O is the operation type function. O refers to the application
specification.

• dist : P ∪C → {regular, bulk} is the stream element distribution function,
equivalent to the dist of the corresponding operation argument.

• len : S → R is the stream length function, equivalent to the len of the
operation argument producing the stream.

5.3.4 Task and stream mapping

A mapping is now an assignment of the tasks in the stream task graph to the
targets in the architecture model. If the targets are not directly connected, a
shortest path is found through the intermediates, implying transport operations
of the stream’s length. To spare computation time, this path is static except where
it would cause resource over-commitment.

Definition 5.4 (Mapping) A task mapping m : T→ A is a function assigning
a target a ∈ A to each task t ∈ T. A task mapping implies a stream mapping
ms : S → 2A, of streams to the targets they need to hit. The stream mapping is
associated with a path function mp : S→ 2A×A detailing the spanning tree needed
to communicate the stream across all targets in ms(s). Here, 2A = {A′|A′ ⊆ A}
is the powerset of A.

The mapping transforms the stream task graph into a dependent task interaction
graph (DTIG), which is used by the evaluator.

Definition 5.5 (Dependent Task Interaction Graph) A DTIG is a directed
acyclic graph representing a mapped stream task graph. It is a tuple
(V,E,A,m,w , d), where:

• V is a set of task vertices, which include stream transport operations.

• E ⊆ V×V is a set of communication edges. (V,E) form a directed acyclic
graph.

• A is a set of targets, the same as in the architecture model.

• m : V→ A is the task mapping function.

• w : V → R is the task cost function, specifying the required computation
time of task v on target m(t).

5.4 Performance prediction 93

• d : E→ {interacting, dependent} is the stream element distribution function,
specifying whether an edge is interacting (connecting operation arguments
which are both regular) or dependent (if either the source or destination
operation argument is bulk).

The DTIG combines a task dependency graph (TDG) and a task interaction
graph (TIG) by having the d function specify which edges are dependency edges
and which are interaction edges. Dependencies arise when an operation needs
to finish before it produces its data, as opposed to the continuous generation of
stream elements in a regular stream connection.

The DTIG is constructed as in algorithm 5.2. It starts by creating a DTIG
task vertex for every STG vertex, with cost as in the relevant operation type in the
application specification. Next, for each stream, it creates a DTIG task vertex for
every processor it passes through. These are transport operations, and are assigned
a computation time depending on the stream length. It then creates the edges from
the producing tasks to the transport operations and from the transport operations
to the consuming tasks. Finally, it interconnects the transport operations based
on the stream’s spanning tree. If a stream passes through only one target, no
transport operation is created. Local communication is therefore modeled as being
infinitely fast.

Figure 5.7 shows how the stream task graph of figure 5.6 can be mapped onto
an architecture to create a DTIG.

5.4 Performance prediction

A cost model is a set of assumptions about how a DTIG executes. Based on these
assumptions, the evaluator predicts the expected completion time, or makespan.

Definition 5.6 (Makespan) The makespan ms : DTIG → R of a Dependent
Task Interaction Graph DTIG is the time it takes for all tasks v ∈ V to finish
executing.

Because the DTIG is constructed as a mapping of a stream task graph onto an
architecture model under a certain application specification, its makespan is the
expected completion time of the application itself.

We will describe two cost models: independent and dependent. Both have the
following common assumptions:

Assumption 5.7 (Overhead-free task switching) Executing multiple tasks
concurrently on a target a does not incur any overhead. That is, the makespan of
two independent tasks v and v ′ on a is equal to the sum of the execution times of
v and v ′, regardless of their interleaving.

Corollary 5.8 (Continuity of concurrent processes) As tasks can be
switched arbitrarily fast without overhead, we can model a task v ∈ V allocated
a fraction fm(v)(v) = ǫ of CPU time on m(v) as a continuously running process
taking w(v)/ǫ seconds to complete.

These assumptions make it possible to reason about task execution times in a
continuous way, without requiring us to predict the exact interleaving of tasks.

94 Chapter 5. Implementing stream programming using RPC

Algorithm 5.2 Algorithm to generate the DTIG from a stream task graph
Create a vertex for each task

V← ∅
∀t ∈ T

v ← new task
V← V ∪ v
m(v) ≡ m(t)
w(v) ≡ time(optype(t),m(t))
taskmap(t) ≡ v

Create edges

∀t ∈ T
Loop over streams produced by this task

∀p = (t, s) ∈ P
Check if we need to set up remote communication

if ‖ms(s)‖ > 1
Create a vertex for each target the stream passes through

∀a ∈ ms(s)
v ← new task
V← V ∪ v
m(v) ≡ a
w(v) ≡ len(s) · time(transport, a)
targetmap(a) ≡ v

Create edge from producer task to producer target

if m(t) = a
e← (taskmap(t), v)
E ← E ∪ e
d(e) ≡ dist(p)

Create edges from consumer target to consumer tasks

∀c = (s, t′) ∈ C
if m(t′) = a

e← (v, taskmap(t′))
E ← E ∪ e
d(e) ≡ dist(c)

Create transport edges

∀(a, a′) ∈ mp(s)
e← (targetmap(a), targetmap(a′))
E ← E ∪ e
d(e) ≡ interacting

else
Create edges from producer task to consumer tasks

∀c = (s, t′) ∈ C
e← (taskmap(t), taskmap(t′))
E ← E ∪ e

d(e) ≡
{

interacting if dist(p) = regular ∧ dist(c) = regular
dependent otherwise

5.4 Performance prediction 95

Sensor

Sensor −> ProcA Processor A

ProcA −> ProcB

Processor B

Capture

Transport Transport Transport

Transport Transport Transport

Gradmag

Histogram

Select

Threshold

Histogram

Normalize

0

0 1 0

5

1

0 1

1

3

1

1

1

Figure 5.7: DTIG for the mapped edge detection stream task graph. The archi-
tecture consists of a sensor and two processors, in a pipeline. Communication is
modeled to be free on the processors (w(v) = 0 for transport operations on “real”
processors). Open arrows are interacting, while closed arrows are bulk edges.

5.4.1 Performance model for interacting tasks

Our least expensive performance model assumes there are no dependencies; ∀e ∈
E : d = interacting; the DTIG thus collapses into a standard TIG. First, consider
a dtig without any edges at all:

Theorem 5.9 (Makespan of independent tasks) Assume that E = ∅. Then,

ms(DTIG) = max
a∈A

(

∑

{v∈V|m(v)=a}

w(t)

)

. (5.2)

Proof There are no task interactions. Therefore, the processors do not have to
wait on each other. The total completion time is then the completion time of the
processor with the largest amount of work assigned to it.

Note that even if we have not modeled task interactions, we have modeled the
communication explicitly as tasks, by virtue of the construction of the DTIG. In
this model, the makespan of the DTIG in figure 5.7 is 8 (from processor B).

In order to model the execution time in light of task interactions, we need to
model the task interactions themselves. We assume interacting tasks to run in
lock-step.

Assumption 5.10 (Lock-step execution) Interacting tasks run in lock-step.
That is, for two interacting tasks v , v ′ ∈ V running on target a ∈ A, v ′’s CPU

96 Chapter 5. Implementing stream programming using RPC

time fraction is

fa(v ′) =
w(v ′)

w(v)
fa(v). (5.3)

In a streaming environment, with different tasks operating on different parts of
a long stream, this is a reasonable assumption because the communication latency
is amortized over the entire stream.

Theorem 5.11 (Makespan of interacting tasks) The makespan of a set of
interacting tasks is the same as the makespan of a set of independent tasks.

Proof There will be one processor with the highest total load:

lmax = max
a∈A

(

∑

{v∈V|m(v)=a}

w(t)

)

. (5.4)

By assumption 5.10, ∀v ∈ V : fm(v)(v) = sv · w(v) for some constant sv . As the
maximum load of a processor is one, and there are no other restrictions on the
execution speed, sv must be 1/lmax : fm(v)(v) = w(v)/lmax. By corollary 5.8, we
can model these processes as running at the same time. Therefore, all tasks will
finish after lmax seconds.

Under an optimal schedule, any TIG has the same makespan as a connected TIG.
Even though assumption 5.10 does not apply for tasks that do not interact, we
can still assume a schedule which satisfies it.

5.4.2 Performance model for dependent tasks

To model dependencies, we use assumption 5.10 to generate a hypertask dependency
graph (HDG), with vertices (hypertasks) that require work on multiple targets. It
is created from the DTIG by grouping sets of interacting tasks into hypertasks,
eliminating the interaction edges. As such, only dependency edges remain between
the hypertasks.

Definition 5.12 (Hypertask Dependency Graph) An HDG is represented as
a tuple (H,A,WORK ,DEP), where

• H a set of hypertasks.

• A a set of targets.

• WORK is a ‖H‖ × ‖A‖ matrix. workh,a is the amount of work required by
hypertask h on target a.

• DEP is a ‖H‖ × ‖H‖ matrix. deph,h′ is 1 iff h is dependent on h ′. DEP
encodes a directed acyclic graph.

The hypertasks are generated from the DTIG by finding groups of tasks that
are connected only by interaction edges. We first annotate the DTIG vertices
with the maximum distance (in dependencies) from an upstream node; if two

5.4 Performance prediction 97

tasks then have the same distance, we can be sure that there is no dependency
edge in any path between them. Next, we label each connected set of tasks that
have the same distance with the same label, thereby finding maximal interacting
subsets. All the work of the tasks in each subset is then added to get the work for
the hypertasks; as the tasks are not necessarily mapped to the same processors,
the hypertasks may therefore require work on more than one processor. Finally,
any dependencies between tasks in different subsets are promoted to dependencies
between the hypertasks themselves. See algorithm 5.3.

Algorithm 5.3 Algorithm to generate a HDG from a DTIG. S↔ means the
commutative closure of S: (a, b) ∈ S =⇒ (b, a) ∈ S

Find distances

for i← 1 . . . ‖V‖
v ← topologicalorder(V, i)
distance(v)← max

(v′,v)∈E
distance(v′) + ld

where ld =

{

1 if d(e) = dependent
0 otherwise

Assign labels

for i← 1 . . . ‖V‖
v ← topologicalorder(V, i)

if ¬label(v)
l← new label
label(v) ≡ l

Recursively propagate label over unlabeled vertices with

the same distance

recurse(x;∀(v, v′) ∈ E↔

if ¬label(v′) ∧ distance(v) = distance(v′)
label(v) ≡ l
x (v′))

WORK = 0
DEP = 0

Add work of all tasks with the same label

∀v ∈ V
worklabel(v),m(v) ← worklabel(v),m(v) + w(v)

Promote dependencies between tasks to dependencies between

hypertasks

∀(v, v′) ∈ E
if d(e) = dependent

deplabel(v ′),label(v) ← 1

98 Chapter 5. Implementing stream programming using RPC

Figure 5.8 shows the resulting WORK and DEP matrices for the edge detection
DTIG of figure 5.7. All tasks within each dotted region of that figure are grouped
together into a hypertask. To find the makespan of an HDG, we do not assume an
optimal schedule, instead modeling a local preemptive scheduler. We can model
the local scheduler for independent DTIG tasks by requiring all tasks on a target
to have the same CPU time fraction:

∀a ∈ A, v ∈ V : fa(v) =
1

‖{v ′ ∈ V|m(v ′) = a}‖ . (5.5)

However, HDG hypertasks interact, and may be limited because of the execution
time allocated to them on another target (since they must run in lock-step). Define
the speed sh of a hypertask h such that

∀a ∈ A : fa(h) = sh · workh,a . (5.6)

One way to satisfy equation 5.5 is by setting sh to the minimum of all restrictions:

sh = min
{a∈A|workh,a>0}

1

‖{h ′ ∈ H|workh′,a > 0}‖ · workh,a

. (5.7)

However, this is a very pessimistic assumption, as a local scheduler will not reserve
a specific time slice for each process, but rather allow another process to continue
if one process does not use its entire time slice. Suppose s is an initial speed vector
for the hypertasks. Algorithm 5.4 will restrict s for a local scheduler on a ∈ A by
distributing the unused time of low-speed tasks over the more demanding ones.

By consecutively applying algorithm 5.4 to all targets, s is reduced to a feasible
speed vector, where no processor has a load higher than 1. It is still an underes-
timation, though, since the limiting due to one processor may have an impact on
the possible speeds of other processes on other processors.

We have applied a heuristic of reinitializing the speeds of all processes that
are not running on a maximally loaded processor, and reiterating. This procedure
converges because there is always at least one maximally loaded processor due to
algorithm 5.4. The basis of the heuristic is that the speeds of processes running
on a maximally loaded processor cannot be increased, while others may still be
optimized.

WORK =

S
en

so
r

S
→

A

P
ro

cA

A
→

B

P
ro

cB

0

1 1 1

1 3 1 6
2 1
3 1

DEP =

0 1 2 3
0

1 1
2 1
3 1

Figure 5.8: HDG for the edge detection DTIG of figure 5.7

5.5 Buffer management 99

Algorithm 5.4 Distributing the CPU time of a target a ∈ A over the tasks
running on it.
Find tasks running on this target

Ha ← {h ∈ H|workh,a > 0 ∧ 6 ∃h ′ deph,h′ = 1}

store = 1
members = ‖Ha‖

Sort tasks ascending by their maximally usable fraction on this

target

for i← 1 . . . ‖Ha‖
h ← sortascending(Ha , fa)

Calculate the actual fraction

Note that setting fa(h) implies an sh because of eq. 5.6

fa(h)← min(fa(h), store
members

)

Update for next task

store ← store − fa(h)
members ← members − 1

After the hypertasks’ speeds have been determined, the model advances the
time to the point when the first hypertask finishes, that is

∆t = min
h∈H

1

sh

. (5.8)

The work of all hypertasks is decreased by fa(h)∆t, and dependencies of completed
hypertasks are removed. The algorithm resumes with the new workloads and
available tasks, and iterates until all tasks are completed. The predicted execution
time is then the total amount of time that was advanced.

5.5 Buffer management

The stream task graph closely resembles an acyclic Kahn process network (KPN,
[76]). In the Kahn model of computation, a number of processes are connected via
unbounded FIFO channels. Reading from such a channel is blocking, while writing
is non-blocking. A process may not test for the availability of input on a certain
channel, and must be deterministic. These conditions ensure that the output of
the network is independent of the schedule.

For practical implementation, we restrict this model to bounded FIFOs, and
blocking writes. If the buffer sizes are not chosen correctly, this may introduce
artificial deadlock. The most important task of the dispatcher is therefore to
determine the sizes of the buffers that the remote functions use to communicate.

Another source of deadlock, unrelated to the KPN model, is the inability to
schedule a certain operation due to resource conflicts. In this case we need to exe-
cute the partial process network that was constructed before the resource conflict

100 Chapter 5. Implementing stream programming using RPC

occurred, and wait until an operation completes and the resources are freed. This
makes it necessary to buffer the outputs of the partial process network.

5.5.1 Buffers for data flow

An upper bound on the buffer space needed for deadlock-free execution is the
stream size found during trace generation, because that means no stream write
can block the program. This is impracticable as it requires too much memory.

In the Kahn model of computation, the lower bound on the buffer size is in
general undecidable. We therefore use a technique by Parks [101], where the buffer
sizes are determined dynamically. Since it is too expensive to do this at run-time,
the maximum size of each buffer is recorded during a simulation run, and stored
for use at run-time.

The technique works as follows:

1. Set the buffer sizes to some initial value

2. Run the program until deadlock occurs

3. Increase the size of the smallest full buffer

4. Continue with step 2.

This guarantees that the KPN runs in bounded memory if the original un-
bounded KPN could run in bounded memory. This condition holds if the skeletons
comply with the application specification as described in section 5.3.2.

5.5.2 Buffer spilling

It may be impossible to schedule an STG because of a resource conflict. A typical
case is trying to run two capture operations at the same time. In the background
subtraction program 5.4, a background image bkg is subtracted from a foreground
img and displayed. Then img becomes the background, and this is looped in an
infinite cycle.

Program 5.4 Background subtraction code highlighting a sensor resource
conflict.

capture(bkg);

while (1)
{

capture(img);

subtract(bkg, img, subt);
display(subt);

bkg = img ;
}

5.6 Results 101

If the architecture model contains one camera target providing one sensor re-
source, and the capture operation requires such a sensor resource, the second
capture cannot be mapped. Further execution of the stream program must wait
until the first capture operation completes and the sensor resource is freed. How-
ever, during this time the bkg stream will not be read, causing the buffer to be
expanded to frame size.

As such frame buffers are often too large for resource-constrained embedded
processors, they are spilled to a processor or dedicated memory with more space.
All unconnected output streams are spilled in this way if an STG cannot be
mapped.

5.6 Results

To evaluate our approach, we present results on the overhead associated with a
locally scheduled, preemptive run-time environment, as well as the accuracy of our
performance prediction and the performance of the resulting mappings. We will
use four applications:

• embarrass, a synthetic embarrassingly parallel application with high arith-
metic intensity (high computation-to-communication ratio) and few depen-
dencies. Effectively a number of independent tasks.

• stereo, a correlation-based dense stereo vision algorithm using block match-
ing, with 16 disparity levels and a 5x5 window as block size [127].

• ball, a Hough-based ball detection application that uses edge orientations to
optimize the Hough transform [32].

• SIFT, implementing the keypoint detection part of the Scale Invariant Fea-
ture Transform described in [89]. It is based on detecting extrema in a
difference-of-Gaussian scale-space.

5.6.1 Preemptive backend

The main difference between our streaming run-time environment and a normal
image processing application is that the various operations are executed concur-
rently using a local scheduler. This increases task parallelism and reduces memory
usage because the operations are pipelined. However, it introduces buffer interac-
tion and context switching overheads.

In figure 5.9, this overhead is plotted relative to the frame-by-frame process-
ing time. The overhead is larger for applications which deal with larger or more
streams (such as the stereo and SIFT algorithms). The ball following applica-
tion even experiences a speedup, because the pipelined processing increases cache
locality.

Figure 5.10 shows the speedup obtained from task parallel execution on a 4-
way symmetric multiprocessor using the preemptive backend. This indicates the
maximum possible speedup which can be expected using our run-time system, since
distributed-memory execution will only introduce more overhead. The speedup is

102 Chapter 5. Implementing stream programming using RPC

embarrass stereo ball SIFT
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Preemptive overhead

Application

O
ve

rh
ea

d
re

la
tiv

e
to

 fr
am

e
pr

oc
es

si
ng

Figure 5.9: Overhead relative to sequential frame-by-frame processing on an AMD
Opteron 250

1 2 3 4
1

1.5

2

2.5

3

3.5

4
Shared memory performance

Number of processors

S
pe

ed
up

Ideal
embarrass
SIFT
stereo
ball

Figure 5.10: Symmetric multiprocessing speedups, indicating the inherent paral-
lelism of our four applications. The results were gathered on a dual AMD Opteron
280.

5.6 Results 103

in general quite low, indicating that in these applications, task parallelism should
not be the main source of parallelism.

5.6.2 Performance prediction

As the mapping is based around a prediction of the resulting performance of a
particular mapping, it is important that this prediction is accurate. We compare
our method with three cases in which a particular aspect of our model is removed:

• No task dependency, or TIG-only, considering all tasks to be simultaneously
executable. Often used for tightly coupled tasks such as in data parallelism.
CREMA [115] is an example mapping algorithm for this domain.

• No task interaction, or TDG-only. Many scheduling algorithms, such as
HEFT [124], ignore task interaction, and assume a task can only execute
when all data has been received.

• No communication cost. This corresponds to scheduling algorithms for
coarse-grained tasks such as PTS [108].

The relative prediction errors are plotted in figure 5.111. It shows that the
most important aspect is modeling communication, the absence of which leads to
large prediction errors of the makespan. For the other aspects, the prediction error
depends on the kind of application: ball (with the Hough transform having a bulk
input) needs task dependency modeling, while stereo does not. DTIG performance
prediction averages around 10% prediction error. Because TIG-only prediction is
much faster, it can be advantageous not to model dependencies in situations where
it achieves the same accuracy.

5.6.3 Mapping

A better performance prediction can be expected to lead to a better mapping.
This is evident in figure 5.12, where unmodeled transports or task interactions
yield significantly worse mappings. Again, the benefit of task dependency mod-
eling depends on the application. Only in the ball application does it provide a
significant improvement.

Note that it is possible that a bad prediction leads to a good mapping. The list
scheduling algorithm described in section 5.3 is a greedy heuristic that is sensitive
to small differences in the prediction. This is why the TIG prediction for the
SIFT application in figure 5.12 yields a better mapping (although insignificantly
so) than the DTIG prediction.

The distributed-memory speedup graph in figure 5.13 shows little difference
with the shared-memory speedup in figure 5.10, indicating that computation and
communication are well-overlapping. Only the ball detection algorithm suffers
from the additional communication times, since its arithmetic intensity is low (it
processes few operations per pixel). Beyond four processors parallelism starts

1Due to a problem with MPI threading, we are using 100Mbit Fast Ethernet interconnect in
all DAS2-TUD measurements.

104 Chapter 5. Implementing stream programming using RPC

embarrass stereo ball SIFT
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Prediction error

Application

R
el

at
iv

e
pr

ed
ic

tio
n

er
ro

r

DTIG
TIG−only
TDG−only
no comm

Figure 5.11: Relative performance prediction error (
tpred−tmeas

tmeas
) as an average

of mappings to 1-8 nodes of DAS2-TUD. A negative value means the prediction
underestimated the makespan.

embarrass stereo ball SIFT
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping quality

Application

R
el

at
iv

e
pe

rf
or

m
an

ce

DTIG
TIG−only
TDG−only
no comm

Figure 5.12: Relative performance difference as an average of mappings to 1-8
nodes of DAS2-TUD. The performance is relative to DTIG mapping.

5.7 Discussion 105

to tail off, mainly because the applications do not possess vast amounts of task
parallelism. Data parallelism, as exploited in chapter 4, will have to provide the
best part of the speedup.

5.7 Discussion

We have presented a programming method and run-time environment for stream
programming using future-based asynchronous RPC. Futures allow us to impera-
tively construct a task graph, and making dynamic stream reconfiguration auto-
matic. Task parallelism is continued over such reconfigurations by running those
decisions asynchronously as well. The task graph itself resembles a bounded FIFO
Kahn process network, which can be mapped to arbitrary heterogeneous architec-
tures with resource constraints.

The FIFO interactions introduce an overhead of around 10%, depending on
the application. The achieved task parallel speedup is adequate for around three
to six processors for typical applications, which is approximately the amount of
processors we are aiming for in embedded systems. Larger speedups must be
achieved using data parallelism, with the task parallel environment as a support
for heterogeneous systems.

Futures-based RPC combined with algorithmic skeletons has previously been
applied to grid computing, in [6]. However, they do not model communications and
are as such limited to coarse-grained tasks. Combined TIG and TDG modeling has
also previously been studied [110]. They report similar speedups, although their
communication model does not include contention. This limits the architectures
to which their approach is applicable.

As opposed to other work [108, 119], we do not consider the trade-off between
data and task parallel processing while mapping; data parallelism is only exploited
within a single target of the architecture model. The main reason is to avoid
the data reorganization overhead and additional mapping complexity. We believe
that a static trade-off (such as by the use of data parallel processors or static
aggregations of sequential processors) provides sufficient performance. If desired,
the trade-off could be made part of the design space exploration, described in the
next chapter.

106 Chapter 5. Implementing stream programming using RPC

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
Distributed memory performance

Number of processors

S
pe

ed
up

Ideal
embarrass
SIFT
stereo
ball

Figure 5.13: Distributed-memory speedups, as measured in DAS2-TUD.

Chapter 6

Exploring the

SmartCam design space

Design space exploration [61] is the guided iteration over an architectural design
space in order to optimize an objective function such as performance, power con-
sumption or area. If this objective function is measured against a specific appli-
cation or application domain, the result is an application or domain-specific ar-
chitecture. Usually, multiple objective functions are optimized at the same time,
resulting in a surface of optimal tradeoffs, called a Pareto front. The designer can
then choose one of those tradeoff points as the final architecture.

In the previous chapters we have detailed which individual architectural com-
ponents are suitable for embedded image processing, and how these can be pro-
grammed in an architecture-independent manner. Apart from ease of program-
ming, the main reason we require an architecture-independent program is that
it makes it possible to automatically change the architecture without requiring a
rewrite. In turn, this enables a fully automatic design space exploration without
any programmer intervention.

Figure 6.1 illustrates the basic flow of our design space exploration framework.
An application is compiled using the tools described in chapters 4 and 5. This
compilation uses an architecture model in order to instantiate the correct skeletons.
The result is an executable (or set of executables) which is simulated to provide
measurements such as performance and energy usage. These measurements are
then used to instantiate an architecture template to a new architecture model,
according to some search heuristic.

The architecture template is used to limit the design space, both because of
efficiency concerns and because we have skeletons only for a specific set of pro-
cessors. The template is described in section 6.1, while an environment for fast
simulations is presented in sections 6.2 and 6.3. The instantiation heuristic itself
is described in section 6.4. Finally, sections 6.5 and 6.6 present results and discuss
them.

108 Chapter 6. Exploring the SmartCam design space

Application Compilation Executable(s) Simulation Measurements

Architecture

Instantiation
Architectural

template

Figure 6.1: Flow of the design space exploration. The architecture model (used
for both compilation and simulation) is iteratively adjusted based on the measure-
ments.

6.1 Architecture template

An architecture template puts constraints on the legal architectures that the design
space exploration may visit. An unconstrained exploration would be too expensive
in terms of the time taken to reach a viable solution. Furthermore, unconstrained
exploration of a processor’s instruction set architecture requires a flexible retar-
getable compiler, which we do not have. The architecture template therefore
constrains which processor architectures may be chosen (in a few variations), and
how they may be interconnected. We have chosen architectures which make sense
from an embedded image processing point of view (see section 2.2).

6.1.1 Processor types

As described in chapter 2, no single processor type can satisfy all our goals re-
garding performance, power consumption, and cost. We therefore include RISC,
VLIW and SIMD processors in our template. More specifically, as fixed cores we
include the TriMedia TM1100 5-issue VLIW and MIPS 24Kc RISC. We also in-
clude the XeTaL SIMD processor, with 160 up to 640 processing elements (scaled
from 320). The processors’ properties are summarized in table 6.1.

Processor Frequency Area Power
TriMedia 166 MHz 32 mm2 1.1 W
MIPS 24Kc 240 MHz 7 mm2 320 mW
XeTaL 24 MHz 18 mm2 50-200 mW

Table 6.1: Properties of the processors in our architecture template scaled to
CMOS18.

6.1 Architecture template 109

6.1.2 Technology scaling

Not all the simulators we use and figures reported in literature refer to the same
technology node. We have scaled all figures of area, power consumption, energy
and frequency to CMOS18 using constant electric field scaling [19], meaning that
the supply voltage is scaled as well. If L is the characteristic length of the tech-
nology node in which the figures were reported, then

α =
L

0.18 · 10−6
(6.1)

is the scaling factor. The die area scales with α2, as the size is shrunk in both
width and height. The supply voltage V scales with α, as does the capacity C.
This means the maximum frequency f scales with α−1. Furthermore, the scaled
power P ′ and energy E′ can be calculated from the original power P and energy
E as follows:

P ∝ CV 2f ⇒ P ′ = Pαα2α−1 = Pα2 and (6.2)

E ∝ CV 2 ⇒ E′ = Eαα2 = Eα3. (6.3)

6.1.3 Frequency scaling

We allow frequency scaling of the processors in our template, to achieve a more
fine-grained objective space. Assuming we always use the minimum supply voltage
required for a certain frequency, this has an effect on power consumption. Note
that this is different from the technology scaling described in section 6.1.2, as we
are changing the supply voltage while keeping the technology node constant.

We use the alpha power model from [112] (equation 6.4); for a desired scaled
frequency f , we first calculate the scaled minimum supply voltage V , and then
use this to find the scaled energy using equation 6.5. This assumes that dynamic
power is dominant.

f ∝ (V − Vt)
α

V
(6.4)

E ∝ V 2 (6.5)

We use values which are nominal for CMOS18: V = 1.8, Vt = 0.5, α = 1.3 ([59]).
Frequency scaling was limited between 0.5 and 1.5 times the actual speed of the
benchmarked processor, to avoid too many unmodeled effects. In particular, noise
limits downscaling, while power density poses practical limits on scaling up.

6.1.4 Interconnect network

The SmartCam template considers three different interconnects: bus, ring, and
fully connected. The entire interconnect has the same bandwidth, that is, all
components are attached using the same type of ports. The area of the interconnect
is modeled using MOSIS SCMOS layout rules for minimum-width METAL2 wires
in CMOS18, at 100 MHz. We limit the bandwidth to either 100Mbps, 1Gbps or
10Gbps. The width of the interconnect is then

110 Chapter 6. Exploring the SmartCam design space

Nwires =

⌈

bandwidth

100 · 106

⌉

. (6.6)

The ring interconnect is segmented such that different segments may be in use
at the same time. A processor can read from only one segment, and can only write
to the next segment. As the size of the segment registers is insignificant compared
to the wires themselves, we do not model them.

Full interconnect means that all processors may communicate simultaneously,
but the total incoming or outgoing bandwidth of a processor may not exceed the
network bandwidth. This is modeled as a full crossbar. Again, the multiplexers
are not modeled, as their area is negligible in comparison to the wiring. If Ac is
the area of a component c ∈ C (assumed to be square), then the wiring areas of
the interconnect are calculated as follows:

Aw = 6λ ·
C
∑

c

(

√

Ac

)

(6.7)

Abus = Aring = Nwires ·Aw (6.8)

Afc = Nwires ·Aw · ‖C‖, (6.9)

where Aw is the area of a single wire traveling along all components (λ is related
to the minimum feature size, and equals 90 nm for CMOS18). Assuming that the
power dissipation from charging the wire capacitances Cw is dominant, the wire
energy per bit transferred Ew is calculated as [137]

Ew =
1

2
CwV 2 (50% duty cycle) (6.10)

Cw = 0.74 fF/µm2 (0.2 fF/µm at a width of 3λ), (6.11)

such that

Ebus = Efcline = Nwires · 3λ ·
C
∑

c

(

√

Ac

)

· Ew (6.12)

Eringsegment,c = Nwires · 3λ ·
√

Ac · Ew. (6.13)

Efcline is the energy needed to use a single component-to-component path in the
crossbar, and Eringsegment,c is the energy needed to use the ring segment that
travels along component c.

6.1.5 Mapper

The architecture template also contains possible settings of the mapper. Instead
of using the plain performance prediction described in section 5.4, the mapper can
optimize for other variables. We use a weighted sum of the predicted makespan,
energy, average processor utilization and average squared processor utilization.
The last two are heuristics to promote locality and distribution respectively, and
support a balanced mapping in the light of future, currently unknown tasks. Each
weight is discretized to one of 0, 1, 2, 3, or 4.

6.2 Benchmarking 111

6.2 Benchmarking

Figure 6.1 shows a multiprocessor executable being simulated on a multiprocessor
simulator. While this is a viable and accurate approach, the effort required to
integrate different processor simulators is prohibitive, as is the slow speed that
may be expected from such a setup. Instead of this, we use processor simulators
only to benchmark each operation in isolation, and combine them in a high-level
multiprocessor simulation.

Figure 6.2 shows the details of our simulation environment. We simulate a
single trace of an application. As the functional behavior is independent of the
schedule (see section 5.5), we can create this trace on a normal workstation, and
save all intermediate results1. These intermediate results are used to simulate each
operation individually for each processor in an architecture. Such simulations can
then be cached if the processor’s microarchitecture does not change during design
space exploration.

Finally, the benchmarked values are used to simulate the trace using a multipro-
cessor discrete event simulator, greatly speeding up the process. This is described
in section 6.3.

6.2.1 Trace generation

An application trace is generated by executing the stream program on a work-
station. Figure 6.3 shows an example trace of the ball following application that
was used for evaluating the run-time system. The trace records the order of all
operations, as well as their interconnections. These are used during application
simulation, because the operation and stream identifiers are not deterministically
generated (although the output remains deterministic).

The main reason for them not being fully deterministic are the encapsulated
local functions described in section 5.1.2. Since they create new threads of ex-

1This means we ignore the effect a different architecture may have on the accuracy of the
results.

Application Compile
Coprocessor

Programs

Stream

Program
Simulate (1) Trace

Architecture

Description

Simulate (2) Benchmarks Simulate (3)
Performance

Energy

Figure 6.2: Simulation flow for the design space exploration. Simulation (1) runs
on a workstation to generate a trace. (2) benchmarks each operation on each
processor independently, using processor simulators. (3) uses these benchmarks
and the trace to simulate the total multiprocessor architecture without actually
executing the operations.

112 Chapter 6. Exploring the SmartCam design space

SOBELX op on line 46 SOBELY op on line 48

MAGNITUDE op on line 50DIRECTION op on line 52

CAPTURE op on line 40

stream0.scs
1048576 bytes

stream1.scs
4194304 bytes

stream2.scs
4194304 bytes

MASK op on line 54

stream3.scs
4194304 bytes

stream4.scs
4194304 bytes

HOUGH op on line 62

stream5.scs
1048576 bytes

MAX op on line 64

stream6.scs
1048576 bytes

128

36 453879

Figure 6.3: Trace for a ball following application. The round boxes denote opera-
tions (and the line of the program on which they occur). The edges are streams,
annotated with the file in which they were saved and their lengths. The un-boxed
numbers are non-stream arguments.

6.3 Application simulation 113

ecution, the order in which they call skeleton operations is arbitrary. However,
the single-assignment semantics of futures (see section 5.2.2) guarantee that the
stream interconnections are always the same.

The trace also captures the contents of all streams, and the values of all non-
stream skeleton arguments; these are necessary to benchmark the individual op-
erations. The latter are also needed to reconstruct the same dynamic branch
decisions in the simulated application as in the original run. Note that this does
not cover dynamic branch decisions originating from indeterministic behavior of
the main application program itself, for example because it accesses additional
operating system calls, or contains memory access errors.

6.2.2 Operation simulation

As mentioned before, all operations are benchmarked on each processor indepen-
dently, assuming all data is available and the output buffers are large enough to
contain the entire output. While this process is automated on workstations, we
have not currently implemented the interfaces to the various processor simula-
tors needed for automated benchmarking of the embedded processors. These are
therefore conducted only semi-automatically.

The benchmarks also provide the amount of energy taken for the execution of
an operation. This is assumed to be linear, so that all energies added up (including
those of stream transfers over the interconnect) give the total energy taken for the
entire application.

6.2.3 Cache effects

On processors that use cache memory, such as RISCs and VLIWs, the method
of simulating individual operations and later combining the benchmarks is prob-
lematic. First, while the time it takes to switch contexts between operations is
constant in the absence of caches, cache trashing makes this indeterministic, but
always larger than the measured time. Second, the benchmarks are taken with a
cold cache, while pipelining operations in the correct order results in a hot cache,
improving performance.

We will not model these effects, assuming they are part of the general measure-
ment uncertainty. In section 6.5.1 we present results on the achieved accuracy.

6.3 Application simulation

The final application simulation is performed by a high-level discrete event simu-
lator. The simulator works by intercepting all communication calls made by the
stream program’s run-time system. Recalling figure 5.3 on page 86, it replaces the
communication layer, leaving all other systems intact. The simulator can therefore
simulate any application that may be expressed using the run-time system.

The simulator matches each dispatched operation to the trace, using its type
and input values as keys. As mentioned before, streams are not matched by
stream identifier, but only by connection: the stream should be generated by the
correct operation. Once the correct operation has been located in the trace, the

114 Chapter 6. Exploring the SmartCam design space

benchmarks for that operation are consulted and used to determine the appropri-
ate delays and power dissipation. After the operation completes, its outputs are
returned to the gatherer.

The simulator only knows the total time it takes for an operation to process an
image, and not how the processing time is distributed over the data that is read or
generated. As in the model used by the mapper to predict the performance (see
section 5.3), we distinguish between regular and bulk streams. A bulk stream is
read in its entirety before the processing starts (or written out only after processing
ends) while a regular stream is read during processing.

The main difference, then, between the performance prediction and the perfor-
mance simulation is that the simulation takes context switching into account and
works on an entire application, while the performance model assumes infinitesimal
time slices and only works on partial process networks without dynamic branches.

6.3.1 Network model

The simulator uses an architecture model for simulating the multiprocessor system;
the same model that is used by the mapper to predict the performance. The
processors in this model are defined by the architecture template. Although some
statistical information is known about these targets, such as chip area, the time it
takes to execute different operations, etc, they are essentially black boxes.

Not so for the network model. There is no one “ring” network, because it is
different depending on the number of processors which are attached to it. The
network model is generated from the architecture template by creating a series of
connected targets which together display the appropriate behavior.

Figure 6.4 shows instantiations of the three network models for four components
(processors). For the ring network in figure 6.4(b), a ring node is generated for
each processor. The processor writes to this node, and reads from the previous
node. The nodes are connected as well, in a unidirectional ring; each node has a
certain bandwidth, and induces a delay. Longer transports therefore have a higher
latency.

The fully connected case in figure 6.4(c) models a crossbar with multiplexers on
the input. For each component an input and output node is created. All outputs
are then connected to all inputs. Note that the bandwidth of the input nodes
is the same as the bandwidth of the output nodes; it is not possible to receive
multiple maximum-bandwidth streams.

6.3.2 Discrete event simulation

We have created a light-weight discrete event simulator to model a multiprocessor
network. All targets in the network are modeled as processors with cooperatively
multitasking round-robin schedulers. Network nodes are processors which merely
execute the “copy” operation. As such, bandwidth sharing is simulated by multi-
tasking.

At the most basic level, all the simulator does is to maintain a global event
queue, and provide a means to wait for and signal events. An event contains the
time at which it is to occur, and the process it must run. Each process has its own

6.3 Application simulation 115

Bus

Component Component Component Component

(a) Bus interconnect

Ring node Ring node Ring node Ring node

Component Component Component Component

(b) Ring interconnect

Input port Input port Input port Input port

O

O

O

O

Component Component Component Component

(c) Fully connected

Figure 6.4: Interconnection types

116 Chapter 6. Exploring the SmartCam design space

stack, and an event switches to this stack, resuming the process where it left off.
There is also a delay function which adds an event to wake the process up after
a certain amount of cycles.

However, this does not automatically model the contention of processes over
the cycles of a processor, where only one process can run at the same time. Such
software processes are called threads, and they are registered to a device which
implements the scheduler. In this case, an event resumes the device instead of
the process, allowing it to make scheduling decisions. Threads introduce a differ-
ence between delay, which occupies the processor, and sleep, which does not.
Figure 6.5 shows a sequence diagram for a thread calling the delay function.

By creating more than one device, we can model multiple processors. They are
synchronized because they share the same global event queue. This also means that
communication is easily modeled by writing into another device’s receive-queue
and signalling an event which will wake up its reception thread. The simulator
replaces the communications layer of our run-time system and relates the messages
to a number of such devices.

By replacing only the communications layer, we can be sure that the rest of
the system behaves exactly the same as in reality. Since the run-time system itself
is multi-threaded, we provide an implementation of the pthread library based on
this simulator. This implementation creates threads on the device of the currently
running process, and also redirects the creation of and interaction with locking
constructs such as mutexes and conditions to this device. The device then inserts
the appropriate events into the global event queue.

Note that this is not a processor simulator. Time does not advance unless a
process explicitly delays or sleeps for a certain amount of cycles. This means that
while any program making use of the pthread library may be simulated, we do
not get any valuable information about the execution time unless it periodically
delays a realistic amount of time in order to model execution. In our case, these
execution times are provided by the benchmarking step. Energy consumption is
simulated using the dissipate function, which is typically called after each delay.

6.4 Pareto optimization

Using the area and energy model from the architecture template, and the per-
formance figures obtained by benchmarking and high-level simulation, we wish to
find the surface of optimal tradeoffs, called the Pareto front. A tradeoff point is
called Pareto-optimal if there are no other design points which are better in at least
one objective function, while not being worse in any other, i.e. it is not dominated.

Definition 6.1 (Pareto front) Consider an objective space Y (Y ⊆ RM) which
is to be minimized. A point y ∈ Y dominates a point y′ ∈ Y iff ∀i : yi ≤ y′

i ∧ ∃i :
yi < y′

i. The Pareto-optimal set, or Pareto front of a set of points are those
points which are not dominated by any other points in the set: P (S) = {s|∄s′∈S :
s′ dominates s}.

In general, we can only find P (S) if we know S. However, we do not know
our objective space Y (consisting of measurements), only a decision space X of

6.4 Pareto optimization 117

Event E

Time = 2501

Device = D

Create event

Switch to E.Device context

Insert E in event queue

Thread Device D Event Manager

Create

delay(2)

return

Switch to main context

Process events
for other devices

(E is the earliest event)

Pop E

Time = E.Time

Figure 6.5: Sequence diagram for a waiting thread. The thread calls the delay

function, which causes its device to add a wakeup event to the event queue, and
switch context to the event manager. Once the event fires, the device is resumed,
and delay returns.

118 Chapter 6. Exploring the SmartCam design space

architectures. This decision space is too large to evaluate completely. We therefore
search only a part of it, and calculate the Pareto front of the visited elements.

6.4.1 Single-objective strategies

There are many ways in which to guide a multi-objective search [37]. A common
one is to put constraints on all but one objective function, and optimize the re-
maining function using one of many single objective optimization routines, such
as (iterative) hill climbing, simulated annealing, etc. For example, we might wish
to find the cheapest architecture (in terms of area) which executes the program at
a minimum of 10 frames per second, requiring no more than 100 mJ per frame.

‖y‖ =

{

Inf iff ytime > 0.1s ∨ yenergy > 0.1J

yarea otherwise
(6.14)

The most obvious drawback to this method is how to set the constraints. It
might be possible that with a negligible performance loss, a much cheaper archi-
tecture is possible. Such a desirable solution would not be found because of the
(partly arbitrary) constraint. Figure 6.6(a) shows this situation.

Another approach is to create a one-dimensional objective space by weighing
the vectors:

‖y‖ = wT y. (6.15)

w can then be varied, so that we find multiple optimal tradeoffs. However, this
limits us to a convex Pareto front, since we are only finding a single solution for
each w; figure 6.6(b) illustrates this. Of course, we should remember all visited
points, but this does not diminish the fact that we are still optimizing for only one
solution for each weight.

6.4.2 Multi-objective strategies

In order to find a proper approximation to the complete Pareto front, we need to
use a true multi-objective search strategy. Such a strategy tries to find an accurate
and well-spaced approximation to the real Pareto set. Accurate, because we wish
the set that is found to be as close as possible to the real Pareto front, and well-
spaced because we are interested in a large surface area, not points clustered in
one part of the front. Figure 6.6(c) shows the true Pareto front of a set of (2D)
points.

Population-based search heuristics, such as genetic algorithms [58], are natu-
rally suited to this domain. Since they already keep a population of solutions, we
only need to make sure that this population is moved towards (approximating) a
Pareto front. The Strength Pareto Evolutionary Algorithm 2 (SPEA2, [141]) is
one such algorithm.

SPEA2 is an archiving, elitist genetic algorithm with strength and density-
based fitness assessment. Archiving means that a second population (the archive)
is kept during optimization, which contains the current best individuals. The

6.4 Pareto optimization 119

La
te

nc
y

Area0

(a) Constrained single-
objective. Left of the found
solution is a point which
is slightly slower but much
cheaper.

Area

La
te

nc
y

0

(b) Tradeoff iteration. The
dotted lines show the opti-
mization directions using dif-
ferent weights, resulting in a
convex set.

La
te

nc
y

Area0

(c) True Pareto front,
showing all non-dominated
points. The dotted lines
enclose the dominated area

Figure 6.6: Search strategies. The circles show all elements of the objective space;
filled circles are those points found (in the limit) by a particular strategy.

individuals in this archive are not selected by any stochastic means, but by simple
sorting of the fitness values. The algorithm is elitist because the (stochastic)
mating selection also uses this archive. Mating selection is implemented using
binary deterministic tournament selection, and the selected individuals are varied
using mutation and recombination. This process is summarized in equation 6.16

Pt + Pt

archiving
(sorting)−−−−−→ Pt+1

selection
(tournament)−−−−−−−→M

variation
(mut./rec.)−−−−−−→ Pt+1, (6.16)

where Pt is the population at generation t, while Pt is the corresponding archive
and M is the mating pool.

Fitness assessment needs to accomplish the twin goals of accuracy and spread.
For the first, SPEA2 uses the combined strength of an individual’s dominators,
where the strength of a design point is the number of individuals it dominates.
Thus, if fitness is minimized, non-dominated points are favored, followed by points
whose dominators dominate few points. This is illustrated in figures 6.7(a)-(b).

Spread is ensured by adding an individual’s reciprocal distance to its kth-
nearest neighbor to the fitness value (a smaller distance, e.g. higher density,
therefore leads to a worse fitness). Ties between points with the same dominators’
strength are broken using this measure. This is shown in figure 6.7(c).

We have chosen to use SPEA2 because it performs comparable to other current
approaches in evolutionary multi-objective optimization, and uses the PISA [17]
platform-independent interface for search algorithms that is easily adaptable to
different problem domains.

120 Chapter 6. Exploring the SmartCam design space

La
te

nc
y

Area0

5

5

6 4

1

2

2

0

0

9

0

5
7

1
1

(a) The strength of a point
is the number of points it
dominates, i.e. the number
of points in the upper right-
hand shaded region

La
te

nc
y

Area0

0

0

0

9
19

31

36

47

37
26

37

0

0

0

16

(b) The fitness is the com-
bined strength of a point’s
dominators: the sum of
the values in the lower left
shaded region in figure 6.7(a)

.3

.6
.9

.9

.9

.6 .6

.7

.9

.9

.6

.6

.8
.8

.9

La
te

nc
y

Area0

(c) The density added to the
fitness value is one over the
distance to its kth-nearest
neighbor. Here, k = 1.

Figure 6.7: Fitness assessment by SPEA2, based on dominators’ strength, and
density.

6.5 Results

There are two important aspects that need to be measured in order to verify
our design space exploration. We must know whether our simulation accurately
reflects real-world performance, and whether the solutions found by the search
heuristic accurately approximate the real Pareto front. We also investigate the
results of the exploration using two case studies.

6.5.1 Application simulation

Our discrete event simulation takes a highly abstract view of a multiprocessor sys-
tem and application, which could lead to inaccuracies. We have therefore modeled
the DAS2-TUD cluster described in section 2.2 with various numbers of proces-
sors, and compared the simulated with the measured performance for a number
of applications.

Figure 6.8 shows the results. stereo and SIFT were already used in the previous
chapter, while deptest and AR introduce dynamic branches into the application.
deptest is a simple test consisting of pixel operations and one frame summation,
dependent on which other pixel operations are executed. AR is a position estima-
tion application for augmented reality, based loosely on [26]. It tries to measure the
position of a printed pattern using Canny [34] edge detection and edge following,
or, failing that, natural features using SIFT. The dynamic branch is introduced
by the probability of a pattern being detected or not.

The simulation accuracy is around 10%, depending on the application. It is
slightly better than the accuracy of the DTIG performance prediction presented in
chapter 5, and retains the same accuracy in applications with dynamic branches.
However, discrete event simulation can be a relatively slow process, and for applica-
tions without dynamic branches it is therefore appropriate to use the performance
prediction during design space exploration.

6.5 Results 121

stereo SIFT deptest AR
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Simulation error

Application

R
el

at
iv

e
si

m
ul

at
io

n
er

ro
r

Figure 6.8: Relative simulation error as an average of mappings to 1-8 nodes of
DAS2-TUD. The simulation error is relative to the actual makespan; a negative
value means the simulation underestimated the makespan.

6.5.2 Convergence

We investigated the convergence of the SPEA2 heuristic to the optimal solution by
running the exploration on a simple application and reduced architecture template,
allowing a comparison with a brute-force approach. The application (robocup) is
the front-end vision of a soccer-playing robot, detecting the positions of the ball,
goals and other robots2. The architecture template was reduced by removing the
scaled XeTaL processors and disabling frequency scaling.

Figure 6.9 plots the fraction of space dominated by the population as a function
of the number of generations. This fraction is measured in a (0.1s, 100mm2, 0.1J)
cube (normalized in each dimension), which is the part of the objective space that
we are interested in. Convergence ends around generation 35 with an average
dominated space of only 1% less than the optimal solution attained by a brute-
force search.

6.5.3 Case study: Robocup

Our first case study is the robocup application used to test convergence. This is
a simple application, consisting of few operations and without dynamic branches.
It starts by color conversion and segmentation, and continues with run-length

2Application kindly provided by Harry Broers of the Philips RoboCup team and benchmarked
by Hamed Fatemi of the Eindhoven University of Technology.

122 Chapter 6. Exploring the SmartCam design space

0 5 10 15 20 25 30 35 40 45 50
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66
Convergence

Generation

D
om

in
at

ed
 v

ol
um

e
qu

ot
ie

nt

SPEA2 standard deviation
SPEA2 average
Baseline

Figure 6.9: Convergence of SPEA2 for the robocup application. Archive and pop-
ulation size were 50. Average and standard deviation over 10 runs. The baseline
was generated by brute-force search.

encoding, connected component analysis and blob analysis for the different objects
it has to detect. Only the color conversion and segmentation can be executed on
the XeTaL processor.

In figure 6.10 we have plotted the dominated space of a typical SPEA2 run
(filled space) versus that of the combination of 25 runs (black lines). Each corner
is an architecture that dominates all architectutures in the block behind it. By
plotting the combination of all such blocks, we visualize the dominated space. It
can be seen that the difference between the filled blocks and unfilled ones is fairly
minimal, indicating that one run provides a good approximation to the optimal
Pareto front.

A few interesting points are indicated. Point A is the cheapest architecture
that falls within the limits, consisting of two 24Kc processors connected over a
100Mbps bus. Point B swaps one 24Kc with a 160-PE XeTaL running at half
speed, while point C runs the 24Kc at 1.5 speed. From this progression, we can see
that in this application the amount of data parallelism is such that a half-speed,
160-PE XeTaL can keep up with a 1.5-speed 24Kc.

Points D-F form another progression, and consist of a TriMedia and 160-PE
XeTaL running at 0.5, 1.0 and 1.5 speed respectively, with corresponding in-
creases in performance and power consumption. The TriMedia is faster than the
24Kc, and therefore requires a higher clocked XeTaL to keep the balance. These
architectures also switched to a ring interconnect, for increased bandwidth.

Finally, point G is one of the most expensive architectures found, with two
TriMedias (one at normal speed, one at 1.5 speed) and a 640-PE XeTaL. The
interconnect is also upgraded, to a 1Gbps ring.

6.5 Results 123

0

0.02

0.04

0.06

0.08

0

20

40

60

80

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Processing time (s)

Pareto−dominated volume

Area (mm2)

E
ne

rg
y

(J
)

A

B

C

D

E

F

G

Figure 6.10: Dominated space of one SPEA2 run (100 generations) versus the
combination of 25 runs for the robocup application. The performance measures
are given for the processing of a single frame.

6.5.4 Case study: Augmented Reality

The AR position estimation application consists of two main parts: a Canny edge
detection and SIFT keypoint extraction; whether the SIFT component is executed
depends on the output of the edge detection. The edge detection consists of
measuring the gradient magnitude, binarization using a threshold determined by a
histogram, non-maximum suppression in the gradient direction, and thinning. We
also calculate a “cornerness” value for all edge pixels, using the gradient structure
tensor. In our simulations, we assume a SIFT step is needed every 10 frames, and
therefore simulated 10 frames of processing, with a SIFT step at the first frame.

The resulting Pareto front is plotted in figure 6.11. The fastest architecture
(running at 6.5 FPS) is point A with two TriMedias, two XeTaLs and three
24Kcs (all at 1.5 speed). A more reasonable architecture (point B, 5 FPS) uses
only one TriMedia, one XeTaL, and two 24Kcs. It is also interesting to look at
point C, which differs from A only in the mapper settings by emphasizing energy
consumption over execution time. It is 0.1% slower while consuming 4.6% less
energy.

To verify that we have indeed found an application-specific Pareto front, we
have re-simulated the AR application on the Pareto points found during the
robocup case study. We then compared the fronts by calculating the quotient
of their respective exclusively dominated spaces with respect to reference (10s,
150mm2, 20J) (see figure 6.12 for an explanation and definition). In this compar-
ison, the space exclusively dominated by the real AR search was 3.1 times that of
the robocup front, indicating that the front is indeed application-specific.

124 Chapter 6. Exploring the SmartCam design space

0

1

2

3

4

0

50

100

0

2

4

6

8

10

12

14

16

Processing time (s)

Pareto−dominated volume

Area (mm2)

E
ne

rg
y

(J
)

BC
A

Figure 6.11: Dominated space of the AR application. The performance measures
are given for the processing of ten frames.

La
te

nc
y

Area0

XX+Y

X+Y

|X+Y|−|Y|

Y

R

Figure 6.12: Comparing two Pareto fronts using the quotient of their respective
exclusively dominated subspaces. The gray area is the subspace exclusively dom-
inated by front X, and is calculated as |X + Y | − |Y | (|X| is the fraction of space

dominated by X, with respect to R). The quotient is therefore |X+Y |−|Y |
|X+Y |−|X| .

6.6 Discussion 125

Figure 6.13 shows another output of the simulation, which is the average uti-
lization of each processor. This information can be used to gain insight into the
results and to support the designer in a manual exploration of the design space,
potentially leading to a restructuring of his program. In this case, it indicates
that the network bandwidth is more than sufficient, and that the application is
dominated by operations which cannot execute on the XeTaL SIMD processor.
Although the AR application would be dominated by filtering on a sequential
processor, the speed of XeTaL compared to the sequential processors is so large
that the situation reverses. Amdahl’s law [8] applies, and the application is now
dominated by its sequential part.

This suggests that it is worthwhile to either investigate an implementation
that uses more restrictive skeletons, or to include a more general SIMD processor,
such as an IMAP-CE. In both cases, this will reduce the load on the sequential
processors.

6.6 Discussion

We have presented an architecture simulation platform for heterogeneous embed-
ded multiprocessors, based on discrete event trace simulation. The simulator was
shown to have an accuracy of around 10% in typical applications. Based on this
simulation, we have created an automated design space exploration environment
for skeletonized applications, which quickly converges to an adequate Pareto solu-
tion surface.

High-level discrete event simulation is a proven concept [62, 129], including dur-
ing design space exploration [87, 104]. Our contribution is the automated creation
of the event model from an application using trace generation and benchmarking,
in which skeletons provide the necessary information about the operations. The
user of the exploration environment therefore does not need to understand the
model.

The design space exploration currently only varies the architecture and map-
ping. Taking this approach even further, an operation may be implemented using
multiple algorithms. For example, and iterative erosion can be specified as a suc-

Sensor

Bus (1 Gbps)

TriMedia 3

0.0%1.6% 0.6% 6.5%4.5%0.6%0.0% 5.7% 0.5%

12%

94% 29%

XeTaL

4.2%

MIPS MIPS

32%82%

Figure 6.13: Processor utilization for the AR application on a network of two
24Kcs, one TriMedia and one XeTaL (point B in figure 6.11).

126 Chapter 6. Exploring the SmartCam design space

cession of local neighborhood operations, as a recursive neighborhood operation,
or as a stack operation. If the user specifies all possibilities, the design space
exploration could automatically determine the best implementation.

Chapter 7

Conclusions

Parallel heterogeneous multiprocessor systems are often shunned in embedded sys-
tem design, not only because of their design complexity but because of the pro-
gramming burden. Programs for such systems are architecture-dependent : the
application developer needs architecture-specific knowledge to implement his al-
gorithms, as each processor has its own characteristics and programming language.
He will therefore often stick to the architectures he knows best instead of looking
for the best one. This leads to suboptimal solutions, and costly redesign efforts
if the chosen architecture later proves to be insufficient. We demonstrated that
there is no single best architecture or programming language that can release us
from this plight (chapter 2).

Our solution to this problem uses a programming model based on the concept
of architecture independence through algorithm dependence (chapter 3). By limit-
ing the expressiveness of a programming language to just those concepts needed to
implement a given class of algorithms, it may be compiled to a variety of different
(parallel) processor architectures. In particular, we limited the access patterns
an algorithm may employ using algorithmic skeletons. Using different languages
– or interfaces – to implement different algorithms is more natural than using
architecture-dependent languages, because a programmer should be concerned
with algorithms, not with processors. A language that is tailored to a specific
class of algorithms will allow those algorithms to be expressed more naturally
than using a general-purpose or processor-specific language.

We have designed a meta-programming system to implement translators for
such algorithm-specific languages (ASLs). A translator for an ASL has three dis-
tinct tasks. First, it must implement the access pattern that is part of the skele-
ton, such as a row-major iteration over image pixels. Second, it must rewrite the
algorithm-specific interface to that used by the run time system – for example,
changing relative array indexing to absolute indices. Finally, it must translate the
algorithm (also called the kernel) into a language that is understood by the target
processor. PEPCI, a new meta-programming language and tool for implementing
ASLs, facilitates these tasks by allowing the pattern to be implemented directly in
the target language while still providing sophisticated code transformation tools
(chapter 4). The operations resulting from the translation were shown to perform

128 Chapter 7. Conclusions

within 20% of their handcrafted counterparts, in which the latter can be considered
fairly optimal.

An application consists of multiple algorithms, each written in its own lan-
guage dialect. In image processing applications, these algorithms often work in
successive steps on a series of images. This suggests the view of an application as
a directed graph of tasks working on streams of data. This is the view taken in
stream programming, and we presented our implementation of that concept (based
on remote procedure call (RPC)) (chapter 5). Using futures, RPC allows the appli-
cation’s task graph to be built under imperative program control, thereby allowing
it to be data-dependent. Such data dependencies are important in applications
that need to operate in dynamic environments, or in dynamic roles. An auto-
mated, dynamic mapping of the task graph to an architecture model maintains
the architecture independence of the program. We demonstrated that this map-
ping creates an effective multiprocessor program, but that most of the benefits
of using a heterogeneous system must be realized by parallelizing the operations
themselves.

Finally, we used the architecture independence of programs written using our
programming model to conduct an automated design space exploration of possible
architectures, creating a Pareto front of optimal trade-offs between performance,
area and power consumption (chapter 6). Each design point was simulated, us-
ing pre-benchmarked operations to speed up the process. The simulation has an
accuracy of around 10%. We used multi-objective evolutionary optimization to
approximate the Pareto front, and showed that this has good convergence and
coverage. The practicality of the entire system of skeletonization, stream pro-
gramming and design space exploration was demonstrated by implementing two
case studies.

7.1 Discussion

The SmartCam framework tries to bridge the gap between the development of
algorithms done by image processing researchers and their implementation in real
(embedded) systems. Other systems have been proposed for the same purpose,
many based on visual programming [82, 93]. They often provide a sophisticated
graphical user interface to connect algorithm components, which can be part of
a library or user-created. Our approach is not incompatible with such systems;
on the contrary, the skeletons fill a crucial gap between user created and library
components, and the task graphs used by our run-time system can be generated
from the visual program.

We have chosen to use the C language as the basis of our framework because
of its widespread use in embedded systems. C compilers are available for almost
all processors, although they use different dialects. Using C as a basis therefore
provides a certain amount of homogeneity. Yet image processing applications are
often prototyped in higher-level languages, such as MATLAB. Although we feel
that our C-based algorithm-specific languages provide enough of an abstraction
from low-level C programming to be usable for image processing researchers, for
strict users of image processing it would be interesting to investigate even higher
levels of abstraction, and how they impact the compilation process.

7.1 Discussion 129

Pseudo-dynamic meta-programming, that is the combination of a multi-level lan-
guage with partial evaluation (section 4.3), is a promising meta-programming
paradigm. By leveraging an existing language, we only need to add a minimum
number of new constructs to allow meta-programming. Partial evaluation then
specializes the meta-programming constructs, leaving only original language con-
structs. This approach is not limited to skeleton instantiation, but can be used
in any situation where the meta-program does not depend on run-time values.
However, it is most sensible when the compiler for the original language is not
optimized enough, or can only compile a subset (in which case the meta-program
provides a translation into that subset).

An important aspect of all programming systems is how they can be debugged.
Introducing skeletons adds two additional language levels at which errors can oc-
cur: the skeleton itself, and the target language. Although many errors (such
as type errors) are caught during skeleton instantiation, others will only become
evident during actual execution. As the final program is quite different from the
user-provided kernel, debugging becomes problematic. If the skeletons are cor-
rect we can at least debug the kernel using only one implementation, such as a
sequential workstation backend, but the problem remains unresolved.

The real-world measurements on multiprocessor systems presented in chapter 5
were conducted on a computer cluster, not on an embedded system. The reason
was that we could not construct arbitrary heterogeneous embedded systems and
conduct the measurements on them. Of course, the SmartCam compiler and
run-time system can be applied to such clusters as well. However, we do not
currently exploit data parallelism between the processors, as this is accomplished
by the SIMD processors in our architecture template. As most of the parallelism in
image processing application is of the data parallel type, a proper SmartCam run-
time for clusters will therefore split the cluster into a number of parallel virtual
processors, exploiting both data and task parallelism. Our skeletons can support
those virtual processor targets by compiling the kernel into an MPI program. In
a similar way, we can target multi-core processors for data parallel execution by
writing a threaded implementation of each skeleton.

We treated custom logic solutions such as FPGAs only cursorily, although they
are increasingly popular in embedded applications. FPGAs can be supported in
two ways: first, by providing parameterizable fixed-function library components,
and second by instantiating the kernels into a language that can be synthesized into
logic, such as Handel-C. The first option is often used because user programming of
FPGAs is hard, and it can be readily incorporated into our system. Section 2.4.4
showed, however, that a kernel will have to be heavily transformed before it can
be efficiently synthesized. It is therefore probably best to start with supporting a
very limited set of restricted algorithms and expand from there. Restrictions on
the expressiveness will ensure that the transformations can be kept simple.

Another possible platform that we have not elaborated on are smart camera
networks [38, 81]. Our system has no inherent limitation to tightly coupled net-
works such as chip multiprocessors, printed circuit boards or computer clusters.
Other systems are targetable by correctly modeling the bandwidth of the commu-
nication channels. However, since our framework views the entire network as a

130 Chapter 7. Conclusions

single multiprocessor, this poses the question of reliable operation under compo-
nent failure. As RPC systems routinely address the issue of reliability, they would
again be a good starting point for further investigation.

Many improvements can still be made to the design space exploration. Most
importantly, an integration of the various processor simulators would allow for
a fully automated exploration from source program to target architecture. But
more user direction could improve the system as well. We created a preliminary
tool in which the user can graphically and interactively investigate the 3D Pareto
surface and try alternative configurations. Possible options are to allow the user
to provide an initial guess of the desired architecture, set constraints, and prune
undesired branches during the search.

The patterns of computation introduced by algorithmic skeletons are a paradigm
shift similar to the Reduced Instruction Set Computer (RISC, [35]) movement in
the early 1980’s. Instead of using processor architectures which can execute all
patterns slowly (such as superscalars or VLIWs), we use architectures which sup-
port only a few patterns, but can execute those very efficiently. However, whereas
the RISC concept was used to create general-purpose processors, our design space
exploration automatically determines which patterns should be supported for a
specific application or domain, and to what degree.

Glossary

Abstract syntax tree (AST) A finite, labeled, directed tree of terms that is the
result of noting which productions were used while parsing a sentence
in a (computer) language using a grammar, thereby providing an ex-
plicit description of its structure (syntax). Unlike other parse trees,
abstract syntax trees only contain the applications of productions
that impact the meaning of the sentence, p. 55.

Algorithm-specific language (ASL) A language (usually based on another lan-
guage) created specifically to implement a particular class of algo-
rithms. Similar to a skeleton in that the language often includes
a predetermined iteration strategy. Our ASLs are implemented as
compile-time meta-programs, p. 34.

Algorithmic skeleton See skeleton, p. 35.

Application specification Information about the operations that are used in an
application, such as the intent and distribution of their stream ar-
guments, and benchmarks on all targets in the relevant architecture
model, p. 90.

Architecture model A graph and associated information about the available tar-
gets in a multiprocessor system, p. 89.

Architecture template A template for constructing architecture models. Used to
constrain a design space exploration, p. 108.

Client A program, running on the master control processor, containing RPC
calls, p. 81.

Dependent task interaction graph (DTIG) A mapping of a stream task graph to
an architecture model. The edges between task vertices can be either
dependent or interacting, thus combining a task dependency graph and
task interaction graph, p. 92.

Design point A point in design space. That is, a particular instantiation of an
architecture template, with associated objective values for a certain
application, p. 116.

132 GLOSSARY

Discrete event simulation A way of system simulation to observe the dynamic
behavior of a system. A DES model consists of entities able to process
and post events, which are labeled by the time at which they must
occur. The simulator iteratively advances time to the first event in a
global event queue and executes the corresponding entity, p. 114.

Future A token, returned by an RPC stub, that can be used to access the
result of the call, p. 84.

Grammar A set of rules, or productions, which describe the syntactical structure
of a language. The productions relate words in the language to terms
which can themselves be the input to further productions, p. 55.

Hypertask A combination of tasks, possibly spanning multiple targets, which
can be regarded as a single task for the purposes of performance
evaluation, p. 96.

Hypertask dependency graph (HDG) A task dependency graph in which the tasks
are hypertasks, p. 96.

Instruction A primitive (arithmetic) operation executed by a processor, p. 9.

Kahn process network A model of computation where a number of concurrently
running deterministic processes are connected by unbounded buffers.
Reading from a buffer is blocking, while writing is nonblocking, and
a process may not test for the availability of input. The output of a
KPN is independent of the schedule, p. 99.

Kernel A function used to instantiate a skeleton into an operation. Usually,
the kernel specifies only the way to process a single datum. Also, a
mask used during image convolution, p. 35.

Language specialization An application of partial evaluation where a language
is specialized to a subset of itself, because all constructs not in the
subset are only used in static expressions, p. 66.

Master control processor (MCP) The target which executes the client, p. 131.

Meta-program A program that manipulates other programs. Examples are com-
pilers and source-to-source translators, p. 53.

Meta-skeleton A way of restricting the expressiveness of a skeleton so that it
can be reasoned about. Also, a meta-program which implements a
transformation based on such an analysis, p. 73.

Operation A remote function running on an RPC server. Generally, operations
are instantiated kernels which work on streams, but this is not re-
quired. For example, fixed-function operations are provided which
capture an image, write it to mass storage, etc, p. 37.

GLOSSARY 133

Pareto front A surface of optimal tradeoff points in a multiobjective optimiza-
tion problem. Each point cannot be improved in any aspect, unless
another aspect is worsened, p. 116.

Partial evaluation A combination of aggressive optimization techniques used to
execute as much of a program at compile-time as possible. Also called
program specialization, because it specializes a program to the known
inputs that are provided to the partial evaluator, p. 65.

Processing element (PE) A functional unit in a processor capable of execut-
ing instructions. The number of PEs in a processor determines the
maximum amount of parallelism it can exploit, p. 9.

Remote procedure call (RPC) A way of starting operations on remote servers
that mimics function call semantics, p. 81.

Residual program The parts of a program that could not be optimized away
using partial evaluation, and that are output to the next stage of
compilation, p. 56.

Rewriting Modifying a term through the successive application of rewrite rules.
Mathematically the rules may be nondeterministic, but programming
languages based on rewriting impose a (possibly user-defined) order,
p. 61.

Server Any target which can execute one or more operations. Also, the pro-
gram running on such a target, p. 81.

Skeleton A higher-order function specifying the iteration strategy with which
to apply a kernel. Also, any other specification or implementation of
such a strategy. See also algorithm-specific language, p. 35.

Source-to-source translation Using a meta-program to translate a program writ-
ten in a high-level language into another program written in (another)
high-level language. Often used to avoid the generation of assembly
language when implementing a compiler, p. 37.

Stream A sequence of data elements of the same type, p. 38.

Stream programming The art of writing programs which consist of kernels oper-
ating on streams. Essentially a data-centric approach, similar to data-
flow programming on a macro scale, suited to parallel distributed
memory architectures, p. 38.

Stream task graph (STG) A directed acyclic graph interleaving tasks and
streams. Created by future tracking, p. 91.

Target A processor or network node in an architecture model, p. 89.

Task A particular instance of an operation or data transport, p. 91.

134 GLOSSARY

Task dependency graph (TDG) A graph specifying the dependencies between
tasks. A task cannot start until all the tasks on which it is dependent
have finish execution, p. 93.

Task interaction graph (TIG) A graph specifying the interactions between tasks.
All tasks execute simultaneously, p. 93.

Term A subtree in an abstract syntax tree or other parse tree. Its label is
defined by the production in the grammar that produced it, and its
children are the subterms that were the input to said production,
p. 61.

Bibliography

[1] A.A. Abbo, R.P. Kleihorst, L.Sevat, P. Wielage, R. van Veen, M.J.R. op de
Beeck, and A. van der Avoird. A low-power parallel processor IC for digi-
tal video cameras. In Proc. 27th European Solid-State Circuits Conference,
Villach, Austria. IEEE Solid-State Circuits Society, Sept. 18–20 2001. p. 12.

[2] M. Achour, F. Betz, A. Dovgal, N. Lopes, P. Olson, G. Richter, D. Seguy,
and J. Vrana. PHP Manual. PHP Documentation Group, May 2007. p. 55.

[3] D.A. Adams. A computation model with data flow sequencing. PhD thesis,
Computer Science Department, Stanford University, 1968. No. CS-117. p. 43.

[4] G. Aigner, A. Diwan, D. Heine, M. Lam, D. Moore, B. Murphy, and C. Sa-
puntzakis. An overview of the SUIF2 compiler infrastructure. Technical
report, Stanford University, 2000. p. 56.

[5] M. Aldinucci and M. Danelutto. Stream parallel skeleton optimization. In
Proceedings of the 11th IASTED International Conference on Parallel and
Distributed Computing and Systems. IASTED/ACTA press, 1999. p. 71.

[6] M. Aldinucci, M. Danelutto, and J. Dünnweber. Optimization techniques for
implementing parallel skeletons in grid environments. In S. Gorlatch, editor,
4th International Workshop on Constructive Methods for Parallel Program-
ming (CMPP’04), pages 35–47. Universität Münster, July 2004. p. 105.

[7] M. Alt and S. Gorlatch. Future-based RMI: Optimizing compositions of
remote method calls on the grid. In Proceedings of Euro-Par 2003 Parallel
Processing, number 2790 in Lecture Notes in Computer Science, pages 427–
430. Springer-Verlag, 2003. p. 84.

[8] G. Amdahl. Validity of the single processor approach to achieving large-scale
computing capabilities. In AFIPS Conference Proceedings, volume 30, pages
483–485. Thomson Book Company, 1967. p. 125.

[9] IEEE VHDL Analysis and Standardization Group. IEEE standard VHDL
language reference manual. Technical report, IEEE Computer Society, 2002.
IEEE Std 1076-2002. p. 27.

[10] Lars Ole Andersen. Program Analysis and Specialization for the C Program-
ming Language. PhD thesis, DIKU, University of Copenhagen, May 1994.
p. 56.

136 BIBLIOGRAPHY

[11] M.A. Arbib. Perceptual structures and distributed motor control. In Hand-
book of Physiology: The Nervous System, II. Motor Control, pages 1448–
1480. MIT Press, 1981. p. 8.

[12] H. Baker and C. Hewitt. The incremental garbage collection of processes.
In Proceedings of the ACM Conference on AI and Programming Languages,
pages 55–59. Association for Computing Machinery, 1977. p. 84.

[13] K.E. Batcher. Sorting networks and their applications. In Proceedings of the
AFIPS Spring Joint Computer Conference, volume 32, pages 307–314, 1968.
p. 20.

[14] A.J. Bernstein. Analysis of programs for parallel processing. IEEE Trans-
actions on Electronic Computers, 15(5):757–763, October 1966. p. 14.

[15] A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1):39–59, February 1984. p. 81.

[16] T. Blank. The maspar MP-1 architecture. In Compcon Spring ’90 digest of
papers, pages 20–24. IEEE Computer Society, February 1990. p. 13.

[17] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA — a platform
and programming language independent interface for search algorithms. In
Carlos M. Fonseca, Peter J. Fleming, Eckart Zitzler, Kalyanmoy Deb, and
Lothar Thiele, editors, Evolutionary Multi-Criterion Optimization (EMO
2003), Lecture Notes in Computer Science, pages 494 – 508. Springer-Verlag,
2003. p. 119.

[18] G. Borgefors. Distance transforms in digital images. Computer Vision,
Graphics and Image Processing, 34(3):344–371, June 1986. p. 17.

[19] S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23–29,
1999. p. 109.

[20] G. H. Botorog and H. Kuchen. Skil: An imperative language with algorith-
mic skeletons for efficient distributed programming. In Proceedings of the
Fifth International Symposium on High Performance Distributed Comput-
ing (HPDC-5), pages 243–252. IEEE Computer Society Press, 1996. p. 55.

[21] J.M. Boyle. Software reusability: vol. 1, concepts and models, chapter “Ab-
stract programming and program transformation – an approach to reusing
programs”, pages 361–413. ACM Press, 1989. p. 62.

[22] J.M. Boyle, T.J. Harmer, and V.L. Winter. Modern software tools for scien-
tific computing, chapter “The TAMPR program transformation system: sim-
plifying the development of numerical software”, pages 353–372. Birkhauser
Boston Inc., 1997. p. 62.

[23] M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-
specific language embedding and assimilation without restrictions. In
D.C. Schmidt, editor, Proceedings of the 19th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’04), pages 365–383. ACM Press, October 2004. p. 47.

BIBLIOGRAPHY 137

[24] H. Broers, W.Caarls, P.P. Jonker, and R. Kleihorst. Architecture study for
smart cameras. In Proceedings of the EOS Conference on Industrial Imaging
and Machine Vision, pages 39–49. European Optical Society, June 13-15
2005.

[25] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan. Brook for GPUs: Stream computing on graphics hardware.
ACM Transactions on Graphics, 23(3):777–786, August 2004. Special Issue:
Proceedings of the 2004 SIGGRAPH Conference. pp. 40 and 50.

[26] J. Caarls. Pose estimation for mobile devices and augmented reality. PhD
thesis, Delft University of Technology, 2008. To appear. p. 120.

[27] W. Caarls and P.P. Jonker. Benchmarks for smartcam development. In Pro-
ceedings of ACIVS 2003 (Advanced Concepts for Intelligent Vision Systems),
pages 81–86. Ghent University, September 2-5 2003.

[28] W. Caarls, P.P. Jonker, and H. Corporaal. SmartCam: Devices for em-
bedded intelligent cameras. In Mariël Schweizer, editor, Proceedings of the
3rd PROGRESS workshop on Embedded Systems, Utrecht, The Netherlands,
pages 14–17. Technology Foundation STW, October 24 2002.

[29] W. Caarls, P.P. Jonker, and H. Corporaal. SmartCam design framework. In
Mariël Schweizer, editor, Proceedings of the 4th PROGRESS workshop on
Embedded Systems, Nieuwegein, The Netherlands. Technology Foundation
STW, October 22 2003.

[30] W. Caarls, P.P. Jonker, and H. Corporaal. Data- and task parallel image
processing on a mixed SIMD-ILP platform using skeletons and asynchronous
RPC. In Mariël Schweizer, editor, Proceedings of the 5th PROGRESS work-
shop on Embedded Systems, Nieuwegein, The Netherlands, pages 27–34.
Technology Foundation STW, October 20 2004.

[31] W. Caarls, P.P. Jonker, and H. Corporaal. Skeletons and asynchronous RPC
for embedded data- and task parallel image processing. In Katsushi Ikeuchi,
editor, Proceedings of the 9th IAPR Conference on Machine Vision Appli-
cations, pages 384–387. International Association for Pattern Recognition,
May 16-18 2005.

[32] W. Caarls, P.P. Jonker, and H. Corporaal. Algorithmic skeletons for stream
programming in embedded heterogeneous parallel image processing applica-
tions. In Proceedings of the 20th IEEE International Parallel and Distributed
Processing Symposium. IEEE Computer Society, April 26-29 2006. p. 101.

[33] W. Caarls, P.P. Jonker, and H. Corporaal. Skeletons and asynchronous RPC
for embedded data- and task parallel image processing. IEICE Transactions
on Information and Systems, E89-D(7), July 2006. p. 76.

[34] J. Canny. A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 8(6):679–698, November
1986. p. 120.

138 BIBLIOGRAPHY

[35] J. Cocke and V. Markstein. The evolution of risc technology at ibm. IBM
Journal of Research and Development, 34(1):4–11, 1990. p. 130.

[36] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. Research Monographs in Parallel and Distributed Computing. MIT
Press, 1989. ISBN 0-273-08807-6. p. 35.

[37] Y. Collette and P. Siarry. Multiobjective Optimization: Principles and Case
Studies. Decision Engineering. Springer-Verlag, 2003. ISBN 3-540-40182-2.
p. 118.

[38] R. Collins, A. Lipton, and T. Kanade. A system for video surveillance and
monitoring. In Proceedings of the American Nuclear Society 8th Internal
Topical Meeting on Robotics and Remote Systems, April 1999. p. 129.

[39] C. Consel, J.L. Lawall, and A-F. Le Meur. A tour of Tempo: a program
specializer for the c language. Science of Computer Programming, 52(1–
3):341–370, August 2004. p. 56.

[40] NVIDIA Corporation. Nvidia GeForce 8800 GPU architecture overview.
Technical Report TB-02787-001 v01, NVIDIA Corporation, November 2006.
http://www.nvidia.com/object/IO_37100.html. p. 13.

[41] G. Cybenko. Load balancing for distributed memory multiprocessors. Jour-
nal of Parallel and Distributed Computing, 7:279–301, 1989. p. 21.

[42] K. Czarnecki. Overview of generative software development. In Proceed-
ings of the workshop on Unconventional Programming Paradigms, volume
3566 of Lecture Notes in Computer Science, pages 313–328. Springer-Verlag,
September 2004. p. 53.

[43] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley Professional, 2000. ISBN 978-0201309775.
p. 53.

[44] K. Czarnecki, U.W. Eisenecker, R. Glueck, D. Vandevoorde, and T.L. Veld-
huizen. Generative programming and active libraries. In Selected Papers
from the International Seminar on Generic Programming, volume 1766 of
Lecture Notes in Computer Science, pages 25–39. Springer-Verlag, 1998.
p. 47.

[45] L. Dagum and R. Menon. OpenMP: An industry-standard API for shared-
memory programming. IEEE Computational Science and Engineering,
5(1):46–55, January/March 1998. p. 22.

[46] M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi.
A methodology for the development and the support of massively parallel
programs. Future Generation Computer Systems, 8(1–3), July 1992. p. 79.

[47] R. Eigenmann. Programming distributed memory sytems using openmp. In
Proceedings of the 12th International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments. IEEE Computer Society,
March 2007. Held in conjunction with IPDPS 2007. p. 23.

http://www.nvidia.com/object/IO_37100.html

BIBLIOGRAPHY 139

[48] D.R. Engler. Interface compilation: Steps toward compiling program inter-
faces as languages. IEEE Transactions on Software Engineering, 25(3):387–
400, May 1999. p. 47.

[49] H. Fatemi. Processor Architecture Design for Smart Cameras. PhD thesis,
Eindhoven University of Technology, 2007. ISBN 978-90-386-1983-5. p. 13.

[50] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901–1909, December 1966. p. 9.

[51] M.J. Flynn and P. Hung. Microprocessor design issues: thoughts on the road
ahead. IEEE Micro, 25(3):16–31, May-June 2005. p. 8.

[52] High Performance Fortran Forum. High Performance Fortran Language
Specification, 1993. Version 1.0. p. 27.

[53] Message Passing Interface Forum. MPI: A message-passing interface stan-
dard. International Journal of Supercomputing Applications and High Per-
formance Computing, 8(3/4):159–416, 1994. p. 23.

[54] T.J. Fountain. Machine Vision: Algorithms, Architectures, and Systems,
chapter “Introducing Local Autonomy to Processor Arrays”, pages 31–56.
Academic Press, 1988. p. 9.

[55] Y. Fujita, S. Kyo, N. Yamashita, and S. Okazaki. A 10 GIPS SIMD pro-
cessor for PC-based real-time vision applications – architecture, algorithm
implementation and language support –. In C.C. Weems Jr., editor, Pro-
ceedings of the 4th IEEE International Workshop on Computer Architecture
for Machine Perception, pages 22–32. IEEE Computer Society, 1997. p. 25.

[56] Y. Futamura. Partial evaluation of computation process - an approach to a
compiler-compiler. Systems, Computers, Controls, 2(5):45–50, 1971. p. 65.

[57] H.L. Gantt. Work, Wages, and Profits. Hive Publishing Corporation, 1974.
Originally published in the New York Engineering Magazine (1910). p. 82.

[58] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., 1989. p. 118.

[59] R. Gonzalez, B.M. Gordon, and M.A. Horowitz. Supply and threshold
voltage scaling for low power cmos. IEEE Journal of Solid-State Circuits,
32(8):1210–1216, August 1997. p. 109.

[60] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel
Computing (second edition). Addison-Wesley, 2003. p. 20.

[61] M. Gries. Methods for evaluating and covering the design space during
early design development. The VLSI Journal of Integration, 38(2):131–183,
December 2004. p. 107.

[62] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC.
Springer-Verlag, 2002. ISBN 978-1-4020-7072-3. p. 125.

140 BIBLIOGRAPHY

[63] IEEE Verilog Standards Group. IEEE standard for Verilog hardware de-
scription language. Technical report, IEEE Computer Society, 2006. IEEE
Std 1364-2005. p. 27.

[64] G.M. Hagen, W. Caarls, M. Thomas, A. Hill, K.A. Lidke, B. Rieger,
C. Fritsch, B. van Geest, T.M. Jovin, and D.J. Arndt-Jovin. Biological
applications of an LCoS-based programmable array microscope (PAM). In
Proceedings of SPIE, volume 6441. SPIE, January 2007.

[65] B. Haible. ffcall - foreign function call libraries, version 1.10. http://www.

haible.de/bruno/packages-ffcall.html. p. 70.

[66] R.H. Halstead, jr. Multilisp: A language for concurrent symbolic computa-
tion. ACM Transactions on Programming Languages and Systems, 7(4):501–
538, October 1985. p. 84.

[67] J. Henkel. Closing the SoC design gap. IEEE Computer, 36:119–221, 2003.
p. 7.

[68] W.D. Hillis. The Connection Machine. PhD thesis, Massachusetts Institute
of Technology, 1985. ISBN 0-262-08157-1. p. 13.

[69] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
ISBN 0-13-153271-8. p. 27.

[70] C.A.R. Hoare. Occam 2 Reference Manual. INMOS Limited, 1988. p. 27.

[71] K.E. Iverson. A programming language. John Wiley and Sons, Ltd., 1962.
p. 36.

[72] P. Klint J. Heering, P.R.H. Hendriks and J. Rekers. The syntax definition
formalism sdf — reference manual. ACM SIGPLAN Notices, 24:43–75, 1989.
p. 58.

[73] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Auto-
matic Program Generation. Prentice Hall International, June 1993. ISBN
0-13-020249-5. Available online at http://www.dina.kvl.dk/~sestoft/

pebook/pebook.html. p. 56.

[74] S.P. Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2002. p. 35.

[75] P.P. Jonker and W. Caarls. Application driven design of embedded real-
time image processors. In Proceedings of ACIVS 2003 (Advanced Concepts
for Intelligent Vision Systems), pages 1–8. Ghent University, September 2-5
2003.

[76] G. Kahn. The semantics of a simple language for parallel programming. In
Proceeedings of IFIP Congress 74, pages 471–475. North-Holland, August
1974. p. 99.

[77] B.W. Kernighan and D.M. Ritchie. The M4 macro processor. Technical
report, Bell Laboratories, Murray Hill, New Jersey, USA, 1977. p. 55.

http://www.haible.de/bruno/packages-ffcall.html
http://www.haible.de/bruno/packages-ffcall.html
http://www.dina.kvl.dk/~sestoft/pebook/pebook.html
http://www.dina.kvl.dk/~sestoft/pebook/pebook.html

BIBLIOGRAPHY 141

[78] Brucek Khailany. The VLSI Implementation and Evaluation of Area- and
Energy-Efficient Streaming Media Processors. PhD thesis, Stanford Univer-
sity, June 2003. p. 41.

[79] G. A. P. Kindervater and H. W. J. M. Trienekens. Experiments with parallel
algorithms for combinatorial problems. European Journal of Operational
Research, 33(1):65–81, 1988. p. 21.

[80] R. Kleihorst, H. Broers, A. Abbo, H. Embrahimmalek, H. Fatemi, H. Corpo-
raal, and P. Jonker. An SIMD-VLIW smart camera architecture for real-time
face recognition. In Proceedings of ProRISC 2003, pages 1–7. Technology
Foundation STW, November 26-27 2003. p. 89.

[81] R. Kleihorst, B. Schueler, A. Danilin, and M. Heijligers. Smart camera mote
with high performance vision system. In Proceedings of the ACM SenSys
2006 Workshop on Distributed Smart Cameras, October 2006. p. 129.

[82] D. Koelma and A. Smeulders. Visual programming interface for an image-
processing environment. Pattern Recognition Letters, 15(11):1099–1109,
November 1994. p. 128.

[83] E.R. Koomen. Low-level Image Processing Architectures. PhD thesis, Delft
University of Technology, 1990. ISBN 90-9003713-6. p. 9.

[84] H. Kuchen. A skeleton library. In B. Monien and R. Feldman, editors,
Proceedings of the 8th International Euro-Par Conference, volume 2400 of
Lecture Notes in Computer Science. Springer-Verlag, 2002. p. 55.

[85] S. Kyo. A 51.2GOPS programmable video recognition processor for vision
based intelligent cruise control applications. In K. Ikeuchi, editor, Proceed-
ings of the 2002 MVA Workshop, pages 632–635. International Association
for Pattern Recognition, December 11–13 2002. p. 12.

[86] S. Kyo and K. Sato. Efficient implementation of image processing algorithms
in linear processor arrays using the data parallel language 1DC. In M. Takagi,
editor, Proceedings of the 1996 MVA Workshop, pages 160–165. International
Association for Pattern Recognition, 1996. p. 25.

[87] P. Lieverse, P. van der Wolf, K. Vissers, and E. Deprettere. A methodol-
ogy for architecture exploration of heterogeneous signal processing systems.
Journal of VLSI signal processing, 23(3):197–207, 2001. p. 125.

[88] B. Liskov and L. Shira. Promises: linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language design and Imple-
mentation, pages 260–267. ACM Press, 1988. p. 84.

[89] D.G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91–110, 2004. p. 101.

[90] H. Makholm. Specializing c - an introduction to the principles behind c-mix
ii. Technical report, DIKU, University of Copenhagen, 1999. p. 56.

142 BIBLIOGRAPHY

[91] F. Mantz, P.P. Jonker, and W. Caarls. Behavior-based vision on a 4 legged
soccer robot. In A. Bredenfeld, A. Jacoff, I. Noda, and Y. Takahashi, editors,
Proc. 9th RoboCup International Symposium, Osaka, Japan, volume 4020 of
Lecture Notes in Computer Science, pages 480–487. Springer-Verlag, July
2006. p. 8.

[92] H. Masuhara, S. Matsuoka, K. Asai, and A. Yonezawa. Compiling away the
meta-level in object-oriented concurrent reflective languages using partial
evaluation. In Proceedings of OOPSLA’95, pages 300–315. ACM SIGPLAN,
1995. p. 66.

[93] The Mathworks, Inc., 3 Apple Hill Drive, Natpick, MA 01760-2098. Video
and Image Processing Blockset 2, 2.3 (2007a) edition, March 2007. p. 128.

[94] P. Mattson. A Programming System for the Imagine Media Processor. PhD
thesis, Dept. of Electrical Engineering, Stanford University, 2001. p. 41.

[95] J.L. McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part i. Communications of the ACM, 3(4):184–195,
1960. p. 36.

[96] M. McCool and S. Du Toit. Metaprogramming GPUs with Sh. A.K. Peters,
Ltd., 2004. ISBN 1-56881-229-9. p. 55.

[97] G. Michaelson, N. Scaife, P. Bristow, and P. King. Nested algorithmic
skeletons from higher order functions. Parallel Algorithms and Applications
special issue on High Level Models and Languages for Parallel Processing,
16:181–206, August 2001. p. 79.

[98] S. Mouy. Xtc2 language syntax. Technical report, Philips Electronics, 2006.
p. 27.

[99] M. Nijhuis, H. Bos, and H.E. Bal. Supporting reconfigurable parallel mul-
timedia applications. In Proc. Euro-PAR ’06, Dresden, Germany, pages
765–776, August 2006. pp. 42 and 46.

[100] J.G.E. Olk. Distributed Bucket Processing - A paradigm for parallel image
processing. PhD thesis, Delft University of Technology, ASCI, September
2001. ASCI Dissertation Series 68. p. 18.

[101] T.M. Parks. Bounded Scheduling of Process Networks. PhD thesis, De-
partment of Electrical Engineering and Computer Sciences, University of
California, Berkeley, December 1995. Technical Report UCB/ERL-95-105.
p. 100.

[102] T.J. Parr and R.W. Quong. ANTLR: A predicated-LL(k) parser generator.
Software Practice and Experience, 25(7):789–810, July 1995. p. 56.

[103] P.Bogle and B. Liskov. Reducing cross domain call overhead using batched
futures. In Proc. ninth annual conference on Object-oriented programming
systems, language, and applications, pages 341–354. ACM Press, 1994. p. 84.

BIBLIOGRAPHY 143

[104] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to ex-
ploring embedded system architectures at multiple abstraction levels. IEEE
Transactions on Computers, 55(2):99–112, February 2006. p. 125.

[105] M. Poletto, W.C. Hsieh, D. Engler, and M.F. Kaashoek. ‘c and tcc: A
language and compiler for dynamic code generation. ACM Transactions on
Programming Languages and Systems, 21(2), March 1999. pp. 57 and 59.

[106] W.V.O. Quine. Mathematical Logic. Harvard University Press, 1940. p. 55.

[107] F.A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and
Distributed Computing. Springer-Verlag, 2003. ISBN 1-85233-506-8. p. 35.

[108] A. Radulescu. Compile-Time Scheduling for Distributed-Memory Suystems.
PhD thesis, Delft University of Technology, 2001. pp. 103 and 105.

[109] A.M. Rogers, J.H. Reppy, and L.J. Hendren. Supporting SPMD execution for
dynamic data structures. In Proceedings of the 5th International Workshop
on Languages and Compilers for Parallel Computing, volume 757 of Lecture
Notes in Computer Science, pages 192–207. Springer-Verlag, August 1992.
p. 84.

[110] C. Roig, A.Ripoll, M.A. Senar, F. Guirado, and E. Luque. A new model for
static mapping of parallel applications with task and data parallelism. In
Proceedings of the 16th International Symposium on Parallel and Distributed
Processing, page 78. IEEE Computer Society, 2002. p. 105.

[111] M. Roth. Javaserver pages 2.0 specification. Technical Report SR-000152,
Sun Microsystems, Inc., November 2003. p. 55.

[112] T. Sakurai and A.R. Newton. Alpha-power law mosfet model and its applica-
tions to cmos inverter delay and other formulas. IEEE Journal of Solid-State
Circuits, 25(2):584–594, April 1990. p. 109.

[113] I. D. Scherson and S. Sen. Parallel sorting in two-dimensional vlsi models of
computation. IEEE Transactions on Computers, 38(2):238–249, 1989. p. 20.

[114] F.J. Seinstra. User Transparent Parallel Image Processing. PhD thesis,
University of Amsterdam, 2003. ISBN 90-5776-102-5. p. 46.

[115] M.A. Senar, A. Ripoll, A. Cortes, and E. Luque. Clustering and
reassignment-based mapping strategy for message-passing architectures.
Journal of Systems Architecture: the EUROMICRO Journal, 48(8-10):267–
283, March 2003. p. 103.

[116] J. Serot, D. Ginhac, and J.-P. Derutin. SKiPPER: A skeleton-based parallel
programming environment for real-time image processing applications. In
V. Malyshkin, editor, 5th International Conference on Parallel Computing
Technologies, volume 1662 of Lecture Notes in Computer Science, pages 296–
305. Springer-Verlag, September 1999. p. 79.

144 BIBLIOGRAPHY

[117] T. Sheard. Accomplishments and research challenges in meta-programming.
In Proceedings of the Second International Workshop on Semantics, Appli-
cations, and Implementation of Program Generation, pages 2–44. Springer-
Verlag, 2001. pp. 53 and 54.

[118] G.A. Slavenburg. TM1000 Databook. TriMedia Division, Philips Semicon-
ductors, 1997. p. 12.

[119] C. Soviany. Embedding Data and Task Parallelism in Image Processing Ap-
plications. PhD thesis, Delft University of Technology, 2003. ISBN 90-
9016878-8. pp. 46 and 105.

[120] R. Stephens. A survey of stream processing. Acta Informatica, 34(7):491–
541, 1997. p. 38.

[121] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and
C. V. Packer. BEOWULF: A parallel workstation for scientific computation.
In Proceedings of the 24th International Conference on Parallel Processing,
pages I:11–14. CRC Press, 1995. p. 13.

[122] W. Taha and T. Sheard. Metaml and multi-stage programming with ex-
plicit annotations. Theoretical Computer Science, 248(1–2):211–242, Octo-
ber 2000. p. 57.

[123] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language for
streaming applications. In International Conference on Compiler Construc-
tion, volume 2304 of Lecture Notes in Computer Science. Springer-Verlag,
2002. p. 42.

[124] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Transactions
on Parallel and Distributed Systems, 13(3):260–275, September 2004. p. 103.

[125] W.J. Trybula. A common base for mask cost of ownership. In Proceedings
of the 23rd Annual BACUS Symposium on Photomask Technology, volume
5256 of Proceedings of SPIE, pages 318–323. SPIE, 2003. p. 7.

[126] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient
annotated terms. Software Practice and Experience, 30:259–291, 2000. p. 65.

[127] J. van der Horst, R. van Leeuwen, H. Broers, R. Kleihorst, and P.P. Jonker. A
real-time stereo SmartCam, using FPGA, SIMD and VLIW. In Proceedings
of the Second Workshop on Applications of Computer Vision, pages 1–8,
May 2006. Held in conjunction with ECCV 2006. p. 101.

[128] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Es-
sink. Design and programming of embedded multiprocessors: An
interface-centric approach. In Proceedings of the International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS).
IEEE/ACM/IFIP, September 2004. p. 46.

BIBLIOGRAPHY 145

[129] A.J.C. van Gemund. Performance Modeling of Parallel Systems. PhD thesis,
Delft University of Technology, 1996. p. 125.

[130] T. Veldhuizen. Expression templates. C++ Report, 5(7):26–31, June 1995.
p. 55.

[131] T.L. Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36–
43, May 1995. pp. 47 and 55.

[132] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, Univer-
sity of Amsterdam, September 1997. p. 58.

[133] E. Visser. Stratego: A language for program transformation based on rewrit-
ing strategies. In A. Middeldorp, editor, Rewriting Techniques and Applica-
tions (RTA’01), volume 2051 of Lecture Notes in Computer Science, pages
357–361. Springer-Verlag, May 2001. p. 61.

[134] E. Visser. Meta-programming with concrete object syntax. In Don Batory,
Charles Consel, and Walid Taha, editors, Generative Programming and Com-
ponent Engineering (GPCE’02), volume 2487 of Lecture Notes in Computer
Science, pages 299–315. Springer-Verlag, October 2002. p. 55.

[135] O. Wechsler. Inside Intel Core microarchitecture. Technical report, Intel
Corporation, 2006. p. 12.

[136] A.K. Weissinger. ASP in a Nutshell. O’Reilly Media, Inc., July 2000. p. 55.

[137] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. Addison-Wesley, 2004. p. 110.

[138] J.E. White. Rfc 707: A high-level framework for network-based resource
sharing, 1976. p. 81.

[139] ISO/IEC JTC1/SC22/WG14 working group. Programming languages - C.
Technical Report 9899:1999, International Standards Committee, December
1999. p. 59.

[140] Cheng-Zhong Xu and Francis C. M. Lau. Optimal parameters for load bal-
ancing with the diffusion method in mesh networks. Parallel Processing
Letters, 4(1-2):139–147, 1994. p. 21.

[141] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineer-
ing and Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, 2001. p. 118.

Appendix A

Modeling language

Our application and architecture models are textually represented in the same
XML-based modeling language, called EPML (Environment-Property Modeling
Language). It was designed to populate the central SmartCam data structure,
and to be easily written both by hand and by the various scripts used in the
SmartCam framework.

A.1 Data structure

The goal of the data structure, is to describe the relations and properties between
remote functions, their arguments, the target architectures they run on, and the
resources they need. This essentially creates a conventional relational database
model, with extra tables for the properties of the relations themselves.

For example, an operation may have properties of itself, such as its name and
function identifier. In the same vein, a target architecture has certain properties,
like network address and idle power consumption. An operation may run on
many targets, while a target may support many operations. Furthermore, the
combination of the two, called a “target-operation”, has properties of its own: the
processing time and energy required for the operation to run on that particular
architecture.

Figure A.1 illustrates the relations between the various objects. There are
four basic types: Resources, Links, Targets and Operations. There are three
combinations of two classes: Target Resources, Target Operations, and Operation
Arguments (Argument is not a base type, as it has no properties of its own).
Finally, there are two combinations of three classes: Target Operation Resources,
and Target Operation Arguments.

A.2 Semantics

The language is built around the same concept as the data structure: objects with
properties and object combinations with properties. We call a combination of one

148 Chapter A. Modeling language

Target

Operation

Argument

Resource

Target

Link

Operation

Argument

Operation

Target

Operation

Target

Resource

Target

Operation

Resource

Figure A.1: Interactions between the various object classes in the central Smart-

Cam data structure.

or more object types an environment, and within an environment, properties of
that environment can be set.

Perhaps the easiest to understand way of specifying an environment is using
the env tag, such as in program A.1. This code specifies that there is a target

Program A.1 Defining a capture operation on the sensor target using the
env tag.
<env target="sensor" operation="capture">

<E time="33m"/>

</env>

architecture called sensor, which can run an operation called capture in 33 ms
(SI prefixes can be used when specifying numbers). It is not necessary to define
the objects beforehand: they are created automatically. To specify that capture
has an output argument that has a regular distribution on sensor, we may write
as in program A.2. This way of specifying environments is easy for scripts,

Program A.2 Adding information about an operation argument on a specific
target.
<env target="sensor" operation="capture" argument="o">

<E timedist="regular"/>

</env>

but cumbersome for humans. We therefore have a more intuitive way, by nesting
environments, illustrated in program A.3. Note that the order in which the
environments are specified is irrelevant; it is only important which environments
are there. This makes it easy to either make a list of targets and identify which
operations can run on them, or to make a list of operations and define which
targets support them. To further support this, we have special tags for creating
lists of environments, such as in program A.4.

A.2 Semantics 149

Program A.3 Nesting environments leads to a more easily readable specifi-
cation.
<env target="sensor">

<env operation="capture">

<E time="33m"/>

<env argument="o">

<E timedist="regular"/>

</env>

</env>

</env>

Program A.4 Nested environment lists allow an even more intuitive approach
to defining the model, by using objects names as tags.
<targets>

<sensor>

<!-- Sensor properties -->

</sensor>

<ilp>

<operations>

<gauss>

<E time="0.1"/>

<arguments>

<i>

<E timedist="regular"/>

</i>

<o>

<E timedist="regular"/>

</o>

</arguments>

</gauss>

<display>

<E time="16.7m"/>

</display>

</operations>

</ilp>

</targets>

150 Chapter A. Modeling language

For an even shorter form, program A.5 shows that the properties of an environ-
ment in an environment list can also be specified immediately, inside the object’s
tag itself.

Program A.5 Specifying environment properties inside an object tag.
<targets>

<ilp>

<operations>

<gauss time="0.1">

<arguments>

<i timedist="regular"/>

<o timedist="regular"/>

</arguments>

</gauss>

<display time="16.7m"/>

</operations>

</ilp>

</targets>

A.2.1 Environment hierarchies

A base object environment may be derived from another base object environment
of the same type, provided that it is defined after its parent. Deriving means
that all properties of the parent environment, as well as environments involving
the parent as one of the constituents, apply to the derived environment, unless
overwritten. An example is creating different processors of the same type, such as
in program A.6.

A.2.2 Links

There is one special environment: the link, which connects targets together, sig-
nifying that they can communicate. Although this environment does not combine
with the target environment to create a link target, it can be declared inside
the target environment. This means that the target will act as a ”default” link
source or destination, and makes it easier to create networks. The two specifica-
tions in program A.7 are therefore identical.

A.3 Syntax

We have created an SDF specification of the modeling language, consisting of a
lexical part (program A.8) and a context-free part (program A.9).

A.3 Syntax 151

Program A.6 Environment hierarchies avoid duplicate work by allowing ob-
jects to derive from other objects.
<targets>

<ilp>

<operations>

<gauss>

<!-- Properties of gauss operation on ILP processors -->

</gauss>

</operations>

</ilp>

<ilp1>

<E derives="ilp"/>

<E address="/proc/ilp1"/>

</ilp1>

<master-ilp>

<E derives="ilp"/>

<E address="/proc/master"/>

<!-- Extra operations available only to the master -->

<operations>

<display>

<!-- Properties of display operation on master -->

</display>

</operations>

</master-ilp>

</targets>

Program A.7 Defining a link environment inside a target, specifying a default
source or destination. The equivalent code, but without nesting a link within
a target, is to the right.

<targets>

<sensor></sensor>

<simd>

<env link="sensor2simd">

<E source="sensor"/>

</env>

</simd>

<ilp>

<env link="simd2ilp">

<E source="simd"/>

</env>

</ilp>

</targets>

<targets>

<sensor></sensor>

<simd></simd>

<ilp></ilp>

</targets>

<links>

<sensor2simd>

<E source="sensor"/>

<E destination="simd"/>

</sensor2simd>

<simd2ilp>

<E source="simd"/>

<E destination="ilp"/>

</simd2ilp>

</links>

152 Chapter A. Modeling language

Program A.8 Lexical syntax for EPML.
module epml-lexical

exports

sorts

Comment Dash DoubleDash

IDENTIFIER VALUE TARGET OPERATION RESOURCE ARGUMENT LINK

TYPE CLASS

lexical syntax

[\ \t\n\13] -> LAYOUT

context-free restrictions

LAYOUT? -/- [\ \t\n\13]

lexical syntax

"<!--" (~[\-] | Dash | DoubleDash)* "-->" -> Comment

Comment -> LAYOUT

"-" -> Dash

"--" -> DoubleDash

lexical restrictions

Dash -/- [\-]

DoubleDash -/- [\>]

lexical syntax

[A-Za-z_] [A-Za-z0-9\.\-_]* -> IDENTIFIER

~[\"\n]* -> VALUE

"target" -> TARGET

"operation" -> OPERATION

"resource" -> RESOURCE

"argument" -> ARGUMENT

"link" -> LINK

(TARGET|OPERATION|RESOURCE|ARGUMENT|LINK) -> TYPE

TYPE "s" -> CLASS

lexical restrictions

IDENTIFIER -/- [A-Za-z0-9\.\-_]

VALUE -/- ~[\"]

A.3 Syntax 153

Program A.9 Context-free productions for EPML.
module epml

imports

epml-lexical

exports

context-free start-symbols

Document

sorts

Id Value Type Class

PropSpec ObjectSpec PropElement Env TypeList ListEnv Document

context-free syntax

IDENTIFIER -> Id {cons("Id")}

VALUE -> Value {cons("Value")}

TYPE -> Type {cons("Type")}

CLASS -> Class {cons("Class")}

context-free syntax

Id "=" "\"" Value "\"" -> PropSpec {cons("PropSpec")}

Type "=" "\"" Id "\"" -> ObjectSpec {cons("ObjectSpec")}

"<" "E" PropSpec* "/>" -> PropElement {cons("PropElement")}

"<" "env" ObjectSpec* ">"

(TypeList|Env|PropElement)*

"</" "env" ">" -> Env {cons("Env")}

"<" "env" ObjectSpec* "/>" -> Env {cons("EmptyEnv")}

"<" Class ">"

ListEnv*

"</" Class ">" -> TypeList {cons("TypeList")}

"<" Id PropSpec* ">"

(TypeList|Env|PropElement)*

"</" Id ">" -> ListEnv {cons("ListEnv")}

"<" Id PropSpec* "/>" -> ListEnv {cons("EmptyListEnv")}

"<" "document" ">"

(Document|TypeList|Env)*

"</" "document" ">" -> Document {cons("Document")}

Appendix B

Language syntax

We present the syntax of our two new languages as an SDF specification. Smart-

Cam-C is the language used to specify the kernels, while PEPCIis the pseudo-
dynamic meta-programming language used to instantiate them.

B.1 SmartCam-C

Program B.1 contains the additional productions understood by the SmartCam

compiler, for the specification of kernels. They are: new storage classes for use
in kernel arguments, kernel definition syntax, and a method for array range spec-
ification, for stream stencilling. There is also a rule to allow code arguments to
functions to be specified without explicit quotation, allowing constructs such as
“init { /* code */ };”.

B.2 PEPCI

PEPCI adds two keywords, a quotation and anti-quotation mechanism, code eval-
uation, and embedded Stratego. The productions for these are shown in pro-
gram B.2.

B.2.1 Additional syntax for the 1DC language

Extending the PEPCI syntax with additional target languages is quite easy be-
cause of the modularity of SDF. Program B.3 lists the additional productions
needed to support the 1DC language used for programming the NEC IMAP line
of SIMD processors.

156 Chapter B. Language syntax

Program B.1 Productions for kernel definition in SmartCam-C.
module scc

imports

C

exports

sorts StorageClass

context-free syntax

"in" -> StorageClass {cons("In")}

"out" -> StorageClass {cons("Out")}

"inout" -> StorageClass {cons("InOut")}

"stream" -> StorageClass {cons("Stream")}

"lookup" -> StorageClass {cons("Lookup")}

sorts ExternalDef PostfixExpArrayRange

context-free syntax

FunDefDecl FunDefDecl CompoundStm

-> ExternalDef {cons("KernelDef")}

PostfixExp "[" CommaExp ".." CommaExp "]"

-> PostfixExp {cons("ArrayRange")}

FunCall CompoundStm+ -> FunCallCode {cons("FunCallCode")}

B.2 PEPCI 157

Program B.2 PEPCI language definition.
module PEPCI

imports C StrategoRenamed

exports

sorts Keyword

lexical syntax

"code" -> Keyword

"promote" -> Keyword

sorts BasicTypeName StorageClass

context-free syntax

"code" -> BasicTypeName {cons("Code")}

"promote" -> StorageClass {cons("Promote")}

sorts Code

context-free syntax

TypeName -> AllowableCode {avoid}

CommaExp -> AllowableCode

Stm -> AllowableCode

Declaration -> AllowableCode

"‘" AllowableCode "‘" -> Code {cons("CodeConst")}

sorts PrimaryExp UnaryExp TypedefName

context-free syntax

Code -> PrimaryExp

"@" CastExp -> IDENTIFIER {cons("Decode"), avoid}

"@" CastExp -> UnaryExp {cons("Decode"), prefer}

"@" CastExp -> TypedefName {cons("TypeDecode"), avoid}

"$" CastExp -> UnaryExp {cons("Escape")}

sorts StrategoDef

context-free syntax

FunDefTypeSpec FunDefDecl "{" StrategoDecl* "}"

-> FunDef {cons("StrategoDef"), avoid}

158 Chapter B. Language syntax

Program B.3 Productions for supporting the 1DC language.
module NEC

imports PEPCI

exports

sorts Keyword

lexical syntax

"sep" -> Keyword

"separate" -> Keyword

"outside" -> Keyword

"mif" -> Keyword

"melse" -> Keyword

"mdo" -> Keyword

"mwhile" -> Keyword

"mfor" -> Keyword

sorts

StorageClass PostfixExp FunCall UnaryExp ShiftExp

SelectionStm IterationStm

context-free syntax

"sep" -> StorageClass {cons("Separate")}

"separate" -> StorageClass {cons("Separate")}

"outside" -> StorageClass {cons("Outside")}

PostfixExp ":[" CommaExp ":]"

-> PostfixExp {cons("NECArrayIndex")}

":<" CastExp -> UnaryExp {cons("NECUnaryShiftLeft")}

":>" CastExp -> UnaryExp {cons("NECUnaryShiftRight")}

":&&" CastExp -> UnaryExp {cons("NECGlobalAnd")}

":||" CastExp -> UnaryExp {cons("NECGlobalOr")}

ShiftExp ":<" AddExp -> ShiftExp {cons("NECBinaryShiftLeft")}

ShiftExp ":>" AddExp -> ShiftExp {cons("NECBinaryShiftRight")}

"mif" "(" CommaExp ")" Stm

-> SelectionStm {cons("NECIf")}

"mif" "(" CommaExp ")" Stm "melse" Stm

-> SelectionStm {cons("NECIfElse")}

"mwhile" "(" CommaExp ")" Stm

-> IterationStm {cons("NECWhile")}

"mdo" Stm "mwhile" "(" CommaExp ")" ";"

-> IterationStm {cons("NECDoWhile")}

"mfor" "(" CommaExpOpt ";" CommaExpOpt ";" CommaExpOpt ")" Stm

-> IterationStm {cons("NECFor")}

Appendix C

Examples

We give one example each of a SmartCam-C stream program (including both
kernel definition and stream coordination), a skeleton, and a meta-skeleton. Please
recall that only the stream program is written by regular users. Skeletons and
especially meta-skeletons are the realm of specialized programmers.

C.1 Stream program

/*

>> Edge detection for AR pose estimation

>> Based on Caarls, J., "Pose estimation for mobile devices and

>> augmented reality" (to appear in 2008)

*/

#include "sc.h"

#include <math.h>

/* Gradient in the X direction */

NeighbourhoodToPixelOp()

gradx(in stream unsigned char i[-1..1][-3..3],

out stream short int *o)

{

int val = 0;

signed char kernel[3][7];

int y, x;

kernel = {{ 3, 26, 59, 0, -59, -26, -3},

{ 5, 43, 97, 0, -97, -43, -5},

3, 26, 59, 0, -59, -26, -3}};

for (y=-1; y <= 1; y++)

for (x=-3; x <= 3; x++)

val += i[y][x] * (int)kernel[y+1][x+3];

*o = val/1024;

160 Chapter C. Examples

}

/* Gradient in the Y direction */

NeighbourhoodToPixelOp()

grady(in stream unsigned char i[-3..3][-1..1],

out stream short int *o)

{

int val = 0;

signed char kernel[7][3];

int y, x;

kernel = {{ 3, 5, 3}, { 26, 43, 26}, { 59, 97, 59},

{ 0, 0, 0},

{-59, -97, -59}, {-26, -43, -26}, { -3, -5, -3}};

for (y=-3; y <= 3; y++)

for (x=-1; x <= 1; x++)

val += i[y][x] * (int)kernel[y+3][x+1];

*o = val/1024;

}

/* Gradient magnitude (squared) */

PixelToPixelOp()

gradmag(in stream short int *gx,

in stream short int *gy,

out stream unsigned char *o)

{

short int ax = *gx, ay = *gy, m;

if (ax < 0) ax = -ax;

if (ay < 0) ay = -ay;

m = ax*ax+ay*ay;

if (m > 255) m = 255;

*o = m;

}

/* Determine a threshold using a histogram */

GlobalOp()

histthresh(in stream unsigned char **g,

in double *p,

out int *t)

{

int hist[256], cum=0;

int x, y, i;

int target = *p*_stride*_lines;

memset(hist, 0, 256*sizeof(int));

C.1 Stream program 161

for (y=0; y < _lines; y++)

for (x=0; x < _stride; x++)

hist[g[y][x]]++;

for (i=255; i > 0 && cum < target; i--)

cum += hist[i];

*t = i;

}

/* Binarization */

PixelToPixelOp()

binarize(in stream unsigned char *i,

in int *t,

out stream unsigned char *o)

{

*o = (*i > *t) * 255;

}

/* Edge orientation */

PixelToPixelOp()

orient(in stream unsigned char *i,

in stream short int *gx,

in stream short int *gy,

out stream unsigned char *o)

{

if (*i)

{

double q = atan2(*gy, *gx);

if (q < 0) q = M_PI + q;

*o = q/M_PI*255;

}

else

*o = 0;

}

/* Non-maximum suppression */

NeighbourhoodToPixelOp()

nonmax(in stream unsigned char i[0][0],

in stream unsigned char g[-1..1][-1..1],

in stream unsigned char d[0][0],

out stream unsigned char *o)

{

if (i[0][0])

{

float lg = g[0][0], ld = d[0][0]/255.0*M_PI;

*o = 255;

if (ld < atan2(0.5, 1.5))

{

162 Chapter C. Examples

if (g[0][-1] > lg || g[0][1] > lg)

*o = 0;

}

else if (ld < atan2(1.5, 0.5))

{

if (g[-1][-1] > lg || g[1][1] > lg)

*o = 0;

}

else if (ld < atan2(1.5, -0.5))

{

if (g[-1][0] > lg || g[1][0] > lg)

*o = 0;

}

else if (ld < atan2(0.5, -1.5))

{

if (g[1][-1] > lg || g[-1][1] > lg)

*o = 0;

}

else

{

if (g[0][-1] > lg || g[0][1] > lg)

*o = 0;

}

}

else

*o = 0;

}

/* Cornerness detection */

NeighbourhoodToPixelOp()

detcorner(in stream unsigned char b[0][0],

in stream short int gx[-1..1][-1..1],

in stream short int gy[-1..1][-1..1],

out stream unsigned char *o)

{

if (b[0][0])

{

int y, x;

float dxdx=0, dydy=0, dxdy=0, tr, det, res;

for (y=-1; y <= 1; y++)

for (x=-1; x <= 1; x++)

{

dxdx += gx[y][x]*gx[y][x];

dydy += gy[y][x]*gy[y][x];

dxdy += gx[y][x]*gy[y][x];

}

tr = dxdx + dydy;

det = dxdx*dydy-dxdy*dxdy;

C.1 Stream program 163

res = (4*det/(tr*tr))*255;

if (res < 0) res = -res;

if (res > 255) res = 255;

*o = res;

}

else

*o = 0;

}

/* Thinning */

RecursiveNeighbourhoodToPixelOp()

thin(in stream unsigned char i[0..1][-1..1],

out stream unsigned char o[-1..0][-1..1])

{

unsigned char thin[256], nbh;

init {

int i, b;

for (i = 0; i < 256; i++)

{

unsigned char mask[8];

char hist[8];

int num = 0, changed=1;

for (b = 0; b < 8; b++)

{

if (i & (1 << b))

mask[b] = b;

else

mask[b] = 255;

hist[b] = 0;

}

while (changed)

{

changed = 0;

for (b = 0; b < 8; b += 2)

{

// corners

if (mask[b] != 255)

{

if (mask[b] > mask[(b + 1) % 8])

{

mask[b] = mask[(b + 1) % 8];

changed = 1;

}

if (mask[b] > mask[(b - 1 + 8) % 8])

{

mask[b] = mask[(b - 1 + 8) % 8];

164 Chapter C. Examples

changed = 1;

}

}

}

for (b = 1; b < 8; b += 2)

{

// 4-connected

if (mask[b] != 255)

{

if (mask[b] > mask[(b + 1) % 8])

{

mask[b] = mask[(b + 1) % 8];

changed = 1;

}

if (mask[b] > mask[(b - 1 + 8) % 8])

{

mask[b] = mask[(b - 1 + 8) % 8];

changed = 1;

}

if (mask[b] > mask[(b + 2) % 8])

{

mask[b] = mask[(b + 2) % 8];

changed = 1;

}

if (mask[b] > mask[(b - 2 + 8) % 8])

{

mask[b] = mask[(b - 2 + 8) % 8];

changed = 1;

}

}

}

}

for (b = 0; b < 8; b++)

if (mask[b] != 255)

hist[mask[b]]++;

for (b = 0; b < 8; b++)

if (hist[b])

num++;

if (num > 1)

thin[i] = 255;

else

thin[i] = 0;

}

};

if (i[0][0])

{

nbh = ((o[-1][-1]>0)<<0)|((o[-1][0]>0)<<1)|((o[-1][1]>0)<<2)|

((o[0][-1]>0)<<7)| ((i[0][1]>0)<<3)|

((i[1][-1]>0)<<6)|((i[1][0]>0)<<5)|((i[1][1]>0)<<4);

C.2 Skeleton 165

if (thin[nbh])

o[0][0] = 255;

else

o[0][0] = 0;

}

else

o[0][0] = 0;

}

MAINTYPE MAIN(int argc, char **argv)

{

Future<STREAM> img, gx, gy, gm, bin, o, c;

Future<int> t;

scInit(argc, argv);

while (1)

{

/* IN IN IN OUT */

capture (&img);

gradx (&img, &gx);

grady (&img, &gy);

gradmag (&gx, &gy, &gm);

histthresh(&gm, scdbl(0.1), &t);

binarize (&gm, &t, &bin);

orient (&bin, &gx, &gy, &o);

nonmax (&bin, &gm, &o, &bin);

thin (&bin, &bin);

detcorner (&bin, &gx, &gy, &c);

/* Continue with edge following on bin and c */

}

return scExit();

}

C.2 Skeleton

/*

>> Pixel to pixel operation for sequential targets

*/

#include "stdstratego.h"

#include "stdsc.h"

#include "pixelbypixel.h"

void PixelToPixelOp(argcode_t *argcode, int arguments, code body)

{

166 Chapter C. Examples

int ii;

for (ii=0; ii < arguments; ii++)

{

if (argcode[ii].argtype == ARG_STREAM_IN ||

argcode[ii].argtype == ARG_STREAM_OUT)

{

@declare(argcode[ii].datatype, argcode[ii].id);

body = replace(‘*$@argcode[ii].id‘, argcode[ii].id, body);

}

else

{

@declare(addrpointer(argcode[ii].datatype), argcode[ii].id);

if (@dataclass(argcode[ii].datatype) == DATACLASS_INTEGER)

@argcode[ii].id = &(@argcode[ii].argid).data.d;

else if (@dataclass(argcode[ii].datatype) == DATACLASS_FLOAT)

@argcode[ii].id = &(@argcode[ii].argid).data.f;

else

@argcode[ii].id = @cast(addpointer(argcode[ii].datatype),

(@argcode[ii].argid).data.b);

}

argcode[ii].state.buffer = 1;

argcode[ii].state.state = 0;

argcode[ii].state.delay = 0;

}

repeat {

$@body;

};

epilogue {

int ii;

for (ii=0; ii < arguments; ii++)

{

if (argcode[ii].argtype == ARG_STREAM_IN)

BufferRemoveReference(ii);

else if (argcode[ii].argtype == ARG_STREAM_OUT)

BufferFinalize(ii);

}

};

}

C.3 Meta-skeleton

/*

>> pixelbypixel, metaskeleton for pixel operations

C.3 Meta-skeleton 167

*/

#include "stdstratego.h"

#include "stdsc.h"

#include "ilpstrategies.h"

#include "linebyline.h"

#define PREPROLOGUE 0

#define PROLOGUE 1

#define REPEAT 2

#define EPILOGUE 3

typedef struct skelcode_s

{

code body;

code split[];

} skelcode_t;

code metasplit(code body)

{

strategies

main =

<table-put>("globals", "prologue", Compound([], []))

; <table-put>("globals", "repeat", Compound([], []))

; <table-put>("globals", "epilogue", Compound([], []))

; <topdown(try(MetaSplit <+ AddPromote))>(body)

; ![<id>, <table-get>("globals", "prologue")

, <table-get>("globals", "repeat")

, <table-get>("globals", "epilogue")

]

; map(\a -> AssignInit(CodeConst(a))\); \a -> ArrayInit(a)\; id

rules

MetaSplit:

Stat(FunCall(Id(i), [CodeConst(c)])) -> Stat(EmptyExp)

where (<elem>(i, ["prologue", "repeat", "epilogue"])

; <table-put>("globals", i, c)

)

AddPromote:

Declaration2(t@TypeSpec(a, b, c),i) ->

Declaration2(DeclSpec([Promote], t), i)

AddPromote:

Declaration2(DeclSpec(d, t), i) ->

Declaration2(DeclSpec([Promote|d], t), i)

}

static int instanceBufferGetStride(int ii, int aa)

{

168 Chapter C. Examples

if (instance[ii].argcode[aa].connector.instance == -1)

return

scuBufferGetStride(args[instance[ii].argcode[aa].

connector.argument].buffer);

else

error("Interactions with intermediate buffers not allowed");

}

static int instanceBufferGetLines(int ii, int aa)

{

if (instance[ii].argcode[aa].connector.instance == -1)

return

scuBufferGetLines(args[instance[ii].argcode[aa].

connector.argument].buffer);

else

error("Interactions with intermediate buffers not allowed");

}

static int instanceBufferRemoveReference(int ii, int aa)

{

if (instance[ii].argcode[aa].connector.instance == -1)

return

scuBufferRemoveReference(args[instance[ii].argcode[aa].

connector.argument].buffer);

else

return 0;

}

static int instanceBufferFinalize(int ii, int aa)

{

if (instance[ii].argcode[aa].connector.instance == -1)

return

scuBufferFinalize(args[instance[ii].argcode[aa].

connector.argument].buffer);

else

return 0;

}

static int instanceBufferPeek(int ii, int aa, void **data,

int size, int options)

{

if (instance[ii].argcode[aa].connector.instance == -1)

return

scuBufferPeek(args[instance[ii].argcode[aa].

connector.argument].buffer,

args[instance[ii].argcode[aa].

connector.argument].reader,

data, size, options);

else

error("Interactions with intermediate buffers not allowed");

}

C.3 Meta-skeleton 169

static void instanceBufferReleasePeeked(int ii, int aa, int size)

{

if (instance[ii].argcode[aa].connector.instance == -1)

scuBufferReleasePeeked(args[instance[ii].argcode[aa].

connector.argument].buffer,

args[instance[ii].argcode[aa].

connector.argument].reader,

size);

else

error("Interactions with intermediate buffers not allowed");

}

static int instanceBufferAllocate(int ii, int aa, void **data,

int size, int options)

{

if (instance[ii].argcode[aa].connector.instance == -1)

return

scuBufferAllocate(args[instance[ii].argcode[aa].

connector.argument].buffer,

data, size, options);

else

error("Interactions with intermediate buffers not allowed");

}

static void instanceBufferReleaseAllocated(int ii, int aa, int size)

{

if (instance[ii].argcode[aa].connector.instance == -1)

scuBufferReleaseAllocated(args[instance[ii].argcode[aa].

connector.argument].buffer,

size);

else

error("Interactions with intermediate buffers not allowed");

}

static code rewriteBuffers(int ii, code body)

{

body = rewrite(‘BufferGetStride(PH1)‘,

‘instanceBufferGetStride($ii, PH1)‘, body);

body = rewrite(‘BufferGetLines(PH1)‘,

‘instanceBufferGetLines($ii, PH1)‘, body);

body = rewrite(‘BufferRemoveReference(PH1)‘,

‘instanceBufferRemoveReference($ii, PH1)‘, body);

body = rewrite(‘BufferFinalize(PH1)‘,

‘instanceBufferFinalize($ii, PH1)‘, body);

body = rewrite(‘BufferPeek(PH1, PH2, PH3, PH4)‘,

‘instanceBufferPeek($ii, PH1, PH2, PH3, PH4)‘,

body);

body = rewrite(‘BufferReleasePeeked(PH1, PH2)‘,

‘instanceBufferReleasePeeked($ii, PH1, PH2)‘,

body);

170 Chapter C. Examples

body = rewrite(‘BufferAllocate(PH1, PH2, PH3, PH4)‘,

‘instanceBufferAllocate($ii, PH1, PH2, PH3, PH4)‘,

body);

body = rewrite(‘BufferReleaseAllocated(PH1, PH2)‘,

‘instanceBufferReleaseAllocated($ii, PH1, PH2)‘,

body);

return body;

}

void pixelbypixel(instance_t *instance, int instances)

{

skelcode_t skelcode[];

int ii, jj, kk, fii=-1, fia=-1;

int pbp_hpixels, pbp_ii, stride;

for (ii=0; ii < instances; ii++)

{

/* Make sure function calls in registered codes are expanded */

instance[ii].body = rewrite(‘prologue(PH1)‘,

‘prologue(reduce(PH1, 1))‘,

instance[ii].body);

instance[ii].body = rewrite(‘repeat(PH1)‘,

‘repeat(reduceit(PH1, 1))‘,

instance[ii].body);

instance[ii].body = rewrite(‘epilogue(PH1)‘,

‘epilogue(reduce(PH1, 1))‘,

instance[ii].body);

/* Add skeleton functions to symbol table */

@addpromote(instance[ii].body);

/* Call skeleton, keeping expanded code */

skelcode[ii].body =

reduce(‘($@instance[ii].skeleton)(instance[ii].argcode,

instance[ii].arguments,

instance[ii].kernel)‘);

/* Extract registered codes, and make variables unique */

skelcode[ii].split = @metasplit(skelcode[ii].body);

skelcode[ii].split = @scramblevariables(skelcode[ii].split,

makeid(‘i‘, ii));

/* Rewrite buffers to add instance information */

for (jj=0; jj < 4; jj++)

if (jj != REPEAT)

skelcode[ii].split[jj] =

rewriteBuffers(ii, skelcode[ii].split[jj]);

/* Rename arguments to match scrambled variables */

for (jj=0; jj < instance[ii].arguments; jj++)

C.3 Meta-skeleton 171

{

instance[ii].argcode[jj].id =

makeid(makeid(makeid(‘i‘, ii),

instance[ii].argcode[jj].id), ‘0‘);

if (instance[ii].argcode[jj].connector.instance == -1 &&

instance[ii].argcode[jj].argtype == 0 && fia == -1)

{

fii = ii;

fia = jj;

}

}

for (jj=0; jj < instance[ii].arguments; jj++)

{

int ci = instance[ii].argcode[jj].connector.instance;

int ca = instance[ii].argcode[jj].connector.argument;

if (ci == -1)

{

if (instance[ii].argcode[jj].argtype == ARG_STREAM_IN ||

instance[ii].argcode[jj].argtype == ARG_STREAM_OUT)

{

/* Make new variable to interact with the outside world */

code newid = makeid(‘oa‘, ca);

@declare(addrpointer(instance[ii].argcode[jj].datatype),

newid);

for (kk=1; kk < 4; kk++)

skelcode[ii].split[kk] =

replace(instance[ii].argcode[jj].id,

‘($@newid)[pbp_ii]‘, skelcode[ii].split[kk]);

instance[ii].argcode[jj].id = newid;

}

}

else if (instance[ii].argcode[jj].argtype == ARG_STREAM_IN)

{

/* Connect by referencing output variable */

for (kk=1; kk < 4; kk++)

skelcode[ii].split[kk] =

replace(instance[ii].argcode[jj].id,

instance[ci].argcode[ca].id,

skelcode[ii].split[kk]);

instance[ii].argcode[jj].id = instance[ci].argcode[ca].id;

}

}

}

172 Chapter C. Examples

stride =

scuBufferGetStride(args[instance[fii].argcode[fia].

connector.argument].buffer);

pbp_hpixels = stride;

/* Preprologue (initialize variables) */

for (ii=0; ii < instances; ii++)

@skelcode[ii].split[PREPROLOGUE];

propEnvReset();

propEnv("operation", operation);

for (ii=0; ii < instances; ii++)

for (jj=0; jj < instance[ii].arguments; jj++)

{

int ci = instance[ii].argcode[jj].connector.instance;

int ca = instance[ii].argcode[jj].connector.argument;

if (ci == -1)

{

propEnv("argument", @idtostring(makeid(‘id‘, ca)));

propSeti("id", ca);

propEnv("target", target);

propSeti("buffer", instance[ii].argcode[jj].state.buffer);

propSeti("state", instance[ii].argcode[jj].state.state);

propSeti("delay", instance[ii].argcode[jj].state.delay);

propSeti("elementsize",

sizeof(instance[ii].argcode[jj].datatype));

if (instance[ii].argcode[jj].argtype == ARG_STREAM_IN ||

instance[ii].argcode[jj].argtype == ARG_STREAM_OUT ||

instance[ii].argcode[jj].argtype == ARG_LOOKUP)

propSeti("chunksize", stride);

else

propSeti("chunksize", 1);

if (instance[ii].argcode[jj].argtype == ARG_SCALAR_IN ||

instance[ii].argcode[jj].argtype == ARG_SCALAR_OUT ||

instance[ii].argcode[jj].argtype == ARG_LOOKUP)

propSets("timedist", "bulk");

else

propSets("timedist", "regular");

propEnvBack();

propEnvBack();

}

}

/* Prologue */

for (ii=0; ii < instances; ii++)

C.3 Meta-skeleton 173

@skelcode[ii].split[PROLOGUE];

/* Actual processing */

while (pbp_hpixels =

scuBufferPeek(args[instance[fii].argcode[fia].

connector.argument].buffer,

args[instance[fii].argcode[fia].

connector.argument].reader,

(void**)&(@instance[fii].argcode[fia].id),

stride *

sizeof(instance[fii].argcode[fia].datatype),

SCU_BLOCK_ALL))

{

pbp_hpixels =

pbp_hpixels / sizeof(instance[fii].argcode[fia].datatype);

for (ii=0; ii < instances; ii++)

for (jj=0; jj < instance[ii].arguments; jj++)

{

argcode_t *ac = &instance[ii].argcode[jj];

if ((ii != fii || jj != fia) && (*ac).argtype == 0 &&

(*ac).connector.instance == -1)

scuBufferPeek(args[(*ac).connector.argument].buffer,

args[(*ac).connector.argument].reader,

(void**)&(@instance[ii].argcode[jj].id),

pbp_hpixels *

sizeof(instance[ii].argcode[jj].datatype),

SCU_BLOCK_ALL);

else if (instance[ii].argcode[jj].argtype == ARG_STREAM_OUT &&

(*ac).connector.instance == -1)

scuBufferAllocate(args[(*ac).connector.argument].buffer,

(void**)&(@instance[ii].argcode[jj].id),

pbp_hpixels *

sizeof(instance[ii].argcode[jj].datatype),

SCU_BLOCK_ALL);

}

for (pbp_ii=0; pbp_ii < pbp_hpixels; pbp_ii++)

for (ii=0; ii < instances; ii++)

@skelcode[ii].split[REPEAT];

for (ii=0; ii < instances; ii++)

for (jj=0; jj < instance[ii].arguments; jj++)

{

argcode_t *ac = &instance[ii].argcode[jj];

if (instance[ii].argcode[jj].argtype == ARG_STREAM_IN &&

(*ac).connector.instance == -1)

scuBufferReleasePeeked(args[(*ac).connector.argument].buffer,

args[(*ac).connector.argument].reader,

174 Chapter C. Examples

pbp_hpixels *

sizeof(instance[ii].argcode[jj].

datatype));

else if (instance[ii].argcode[jj].argtype == ARG_STREAM_OUT &&

(*ac).connector.instance == -1)

scuBufferReleaseAllocated(args[(*ac).connector.argument].buffer,

pbp_hpixels *

sizeof(instance[ii].argcode[jj].

datatype));

}

}

/* Epilogue (release buffers) */

for (ii=0; ii < instances; ii++)

@skelcode[ii].split[EPILOGUE];

}

Summary

Automated Design of Application-Specific Smart
Camera Architectures

Wouter Caarls

Parallel heterogeneous multiprocessor systems are often shunned in embedded
system design, not only because of their design complexity but because of the
programming burden. Programs for such systems are architecture-dependent : the
application developer needs architecture-specific knowledge to implement his algo-
rithms, as each processor has its own characteristics and programming language.
He will therefore often stick to the architectures he knows best instead of looking
for the best one. This leads to suboptimal solutions, and costly redesign efforts if
the chosen architecture later proves to be insufficient. We demonstrate that there
is no single best architecture or programming language that can release us from
this plight.

Our solution to this problem uses a programming model based on the concept of
architecture independence through algorithm dependence. By limiting the expres-
siveness of a programming language to just those concepts needed to implement a
given class of algorithms, it may be compiled to a variety of different (parallel) pro-
cessor architectures. In particular, we limit the access patterns an algorithm may
employ using algorithmic skeletons. Using different languages – or interfaces – to
implement different algorithms is more natural than using architecture-dependent
languages, because a programmer should be concerned with algorithms, not with
processors. A language that is tailored to a specific class of algorithms will allow
those algorithms to be expressed more naturally than using a general-purpose or
processor-specific language.

We have designed a meta-programming system to implement translators for
such algorithm-specific languages (ASLs). A translator for an ASL has three dis-
tinct tasks. First, it must implement the access pattern that is part of the skele-
ton, such as a row-major iteration over image pixels. Second, it must rewrite the
algorithm-specific interface to that used by the run time system – for example,
changing relative array indexing to absolute indices. Finally, it must translate the
algorithm (also called the kernel) into a language that is understood by the target
processor. PEPCI, a new meta-programming language and tool for implementing
ASLs, facilitates these tasks by allowing the pattern to be implemented directly in
the target language while still providing sophisticated code transformation tools.

176 SUMMARY

The operations resulting from the translation are shown to perform within 20% of
their handcrafted counterparts, in which the latter can be considered optimal.

An application consists of multiple algorithms, each written in its own lan-
guage dialect. In image processing applications, these algorithms often work in
successive steps on a series of images. This suggests the view of an application as a
directed graph of tasks working on streams of data. This is the view taken in stream
programming, and we present our implementation of that concept (based on remote
procedure call (RPC)). Using futures, RPC allows the application’s task graph to be
built under imperative program control, thereby allowing it to be data-dependent.
Such data dependencies are important in applications that need to operate in dy-
namic environments, or in dynamic roles. An automated, dynamic mapping of the
task graph to an architecture model maintains the architecture independence of the
program. We demonstrate that this mapping creates an effective multiprocessor
program, but that most of the benefits of using a heterogeneous system must be
realized by parallelizing the operations themselves.

Finally, we use the architecture independence of programs written using our
programming model to conduct an automated design space exploration of pos-
sible architectures, creating a Pareto front of optimal trade-offs between perfor-
mance, area and power consumption. Each design point is simulated, using pre-
benchmarked operations to speed up the process. The simulation has an accuracy
of around 10%. We use multi-objective evolutionary optimization to approximate
the Pareto front, and show that this has good convergence and coverage. The
practicality of the entire system of skeletonization, stream programming and de-
sign space exploration is demonstrated by implementing two case studies.

Samenvatting

Geautomatiseerd Ontwerp van
Toepassingsspecifieke Intelligente Camera

Architecturen

Wouter Caarls

Parallele heterogene multiprocessor systemen worden vaak vermeden bij het
ontwerp van embedded systems, niet alleen omdat ze moeilijk te ontwerpen zijn,
maar vooral vanwege problemen met de programmeerbaarheid. Programma’s voor
zulke systemen zijn architectuur-afhankelijk : de ontwikkelaar heeft architectuur-
specifieke kennis nodig om zijn algoritmes te implementeren, omdat elke processor
verschillende eigenschappen en een eigen programmeertaal heeft. Een ontwikkelaar
zal daarom vaak kiezen voor architecturen waar hij bekend mee is, in plaats van te
zoeken naar de beste architectuur. Dit resulteert in suboptimale oplossingen, en
dure herontwerp trajecten als de gekozen architectuur later niet blijkt te voldoen.
We laten zien dat er geen “beste” architectuur of programmeertaal bestaat om dit
probleem te vermijden.

Onze oplossing maakt gebruik van een programmeermodel dat gekenmerkt
wordt door architectuur onafhankelijkheid door algoritme afhankelijkheid. Door
de expressiviteit van een programma te beperken tot alleen die concepten die
nodig zijn om een bepaalde klasse van algoritmes te implementeren, kan het naar
een keur van verschillende (parallele) processorarchitecturen worden gecompileerd.
De belangrijkste beperking wordt opgelegd door de manier waarop geheugen kan
worden benaderd te beperken met behulp van van algoritmische skeletten. Het
gebruik van meerdere talen – of interfaces – om verschillende algoritmen te im-
plementeren is natuurlijker dan het gebruik van architectuur-afhankelijke talen,
omdat een programmeur zich bezig houdt met algoritmen, niet met architecturen.
Een programmeertaal die is toegespitst op een bepaalde klasse van algoritmen is
geschikter om die algoritmen in uit te drukken dan een algemene of processor-
specifieke taal.

We hebben een metaprogrammeersysteem ontworpen om compilers voor zulke
algoritme-specifieke talen (algorithm-specific languages, ASLs) te implementeren.
Een compiler voor een ASL kent drie verschillende taken. Ten eerste moet het de
geheugentoegangspatronen van het algoritmische skelet implementeren, bijvoor-
beeld een iteratie over de pixels van een beeld. Ten tweede moet het de algoritme-
specifieke interface herschrijven naar de interface die gebruikt wordt door het run-

178 SAMENVATTING

time systeem, zoals het vervangen van relatieve pixel-adressering door absolute
adressering. Ten slotte moet het het algoritme zelf (ook kernel genoemd) ver-
talen naar een taal die ondersteund wordt door de processor. PEPCI, een nieuwe
metaprogrammeertaal en -systeem om ASLs te implementeren vereenvoudigt deze
taken doordat het patroon direct in the doeltaal kan worden gëımlementeerd,
terwijl het toch geavanceerde mogelijkheden biedt voor het herschrijven van pro-
gramma’s. We laten zien dat de operaties die het resultaat zijn van de vertaling
binnen 20% van (als optimaal te beschouwen) handgeschreven code presteren.

Een applicatie bestaat uit meerdere algoritmen, elk uitgedrukt in zijn eigen
taal. In beeldverwerkingsapplicaties zijn de algoritmen vaak opeenvolgende stap-
pen die op een serie beelden worden toegepast. We kunnen zo’n applicatie zien als
een gerichte graaf van taken die op een stroom van data werken. Dit is het gezicht-
spunt dat wordt ingenomen in stream programming, en we presenteren onze imple-
mentatie van dat concept (gebaseerd op remote procedure call (RPC)). Door ge-
bruik te maken van opties kunnen met RPC taakgrafen op een imperatieve manier
geconstrueerd worden, waarbij de structuur data-afhankelijk kan zijn. Zulke data
afhankelijkheden zijn belangrijk bij toepassing in dynamische omgevingen, of in
verschillende rollen. De architectuuronafhankelijkheid wordt bewaard door een
geautomatiseerde, dynamische toewijzing van de taakgraaf aan de processoren in
een architectuurmodel. We laten zien dat deze toewijzing een goed multiprocessor-
programma oplevert, maar dat de meeste winst van een heterogene architectuur
moet worden behaald door het paralleliseren van de operaties zelf.

Ten slotte gebruiken we de architectuuronafhankelijkheid van programma’s die
voor ons programmeermodel geschreven zijn om automatisch de ontwerpruimte te
doorzoeken op geschikte architecturen. Dat levert een Pareto front op van op-
timale afwegingen tussen snelheid, chipoppervlak en energieverbruik. Elk punt
in de ontwerpruimte wordt gesimuleerd, waarbij we gebruikmaken van aparte
metingen voor elke operatie om de simulatie te versnellen. De simulatie heeft een
nauwkeurigheid van ongeveer 10%. We gebruiken evolutionaire optimalisatie voor
meerdere doelen om het Pareto front te benaderen, en laten zien dat dit goede
convergentie-eigenschappen heeft. De bruikbaarheid van het hele systeem van
skeletonisatie, stream programming en doorzoeken van de ontwerpruimte wordt
gedemonstreerd door twee case studies te implementeren.

Acknowledgements

When Pieter Jonker first approached me for the SmartCam project, I was imme-
diately enthralled. Parallel computing had been one of my favorite subjects, and
the opportunity to design my own processor architecture was too good to pass up.
I would like to thank him for this opportunity, his support throughout the entire
project, and for giving me the freedom to structure the work as I thought best.

I would also like to thank Henk Corporaal as the leader of the SmartCam

project, for his feedback on my papers. Without his outside but knowledgeable
opinion, they would have been much less readable. Our other partners in the
project, Richard Kleihorst, Harry Broers, and Hamed Fatemi also provided valu-
able feedback during our regular meetings.

Thanks also to my promotor Lucas van Vliet, who diligently read and corrected
the thesis manuscript during the last stage. It was no concern that the subject
was outside his usual field, for he is interested in – and knowledgeable and vocal
about – everything around him.

Many thanks go to the other Ph.D. students and staff in PH/QI, with whom
it was a pleasure to share the coffee room, with its many scientific and unscientific
discussions. I would especially like to thank my roommates Frank, Vincent, and
Kees, for sharing their problems and listening to mine. Also, thanks to Cris, Dick,
and Mike, for making me feel welcome and not hitting me in SoF2, and to Bernd
and Frank for the many nights of playing board games.

I would also like to mention the M.Sc. students who occupied the Robocup
room over the years, some of whom I have had the pleasure of supervising, and
others whose company I enjoyed during tournaments: Bram, Corné, Erik, Floris,
Jan, Jan-Willem, Jev, Krijn, Martijn, and Paul.

Finally, I would like to thank my parents and brother for supporting and en-
couraging me, and without whose warmth and help – both trivially and non-
trivially – this thesis would never have been.

Curriculum Vitae

Wouter Caarls was born in Amsterdam on the 15th of November, 1978. He ob-
tained his VWO diploma at the Teylingen College, in Noordwijkerhout. In 1997 he
went to Amsterdam to study Artificial Intelligence at the University of Amsterdam
where he received his Master’s degree in 2002, with honor. The subject of his Mas-
ter’s thesis was “Genetic Algorithm Visualisation”. The research was conducted
at the Section Computational Science under supervision of Jaap Kaandorp.

In July 2002 he joined the Quantitative Imaging group, department of Imaging
Science and Technology, at the Delft University of Technology, where he worked
on the PROGRESS (PROGram for Research on Embedded Systems & Software)
project EES.5411 (SmartCam: Devices for Embedded Intelligent Cameras). The
results of the work are presented in this thesis. He spent a month working at Philips
Research Laboratories, Eindhoven, and NEC Corporation, Kawasaki, Japan, in
November 2002 and May 2005, respectively.

In August 2007 he joined the Laboratory of Cellular Dynamics at the Max
Planck institute for Biophysical Chemistry in Göttingen, Germany.

	Introduction
	Smart cameras
	Algorithm-specific languages
	Automated design space exploration
	Design flow
	Contributions and thesis outline

	Embedded image processing
	Application domain
	Processor architectures
	Algorithms
	Languages
	Constructing applications
	Discussion

	Designing architecture-independent applications
	Architecture independence through algorithm dependence
	Algorithmic skeletons
	Stream programming
	Stream kernels as skeleton inputs
	Discussion

	Implementing skeletons using meta-programming
	Functional requirements
	Meta-programming
	A meta-programming language for skeleton instantiation
	Rewriting
	Partial evaluation
	Skeleton merging
	Results
	Discussion

	Implementing stream programming using RPC
	Remote procedure call
	Run-time environment
	Mapping
	Performance prediction
	Buffer management
	Results
	Discussion

	Exploring the SmartCam design space
	Architecture template
	Benchmarking
	Application simulation
	Pareto optimization
	Results
	Discussion

	Conclusions
	Discussion

	Glossary
	Bibliography
	Modeling language
	Data structure
	Semantics
	Syntax

	Language syntax
	SmartCam-C
	PEPCI

	Examples
	Stream program
	Skeleton
	Meta-skeleton

	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae

