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Abstract

Self-stabilization is a property of a distributed system such that, regardless of the

legitimacy of its current state, the system behavior shall eventually reach a legitimate

state and shall remain legitimate thereafter. The elegance of self-stabilization stems

from the fact that it distinguishes distributed systems by a strong fault tolerance property

against arbitrary state perturbations. The difficulty of designing and reasoning about

self-stabilization has been witnessed by many researchers; most of the existing techniques

for the verification and design of self-stabilization are either brute-force, or adopt manual

approaches non-amenable to automation.

In this dissertation, we first investigate the possibility of automatically designing

self-stabilization through global state space exploration. In particular, we develop a set

of heuristics for automating the addition of recovery actions to distributed protocols on

various network topologies. Our heuristics equally exploit the computational power of a

single workstation and the available parallelism on computer clusters. We obtain existing

and new stabilizing solutions for classical protocols like maximal matching, ring coloring,

mutual exclusion, leader election and agreement.

Second, we consider a foundation for local reasoning about self-stabilization; i.e., study

the global behavior of the distributed system by exploring the state space of just one

of its components. It turns out that local reasoning about deadlocks and livelocks is

possible for an interesting class of protocols whose proof of stabilization is otherwise

complex. In particular, we provide necessary and sufficient conditions – verifiable in the

local state space of every process – for global deadlock- and livelock-freedom of protocols

on ring topologies. Local reasoning potentially circumvents two fundamental problems

that complicate the automated design and verification of distributed protocols: (1) state

explosion and (2) partial state information. Moreover, local proofs of convergence are

independent of the number of processes in the network, thereby enabling our assertions

about deadlocks and livelocks to apply on rings of arbitrary sizes without worrying about

state explosion.
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Chapter 1

Introduction

Software systems are ubiquitous; they take part in almost every aspect of modern

technology. Examples include smart phones, personal computers, electronic watches,

home appliances, land vehicles, airplanes and weapon systems. The complexity of

software-based systems tends to increase drastically due to two main reasons: (1)

software subsystems integrate to build complex systems through inter-networking and, (2)

the proliferation of computerized systems into many facets of our daily routine places

increasingly stringent dependability requirements on software. Moreover, faults can

randomly perturb a distributed system resulting in a corrupted global configuration that

can only be corrected by a careful coordination among spatially distant administrators.

Transient faults are external perturbations whose effect on a dynamic system is reversible

during the system execution. Transient faults are very common in computing systems

and they may be caused by software (e.g., bad initialization, reconfiguration, loss

of coordination), hardware (e.g., hardware decay/aging, power fluctuations) and the

environment (e.g., cosmic rays, electromagnetic interference). Without causing any

permanent damage, transient faults manifest themselves in the writable memory of

computing systems as bit-flips. Such bit-flips perturb communication protocols to either

deadlock configurations, where no node of a distributed system can take any actions, or

non-progress cycles/livelocks, where the nodes of a non-deadlocked distributed system

repeatedly perform a set of actions that render the entire protocol unresponsive forever.

An example in [1] reports an unexpected configuration of the ARPANET protocol where

three incorrect sequence numbers were injected by transient faults. The protocol cycled

indefinitely among these configurations until tedious manual intervention solved the

problem [2]. One possible solution to tolerate transient faults in interconnected systems

is to make them self-stabilizing.

1



Regardless of its initial configuration, a self-stabilizing system eventually reaches a global

configuration from where all its behaviors are legitimate [3]. Such a property is highly

desirable in network protocols; self-stabilizing network protocols are immune to transient

faults. We assume that there exists enough time for the protocol to stabilize before transient

faults resume their occurrences. Figure 1.1 illustrates the legitimate and illegitimate

configurations of a dynamic system together with deadlocks and non-progress cycles in

illegitimate configurations. Note that although our main interest is in network protocols,

component-based software systems can also benefit from self-stabilization as they have

architectural constraints similar to those of a distributed systems.

Figure 1.1: Partitioning of the Set of Configurations of a Dynamic System

into Legitimate and Illegitimate Configurations

1.1 Motivation and Significance

Self-stabilization is naturally captured by living organisms. For instance, a wounded part

of the human body takes its time to heal and eventually restores its initial healthy state. The

human immunity system plays a major role in healing infections and as a result, recovering

to the body’s original normal status. On the other hand, system stability has been studied

for a long time as a sub-discipline of control theory [4]. However, designing stabilization in

computer systems is a non-trivial task [3], [5], [6]. First, self-stabilizing computer systems

reach sets of configurations that are by themselves dynamic under legitimate behavior,

unlike fixed stable points in control systems. Second, computer systems put no constraints,

whatsoever, on the executions of their models. An arbitrary interleaving of the actions of

processes is a valid behavior of a computer system, unlike the execution of control systems

whose components are assumed to execute in a lockstep synchronization. Third, achieving
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stabilization in computer systems does not follow the constraints of the traditional feedback

loop in control theory or the constraints of physical laws governing the controlled plant.

The difficulty of design and verification of self-stabilization has been reported by many

researchers since the time Dijkstra introduced [7] self-stabilization in the seventies. For

example, Gouda asserts that the time necessary to verify self-stabilization compared to

the protocol design time is approximately ten to one [6]. Indeed, a stabilizing protocol

should be able to recover to its legitimate behavior from every possible configuration.

Moreover, each node in a distributed system is aware only of its neighborhood, thereby

has limited observability of the global configuration. This limited scope usually prevents

the node from evaluating the legitimacy of the global configuration and consequently,

complicates potential corrective actions. Thus, the manual design and verification of

self-stabilization are hard and error-prone. Therefore, it is of considerable importance to

provide computer-aided means that facilitate the generation of stabilizing systems. The

generated self-stabilizing systems are correct-by-construction, thereby eliminating the need

for a proof of correctness. Furthermore, an understanding of the fundamental properties of

stabilization enables the design of more efficient automated means for the verification and

design of robust distributed protocols.

1.2 Problem Statement

We study the properties of transition systems [8] of self-stabilizing protocols. Given a

non-stabilizing dynamic system/network protocol, we modify its transition relation such

that the resulting protocol is self-stabilizing while maintaining the original behavior of the

non-stabilizing protocol in the absence of transient faults. Figure 1.2 depicts a simplified

view of our research problem.

Figure 1.2: Algorithmic Addition of Self-Stabilization

Self-stabilization requires two properties, (1) closure and (2) convergence [9]. Closure

states that if no faults occur, legitimate behaviors should always remain legitimate.

Convergence requires that, from every possible configuration, a legitimate behavior is
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eventually reached in a finite number of steps when faults stop occurring. For finite-state

converging protocols, it is necessary and sufficient that every illegitimate configuration

is not a deadlock and that none of the illegitimate configurations participate in any

non-progress cycle.

In this dissertation, we focused on designing convergence while maintaining closure

through two approaches. In the first approach, we developed a set of heuristics for

computer-aided design of self-stabilization. However, the difficulty of automatically

synthesizing self-stabilization renders the use of complete algorithms infeasible for

practical network sizes. To overcome this infeasibility, our second approach formulates

theories for reasoning about deadlocks and livelocks in networks of arbitrary sizes. We

demonstrated the existence of local conditions; i.e., verifiable for individual network

nodes, that are necessary and sufficient for both deadlock-freedom and livelock-freedom

of networks whose interconnection scheme is in the form of a unidirectional ring. The

locality of these conditions establishes deadlock- and livelock-freedom as size-independent

properties of the ring. Similar ideas could extend to arbitrary network topologies.

1.3 Organization

Chapter 2 presents basic definitions and a formal statement of the problem of adding

convergence to non-stabilizing protocols/systems. In Chapter 3, we present our preliminary

investigation on automated addition of convergence along with our experimental results.

We have conducted our experiments using a software tool that we developed for automated

addition of convergence1. We demonstrate an algorithmic solution to our problem

statement that exploits the power of cluster computers in Chapter 4. We illustrate in Chapter

5 our initial results on properties of convergence that could be checked on individual

network processes, thereby circumventing state explosion and the combinatorial nature

of convergence design in the global state space. In Chapter 6, we develop a theory for

local reasoning about livelocks in unidirectional rings; we prove necessary and sufficient

conditions for livelock-freedom of an interesting subclass of protocols on unidirectional

rings. To shed some light on the applications, we devise a method for rendering wireless

sensor nodes fault-tolerant in Chapter 7. In Chapter 8, we summarize the architecture of

two software tools that we have developed throughout our investigation of the automated

design of stabilization. In Chapter 9, we provide an exposition and a taxonomy of related

work to our research problem and in Chapter 10, we summarize our results and explore

potential extensions of our work.

1A web interface for our software tool is accessible from the following link http://c28-0206-01.ad.mtu.edu:8888/

SynStable/.
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Chapter 2

Background1

In this chapter, we present our formal notations and definitions in Section 2.1 and formally

state the problem of designing self-stabilizing finite-state systems from their non-stabilizing

version in Section 2.2.

2.1 Preliminaries

In this section, we present the formal definitions of protocols, our distribution model

(adapted from [13]), convergence and self-stabilization. Protocols are defined in terms of

their set of variables, their transitions and their processes. The definitions of convergence

and self-stabilization are adapted from [5]–[7], [9], [14].

2.1.1 Protocols as non-deterministic finite-state machines

A protocol p(K) is a triplet 〈Φp, Πp, Δp〉(K) where K is a positive integer parameter

and Φp(K) = {v0, · · · , vM(K)−1} is a set of M(K) variables where M depends on K.

Each variable vi in Φp(K) has a finite domain Di (0 ≤ i ≤ M(K) − 1). Πp(K) =
{P0, · · · , PK−1} is a set ofK processes. Δp(K) is the protocol’s global transition relation
and will be defined later (p. 7). Every process Pr = 〈Rr,Wr, δr〉 is a triplet such that

Rr ⊆ Φp(K) is a subset of variables that process Pr can read (0 ≤ r ≤ K − 1). The

locality of Pr is the set of variables in Rr. Wr ⊆ Φp(K) is a subset of variables that

1This chapter is adapted from the preliminary sections of our own published references [10]–[12]. Reprinted with

permission, please see the supplementary document to this dissertation for the copyright notice.
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process Pr can write. We assume thatWr ⊆ Rr; i.e., Pr can only write variables that it can

read.

A global state of p(K) is a valuation of all variables in Φp(K). The global state space

Sp(K) is the set of all possible global states of p(K). A global state predicate is any subset

of Sp(K) specified as a Boolean expression over variables of Φp(K). We say a global

state predicate X holds in a global state s, denoted s ∈ X , if and only if X evaluates to

true at s. The value of variable v ∈ Φp(K) at global state s is denoted v(s). A global

transition t of p(K) is a pair of global states (s, s′): s is the source state of t and s′ is
the target state of t. Likewise, a local state slr of Pr is a valuation of the variables in Rr

(0 ≤ r ≤ K − 1). The local state space Sl
r is the set of all possible local states of Pr. A

local state predicate is any subset of Sl
r specified as a Boolean expression over variables

of Rr. We say that a local state predicate Xr holds in a local state slr denoted, s
l
r ∈ Xr

if and only if Xr evaluates to true at slr. The value of a variable v ∈ Rr at local state s
l
r

is denoted v(slr). A local transition tl of Pr is a pair of local states (slr, s
l
r

′
) of Pr such

that, ∀v ∈ (Rr − Wr) : v(slr) = v(slr
′
). δr denotes the set of local transitions of Pr

(0 ≤ r ≤ K − 1).

Example: Three Coloring (TC). We consider a three coloring protocol over a bidirectional ring

(adapted from [15]). We have ΠTC = {P0, · · · , PK−1}, ΦTC = {c0, · · · , cK−1} withDr =
{0, 1, 2} representing three distinct colors, where 0 ≤ j ≤ K − 1. Note that in this case

M(K) = K. Every process Pr has one variable cr defining its color, Rr = {cr−1, cr, cr+1}
and Wr = {cr}. �

Two processes Pi and Pj ∈ Πp(K) (0 ≤ i, j ≤ K−1) are similar/symmetricwith respect to
the bijection Fij : Ri → Rj if and only if δj = Fij(δi)

2. Note that F−1
ij = Fji. We call Fij

a variable renaming/re-indexing function. We say that Pi and Pj are similar/symmetric if

and only if there exists a bijectionFij : Ri → Rj such that Pi and Pj are similar/symmetric

with respect to Fij . It is easy to prove thereof that symmetry/similarity is an equivalence

relation on Πp(K).

Symmetry is one way that allows the recursive evaluation of the local transitions of δj from
δi by finite means. As such, we can start reasoning about protocols with an unbounded

number of processes; i.e., parameterized protocols. A parameterized protocol p is the

unbounded set of finite-state protocols p(K); where K is any positive integer. In Chapters

5 and 6, we develop a theory about the global properties of parameterized protocols on ring

networks.

The projection s ↓ Var of a global state s ∈ Sp(K) on a set of variables Var ∈ Φp(K)

2The extension of Fij to act on the local transition relation of Pr means the substitution of the variables in Ri of δi by

the variables in Rj of δj .
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is a valuation of every variable v ∈ Var such that v(s) = v(s ↓ Var). Likewise, we

define the projection of a global transition (s, s′) ↓ V ar as the pair ((s ↓ Var), (s′ ↓ Var)).
Inversely, every local state slr of Pr is mapped to a set of global states gK(slr) = {s ∈
Sp(K) : ∀v ∈ Rr : v(s) = v(slr)}. Likewise, every local transition tlr corresponds to a

group of global transitions gK(slr, s
l
r

′
) = {(s, s′) ∈ Sp(K) × Sp(K) : (∀v ∈ Rr : v(s) =

v(slr) ∧ v(s′) = v(slr
′
)) ∧ (∀v /∈ Wr : v(s) = v(s′))}. Thus, gK(δr) represents the set of

global transitions of Pr in p(K). We denote by G(Pr) the set of potential transition groups
of process Pr. Formally, G(Pr) = {g

K(tr)|tr is a potential local transition of Pr }; i.e., t
r

is any local transition that satisfies the read and write restrictions of Pr. The set of global

transitions of p(K) is the union of the set of global transitions of each process Pr, i.e.;

Δp(K) = ∪K−1
r=0 g

K(δr). As such, the global transition relation of p(K) is representable
as a directed graph Tp(K) such that Sp(K) and Δp(K) are its sets of vertices and arcs,

respectively.

Notational convention. For abbreviation, we denote universally quantified statements over

K; i.e., statements about a parameterized protocol p, by omitting K. For instance, we

denote ∀K : p(K) converges to I(K) by p converges to I , and ∀K : s ∈ gK(slr) by

s ∈ g(slr).

TC Example. A group of global transitions for Pr is defined for the local transition where

cr−1 = 0, cr = 0, cr+1 = 1 and that assigns 2 to cr. This group has 3
K−3 transitions defined

for every value of the variables unreadable by Pr. �

Protocol Representation.We use a variant of Dijkstra’s guarded commands language [16]

to represent the set of local transitions of Pr (i.e., δr). A guarded command (i.e., action)

is of the form L : grdr → stmtr, where L is an optional label, grdr is a local predicate

of Pr, and stmtr is an assignment that updates variables of Wr atomically. Formally, an

action grdr → stmtr includes a set of local transitions (s
r, sr ′) of Pr such that grdr holds

in every local state sr and the atomic execution of stmtr results in a local state sr ′. An

action grdr → stmtr is enabled in a local (global) state sr (respectively, sg) if and only

if grdr holds at s
r (respectively, sg). The process Pr is enabled/has an enablement in sr

(respectively, sg) if and only if there exists an action of Pr that is enabled at s
r (respectively,

sg). A local transition (sr, sr′) is enabled in sg if sg ∈ gK(sr).

In Chapter 6, we consider unidirectional rings such that Rr = {xr−1, xr} and Wr = {xr},
for every process Pr ∈ Πp (0 ≤ r ≤ K−1). We denote a local transition tr = (sr, sr′) of Pr

on a unidirectional ring by tr(xr⊖1(sr))(xr(sr)→xr(sr ′))
. We denote the set of local transitions

of Pr by local transitions parameterized by values from Dr and Dr⊖1. For instance, the

set τr = {tr(v)(v⊖1→v)|v ∈ Dr} is abbreviated as tr(v) since every local transition in τr is
uniquely determined by the value of v.

7



TC Example. The process Pr (0 ≤ r ≤ K − 1) has the following action (addition and

subtraction are performed in moduloK):

Ar : (cr = cr−1) ∨ (cr = cr+1) → cr := other(cr−1, cr+1)

If the color of Pr is equal to any of its neighbors, assign to Pr a color different from both

of its neighbors. The function other non-deterministically returns a value different from

both its arguments. For instance other(c,c) returns either (c+1) mod 3 or (c+2) mod 3; if
x �= y, then other(x, y) returns the third remaining value. As such, δr = {tv(v→z)w, tv(w→z)w

|v, w, z ∈ Dr and (z �= v) ∧ (z �= w)}. �

Faults. We consider transient faults that perturb the state of a protocol to illegitimate

states without causing permanent damage (e.g., transient bit-flips). Formally, transient

faults can be modeled as a set of transitions in (Sp × Sp)(K) that non-deterministically

update protocol variables. We assume that transient faults occur a finite number of times.

Such an assumption is necessary in order to ensure that a protocol can eventually achieve

convergence.

2.1.2 Computations and execution semantics

A computation of a protocol p(K) is amaximalwalk σ in Tp(K). σ is maximal in that either

σ is infinite or if it is finite, then σ reaches a global state with no outgoing global transitions.

We assume an interleaving semantics, where every global transition tg of a computation σ
belongs to the group of at least one local transition; i.e., no global transition corresponds

to the joint action of more than one process. Thus, the sequence of local transitions of σ
can be obtained by projecting every tg in σ over the correspondingRr of its local transition

(0 ≤ r ≤ K − 1). A computation prefix σl is a finite walk in Tp(K) that can be extended

to a computation σ of p(K).

2.1.3 Closure, Convergence and Self-Stabilization

A state predicate X is closed in an action grdr → stmtr if and only if executing stmtr
from any state s ∈ (X ∧ grdr) results in a state inX . We say a state predicate X is closed

in a protocol p if and only if X is closed in every action of p. In other words, closure [14]

requires that every computation that starts in X remains in X .
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Let I be a state predicate. We say that a protocol p strongly converges to I if and only if

from any state, every computation of p reaches a state in I . A protocol p weakly converges
to I if and only if from any state, there exists a computation of p that reaches a state in I .
A protocol p is strongly (respectively, weakly) self-stabilizing to a state predicate I if and

only if (1) I is closed in p and (2) p strongly (respectively, weakly) converges to I .

TC Example. The state predicate Icolor captures the states in which any two neighboring

processes have different colors. Formally, Icolor is equal to ∀r : 1 ≤ r ≤ K − 1: (cr−1 �=
cr). The protocol TC is closed in Icolor since no action is enabled in Icolor. Thus, TC is silent

in Icolor.

In any state outside Icolor there must be two neighboring processes that have the same

colors. Thus, there is at least one enabled action in any state in ¬Icolor. That is, there are no
deadlock states in ¬Icolor. Moreover, no cycles are formed in ¬Icolor. Thus, TC is strongly

stabilizing to Icolor. �

I is locally conjunctive if and only if for every K, I(K) is a conjunction of K local state

predicates LCr, where LCr specifies a local state predicate of Pr; i.e., I(K) =
∧K−1

r=0 LCr.

An enablement of Pr is a local state where Pr is enabled. A corruption (non-corruption)

with respect to I is an enablement slr of Pr such that slr /∈ LCr (respectively, s
l
r ∈ LCr).

Let I be a locally conjunctive closed predicate for p, a process Pr in a non-corrupt local

state will never corrupt its own local state.

2.1.4 Deadlocks and Livelocks.

A global deadlock state sd has no outgoing global transitions (i.e., no process is enabled),

and no action of Pr is enabled in a local deadlock state s
l
d of Pr. A global deadlock state sd

(respectively, sld) is legitimate if and only if sd ∈ I (respectively, sld ∈ LCr), otherwise sd
(respectively, sld) is illegitimate. Notice that a parameterized protocol p(K) is in a global

deadlock state if and only if every process Pr ∈ Πp(K) (0 ≤ i ≤ K − 1) is in a local

deadlock state. A global deadlock is illegitimate if and only if there exists a process Pr

whose local deadlock is illegitimate.

In a finite-state parameterized protocol p(K), a livelock non-progress cycle for a state

predicate I(K) is a computation ≪ sc0, sc1, · · · , scm−1, · · · ≫ where ∃m : m ≥ 1 :
(∀i : i ∈ N : sci+m = sci and ∀i : 0 ≤ i ≤ m− 1 : sci /∈ I(K)); i.e., an infinite repetition

of a finite sequence of global states outside I(K). In other words, a livelock is a cycle in

Tp(K).
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Proposition 2.1.1. A protocol p strongly converges to I if and only if there are no global

deadlock states in ¬I and no livelocks in Δp | ¬I .

When it is clear from the context, we shall omit the set of legitimate states I; e.g., instead
of saying ‘a livelock for I(K)’, we say ‘a livelock’.

Local Checkability. We follow Varghese [1] in defining locally checkable protocols. A

protocol p is locally checkable with respect to a state predicate I if and only if when the

global state of p is in ¬I , the local state of some process Pr is in ¬I . That is, any global

state corresponding to that local state of Pr is in ¬I . For example, if the TC protocol has a

global state in ¬Icolor then there exists r such that (cr−1 = cr); this can be checked by Pr.

Thus, TC is locally checkable.

Local Correctability. A protocol p is corrected to a state predicate I if and only if the

global state of p is in I . A protocol p is locally correctable to a state predicate I if and only
if p can be corrected to I by correcting the local states of the processes of p. For example,

if Pr in the TC protocol has a corrupted local state (cr−1 = cr), Pr ensures that (cr−1 �= cr)
and (cr �= cr+1) by assigning to cr a value different from both neighboring colors. Thus,

TC is locally correctable.

2.1.5 Temporal Logic.

Temporal logic expresses facts/properties about different structures of time. It is a type
of modal logic expressing properties of structures where truth of atomic propositions

vary from one state/world to another. It is used extensively to specify concurrent and/or

distributed protocols. We distinguish two major types of temporal logic according to the

structure of their timeline: linear time and branching time. We follow Emerson et al. [17]

in their definitions.

Linear Time Logic (LTL). In LTL, a structure/timeline is a sequence of states; i.e., from

every state/world, there is only one possible future path. Syntactically, an LTL formula

involves only quantifications over future states. In the sequel, we denote by A the set of

atomic propositions or statements of interest: for example, (x2 > 2) is a proposition in the

context of programming, where x2 is an integer variable and 2 is an integer constant.

Linear Time Structure. A model in LTL is a linear time structureM = 〈S, x, L〉 such that:

• S is a set of states/worlds,
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• x : N→ S is an infinite sequence of states and,

• L : S → 2A is an assignment/labeling of atomic propositions to states.

Intuitively, we can think of M as a linear truth structure or as an infinite sequence of truth

assignments to propositions of A.

Syntax of LTL. The set of propositional LTL formulae is the least set generated by the

following rules:

• each p ∈ A is a formula

• If p and q are formulae, then p ∧ q and ¬p are formulae.

• If p is a formula, then pUq "p until q" and Xp "next of p" are formulae.

Formulae like ✸p ("eventually p") and ✷p ("always p") are defined as abbreviations for

(¬p ∨ p)Up and ¬✸(¬p), respectively.

Semantics of LTL. By semantics, we designate the relationship between LTL

structures/models and LTL formulae. We say that x |= Φ (x satisfies Φ) if and only if

formulaΦ is "true" at timeline x. We denote xi as the timeline starting at x(i). x abbreviates

x0. We recursively define LTL semantics as follows. Let P ∈ A, p and q be LTL formulae.

• x |= P if and only if P ∈ L(x(0)).

• x |= p ∧ q if and only if x |= p and x |= q.

• x |= ¬p if and only if it is not the case that x |= p.

• x |= pUq if and only if ∃j(xj |= q and ∀k < j(xk |= p)).

• x |= Xp if and only if x1 |= p.

Example. Let L be defined by the linear sequence

({P}, {P,Q}, ∅, {Q}, {P}, {P}, {P}, · · · ). It is not the case that x0 |= ✷P because

L(x(2)) = ∅ or P /∈ L(x(3)), while x4 |= ✷P because ∀i ≥ 4 : P ∈ L(x(i)). �

Branching Time Logic (BTL). In BTL, a structure/timeline is a tree of states; i.e., from

every state/world, there are multiple possible future paths. Syntactically, BTL involves
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two types of quantifiers: state quantifiers as in LTL (✷ and ✸) over possible future states

in a path and path quantifiers over possible future paths. BTL has special cases like

Computational Tree Logic (CTL) and (CTL*). In CTL every state quantifier should be

preceded by a path quantifier; in CTL* such a restriction does not exist. These syntactical

differences between LTL, CTL and CTL* reflect semantical differences with respect to

expressive power and complexity of finite-model checking.

Tree-like Time Structure. A model in CTL is a tree-like time structure M = 〈S,R, L〉 such
that:

• S is a set of states/worlds,

• R ⊆ S × S is a binary relation on states and,

• L : S → 2A is an assignment/labeling of atomic propositions to states.

We denote by R̂ the unfolding of R into an out-tree at a root state r0 ∈ S. Intuitively, R̂
augments S with a labeling from N. We recursively define Ŝ = {t ≡ (s, n) ∈ S × N : t =
(r0, 0) ∨ (s �= r0 ∧ (∃r ∈ S : 〈r, s〉 ∈ R) ∧ ((r, n − 1) ∈ Ŝ)))}. We define the unfolded

binary relation R̂ = {〈(s1, x), (s2, y)〉 ∈ Ŝ × Ŝ : y = x + 1 ∧ 〈s1, s2〉 ∈ R}; i.e.; the
labeling of s ∈ S is the length of a path from r0 to a state s. Hereafter, we refer to the

tree-like time structure rooted at state r0 ∈ S as R̂(r0).

Syntax of CTL*. The syntax of CTL* augments the syntax of LTL with two path quantifiers

A "for all paths" and E "there exists a path". To this end, it is necessary to distinguish two

types of formulae: state formulae and path formulae. Any formula is considered as a path

formula. Path formulae are preserved under the LTL modal operators/state quantifiers: (✷,

✸, X , U , other abbreviations) and logical connectives (∧, ¬, other abbreviations). State

formulae are either propositions P ∈ A, quantified path formulae using A or E . State

formulae are preserved under logical connectives (∧, ¬, other abbreviations). The set of

syntactically correct formulae of CTL* are state formulae.

Example. Let P,Q ∈ A. (✸✷E(P ∨ ✷Q)) is not a syntactically correct CTL* formula,

while (P =⇒ AEP ) is a CTL* formula. �

Semantics of CTL*. In the semantics of CTL*, meaning is assigned to both path and state

formulae. A path formula has a model as a path structure M,x where x is a timeline

(path). A state formula; i.e, a CTL* formula, has a model as a tree-like structure M, s0
where s0 ∈ S. A path x in M is an infinite sequence of states s0s1 · · · si · · · such that

∀i ∈ N : (si, si+1) ∈ R.
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Let P ∈ A, p and q be state formulae.

(S1) M, s0 |= P if and only if P ∈ L(s0).

(S2) M, s0 |= p ∧ q if and only if M, s0 |= p and M, s0 |= q, M, s0 |= ¬p if and only if

not (M, s0 |= p).

(S3) M, s0 |= Ep if and only if ∃ fullpath x = s0s1 · · · of R̂(s0), M,x |= p. M, s0 |= Ap
if and only if ∀ fullpath x = s0s1 · · · of R̂(s0), M,x |= p.

(P1) M,x |= p if and only ifM, s0 |= p.

(P2) M,x |= p ∧ q if and only if M,x |= p and M,x |= q. M,x |= ¬p if and only if not

(M,x |= p).

(P3) M,x |= pUq if and only if ∃i : (M,xi |= q and (∀k < j(M,xk |= p))). M,x |= Xp
if and only ifM,x1 |= p.

Example. We illustrate the use of CTL* by a mutual exclusion example pmutual. We define

the quadruplet of pmutual as follows: Φp = {x1, x2}, Πp = {P1, P2}, R1 = R2 = Φp,

W1 = {x1},W2 = {x2}, D1 = D2 = {N, T, C} where N stands for non-trying section, T
for trying section and C for critical section. To simplify our explanation, we illustrate Δp

graphically in Figure 2.1.

Figure 2.1: Transition Graph of Mutual Exclusion Example

The specification of pmutual is a conjunction of a mutual exclusion specification Ψm and a

starvation freedom specification Ψs.
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Mutual exclusion requires that it is never the case that x1 = C ∧ x2 = C; i.e, P1 and P2

should never be in their critical section simultaneously. Expressing this in CTL*, we write

it as Ψm = A✷(x1 �= C ∨ x2 �= C). By unfoldingΔp(N,N) to Δ̂p(N,N), we verify that,

along every path from (N,N), it is never the case that x1 = C ∧ x2 = C: (C,C) is an
unreachable state from state (N,N). Thus, Δ̂p(N,N) |= Ψm.

Starvation freedom requires that both P1 and P2 eventually enter their critical section. In

CTL*, we express this requirement as Ψs = A((x1 = T =⇒ ✸x1 = C) ∧ (x2 = T =⇒
✸x2 = C)). We demonstrate that there exists an infinite path in Δ̂p(N,N) along which the
statement x1 = C, (x2 = C) never occurs following x1 = T (x2 = T ), respectively. One
counterexample path is the non-progress cycle (T,N), (T, T ), (T, C), (T,N), · · · in which
P1 starves (x1 = C never occurs following x1 = T ), violating the requirement of starvation

freedom. Thus, it is not the case that Δ̂p(N,N) |= Ψs. �

2.2 Formal Problem Statement

Consider a non-stabilizing protocol p = 〈Φp,Πp,Δp〉 and a state predicate I closed in p.
Our objective is to generate a strongly stabilizing version of p, denoted pss, by adding

convergence to I . We assume that p is correct as far as its original specification is

concerned. Accordingly, we require that the behavior of pss in the absence of transient

faults remains the same as p. With this motivation, during the synthesis of pss from p, no
states (respectively, transitions) are added to or removed from I (respectively,Δp|I). This
way, pss behavior is exactly the same as p’s behavior inside I . Moreover, if pss starts in a

state outside I , pss will provide convergence to I .

Problem 2.2.1: Adding Convergence.

• Input: (1) a protocol p = 〈Φp,Πp,Δp〉; (2) a state predicate I such that I is closed

in p; and (3) a property of Ls converging, where Ls ∈ {weakly, strongly}.

• Output: A protocol pss = 〈Φp,Πp,Δpss〉 such that the following constraints are

met: (1) I is unchanged; (2) Δpss|I = Δp|I , and (3) pss is Ls converging to I .

14



Chapter 3

Lightweight Methods for Automated

Design of Convergence1

In order to facilitate the design of self-stabilizing protocols, this chapter presents a

lightweight method for algorithmic addition of convergence to finite-state non-stabilizing

protocols, including non-locally correctable protocols. The proposed method enables the

reuse of design efforts in the development of different self-stabilizing protocols. Moreover,

for the first time (to the best of our knowledge), this chapter presents an algorithmic method

for the addition of convergence to symmetric protocols that consist of structurally similar

processes. The proposed approach is supported by a software tool that automatically

adds convergence to non-stabilizing protocols. We have used the proposed method/tool

to automatically generate several self-stabilizing protocols with up to 40 processes (and

340 states) in a few minutes on a regular PC. Surprisingly, our tool has synthesized both

protocols that are the same as their manually-designed versions as well as alternative

solutions for well-known problems in the literature (e.g., Dijkstra’s token ring, maximal

matching, graph coloring, agreement and leader election in a ring). Moreover, the proposed

method has helped us detect a design flaw in a manually designed self-stabilizing protocol.

3.1 Introduction

This chapter proposes a lightweight formal method for automated addition of convergence

to network protocols (including non-locally correctable protocols). The approach is

lightweight in that we start from an instance of a non-stabilizing protocol p with a fixed

1This chapter is an adaptation of our accepted publication in the ACM transactions on autonomous and adaptive systems

[18].
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Figure 3.1: The proposed lightweight method for automated design of convergence.

and small (i.e., handful) number of processes, denoted k, and add convergence to p for

a set of legitimate states I (see Figure 3.1). (We assume that p has a static topology.)

Then, we gradually increase the number of processes (or the variables domains) as long

as the available computational resources permit us to benefit from automation. There

are several advantages to this approach. First, we generate self-stabilizing versions of p
that are correct-by-construction, thereby eliminating the need for a proof of correctness.

Second, we facilitate the generation of an initial design of self-stabilizing protocols in a

fully automatic way. Third, the issue of scalability is no longer a high-priority objective

since a lightweight method benefits from available computational resources in order to

provide useful insight for developers regarding the challenges of designing convergence

when a protocol scales up (in terms of either the number of processes or the size of the

domain of variables). Notice that our method does not require that the new processes be

similar to existing processes. Fourth, while such a lightweight method can be applied

only for the design of small protocols, it is an effective method for finding design flaws in

manually-designed protocols (see Section 3.4.1 for an example).

In order to automate the addition of convergence (see the Convergence Synthesizer

component in Figure 3.1), we present a method that includes three parts, namely automated

design of weak convergence, automated design of a ranking function and automated

design of strong convergence (see Figure 3.2). Weak convergence ensures that from every

illegitimate state in ¬I , there exists an execution that eventually reaches a legitimate state
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in I , whereas strong convergence guarantees that from any state in ¬I , every execution

eventually reaches a state in I . Observe that, a protocol that has strong convergence also

guarantees weak convergence, but the reverse is not necessarily true [14]. We present

a sound and complete algorithm that takes p and I and determines if weak convergence

can be added to p, thereby generating a weakly stabilizing version of p. Our algorithm is

complete in that if weak convergence to I can be added to p, then it will generate a weakly
stabilizing version of p. Moreover, the generated weakly stabilizing protocol is correct by

construction (i.e., soundness). If our algorithm cannot add weak convergence to p, then
it means there is no weakly stabilizing version of p for the legitimate states I (see Figure

3.2). As a result, no strongly stabilizing version of p exists either. Thus, our algorithm also

provides an impossibility test for the design of strong convergence.

After designing a weakly stabilizing version of the protocol p, denoted pws, we use pws

to devise a sound heuristic for adding strong convergence to p towards generating a

strongly stabilizing version of p, denoted pss (see Figure 3.2). Specifically, since from

any state in ¬I the protocol pws has at least one execution that reaches I , pws never

deadlocks in ¬I , where from a deadlock state/configuration a protocol cannot execute

any actions. Deadlock-freedom is a requirement for strong convergence too. However,

strong convergence has another requirement, called livelock-freedom, that pws may fail

to meet. Livelock-freedom requires that no execution of pss stays in ¬I forever. One

way to design pss using pws is to find a subset of the executions of pws that start in ¬I
and are deadlock-free and livelock-free in ¬I . While such a method is complete, it is

computationally expensive due to the exponential number of subsets of executions of pws.

To devise an efficient method, we proceed as follows (at the expense of completeness).

First, we use the executions of pws for the algorithmic design of a function that ranks each

state s ∈ ¬I based on the length of the shortest execution of pws from s that reaches some

state in I . Such a ranking method partitions the states in ¬I to Rank[1], · · · , Rank[M ]
(M > 1) (see Phase 2 in Figure 3.2) such that Rank[j] is a subset of ¬I from where the

length of the shortest execution of pws to I is equal to j, where 1 ≤ j ≤M , andM denotes

the total number of ranks, which is a finite value. Notice that the rank of all states in I is

zero.

After computing the ranks/partitions of ¬I using the executions of pws, we no longer

need pws. Then, we eliminate any livelocks that may exists in the executions of the

non-stabilizing protocol p in ¬I . Thus, at this point, p may have some deadlock states

in ¬I . To design strong convergence, we systematically construct recovery paths from

each deadlock state s ∈ Rank[j] to some state in Rank[j − 1], for 1 ≤ j ≤ M , without

creating livelocks (Phase 3 in Figure 3.2). If the inclusion of a recovery action from Rank[j]
to Rank[j−1] results in creating a livelock with the previously included actions, we replace
the added recovery action with another one to ensure livelock-freedom in each step. From

a specific illegitimate state si ∈ ¬I , the success of convergence to some legitimate state

sl ∈ I also depends on the order/sequence of processes that can execute from si to get
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Figure 3.2: Automated design of weak and strong convergence.

the global state of the protocol to sl, called a recovery schedule. From si, there may

be several recovery schedules that result in executions that reach some legitimate states

without creating livelocks. Since during the execution of the heuristic the selected schedule

remains unchanged, for each schedule, we can instantiate one instance of our heuristic on a

separate machine (see Figure 3.1). If the proposed heuristic succeeds in finding a solution

for a specific k and a specific schedule, then the resulting strongly stabilizing protocol pss is
correct-by-construction for k processes; otherwise, we declare failure in designing strong

convergence for that instance of the protocol. We also present a version of this heuristic that

adds convergence to symmetric protocols that contain structurally similar processes, and

maintain the symmetry during synthesis. That is, the synthesized self-stabilizing version of

the non-stabilizing protocol is also symmetric. To the best of our knowledge, the proposed

method is the first approach that automatically synthesizes symmetric self-stabilizing

protocols from their non-locally correctable non-stabilizing versions.

Contributions. In summary, the contributions of this chapter are as follows. We present

• a lightweight formal method (see Figure 3.1) supported by a software tool that

automates the generation of initial designs of self-stabilizing network protocols from

their non-stabilizing versions;

• a sound and complete algorithm for the addition of weak convergence to

non-stabilizing protocols;

• an impossibility test for the addition of weak/strong convergence;

• an algorithm for automated design of a ranking function that provides (i) a base set

of recovery steps that should be included in any strongly stabilizing version of p
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(i.e., a necessary condition for strong convergence), and (ii) a lower bound for all

non-increasing ranking functions in terms of the speed of recovery to I (see Lemma

3.2.3 and Theorem 3.2.4);

• a sound heuristic for the addition of strong convergence to asynchronous,

non-deterministic and non-locally correctable protocols that can have

non-terminating computations, and

• a sound heuristic for adding convergence to symmetric protocols while preserving

the symmetry of processes.

We have implemented the proposed approach in a software tool called STabilization

Synthesizer (STSyn). (STSyn is available at http://c28-0206-01.ad.mtu.edu:8888/

SynStable/.) The current implementation of STSyn is in C++ and uses Binary Decision

Diagrams (BDDs) [19] to represent protocols in memory. STSyn has synthesized

several self-stabilizing protocols (in a few minutes on a regular PC) similar to their

manually-designed versions in addition to synthesizing alternative solutions. Thus far,

STSyn has automatically generated instances of Dijkstra’s token ring protocol [7] (2

different versions) with up to 5 processes, maximal matching on a ring [15] with up to

11 processes, three coloring of a ring with up to 40 processes, a three-ring self-stabilizing

protocol with 9 processes, a leader election protocol with 5 processes on a ring and

an agreement protocol with up to 6 processes. As far as we know, this is the first

time that Dijkstra’s self-stabilizing token ring and leader election in a ring are generated

automatically. We have also used STSyn to find a livelock in a published self-stabilizing

protocol for maximal matching [15] (see Section 3.4.1 for details). This contribution

illustrates how our approach can be used for the debugging of manually-designed protocols.

We would like to note that while our focus is on network protocols, the proposed approach

in this chapter can be applied to concurrent programs that run on either a single machine

or a shared-memory multiprocessor. Moreover, the approach presented in Section 3.5

for automated design of symmetric self-stabilizing protocols can easily be tailored for

automated design of self-stabilizing protocols that should converge under certain safety

constraints (e.g., super-stabilizing systems [20]). The maximal matching and the coloring

examples in this chapter illustrate that our approach can also be used for automated design

of equilibrium in multi-agent systems.

Organization. Section 3.2 discusses a method for automated design of weak convergence

as an approximation of strong convergence. Section 3.3 presents a sound and efficient

heuristic for automated addition of strong convergence. Section 3.4 demonstrates some

case studies. Section 3.5 presents a sound and efficient heuristic for the addition of

convergence to symmetric protocols. Then, Section 3.6 discusses case studies for the

heuristic in Section 3.5. Subsequently, Section 3.7 illustrates our experimental results,
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and Section 3.8 discusses some applications and limitations of the proposed approach. We

make concluding remarks and discuss future work in Section 3.9.

3.2 Approximating Strong Convergence

This section presents a sound and complete algorithm for the addition of weak convergence

to a network protocol p for a state predicate I that is closed in p (Phase 1 in Figure 3.2).

We use the weakly stabilizing version of p (denoted pws) as an approximation of strong

stabilization since pws provides the weakest set of possible computation prefixes that enable

convergence from any state in ¬I to I .

We present the algorithm AddWeak for the addition of weak convergence to p for the

state predicate I . Specifically, AddWeak first includes any transition group g that meets

the following constraints in the set of transitions of pws (see Step 1 in Figure 3.3): (1) g
adheres to the read/write restrictions of some process Pj ∈ Πp (i.e., g ∈ G(Pj)), and (2)

there is no transition in g that starts in I . This step includes in pws any transition group

that could potentially be useful for strong convergence to I . Then, we check to see if there

is a state s0 ∈ ¬I from where there is no computation prefix of pws that reaches I . If

there exists such a state, then pws is not weakly stabilizing. Otherwise, we return pws as the

weakly stabilizing version of the non-stabilizing protocol p.

AddWeak(p: set of transition groups, I: state predicate ) {
- pws := p ∪ {g | ∃Pj ∈ Πp : g ∈ G(Pj) : (∀(s0, s1) : (s0, s1) ∈ g : s0 /∈ I)} (1)
- noPrefix = {s0|(s0 /∈ I) ∧ there is no computation prefix of pws that starts in s0 and

reaches a state in I} (2)
- if (noPrefix �= ∅) then declare that no weakly stabilizing version of p exists for I; exit; (3)
- return pws; (4)

}

Figure 3.3: Adding weak convergence.

Theorem 3.2.1 AddWeak is sound and complete, and its time complexity is polynomial in

|Sp|.

Proof of soundness: We show that when AddWeak successfully returns a protocol pws, the

protocol pws meets the three constraints of the output of Problem 2.2.1. First, no step of

the algorithm AddWeak updates I in any way. Thus, I remains unchanged. Second, Step

1 of AddWeak ensures that no transition group that has a transition starting in I is included

in pws. Thus, δpws
|I = δp|I . Third, since AddWeak returns pws in Step 4 of Figure 3.3, we

have noPrefix = ∅. As such, from every state s0 ∈ ¬I , there exists a computation prefix
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that reaches a state in I . Thus, pws is weakly stabilizing to I .

Proof of maximality: We discuss that pws is maximal. Line (1) of AddWeak includes any

transition group g that satisfies the read/write restrictions of p and all transitions of g
originate in ¬I . Any additional transition group added to pws would violate the closure

of I , modify δp|I or violate the read/write restrictions of some process in Πp. Therefore,

pws includes a maximal set of transition groups; i.e., pws is maximal.

Proof of completeness: We demonstrate that if Problem 2.2.1 has a weakly stabilizing

solution for a protocol p and a state predicate I , then AddWeak always returns a weakly

stabilizing version of p. By contradiction, assume that AddWeak fails to generate a weakly

stabilizing version of p. Moreover, assume that a weakly stabilizing version of p that meets

the constraints of Problem 2.2.1 exists. Thus, there must be a set of transition groups that

adhere to the read/write restrictions of the processes of p, include no transition starting in

I , and form some computation prefix from any state in ¬I that reaches a state in I , but
AddWeak failed to find such a set of transition groups. This is a contradiction since the

output of AddWeak is maximal. Therefore, AddWeak would have found a weakly stabilizing

program.

Proof of polynomial-time complexity: It is straightforward to see that AddWeak has a

constant number of steps, and every step of AddWeak can be performed in polynomial

time in |Sp|. ✷

Notice that if the AddWeak algorithm declares failure in adding weak convergence to p for

a state predicate I , then p does not have a strongly stabilizing version either. If AddWeak

returns a weakly stabilizing protocol pws, then there is some computation prefix from each

state in ¬I; i.e., no state in ¬I is deadlocked. However, pws may include non-progress

cycles in ¬I; such non-progress cycles violate the requirements of strong convergence (see

Proposition 2.1.1). Thus, one way to design a strongly stabilizing version of p is to find

a subset of the transition groups included in pws (in Step 1 of Figure 3.3) such that no

state in ¬I is deadlocked and there is no non-progress cycle. Nonetheless, finding such

a subset appears to be computationally expensive. In Section 3.3, we present a sound

but incomplete heuristic for the construction of a set of transition groups that should be

included in a strongly stabilizing version of p, denoted pss. The idea behind our heuristic is
simple; partition¬I to a sequence of disjoint predicates around I , denoted Part1, · · · , PartM
as depicted in Figure 3.4, and incrementally build the recovery paths from every state of

Parti to Parti−1 (for 1 ≤ i ≤M) while ensuring livelock-freedom and deadlock-freedom.

Notice that such a partitioning should be performed in a way that, using the transition

groups of each process Pj in pws, convergence from Parti to Parti−1 can be guaranteed.

21



Figure 3.4: Partitioning of ¬I .

Thus, the way ¬I is partitioned directly affects the effectiveness of the heuristic. To

elaborate on this, consider a state s ∈ ¬I fromwhere single-step recovery to I is impossible

using the transition groups of pws. (The impossibility of such a single-step recovery from

s can be due to the write restrictions of processes.) Now, if a partitioning method puts

s in Part1, then it will be impossible to ensure recovery from all states of Part1 to I .
Thus, such a partitioning method would not result in an effective method for adding strong

convergence. Since from any state in ¬I the weakly stabilizing protocol pws includes any

potential computation prefix that reaches a state in I , it is important for a partitioning

method to be consistent with how the computation prefixes of pws are formed. Towards

this end, we present the ComputeRank algorithm that uses pws to partition ¬I (Phase 2 in

Figure 3.2).

ComputeRanks(pws: set of transition groups, I: state predicate ) {
/* Rank is an array of state predicates. */
- explored := I; i := 0; Rank[i] := I; (1)
- while (Rank[i] �= ∅) {

- i := i+ 1; (2)
- Rank[i] := {s0 | (s0 /∈ explored) ∧

(∃s1, g : (s1 ∈explored) ∧ (g ∈ pws) : (s0, s1) ∈ g}; (3)
- explored := explored ∪ Rank[i] ; (4)
}

- M := i− 1; // M denotes the total number of ranks built around I (5)
- return Rank[], M ; (6)
}

Figure 3.5: Computing ranks and partitioning the set of illegitimate states ¬I .

ComputeRank takes the weakly stabilizing version of p (i.e., pws) and the state predicate I ,
and returns an array of state predicates Rank[1], · · · , Rank[M ], whereM is the total number

of partitions of ¬I . Each Rank[i] ⊆ ¬I includes the set of states s from where the length

of the shortest computation prefix of pws from s to I , called the rank of s, is equal to i, for
1 ≤ i ≤ M . That is, Rank[i] includes all states with rank i. Note that, for any state s ∈ I ,
the rank of s is zero. The loop in Figure 3.5 computes the set of backward reachable states

from I , denoted explored, using the transitions of pws. In each iteration i, Line 3 calculates
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a set of states Rank[i] outside explored from where some state in explored can be reached

by a single transition of pws. The loop terminates when no more states can be added to

explored.

Theorem 3.2.2 The ComputeRanks algorithm terminates in polynomial time in |Sp|, and
correctly computes the length of the shortest computation prefix of pws from each state in

¬I to I .

Proof. To illustrate the termination of ComputeRanks, we first make the following

observation that before Step 4 of each iteration i of the while loop in ComputeRanks, the

intersection of the state predicate Rank[i] and the state predicate explored is empty. Thus,

in each iteration, the size of the explored predicate increases in Step 4 of Figure 3.5.

Notice that, this occurs because, by definition, from any state in ¬I , pws has at least

one computation prefix that reaches I . Since our focus is on finite-state protocols, the

explored predicate can at most become equal to Sp. It follows that, in some iteration,

Rank[i] becomes empty; hence termination. In the worst case, the number of iterations of

the while loop is equal to the number of states in ¬I , where in each iteration the rank of only
one state is computed. Further, each step of ComputeRanks can be performed in polynomial

time in |Sp|. Thus, the time complexity of ComputeRanks is polynomial in |Sp|.

To illustrate the correctness of ComputeRanks, we show that the following loop invariant

holds in the while loop in Figure 3.5:

Rank[i] includes the set of states from where the shortest computation prefix of pws to I has length

i

• Initialization. Before the loop in Figure 3.5 starts, we have Rank[0] = I , which
preserves the loop invariant.

• Maintenance. We show that if the loop invariant holds before the i-th iteration of

the loop, where i ≥ 0, then it also holds before the (i + 1)-th iteration. Thus, we

assume that before i-th iteration, Rank[i] includes the set of states from where the

length of the shortest computation prefix of pws to I is i. Step 2 increments the loop

counter. Thus, the iteration number becomes i + 1. Before Step 4, the predicate

explored includes all states from where the length of the shortest computation prefix

of pws to I is at most i. Since Step 3 computes the set of states from where some

state in explored can be reached by a single transition of pws, the rank of the states in

Rank[i+ 1] is i+ 1. It follows that before iteration i+ 1 the loop invariant holds.

• Termination. The condition that causes the termination of the loop is that in some

iteration j, Rank[j] becomes empty. That is, there are no more states from where
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explored can be reached by the computations of pws. By the Maintenance property,

the loop invariant holds before j. That is, Rank[j − 1] holds the set of states from

where the shortest computation prefix of pws to I has length j − 1. Thus, upon

termination, the invariant holds for each Rank[i], for 1 ≤ i ≤ j − 1. Notice that,

when the loop terminates, the total number of partitions/ranks is j−1, where j is the
last value assigned to the loop counter i.

The only way ComputeRanks misses to place a state s in a rank is that there is no

computation prefix of pws from s to some state in I . This is impossible since by

construction pws is a weakly stabilizing protocol. ✷

We would like to note that the ranks Rank[1], · · · , Rank[M ] have the interesting property

that, starting from a state s0 in some rank Rank[j], where 1 ≤ j ≤ M , any strongly

stabilizing version of p (irrespective of how it has been designed) cannot converge to I
in less than j steps. More precisely, starting in s0 ∈ Rank[j], any strongly stabilizing

version of p should go through the ranks Rank[j − 1], Rank[j − 2], · · · , Rank[1], Rank[0].
This property provides (i) a necessary condition for strong convergence; i.e., a base set of

recovery steps that should be included in any strongly stabilizing version of p, and (ii) a

lower bound for all non-increasing ranking functions in terms of the speed of recovery to

I . Before we prove this claim, we provide the following definition:

Definition.We call a transition t = (s0, s1) rank decreasing if and only if s0 ∈ Rank[i] and
s1 ∈ Rank[i− 1] (0 < i ≤M).

Lemma 3.2.3 If pws is a weakly stabilizing version of a non-stabilizing protocol p for a state
predicate I , then pws excludes any transition (s0, s1) that decreases the ranks calculated by
ComputeRanks() more than one unit.

Proof. By contradiction, let pws include a transition (s0, s1) such that s0 ∈ Rank[i] and
s1 ∈ Rank[j], and i−j > 1. Then, ComputeRanks() has missed s0 as a state that is backward
reachable from s1 in a single step by the transition groups of pws. This contradicts with the

correctness of ComputeRanks() (demonstrated in Theorem 3.2.2). ✷

Theorem 3.2.4 If pss is a strongly stabilizing version of p that meets the requirements of

Problem 2.2.1 for a predicate I that is closed in p, then every computation prefix of pss
that starts in a state s0 ∈ Rank[i] (i > 0) includes a rank-decreasing transition starting in

Rank[j] for every j where 0 < j ≤ i.

Proof. First, we recall that the transition groups of pss form a subset of the transition groups

of pws computed by AddWeak. By assumption, pss strongly converges to I . Hence, every
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computation of pss that starts in Rank[i] has a prefix σ =≪ s0, s1, · · · , sf ≫ where sf ∈ I .
Based on Lemma 3.2.3, a transition of pws can at most decrease the rank of a state by 1.

Hence, to change the rank from i to 0, σ should at least include a transition from Rank[i] to
Rank[i− 1], a transition from Rank[i− 1] to Rank[i− 2], · · · , and a transition from Rank[1]
to I . ✷

The significance of the results of this section is multi-fold. First, Lemma 3.2.3 and Theorem

3.2.4 respectively provide necessary conditions for weak and strong convergence. Second,

given a non-stabilizing protocol p and a state predicate I closed in p, Theorem 3.2.4

presents a lower bound on the number of steps required for strong convergence to ¬I .
Third, while existing methods in the literature [21], [22] use manually-designed (strictly

decreasing) ranking functions for the verification of strong convergence, ComputeRanks()

provides an algorithmicmethod for assigning a unique rank to each state, thereby creating a

ranking function. Fourth, Theorem 3.2.4 implies that, for the design of strong convergence,

a ranking function need not necessarily be strictly decreasing. Instead, we need guarantees

for (1) having at least j rank-decreasing transitions from each rank j, and (2) ensuring

livelock and deadlock-freedom. That is, a strongly stabilizing protocol may fluctuate

between ranks before it eventually converges to I . We note that, the ranks computed

in this section are different from the convergence stairs [22] (used for verifying strong

convergence) in that each Rank[i] need not be closed in pss.

Hereafter, we no longer need pws; rather we use the ranks as a guide for systematic inclusion

of transition groups in pss while guaranteeing livelock-freedom. Next section presents a

sound heuristic for the design of strong convergence based on the results of this section.

3.3 Algorithmic Design of Strong Convergence

In this section, we present a sound heuristic for adding strong convergence (Phase 3

in Figure 3.2). The proposed heuristic (in Figure 3.6) incrementally includes recovery

transitions (and their associated group), where a recovery transition (s0, s1) is such that s0
is a deadlock state; i.e., (s0, s1) resolves the deadlock state s0. A recovery transition group

is a transition group that includes a recovery transition. The recovery transition groups are

included under the following constraints:

• (C1) all transitions of a recovery transition group must start in ¬I . (Recall that, due
to read restrictions, all transitions in a group must be either included or excluded.);

• (C2) a recovery transition group must include a rank-decreasing transition from

Rank[i] to Rank[i− 1], for some 1 ≤ i ≤M ;
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• (C3) no transition of a recovery transition group participates in a non-progress cycle

outside I , and

• (C4) a recovery transition group includes no transition that reaches a deadlock state.

The AddStrong heuristic in Figure 3.6 takes a non-stabilizing protocol p, a state predicate I
(closed in p), the ranks calculated by the ComputeRanks routine in Section 3.2 and an integer

array schedule that represents a preferred order based on which processes in Πp are used

for the inclusion of recovery transition groups during the design of strong convergence. An

example recovery schedule for the TR protocol is {P1, P2, P3, P0}; i.e., schedule[1] = 1,
schedule[2] = 2, schedule[3] = 3 and schedule[4] = 0. That is, when adding recovery from
a deadlock state sd, we first check the ability of P1 in including a recovery transition group

from sd, then the ability of P2 and so on. Note that, the ranks are computed if the AddWeak

algorithm (presented in Section 3.2) generates a weakly stabilizing version of p. In other

words, the AddStrong heuristic is used if there exists a weakly stabilizing version of p. In
Step 1 of AddStrong, we remove from p any transition group whose transitions start in ¬I .
Such groups have no transitions that can take part in any computation of p that starts in I .
Later on, during the synthesis of strong convergence, these groups will be considered for

designing the convergence of pss to I . In practice, p rarely includes such transition groups,

nonetheless, we must consider removing them to ensure the soundness of our heuristic. If

the remaining transition groups of p include transitions that form any non-progress cycles in

¬I , then we declare failure in synthesizing pss and exit (Step 3 in Figure 3.6). The reason

behind this step is that resolving those cycles requires the elimination of groups having

transitions in δp|I , which violates the second constraint in the output of Problem 2.2.1. We

implement an existing algorithm due to Gentilini et al. [23] (see Detect_SCC in Line 2 of

AddStrong) for the detection of Strongly Connected Components (SCCs) that are created

by transitions of δp|¬I . A SCC is a state transition graph in which every state is reachable

from any other state. Thus, a SCC may include multiple cycles. Detect_SCC returns an

array of state predicates, denoted SCCs, where each array cell contains the states of a SCC.

Detect_SCC also returns the number of SCCs. If no cycles exist in ¬I , then we initialize

pss by p and move on to the subsequent steps where we incrementally include recovery

transition groups in pss until all deadlocks in ¬I are resolved and the computations of pss
are livelock-free in ¬I .

Before including recovery transition groups in pss, we compute the deadlock states in ¬I ,
denoted deadlockStates (see Step 5 in Figure 3.6). To systematically include recovery

transition groups in pss, we sweep the ranks from bottom up and explore the possibility

of resolving deadlock states in each Rank[i], for i from 1 to M . Each round of sweeping

is called a pass. We go through three passes by invoking the Pass_Template function (see

Figure 3.7) in Lines 6, 7 and 8 of Figure 3.6.
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AddStrong(p: set of transition groups; I: state predicate;
Rank[1], · · · , Rank[M ]: state predicate; schedule[1..K]: array of integers) {

/* Rank[1], · · · , Rank[M ] are computed by ComputeRanks. */
/* schedule is an array representing a preferred order based on which processes are used
/* in the inclusion of transition groups for recovery from Rank[i] to Rank[i− 1]. */

- p := p−{g|(g ∈ p) ∧ (∀(s0, s1) : (s0, s1) ∈ g : s0 /∈ I)}; // g denotes a transition group (1)
- SCCs, numOfSCCs := Detect SCC(p, ¬I); (2)

// SCCs is an array of state predicates in which each array cell includes the states in a
// Strongly Connected Component (SCC) formed by transitions of δp|¬I.
// numOfSCCs dentoes the size of the array SCCs.

- if (numOfSCCs �= 0) then declare failure in adding strong convergence to p; exit; (3)
- else pss := p; (4)
- deadlockStates := { s0 | s0 /∈ I ∧ (∀s1, g: (s0, s1) ∈ g: g /∈ pss)}; (5)
- deadlockStates, pss := Pass Template(C1234, deadlockStates, I, Rank[1], · · · , Rank[M ],

pss, schedule[1..K]); (6)
- deadlockStates, pss := Pass Template(C123, deadlockStates, I, Rank[1], · · · , Rank[M ],

pss, schedule[1..K]); (7)
- deadlockStates, pss := Pass Template(C13, deadlockStates, I, Rank[1], · · · , Rank[M ],

pss, schedule[1..K]); (8)
- if (deadlockStates �= ∅) then declare failure in adding strong convergence to p; exit; (9)
- else return pss; (10)

}

Figure 3.6: Proposed heuristic for adding strong convergence.

• Pass C1234: Adding recovery from Rank[i] to Rank[i − 1] excluding transitions

that reach deadlocks. To build upon any already existing computation prefix that

starts in ¬I and reaches a state in I , in this pass, we include only those recovery

transition groups whose transitions terminate in a non-deadlock state. Specifically,

we iterate through each Rank[i] (0 < i ≤M) and explore the possibility of including

any recovery transition group g in pss such that (1) g resolves some deadlock

state in Rank[i] (see the predicate From in Line 3 of Figure 3.7), (2) g includes a

rank-decreasing transition (i.e., constraint C2), and (3) g meets the constraints (C1),

(C3) and (C4). To enforce the constraints (C1) and (C4), we construct the set of

transitions ruledOutTrans (see Line 5 of Figure 3.7) that includes the transitions that

either start in I or reach a deadlock state. Then, to enforce the constraint (C3) in

each iteration, we invoke the Add_Convergence algorithm of Figure 3.8 (see Line 7 of

Figure 3.7) with ruledOutTrans passed to it as an actual parameter. Add_Convergence

adds recovery from states in predicate From to states of To. If all deadlock states are

resolved in some iteration, then pss is a strongly stabilizing protocol that converges

to I .

• Pass C123: Adding recovery from Rank[i] to Rank[i − 1] including transitions that

reach deadlocks. This pass relaxes the constraint (C4) while including recovery

transition groups. Specifically, in Lines 2-8 of Figure 3.7, the predicates From

and To are computed in the same way as in Pass C1234, nonetheless, we have

ruledOutTrans= {(s0, s1) | (s0 ∈ I)} (Line 6 in Figure 3.7). That is, we permit

the inclusion of recovery groups that include transitions reaching deadlock states

(i.e., we relax the constraint (C4)).
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Pass Template(passNo: integer; deadlockStates, I: state predicate; pss: set of transition groups;
Rank[1], · · · , Rank[M ]: state predicate; schedule[1..K]: array of integers) {

- If (passNo = C1234 ∨ passNo = C123), then { (1)
- for i := 1 to M { // Go through each rank (2)

- From := {s | s ∈ Rank[i] ∧ s ∈ deadlockStates}; (3)
- To := {s | s ∈ Rank[i− 1]}; (4)
- If (passNo = C1234) then

- ruledOutTrans := {(s0, s1) | (s0 ∈ I) ∨ (s1 ∈ deadlockStates)}; (5)
- Else

- ruledOutTrans := {(s0, s1) | (s0 ∈ I)}; (6)
- deadlockStates, pss := Add Convergence(From, To,

I, pss, ruledOutTrans, schedule[1..K], passNo); (7)
- If (deadlockStates = ∅) then return deadlockStates , pss; (8)
} // for

- return deadlockStates , pss; (9)
} // if

- Else if (passNo = C13) then { (10)
- From := {s | s ∈ deadlockStates}; (11)
- To := true ; (12)
- ruledOutTrans := {(s0, s1) | (s0 ∈ I)}; (13)
- deadlockStates, pss := Add Convergence(From, To,

I, pss, ruledOutTrans, schedule[1..K], passNo); (14)
- return deadlockStates , pss; (15)

}
- Else declare invalid pass number!; exit; (16)

}

Figure 3.7: Pass_Template is invoked three times by the proposed heuristic with

different inputs.

• Pass C13: Adding recovery from any remaining deadlock states to wherever possible.

In Lines 10-15 of Figure 3.7, we explore the feasibility of adding recovery transitions

from remaining deadlock states to any state without adhering to the ranking

constraint (i.e., relaxing the constraint C2). As such, we invoke Add_Convergence

only once with From = deadlockStates, To = true and ruledOutTrans= {(s0, s1) |
(s0 ∈ I)}.

While the passes become less restrict in the order we have presented them, developers

have the liberty to perform these passes in any order. Specifically, designers have

two options in determining the order of executing these passes (out of the six possible

permutations/orders): either a specific order is determined using some background

knowledge about p, or in a brute-force fashion, one can invoke our heuristic with all

possible 6 permutations of steps 6, 7 and 8 in Figure 3.6 to see which order generates

a strongly stabilizing version of p. For example, if the input non-stabilizing protocol is

empty (i.e., has no transition groups), then starting with Pass C1234 is not a good idea

because all states in ¬I are deadlock and the constraint (C4) prohibits the inclusion of

any recovery transition group. After the execution of the passes, if there are still some

unresolved deadlock states, then AddStrong declares failure and terminates (see Step 9 in

Figure 3.6). Otherwise, pss is returned as the strongly stabilizing version of p.
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Adding convergence from a state predicate to another. Depending on the selected pass

(the first parameter of Pass_Template), Pass_Template simply prepares the appropriate input

parameters of the Add_Convergence routine and then returns the results computed by the

Add_Convergence routine in Figure 3.8. Add_Convergence adds recovery transition groups

from a state predicate From to another state predicate To. Such an inclusion of recovery

transition groups in the protocol pss is performed (i) under the read/write restrictions of

processes, (ii) without creating non-progress cycles in ¬I , (iii) without including any

transition group that is ruled out by the constraints of that pass, denoted ruledOutTrans,

and (iv) based on the recovery schedule given in the array schedule[]. We shall invoke

Add_Convergence in Passes C1234, C123 and C13 with different values for its input

parameters (see Lines 7 and 14 of Pass_Template)).

In each iteration of the for loop in Add_Convergence, we use the routine Add_Recovery to

check whether the transition groups that adhere to the read/write restrictions of process

Psch[j] can add recovery from From to To. This addition of recovery is performed

while excluding any transition in the set of transition groups ruledOutTrans (see Line 1

of Add_Recovery in Figure 3.8). Once a recovery transition is added, we need to make sure

that its groupmate transitions do not create non-progress cycles with the groupmates of

the transitions of pss. For this reason, we use the Identify_Resolve_Cycles (see Figure 3.8)

routine in Line 2 of Add_Recovery.

The Identify_ Resolve_Cycles (see Figure 3.8) routine identifies any SCCs that are created

in ¬I due to the inclusion of new recovery transitions in pss. The for-loop in Line 3 of

Identify_ Resolve_Cycles determines a set of groups of transitions badTrans that include at

least a transition (s0, s1) that starts and ends in a SCC; i.e., (s0, s1) participates in at least

one non-progress cycle. Step 3 in Add_Recovery excludes such groups of transitions from

the set of groups of transitions added for recovery. As such, the remaining groups add

recovery without creating any cycles.

TR Example. For the TR example introduced in Section 3.2, the state predicate I is equal

to S1 (defined in Section 3.2). ComputeRanks calculates two ranks (M = 2) that cover the
entire predicate ¬I . The non-stabilizing TR protocol does not have any non-progress cycles

in ¬S1. The recovery schedule is P1, P2, P3, P0. We could not add any recovery transitions

in Pass C1234 as the groups that do not terminate in deadlock states cause cycles. In Pass

C123, we add the recovery action xj = xj⊖1 ⊕ 1 → xj := xj⊖1, for 1 ≤ j ≤ 3, without
introducing any cycles. No new transitions are included in P0. The union of the added

recovery action and the action Aj in the non-stabilizing TR protocol results in the action

xj �= xj⊖1 → xj := xj⊖1 for the domain {0, 1, 2}. Notice that, the synthesized TR protocol
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Add Convergence(From, To, I: state predicate; pss, ruledOutTrans: set of transition groups,
schedule[1..K]: integer array; passNo: integer)

/* schedule is an array representing a preferred schedule based on which
/* processes are used in the design of convergence. */
/* G(Pi) denotes the set of transition groups that adhere to the read/write restrictions of */
/* a process Pi. Note that not all groups in G(Pi) may be included in the process Pi */
/* of the stabilizing protocol pss. */

{ - for j := 1 to K {
// use the schedule in array sch for adding recovery

- pss := Add Recovery(From, To, I, G(Psch[j]), pss, ruledOutTrans); (1)
- deadlockStates := { s0 | s0 /∈ I ∧ (∀s1, g: (s0, s1) ∈ g: g /∈ pss)}; (2)
- if (deadlockStates = ∅) then return deadlockStates, pss; (3)
- if (passNo = C1234) then

ruledOutTrans := {(s0, s1) | (s0 ∈ I) ∨ (s1 ∈ deadlockStates)}; (4)
} // for loop

- return deadlockStates, pss; (5)
}

Add Recovery(From, To, I: state predicate;G(P ), pss, ruledOutTrans: set of transition groups)
{ - addedRecovery := { g | (g ∈ G(P )) ∧

(∃ (s0,s1) : (s0,s1) ∈ g ∧ s0 ∈ From ∧ s1 ∈ To ∧ g /∈ ruledOutTrans) } (1)
- badTrans := Identify Resolve Cycles(pss,addedRecovery, ¬I); (2)
- return (pss ∪ (addedRecovery − badTrans)); (3)

}

Identify Resolve Cycles(pss, addedTrans: set of transition groups; X: state predicate)
{ - badTrans := ∅; // transitions to be removed from cycles. (1)
- SCCs, numOfSCCs := Detect SCC(pss∪ addedTrans, X); (2)
// SCCs is an array of state predicates in which each array cell includes the states in an SCC.
- for i := 1 to numOfSCCs {

- groupsInSCC := { g | g ∈ addedTrans ∧ (∃ (s0,s1) ∈ g : : s0 ∈ SCCs[i] ∧ s1 ∈ SCCs[i])};(3)
- badTrans := badTrans ∪ groupsInSCC; } (4)

- return badTrans; (5)
}

Figure 3.8: Add convergence from a state predicate From to another state predicate To.

is the same as Dijkstra’s token ring protocol in [7]. �

Theorem 3.3.1 AddStrong is sound, and has a polynomial time complexity in |Sp|.

Proof. The heuristic AddStrong ensures that no transition originating in I will be included.

Moreover, the heuristic only adds new recovery transition groups in pss. Thus, throughout
the execution of the heuristic, I remains unchanged and δpss | I = δp | I . Hence, the first
two constraints of Problem 2.2.1 are met.

The only step where the heuristic exits successfully is where it returns pss when no more

deadlock states exist; hence deadlock-freedom. Now, we illustrate the livelock-freedom of

pss in ¬I . By contradiction, consider a computation σ =≪ s0, s1, · · · ≫ that includes a

non-progress cycle in ¬I . Since the state space of p is finite, there must be some state si
that is revisited in σ. Nonetheless, Identify_Resolve_Cycles routine ensures that no cycles
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are formed in ¬I every time a recovery action is added by Add_Convergence. Thus, the

computation σ must include a state in I . Therefore, the returned protocol pss is strongly
converging to I .

It is straightforward to see that Steps 1-5 of AddStrong can be performed in polynomial

time in |Sp|. In Pass C1234, we iterate through M ranks. In each iteration, we invoke

Add_Convergence, which includes a for-loop that iteratesK times, whereK is the number of

processes. The Add_Convergence routine takes at most linear time in |Sp|. In the worst case,
each rank would include a single state, and hence M would be in the order of |Sp|. Pass
C123 goes through the same number of iterations. Thus, the time complexity of the first and

second passes is at most polynomial in |Sp|. In pass C13, we only invoke Add_Convergence

once. Therefore, the time complexity of AddStrong is polynomial in |Sp|. ✷

Comment on completeness. AddStrong is incomplete in that for some protocols it may fail

to add strong convergence while there exist a strongly stabilizing version of the input

non-stabilizing protocol p that meet the constraints of Problem 2.2.1. One reason behind

such incompleteness is our cycle resolution method where we eliminate any newly added

transition group that has a transition which participates in some cycle. This is not the

best way to resolve cycles. Consider a scenario where we add two transition groups

each have transitions that participate in the same cycle. Thus, eliminating one of them

would resolve the cycle. Nonetheless, our method removes both. Such a conservative

cycle resolution method is a cause of incompleteness. Another cause of incompleteness

is the greedy approach in which we discard only recently added groups that participate in

cycles. A more efficient cycle resolution method considers the possibility of removing the

previously included transitions as well; i.e., backtracking, which is beyond the scope of

this chapter. We would like to note that while performing the passes in different orders

may increase the likelihood of finding a solution, it does not provide a complete method

because completeness also depends on the aforementioned factors.

3.4 Case Studies

In this section, we present more case studies for the addition of strong convergence to

illustrate the applicability of the proposed heuristic in different settings and to emphasize

that the manual design of convergence is error prone. Section 3.4.1 discusses the synthesis

of a strongly stabilizing maximal matching protocol, Section 3.4.2 presents a stabilizing

three coloring protocol, and Section 3.4.3 presents our synthesis of a three-ring token ring

protocol.
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3.4.1 Maximal Matching on a Bidirectional Ring

The Maximal Matching (MM) protocol (presented in [15]) has K processes

{P0, · · · , PK−1} located on a ring, where P(i⊖1) and P(i⊕1) are respectively the left and

right neighbors of Pi. The left neighbor of P0 is PK−1 and the right neighbor of PK−1

is P0. Each process Pi has a variable mi with a domain of three values {left, right, self}

representing whether or notPi points to its left neighbor, right neighbor or itself. Intuitively,

two neighbor processes are matched if and only if they point to each other. More precisely,

process Pi is matched with its left neighbor P(i⊖1) (respectively, right neighbor P(i⊕1)) if

and only ifmi = left andm(i⊖1) = right (respectively,mi = right andm(i⊕1) = left). When

Pi is matched with its left (respectively, right) neighbor, we also say that Pi has a left match

(respectively, has a right match). Process Pi points to itself if and only if mi = self. Each

process Pi can read the variables of its left and right neighbors. Pi is also allowed to read

and write its own variablemi. The non-stabilizing protocol is empty; i.e., does not include

any transitions. Our objective is to automatically generate a strongly stabilizing protocol

that converges to a state in IMM = ∀i : 0 ≤ i ≤ K − 1 : LCi, where LCi is a local state

predicate of process Pi as follows

LCi ≡ (mi = left⇒ m(i⊖1) = right) ∧ (mi =right⇒ m(i⊕1) =left)∧
(mi =self⇒ (m(i⊖1) = left ∧ m(i⊕1) =right ))

In a state in IMM , each process is in one of these states: (i) matched with its right neighbor,

(ii) matched with left neighbor or (iii) points to itself, and its right neighbor points to right

and its left neighbor points to left. The protocolMM is silent in IMM . We have automatically

synthesized stabilizing MM protocols for K = 5 to 11 in a few minutes. Due to space

constraints, we present only the actions of P0 in a synthesized protocol forK = 5 (see [24]
for the actions of all processes).

m4 = left ∧m0 �= self ∧ m1 =right −→m0 := self

(m0 = self ∧m4 = right) ∨ (m0 �= left ∧m1 �= self ∧m4 = right) −→ m0 := left

(m0 = self ∧m1 = left) ∨ (m0 �= right ∧m1 = left ∧m4 = left) −→m0 := right

If the left neighbor of P0 (i.e., P4) points to its left and its right neighbor (i.e., P1) points to

its right and P0 does not point to itself, then it should point to itself. P0 should point to its

left neighbor in two cases: (1) P0 points to itself and its left neighbor points to right, or (2)

P0 does not point to its left, its right neighbor does not point to itself, and its left neighbor

points to right. Likewise, P0 should point to its right neighbor in two cases: (1) P0 points
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to itself and its right neighbor points to left, or (2) P0 does not point to its right, its right

neighbor points to left and its left neighbor points to left. These actions are different from

the actions in the manually design MM protocol presented by Gouda and Acharya [15] as

follows (1 ≤ i ≤ K):

mi = left ∧ m(i⊖1) = left −→ mi := self

mi = right ∧ m(i⊕1) = right −→ mi := self

mi = self ∧ m(i⊖1) �= left −→ mi := left

mi = self ∧ m(i⊕1) �= right −→ mi := right

Observe that the actions of processes in Gouda and Acharya’s protocol are symmetric,

whereas in our synthesized protocol they are not. In a symmetric protocol, the actions

of each process can be obtained from the actions of another process by a re-indexing

(renaming) of variables. This difference motivated us to investigate the causes of such

differences. While analyzing Gouda and Acharya’s protocol, we found out that their

protocol includes a non-progress cycle starting from the state 〈left, self, left, self, left〉
with a schedule P0, P1, P2, P3, P4 repeated twice, where the tuple 〈m0, m1, m2, m3, m4〉
denotes a state of the MM protocol. This experiment illustrates how difficult the design

of strongly convergent protocols is and how automated design can facilitate the design of

convergence.

3.4.2 Three Coloring

In addition to the TC protocol presented in Section 2.1, STSyn synthesized an alternative

strongly stabilizing TC protocol with 40 processes with the following actions labeled by

process numbers (1 < i ≤ 40).

P1: (c1 = c0) ∨ (c1 = c2) −→ c1 := other(c0, c2)
Pi: (c(i⊖1) �= ci) ∧ (ci = c(i⊕1))−→ ci := other(c(i⊖1), c(i⊕1))

Notice that P0 has no actions. Moreover, this protocol is different from the TC protocol

presented in [15].
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3.4.3 Three-Ring Token Ring

In order to illustrate that our approach is applicable for more complicated topologies, in this

section, we demonstrate how we added convergence to an extended version of Dijkstra’s

token ring.

The non-stabilizing Three-Ring Token Ring (TR2) protocol. The TR2 protocol includes

9 processes located in three rings A, B and C (see Figure 3.9). In Figure 3.9, the arrows

show the direction of token passing. Process PAi (respectively, PBi and PCi), 0 ≤ i ≤ 1,
is the predecessor of PAi⊕1 (respectively, PBi⊕1 and PCi⊕1). Process PA2 (respectively,

PB2 and PC2) is the predecessor of PA0 (respectively, PB0 and PC0). Each process PAi

(respectively, PBi and PCi), 0 ≤ i ≤ 2, has an integer variable ai (respectively, bi and ci)
with the domain {0, 1, 2}.
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Figure 3.9: The Three-Ring Token Ring (TR2) protocol.

Process PAi, for 1 ≤ i ≤ 2, has the token if and only if (ai⊖1 = ai ⊕ 1). Intuitively, PAi

has the token if and only if ai is one unit less ai⊖1. Process PA0 has the token if and only if

(a0 = a2) ∧ (c0 = c2) ∧ (a0 = c0); i.e., PA0 has the same value as its predecessor and that

value is equal to the values held by PC0 and PC2. Process PB0 has the token if and only if

(b0 = b2)∧ (a0 = a2)∧ ((b0⊕ 1) = a0). That is, PB0 has the same value as its predecessor

and that value is one unit less than the values held by PA0 and PA2. Process PC0 has the

token if and only if (c0 = c2) ∧ (c0 ⊕ 1 = b0) ∧ (b0 = b2). That is, PC0 has the same

value as its predecessor and that value is one unit less than the values held by PB0 and PB2.

Process PBi (respectively, PCi) (1 ≤ i ≤ 2) has the token if and only if (bi⊖1 = bi ⊕ 1)
(respectively, ci⊖1 = ci⊕ 1). The TR2 protocol also has a variable turn ∈ {0, 1, 2}; ring A
executes only if turn = 0, ring B executes if turn= 1 and ring C executes if turn= 2.
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Using the following actions, the non-stabilizing TR2 circulates the token in rings A, B and

C (i = 1, 2):

AC0 : (a0 = a2) ∧ turn = 0 −→ if (a0 = c0) a0 := a2 ⊕ 1;
else turn := 1;

ACi : (ai⊖1 = ai ⊕ 1) −→ ai := ai⊖1;

Notice that the actionACi is a parameterized action for processes PA1 and PA2. The actions

of the processes in ring B are as follows (i = 1, 2):

BC0 : (b0 = b2) ∧ turn = 1 −→ if (a0 �= b0) b0 := b2 ⊕ 1;
else turn := 2;

BCi : (bi⊖1 = bi ⊕ 1) −→ bi := bi⊖1;

The actions of the processes in ring C are as follows (i = 1, 2):

CC0 : (c0 = c2) ∧ turn = 2 −→ if (c0 �= b0) c0 := c2 ⊕ 1;
else turn := 0;

CCi : (ci⊖1 = ci ⊕ 1) −→ ci := ci⊖1;

Set of legitimate states I . Consider a state s0 where (∀i : 0 ≤ i ≤ 2 : (ai = 0)∧(bi = 0)∧
(ci = 0)) and turn = 0 in s0. The predicate I contains all the states that are reached from

s0 by the execution of actionsACi, BCi and CCi, for 0 ≤ i ≤ 2. Starting from the state s0,
process PA0 has the token and starts circulating the token until the protocol reaches the state

s1, where (turn(s1) = 1) ∧ (∀i : 0 ≤ i ≤ 2 : (ai(s1) = 1) ∧ (bi(s1) = 0) ∧ (ci(s1) = 0));
i.e., PB0 has the token. Process PB0 circulates the token until the protocol reaches a state

s2, where (turn(s2) = 2) ∧ (∀i : 0 ≤ i ≤ 2 : (ai(s2) = 1) ∧ (bi(s2) = 1) ∧ (ci(s2) = 0));
i.e., process PC0 has the token. This way the token circulation continues in the three rings.

In other words, the predicate I includes all states where there is exactly one token in the

rings. Thus, I = IA ∧ IB ∧ IC where:
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IA = {s | (∀i : 0 ≤ i ≤ 2 : ai(s) = ai⊕1(s)) ∨
((turn(s) = 0) ∧ (∃j : 1 ≤ j ≤ 2 : (aj⊖1(s) = aj(s)⊕ 1) ∧

(∀k : 0 ≤ k < j − 1 : ak(s) = ak⊕1(s)) ∧
(∀k : j ≤ k < 2 : ak(s) = ak⊕1(s))) }

IB = {s | (∀i : 0 ≤ i ≤ 2 : bi(s) = bi⊕1(s)) ∨
((turn(s) = 1) ∧ (∃j : 1 ≤ j ≤ 2 : (bj⊖1(s) = bj(s)⊕ 1) ∧

(∀k : 0 ≤ k < j − 1 : bk(s) = bk⊕1(s)) ∧
(∀k : j ≤ k < 2 : bk(s) = bk⊕1(s))) }

IC = {s | (∀i : 0 ≤ i ≤ 2 : ci(s) = ci⊕1(s)) ∨
((turn(s) = 2) ∧ (∃j : 1 ≤ j ≤ 2 : (cj⊖1(s) = cj(s)⊕ 1) ∧

(∀k : 0 ≤ k < j − 1 : ck(s) = ck⊕1(s)) ∧
(∀k : j ≤ k < 2 : ck(s) = ck⊕1(s))) }

The state predicate IA (respectively, IB and IC) includes the states in which either all a
(respectively, b and c) values are equal or it is the turn of ring A (respectively, B and C) and

there is only one token in ring A (respectively, B and C).

Adding Convergence to TR2 Protocol. In the absence of transient faults, there is

exactly one token in the set of legitimate states I of TR2. However, transient faults

may set the variables to arbitrary values from their domains and either create multiple

tokens in the rings, or perturb the state of TR2 to a deadlock state outside I . Let

〈turn, a0, a1, a2, b0, b1, b2, c0, c1, c2〉 denote the global state of the protocol TR
2. Then, no

process has the token and no action is enabled in the state sd = 〈turn, 1, 1, 2, 1, 1, 2, 1, 1, 2〉,
where turn could take any value from its domain. Thus, sd is a global deadlock that can

be reached by transient faults. STSyn generates a strongly self-stabilizing version of this

protocol that ensures recovery to states where only one token exists in the rings. The actions

ACi, BCi and CCi (1 ≤ i ≤ 2) are modified in the revised protocol.

AC00 : (a0 = a2) ∧ turn = 0 −→ if (a0 = c0) a0 := a2 ⊕ 1;
else turn := 1;

AC10 : (a0 = a1 ⊕ 1) −→ a1 := a0;
AC11 : (a1 = a0 ⊕ 1) −→ a1 := a0 ⊖ 1;
AC20 : (a1 �= a2) −→ a2 := a1;
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BC00 : (b0 = b2) ∧ turn = 1 −→ if (b0 = a0) b0 := b2 ⊕ 1;
else turn := 2;

BC10 : (b0 = b1 ⊕ 1) −→ b1 := b0;
BC11 : (b1 = b0 ⊕ 1) −→ b1 := b0 ⊖ 1;
BC20 : (b1 �= b2) −→ b2 := b1;

CC00 : (c0 = c2) ∧ turn = 2 −→ if (c0 = b0) c0 := c2 ⊕ 1;
else turn := 0;

CC10 : (c0 = c1 ⊕ 1) −→ c1 := c0;
CC11 : (c1 = c0 ⊕ 1) −→ c1 := c0 ⊖ 1;
CC20 : (c1 �= c2) −→ c2 := c1;

Notice that the action AC20 for PA2 is the union of the existing action AC2 : (a1 = a2 ⊕
1) −→ a2 := a1 and the new convergence action (a2 = a1 ⊕ 1) −→ a2 := a1 added to

PA2. (the new action is the union of these actions because the variable domain is {0, 1, 2}.)
The same is true for actions BC20 and CC20 for PB2 and PC2. STSyn did not include

an action AC21 : (a2 = a1 ⊕ 1) −→ a2 := a1 ⊖ 1 in process PA2 (that is symmetric to

AC11 in process PA1) because it would have created a livelock as follows. Starting from the

state 〈0, 0, 2, 0, 0, 2, 0, 0, 2, 0〉, the following actions are executed in ring A: the if part of

action AC00, AC21, AC11 and the else part of AC00. By these actions, ring A goes through

the states 〈0, 2, 0〉, 〈1, 2, 0〉, 〈1, 2, 1〉 and 〈1, 0, 1〉, where the triplet 〈a0, a1, a2〉 denotes
the state of ring A. Subsequently, rings B and C go through similar state transitions until

the entire protocol reaches the global state 〈0, 1, 0, 1, 1, 0, 1, 1, 0, 1〉. In the next round of

token passing, each ring transitions through the following states 〈1, 0, 1〉, 〈2, 0, 1〉, 〈2, 0, 2〉,
〈2, 1, 2〉, thus reaching the global state 〈0, 2, 1, 2, 2, 1, 2, 2, 1, 2〉. In the third round, each

ring creates the sequence of states 〈2, 1, 2〉, 〈0, 1, 2〉, 〈0, 1, 0〉, 〈0, 2, 0〉, thereby getting

back to the global state 〈0, 0, 2, 0, 0, 2, 0, 0, 2, 0〉. Since none of the states of the above

cycle is a legitimate state, it forms a livelock in the set of illegitimate states. That is why

the action AC20 (respectively,BC20 and CC20) in process PA2 (respectively, PB2 and PC2)

is structurally different from the actions of process PA1 (respectively, PB1 and PC1).

3.5 Algorithmic Design of Strong Convergence in

Symmetric Protocols

In this section, we investigate the addition of strong convergence to symmetric

non-stabilizing protocols towards synthesizing a symmetric self-stabilizing version thereof.
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A protocol p is symmetric if and only if for every pair of the processes Pi and Pj of p, the
code of Pj can be obtained from Pi by a simple renaming (re-indexing), and vice versa [25].

This suggests that, for every pair of processes Pi and Pj , δj and δi are identical (similar)

up to a re-indexing of processes. In this section, we present a modification of our heuristic

in Section 3.3 to account for symmetric protocols by assuming that the input protocol p
and the output protocol pss both consist of similar processes. We also demonstrate the

soundness and polynomial-time complexity of our heuristic.

Add_Convegence_Sym is the core of each pass where similarity between processes is

enforced (see Figure 3.10). It adds recovery groups from a state predicate From to another

state predicate To. These recovery groups are included in pss such that no cycles are

created in ¬I and any groups ruled out by the constraints of the current pass, denoted

ruledOutTrans (Section 3.3), are excluded. We invoke a revised version of Pass_Template

(Figure 3.7) for passes C1234, C123 and C13, where Add_Convergence is replaced with

Add_Convergence_Sym in Lines 7 and 14 of Figure 3.7.

Add_Convergence_Sym starts by initializing pss to the current protocol transitions; it invokes
Substitute that takes the transition groups of a representative process Pr and substitutes its

variables with Pj variables, for every j (Line 1). In this way, Substitute enforces symmetry

through variable substitution in a representative set of transition groups. A candidate

set of recovery transition groups for the representative process Pr is computed in Line

2 (RecoveryGroupsr). We use a subscript r for a set of groups and/or states to denote

a representative set. Line 3 updates pss based on the new value of RecoveryGroupsr by

invoking UpdateGroups(). Update_Groups computes the corresponding recovery groups for

each process Pj (1 ≤ j ≤ K). Line 4 computes the SCCs and their number in δpss |¬I . In
case there are cycles, Lines 5-7 update pss to remove potential newly added groups causing

these cycles. Line 8 updates the set of deadlock states.

Note. The predicate ruledOutTrans allows us to extend our approach by defining some

Safety requirements. For instance, it is possible to define a set of Bad groups for every

process Pi, say Safetyi, and rule them out by augmenting (disjuncting) ruledOutTrans

with Safetyi for every process Pi. This approach allows our heuristic to synthesize

superstabilizing protocols. A superstabilizing protocol is a self-stabilizing protocol that

maintains a safety property during its convergence to its legitimate set of states [20]. The

safety predicate is usually a property of the network topology that should be maintained

during convergence. We use such safety constraints to guide our heuristic in synthesizing

two of the case studies (Section 3.6). Theorem 3.5.1 The heuristic Add_Convergence_Sym

is sound, and has a polynomial time complexity in |Sp|.
Proof We demonstrate that (1) pss is cycle free outside I , (2) pss is a symmetric

protocol and, (3) if the heuristic returns successfully, pss is deadlock free. We show

that Add_Convergence_Sym maintains (1) and (2) if its input set of processes is symmetric
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Add Convergence Sym(From, To, I: state predicate; Pr, ruledOutTrans: set of transition groups)
{
- p := ∅; for j := 1 to K { p := p ∪ Substitute(Pr, Variablesj); } pss := p ; (1)
// Pr is a representative process of the symmetric protocol.
// Substitute replaces the variables of its first parameter with the variables of process j,
// denoted Variablesj, thereby generating a set of transition groups of Pj that
// are isomporphic to a set of groups of Pr.
- RecoveryGroupsr :=Add Recovery Sym(From, To, I, G(Pr), ruledOutTrans); (2)
- pss:= Update Groups(Pr ∪ RecoveryGroupsr); (3)
- SCCs, numOfSCCs := Detect SCC(pss, ¬I); (4)
-if (numOfSCCs �= 0) {

- BadGroupsr :=Identify Resolve SCC(pss, pss, ¬I); (5)
- RecoveryGroupsr :=RecoveryGroupsr − BadGroupsr; (6)
- pss := Update Groups(Pr ∪ RecoveryGroupsr); (7)
}

- deadlockStates := { s0 | s0 /∈ I ∧ (∀s1, g: (s0, s1) ∈ g: g /∈ pss)}; (8)
- return deadlockStates, pss; (9)

}

Add Recovery Sym(From, To, I: state predicate; G(P ), ruledOutTrans: set of transition groups)
{
- addedRecovery:= { g | (g ∈ G(P )) ∧

(∃ (s0,s1) : (s0,s1) ∈ g ∧ s0 ∈ From ∧ s1 ∈ To ∧ g /∈ ruledOutTrans) } (1)
- return addedRecovery; (2)

}

Update Groups(Pr: set of transition groups)
{
- pss := ∅; for j := 1 to K pss := pss ∪ Substitute(Pr, Variablesj); (1)
- return pss; (2)

}

Figure 3.10: Convergence synthesis for symmetric protocols

and cycle free outside I . In fact, Add_Convergence_Sym adds a set of recovery groups to

an intermediate symmetric protocol (represented by Pr) that are similar and cycle free.

Lines 5-7 compute and remove the groups causing cycles in pss. If no groups are added

to pss, it remains unchanged and its cycle freedom is established by previous calls to

Add_Convergence_Sym in previous passes and/or ranks. Thus, cycle-freedom is maintained.

The procedure Update_Groups maintains symmetry by adding the same recovery group

(up to variables substitution) to each process Pj where Pj’s are all similar (Line 1).

Initially, the input protocol p is symmetric and cycle free, and hence iterative invocations of

Add_Convergence_Sym maintains cycle-freedom and symmetry during each iteration of the

heuristic. If the invocation of Pass_Template for the passes C123, C1234 and C13 returns

a valid protocol where deadlockStates = ∅, then deadlock-freedom in ¬I is guaranteed

(see Lines 8, 9 and 15 in Figure 3.7). This proves that pss is (1) cycle free outside I , (2)
symmetric and (3) deadlock free outside I . Therefore, pss is a symmetric protocol strongly

converging to I .

The proof of polynomial-time complexity is similar to the proof of polynomial-time

complexity of the heuristic presented in Section 3.3, hence omitted. ✷

MM Example. In this section, we illustrate how a symmetric version of the MM protocol can
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be synthesized by our heuristic forK = 9. Since the input protocol for MM is empty, Pass

C1234 is likely to terminate without including any recovery groups (Recall that Pass C1234

adds only groups having no transitions terminating in deadlock states). Accordingly, we let

our heuristic follow a modified order for the passes: Pass C123, Pass C1234 and then Pass

C13.

For Pass C123, our heuristic adds a set of recovery groups represented as the following

actions. These actions have transitions starting in Rank[1] and reaching IMM for each Pi

(0 ≤ i ≤ K − 1):

A11: (mi �= self) ∧ (mi⊖1=left) ∧ (mi⊕1 =right) −→mi :=self

A12: (mi �=left) ∧ (mi⊖1 =right) ∧ (mi⊕1 �=left) −→mi :=left

A13: (mi �=right) ∧ (mi⊖1 �=right) ∧ (mi⊕1 =left) −→mi :=right

These added actions already resolve half of the deadlock states in ¬IMM . None of them

interfere and cause non-progress cycles in ¬I . An example of a remaining deadlock state

is one in which mi =self, for each Pi (0 ≤ i ≤ K − 1). Continuing in Pass C123, our

heuristic adds a set of recovery groups represented as the following actions (A21 and A22).

These actions have transitions starting in Rank[2] and reaching a state in Rank[1] for each
Pi (0 ≤ i ≤ K − 1):

A21: (mi = self) ∧ (mi⊖1 =self) ∧ (mi⊕1 =self) −→mi :=left |right
A22: (mi =self) ∧ (mi⊖1 =right) ∧ (mi⊕1 =left) −→mi :=left | right

In Pass C123, we examine the addition of the actions A31 and A32 (see below). However,

since they create a non-progress cycle for each process Pi between the local states 〈 self,
self, right 〉 and 〈 self, left, right 〉, we exclude them to be in the synthesized protocol.

(The local states represent valuations of 〈mi⊖1, mi, mi⊕1〉.) The notation mi := left | right
signifies a nondeterministic assignment to mi of one of the values on the right hand side

separated by |.

A31: (mi = left) ∧ (mi⊖1 =self) ∧ (mi⊕1 =right) ∨
(mi = right) ∧ (mi⊖1 =left) ∧ (mi⊕1 =self) −→mi :=self

A32: (mi =self) ∧ (mi⊖1 =self) ∧ (mi⊕1 =right) ∨
(mi =self) ∧ (mi⊖1 =left) ∧ (mi⊕1 =self) −→mi :=left | right
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The actions of A41 and A42 have at least one transition starting in Rank[3] and going to

Rank[2]. They are included in the intermediate program.

A41: (mi = right) ∧ (mi⊖1 =self) ∧ (mi⊕1 =right) −→mi :=self | left
A42: (mi =left) ∧ (mi⊖1 =left) ∧ (mi⊕1 =self) −→mi :=self | right

For higher ranks, there are no more transition groups to add in Pass C123. Nonetheless,

there are still deadlock states in ¬IMM . For example, the global state 〈self, self, right,
left, self, right, left, right, left 〉 is a deadlock state in ¬IMM because it has two neighboring

nodes having the value self. Note that by symmetry, all cyclic permutations of this deadlock

state are deadlocks as well. In Pass C1234, our heuristic adds the actions A51 and A52 to

pss. These actions include transitions from Rank[2] to Rank[1] that resolve the remaining

deadlock states.

A51: (mi = self) ∧ (mi⊖1 =self) ∧ (mi⊕1 =right) −→mi := left

A52: (mi =self) ∧ (mi⊖1 =left) ∧ (mi⊕1 =self) −→mi :=right

No more deadlock states remain in ¬IMM and the obtained solution is the union of all

the included actions (A11, A12, A13, A21, A22, A41, A42, A51, A52). To gain more confidence

in the implementation of STSyn, we model-checked the above solution for 5 ≤ K ≤
10. (The corresponding Promela [26] models are available at http://cs.mtu.edu/~anfaraha/

CaseStudy/PromelaCode.) STSyn synthesized a different stabilizing MM version forK =
6 andK = 8, which we model-checked for 5 ≤ K ≤ 10.

mi⊖1 = left ∧mi �= self ∧mi⊕1 =right −→ mi := self

(mi =self) ∧ (mi⊖1 = right ∨mi⊕1 =self) −→ mi := left

(mi =self) ∧ (mi⊖1 = self ∨mi⊕1 =left) −→ mi := right

mi �=left ∧ mi⊖1 = self ∧mi⊕1 =right −→ mi := left

mi �=right ∧mi⊕1 = self ∧mi⊖1 =left −→ mi := right
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mi =right ∧mi⊖1 = right ∧ mi⊕1 �=left −→ mi := left

mi =left ∧ mi⊕1 = left ∧ mi⊖1 �=right −→ mi := right

The first action of Pi points to itself only when both its neighbors point to other processes

(Pi⊕1 points to Pi⊕2 and Pi⊖1 points to Pi⊖2). The second action is enabled when Pi points

to itself and either its left (right) neighbor points to Pi so it matches with its left (right)

neighbor or a left (right) neighbor points to itself so Pi matches with the right (left). The

third action considers the case when Pi points to its left (right), this neighbor points to its

left (right) neighbor and Pi’s right (left) neighbor points to itself, then Pi points to its right

(left) neighbor. The fourth action is enabled when Pi points to its left (right) neighbor that

does not match with Pi while its right (left) neighbor points to Pi, then Pi matches with its

right (left) neighbor. �

3.6 Case Studies for Symmetric Protocols

In this section, we present some of our case studies for the addition of strong convergence

to symmetric processes. Section 3.6.1 discusses a stabilizing symmetric three coloring

protocol. Section 3.6.2 presents the synthesis of a leader election protocol over a

ring. Finally, Section 3.6.3 demonstrates the solution STSyn generates for an agreement

protocol.

3.6.1 Three Coloring

Our heuristic synthesized a symmetric TC protocol for 5 ≤ K ≤ 11 as follows (0 ≤ i <
K):

Pi: (ci = ci⊖1) ∨ (ci = ci⊕1) −→ ci := other(ci⊖1, ci⊕1)

Due to the fact that Icolor is locally checkable and correctable, the synthesized protocol

is straightforward in the sense that, each process action has the form ¬LCi → establish

LCi. The assignment of the new color does not violate the local predicates LCi⊖1, LCi and

LCi⊕1 where LCi = (ci �= ci⊕1); that is why TC is locally correctable.
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3.6.2 Leader Election

We synthesize a Leader Election (LE) protocol adopted from Huang et al. [27]. LE is

defined over a bidirectional ring with K processes. Each process Pi has a variable xi ∈
{0, 1, ..., K − 1} (0 ≤ i ≤ K − 1) where xi is an identifier for Pi. A stable state is such

that xi uniquely identifies Pi. The set of legitimate states for LE is defined as Ileader =
∧i=K−1

i=1 (xi ⊖ xi⊖1 = xi⊕1 ⊖ xi), where K is a prime value. For a compositeK, Huang et

al. demonstrate the impossibility of having an SS protocol.

Given Ileader and an empty input protocol p, STSyn synthesizes the solution in [27] up to

5 processes. To reach this solution, we consider the requirement that xi can be increased

by 1 moduloK; any transition group containing a transition that increases xi by more than

one unit is excluded.

(xi ⊖ xi⊖1) < (xi⊕1 ⊖ xi) −→ xi := xi ⊕ 1
xi⊖1 = xi = xi⊕1 −→ xi := xi ⊕ 1

STSyn generated a solution for K = N = 5 in 2 seconds but could not synthesize a

solution for K = N = 7 in a reasonable amount of time (less than 12 hours). This can be

explained by the increase in the domain size and its impact on the exponential growth of

the size of BDDs.

3.6.3 Agreement

We present a symmetric protocol on a bidirectional ring where the processes need to agree

on a specific value: from an initial arbitrary state, all the variables should eventually be

equal to one another. The ring has K processes Pi (0 ≤ i ≤ K − 1). Each process

Pi can write its local variable xi where xi ∈ {0, · · · , L − 1}. Each process Pi can read

its left xi⊖1, right xi⊕1 and its own variable xi. The set of legitimate states is Iagreement =
∧i=K−1

i=1 (xi⊖1 = xi). The protocol is not locally correctable: the establishment of xi⊖1 = xi

by an action Pi can invalidate xi = xi⊕1. This fact complicates the search for a solution

with similar processes. The input protocol p is empty. We restrict the set of groups to be

included in our solution only to groups increasing the value of xi. Thus, STSyn generates

the following solution for up to 6 processes.
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xi < xi⊖1 −→ xi := xi⊖1

xi < xi⊕1 −→ xi := xi⊕1

Figure 3.11 illustrates a summary of the case studies we have conducted in terms of being

locally-checkable/correctable, whether STSyn generated alternative solutions for them and

the maximum size of their state space.

Case Study Locally Locally Synthesized # of States

Checkable Correctable Alternative

Solutions

Three-Coloring Yes Yes Yes 340

Matching Yes No Yes 311

Token Ring No No Yes 55

Three-Ring No No No 310

Leader Election Yes No No 55

Agreement Yes No No 66

Figure 3.11: Summary of case studies.

3.7 Experimental Results

While the significance of our work is in enabling the automated design of convergence, we

would like to report the potential bottlenecks of our work in terms of tool development.

Thus, in this section, we discuss our experimental results. We conducted our experiments

on a Linux Fedora 10 distribution personal computer, with a 3GHz dual core Intel processor

and 1GB of RAM. We have used C++ and the CUDD/GLU [28] library version 2.1 for

BDD [19] manipulation in the implementation of STSyn.

In order to guarantee accuracy in the measurements of execution times, we repeat our

experiments for every sample point in the graph until the statistical average of the execution

times is bounded within an error margin of ±0.5%. We observe that for smaller values

of independent variables; i.e., the number of processes or the domain size, the required

number of experiments is around 4. However, for increasing values of independent

variables, we require around 20 repetitions of the experiment to guarantee the required

error margin. For instance, in the 3-coloring protocol, 3 to 5 repetitions of our experiment

for each value of the number of processes smaller than 25 suffice to guarantee our error

margin. However, for larger number of processes, we had to repeat our experiment from

18 to 21 times.

For execution times, we illustrate the time for computing ranks, the SCC detection time
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Figure 3.12: Time spent for adding convergence to matching versus the number of

processes.

and the total execution time versus either the number of processes or the domain size of the

variables. For memory usage, we illustrate the average number of BDD nodes for an SCC

and total number of nodes in the synthesized BDD versus the number of processes or the

domain size of the variables. The average number of BDD nodes is computed as the total

number of nodes in all SCC’s detected during the execution divided by their corresponding

number of SCC’s. We illustrate our results for asymmetric case studies except for the

agreement protocol which we synthesized using our heuristic for symmetric protocols.

Figures 3.12 and 3.13 respectively represent how execution time and memory usage of

synthesis grow as we increase the number of processes in the matching protocol. We

measure the memory usage in terms of the number of BDD nodes rather than in kBytes for

the following reason: in a platform-independent fashion, the number of BDD nodes reflects

how space requirements of our heuristic grow during synthesis. Observe that, for maximal

matching, increasing the number of processes significantly increases the execution time

and memory usage of synthesis. Nonetheless, since the domain size is constant, we were

able to scale up the synthesis and generate a strongly stabilizing protocol with 11 processes

in a few minutes.

Figures 3.14 and 3.15 respectively demonstrate execution time and memory usage of

adding convergence to the TC protocol. We have added convergence to the coloring

protocol for 8 versions from 5 to 40 processes with a step of 5. Since the added recovery

transitions for the coloring protocol do not create any SCCs outside Icoloring, we have been
able to scale up the synthesis and generate a stabilizing protocol with 40 processes.

While both Icoloring in the coloring protocol and IMM in the matching protocol are locally

checkable for each process Pi, we note that the cost of synthesizing a maximal matching
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Figure 3.13: Space usage for adding convergence to matching versus the number of

processes.

Figure 3.14: Time spent for adding convergence to 3-Coloring versus the number of

processes.

protocol is higher in part because the MM protocol is not locally correctable, whereas the

TC protocol is. In the MM protocol, consider a case where the first conjunct of the local

predicate LCi is false for Pi. That is, mi = left and mi⊖1 �= right. If Pi makes an attempt

to satisfy its local predicate LCi by setting mi to self, then LCi may become invalid if

mi⊖1 �= left. The last option for Pi would be to set mi to right, which may not make the

second conjunct true ifmi⊕1 �= left. Thus, the success of Pi in correcting its local predicate

depends on the actions of its neighbors as well. Such dependencies cause cycles outside

IMM , which complicate the design of convergence. By contrast, in the coloring protocol,

each process can easily establish its local predicate c(i⊖1) �= ci by selecting a color that is

different from its left and right neighbors.

Figures 3.16 and 3.17 respectively illustrate how execution time and memory usage of

46



✰

✱✰✰

✲✰✰✰

✲✱✰✰

✳✰✰✰

✳✱✰✰

✴✰✰✰

✰ ✱ ✲✰ ✲✱ ✳✰ ✳✱ ✴✰ ✴✱ ✵✰ ✵✱

✶
✷
✸
✹
✺
✺
✻
✷
✼
✽
✾

✿ ❀❁ ❂❃❀❄❅❆❆❅❆

�������	
����
�������������

❇❈❉❊❋●❉ ❍■■ ❍❏❑❉

▲▼◆❋❖ &❊▼●❊❋◗ ❍❏❑❉
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Figure 3.16: Time spent for adding convergence to Token Ring versus the number of

processes.

synthesis increase for the token ring protocol as we keep size of the domain of x variables

constant (i.e., |D| = 4) and increase the number of processes.

Figures 3.18 and 3.19 respectively illustrate how execution time and memory usage of

synthesis increase for the agreement symmetric protocol as we keep the size of the domain

of x variables constant (i.e., |D| = 3) and increase the number of processes. Figures

3.20 and 3.21 respectively illustrate how execution time and memory usage of synthesis

increase for the symmetric agreement protocol as we keep the number of processes constant

(|P | = 5) and increase the domain size of x variables. Observe that the SCC detection time

is our major bottleneck.
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Figure 3.17: Space usage for adding convergence to Token Ring versus the number of
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Figure 3.18: Time spent for adding convergence to Agreement versus the number of

processes.

3.8 Discussion

In this section, we discuss issues related to the applications, strengths and some limitations

of our lightweight method.

Applications. There are several applications for the proposed lightweight method.

First, STSyn can be integrated in model-driven development environments (such as

Unified Modeling Language [29] and Motorola WEAVER [30]) for protocol design and

visualization. For the implementation of STSyn, we have benefited from commonly-used

data structures (e.g., BDDs [19]) that are applied in the implementation of model checkers.

However, our heuristics automatically synthesize the convergence actions necessary to
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Figure 3.19: Space usage for adding convergence to Agreement versus the number of

processes.

✟

✠

✡

☞

✌

✍

✎

✏

✟ ✠ ✡ ☞ ✌ ✍ ✎ ✏

✑✒
✓✔
✕✗
✘✙✚
✛✘✜
✓✢
✣✤

✥✦✧★ ✩✪ ✫✬✭✦✬✮✯★ ✰✩✱✬✲ ✳ ✴✰✴

✵✶✷✸✹✺✻✼✽ ✾✻✿✷❀ ✼❁ ❂❃❄✷✷✿✷✽✺ ❅❆❅❇❈

❉❊❋●❍❋■ ❏❍❑▲
▼◆◆ ❖▲Q▲◗Q❍❘❋ ❏❍❑▲
❏❘Q❊❙ ❚❯▲◗❱Q❍❘❋ ❏❍❑▲
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make a protocol self-stabilizing instead of just verifying them. While model checkers

generate scenarios as to how a protocol fails to self-stabilize, the burden of revising

the protocol so it becomes self-stabilizing remains on the shoulders of designers. Our

heuristics revise a protocol towards generating a self-stabilizing version thereof. As such,

an integration of our heuristics with model checkers can greatly benefit the designers of

self-stabilizing protocols.

Limitations. The objectives of this research place scalability at a low degree of priority

as the philosophy behind our lightweight method is to benefit from automation as long as

available computational resources permit. Nonetheless, we have analyzed the behavior of

STSyn regarding time/space cost (see Section 3.7). The extent to which we can currently

scale up a protocol depends on many factors including the number of processes, variable

domains and topology. For example, while our tool is able to synthesize a self-stabilizing

protocol with up to 40 processes for the 3-coloring problem, it is only able to find solutions

for Dijkstra’s token ring with up to 5 processes, each with a variable domain size of 5. One

of the major factors affecting the scalability of our heuristic is the cycle resolution problem.

The number of cycles mainly depends on the size of the variable domains and the size of

the transition groups (which is also determined by the number of unreadable variables and

their domains). Our experience shows that the larger the size of the groups and the variable

domains, the more cycles we get. We believe that scaling-up our heuristic is strongly

dependent on our ability to scale-up cycle resolution, which is the focus of one of our

current investigations. Although the proposed heuristic does not scale-up systematically

for all input protocols, our lightweight approach allows designers to have some concrete

examples of a possibly general self-stabilizing version of a non-stabilizing protocol.

3.9 Summary and Extensions

We presented a lightweight method for automated addition of convergence to

non-stabilizing network protocols to make them self-stabilizing, where a self-stabilizing

protocol recovers/converges to a set of legitimate states from any state in its state space. The

addition of convergence is a problem for which no polynomial-time algorithm is known yet,

nor is there a proof of NP-completeness for it (though it is in NP). As a building block of our

lightweight method, we presented a heuristic that automatically adds strong convergence

to non-stabilizing protocols in polynomial time (in the state space of the non-stabilizing

protocol). We also presented a sound and complete method for automated design of

weak convergence (Theorem 3.2.1). While most existing manual/automatic methods

for the addition of convergence mainly focus on locally-checkable/correctable protocols,

our method automates the addition of convergence to non-locally-checkable/correctable

protocols. We also presented a heuristic for synthesizing symmetric self-stabilizing
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protocols. We have implemented our heuristics in a software tool, called STabilization

Synthesizer (STSyn), using which we have automatically generated many stabilizing

protocols including different versions of Dijkstra’s token ring protocol [7], maximal

matching, three coloring in a ring, a three-ring token passing protocol, a leader election

protocol and an agreement protocol. STSyn has generated alternative solutions and

has facilitated the detection of a design flaw in a manually-designed maximal matching

protocol [15].

In Chapter 4, we investigate the parallelization of our heuristics towards exploiting the

computational resources of computer clusters for automated design of self-stabilization. In

this chapter, we considered the addition of convergence under the interleaving semantics.

We will study the automated design of convergence under the concurrent semantics. In

addition to what we mentioned in Section 3.8, another important open problem focuses

on the generalization of synthesized solution. In other words, we would like to address

this question: If a synthesized symmetric protocol is self-stabilizing for K processes, then

can we generalize its structure for K + 1 processes? In this regard, we plan to study

how increasing the number of symmetric processes in a self-stabilizing protocol affects its

transition system. In particular, we will consider how non-progress cycles and deadlocks

will be formed when we extend the protocol’s configuration space of K processes to that

of K + 1 processes. To this end, we demonstrate theories that characterize deadlocks and

non-progress cycles in arbitrary-sized rings in Chapters 5 and 6.
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Chapter 4

Swarm Synthesis of Convergence for

Symmetric Protocols1

This chapter presents a novel non-deterministic method for algorithmic addition of

convergence to non-stabilizing symmetric protocols. The proposed method exploits

randomization and parallelization in order to expand the scope of the search for

self-stabilizing versions of non-stabilizing protocols. Such a non-deterministic method

enables an embarrassingly parallel framework that exploits the computational resources of

computer clusters for automated design of self-stabilizing protocols. We have implemented

our approach in a software tool and have synthesized several new self-stabilizing solutions

for well-known protocols in the literature (e.g., maximal matching, graph coloring and

leader election on a ring). Our case studies demonstrate that the proposed method is able

to automatically generate self-stabilizing versions of non-stabilizing protocols in cases

where existing automated methods fail. As a result, the proposed approach increases

the likelihood of success in synthesizing the self-stabilizing versions of non-stabilizing

protocols.

4.1 Introduction

This chapter presents a novel non-deterministicmethod that adds convergence to finite-state

symmetric protocols, thereby exploiting the computational resources of computer clusters

towards automated design of self-stabilizing protocols. A symmetric protocol is defined by

1This chapter is an adaptation of our own publication in the proceedings of the ninth European Dependable Computing

Conference (EDCC), Sibiu Romanina, May 2012 [11]. Reprinted with permission, please see the supplementary

document to this dissertation for the copyright notice.
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a representative/template process from which the code of each process can be generated by

a simple variable renaming. We would like to emphasize that improving the scalability

of automated design is not an objective of this chapter. Instead, by proposing a

non-deterministic heuristic, we would like to increase the likelihood of success in adding

convergence to non-stabilizing protocols.

The proposed method includes three phases, namely ranking and approximation, ordering

recovery actions and spawning synthesizer threads. The first phase,Ranking and

approximation, is described in details in Chapter 3.

In the second phase, the proposed method orders each possible recovery action based on

the smallest rank – called the rank of the recovery action – from which that action can

execute and can take the protocol’s state to a state with a smaller rank. Notice that the

ranking of recovery actions depends on the ranking of states in ¬I . For example, the bold

transitions in Figure 4.1 represent a recovery action whose rank is 2. The output of Phase 2

is an array Groups such that each element Groups[i] is an ordered list of candidate recovery
actions whose rank is i.

In the third phase, for each i from 1 to the total number of ranks/partitions of ¬I , the
proposed method traverses the ordered list Groups[i] and includes an action A in the

stabilizing protocol if and only if A resolves some deadlock states in ¬I without forming

cycles with previously included recovery actions. A deadlock state has no outgoing

transitions (see Figure 4.1). If cycles are formed, then A is excluded from the stabilizing

protocol and the subsequent actions in the list Groups[i] are similarly considered. If

at the end of the third phase there are still some deadlock states, then we permute the

candidate recovery actions in each Groups[i] and re-do the third phase. Such a reordering

allows us to consider subsets of recovery actions that we have not considered so far.

This will increase the likelihood of finding a self-stabilizing version of p by exploiting

randomization. Towards this end, we create several parallel instances of the proposed

method. Each instance permutes the candidate actions in each rank until either a solution

is found or an upper bound (specified for the time (respectively, space) of synthesis) is

reached.

We have designed and implemented the proposed approach in a software tool, called

the parallel STabilization Synthesizer (pSTSyn). Using pSTSyn, we have generated the

self-stabilizing versions of several symmetric self-stabilizing protocols including maximal

matching, graph coloring, agreement and leader election on a ring. pSTSyn has generated

new self-stabilizing protocols (for coloring, matching and leader election) that we could

not synthesize with existing heuristics (see Section 4.4).

Organization. Section 4.2 illustrates the complexity of adding convergence through
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Figure 4.1: Ranking and approximating self-stabilization.

a running example. Section 4.3 presents a new method that enables the addition

of convergence in an embarrassingly parallel fashion, called the swarm synthesis of

convergence. Section 4.4 demonstrates some case studies synthesized by pSTSyn and

provides the experimental results on time (respectively, space) efficiency of swarm

synthesis. Section 4.5 makes concluding remarks and discusses potential extensions of

our work.

4.2 Complexity of Synthesizing Convergence

We illustrate the complexity of designing strong convergence throughout the following

example.

Example: Token Ring (TR). To demonstrate the complexity of the problem, we present

the problem of adding convergence in the context of an instance of the Token Ring (TR)

protocol (adapted from [7]) with three processes P0, P1 and P2. Each process Pj has an

integer variable aj , where 0 ≤ j < 3, with a domain {0, 1, 2}. The processes are located
in a ring where each process Pj (1 ≤ j ≤ 2) has a predecessor Pj−1 and a successor

Pj+1, where addition and subtraction are in modulo 3. The predecessor of P0 is P2 and its

successor is P1. Each process is allowed to read/write its own variable and can read the

variable of its predecessor. Action Γ0 in Figure 4.2 belongs to P0, and the parameterized

action Γj denotes the action of each process Pj , where 1 ≤ j ≤ 2.
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Γ0: a2 = a0 → a0 := a2 + 1
Γj : aj−1 = aj + 1→ aj := aj−1

Figure 4.2: Actions of the Token Ring protocol where j = 1, 2.

Figure 4.3: State transition graph of the non-stabilizing Token Ring

protocol

When the values of a0 and a2 are equal, P0 increments a0 by one (see action Γ0). Each

process Pj increments aj only if aj is one unit less than aj−1, for 1 ≤ j ≤ 2. By definition,
process Pj , for 1 ≤ j ≤ 2, has a token if and only if aj +1 = aj−1. Process P0 has a token

if and only if a0 = a2. The state predicate ITR below captures the set of legitimate states

where exactly one token exists in the ring.

((a0 = a1) ∧ (a1 = a2)) ∨ ((a1 + 1 = a0) ∧ (a1 = a2)) ∨
((a0 = a1) ∧ (a2 + 1 = a1))

Figure 4.3 illustrates the state transition graph of the non-stabilizing TR protocol in

a three dimensional representation. The nodes of this graph denote global states and

arrows represent global transitions. The gray nodes represent legitimate states in ITR

and white nodes depict illegitimate states in ¬ITR. Each dimension denotes the execution
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of transitions/actions of a specific process (e.g., the x-Axis depicts the transition groups

belonging to P0). Let 〈a0, a1, a2〉 denote a state of TR. The three digits in each node

respectively represent the values of a0, a1 and a2. Notice that, starting from the state

〈0, 0, 0〉 the execution of the TR protocol remains in the set of legitimate states (i.e., gray

states). However, the occurrence of transient faults may perturb the state of TR to one of

the illegitimate states. For example, consider the deadlock state s0 = 〈1, 2, 0〉 that has no
outgoing transition. From s0, no process can execute. Thus, we need to include recovery

transitions (along with their groupmates) to resolve s0. Likewise, any other deadlock state

should be resolved. Such inclusion of recovery transitions should be performed under the

constraint of not creating cycles whose all states are illegitimate; i.e., non-progress cycles.

Figure 4.5 illustrates a set of recovery transition groups included in TR that resolves all

deadlocks. This set includes the labeled actions in Figure 4.4, where A actions belong to

process P1 and B actions belong to P2. While all deadlocks are resolved by the actions

A1, A2, A3, B1, B2 and B3, the transition groups included form a cycle in ¬ITR that could

prevent recovery to ITR (see bold arrows in Figure 4.5). However, if we replace the actions

A1 and B1 with actions A4 : (a0 = 1) ∧ (a1 = 2) → a1 := 1 and B4 : (a1 = 1) ∧ (a2 =
2)→ a2 := 1, then a self-stabilizing TR protocol is generated (see Figure 4.6).

A1: (a0 = 1) ∧ (a1 = 2) → a1 := 0
A2 : (a0 = 2) ∧ (a1 = 0) → a1 := 1
A3 : (a0 = 0) ∧ (a1 = 1) → a1 := 2
B1: (a1 = 1) ∧ (a2 = 2) → a2 := 0
B2 : (a1 = 2) ∧ (a2 = 0) → a2 := 1
B3 : (a1 = 0) ∧ (a2 = 1) → a2 := 2

Figure 4.4: Transition groups included in the TR protocol for deadlock

resolution.

A deterministic heuristic that selects the first set of actions would fail to add convergence,

whereas one that selects the second set would succeed in adding convergence to TR. Thus,

to increase the likelihood of success, it is desirable to design non-deterministicmethods that

simultaneously explore the possibility of adding convergence for different sets of recovery

actions by exploiting parallel machines. The next section presents such a non-deterministic

method for algorithmic design of convergence.
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Figure 4.5: Inclusion of actions A1, A2, A3, B1, B2 and B3 creates a

non-progress cycle in ¬ITR.

4.3 A Method for Swarm Synthesis

In this section, we present a method for adding strong convergence to symmetric protocols

by exploiting randomization and parallelism. The proposed approach enables the addition

of convergence in an embarrassingly parallel fashion, called swarm synthesis. To solve

Problem 2.2.1, the proposed method (see Figure 4.7) includes three phases, namely Rank

and Approximate, Order Recovery Groups and Spawn Synthesizers. These three phases

are initiated by the Main component. In the first phase, Main computes the ranks and a

candidate set of recovery transition groups from which the synthesizer chooses a subset

for strong convergence. In the second phase, Main orders the set of candidate recovery

groups based on the smallest rank from which a recovery group can provide convergence

to I . In the third phase, Main spawns parallel threads of the Looper routine. Each Looper

independently considers different permutations of candidate recovery groups. This way,

our heuristic explores a larger subset of the solution space.

Phase 1: Rank and Approximate. In the rank-and-approximation phase (see Figures

4.7 and 4.8), the Rank-Approximate routine computes a set of Recovery Transition Groups

(RTGs) δrws
= {g : g ∈ G(Pr)∧∀(s, s

′) ∈ g : s /∈ I}. SinceG(Pr) comprises all transition

groups that can be included in Pr, the set of transitions δrws
captures all possible candidate

RTGs that satisfy the read/write restrictions of Pr and exclude any transition starting in I .
Thus, the transitions of δrws

do not violate the closure of I , and maintain constraint (2)
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Figure 4.6: Inclusion of actions A4, A2, A3, B4, B2 and B3 results in a

self-stabilizing version of TR.

of the output part of Problem 2.2.1. We denote by pws the protocol whose representative

process Prws
comprises the transition groups δrws

∪ δr. Hence, the computations of pws

consist of transitions in the RTGs of δpws
= (∪K−1

r=0 δrws
) ∪ δp. Rank-Approximate computes

the rank of every state s in ¬I , where Rank(s) is the length of the shortest computation

prefix of pws from s to some state in I (see Figure 4.1). Note that Rank(s) = 0 if and only

if s ∈ I . Moreover, Rank(s) = ∞, if and only if there is no computation prefix of pws

from s that reaches a state in I . NumRanks denotes the total number of ranks. If each state

s ∈ ¬I has a finite rank, then including the computation prefixes originating at s would

result in a weakly stabilizing version of p; i.e., pws is a weakly stabilizing protocol. (Please

see [10] for a formal proof of correctness.) Otherwise, a self-stabilizing version of p does

not exist.

TC Example. For the TC example, Rank-Approximate computes Prws
as follows.

Br : (cr = cr−1) ∨ (cr = cr+1) → cr := other(cr, cr)

That is for every r, Prws
updates cr to whichever color is different from its current value.

Prws
contains every possible RTG that adheres to read/write restrictions of TC and has no

transitions starting in Icolor. Note that the protocol represented by Prws
has no deadlocks

in Icolor, but may have non-progress cycles. Moreover, for any strongly stabilizing solution

Prss , we have Prss ⊂ Prws
.
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Figure 4.7: Overview of swarm synthesis of convergence.

The number of ranks in TC depends on K. We denote a global state of TC by

〈c0, · · · , cK−1〉 where ci ∈ {0, 1, 2} (0 ≤ i ≤ K − 1). For K = 7, the global state

〈0, 1, 0, 1, 0, 0, 2〉 has rank 1; P5 can execute a single assignment to c5 := 1 to render the

global state 〈0, 1, 0, 1, 0, 1, 2〉 ∈ I . The global state 〈0, 1, 0, 1, 0, 0, 0〉 is of rank 2, at least

two processes should write their corresponding variables to render TC’s state in I . P5

executes c5 := 1 and P0 executes c0 := 2 to set TC’s global state to 〈2, 1, 0, 1, 0, 1, 0〉 ∈ I .
The TC protocol has a number of ranks proportional to its number of variables. Every

protocol transition that decreases the rank of a state in ¬Icolor establishes two adjacent

conjuncts of Icolor. Thus, TC has ⌊K+1
2
⌋ ranks. �

Phase 2: Order Recovery Groups. This phase of the proposed method takes the ranks

generated by Phase 1 and computes a partial order of all candidate RTGs based on ranks.

Phase 2 is executed by the Order routine in Line 2 of Figure 4.8. A transition (s0, s1) is rank
decreasing if and only if Rank(s1) < Rank(s0). We say that the rank of an RTG g is i > 0 if
and only if i is the smallest rank from where g includes a rank decreasing transition. Notice
that some RTGs may have no rank-decreasing transitions, called the rankless RTGs. Thus,

considering all RTGs with a specific rank, we generate a partial order of RTGs as an array

of lists, denoted Groups[], where Groups[i] is an ordered list of all RTGs whose rank is i
(see Line 2 of Figure 4.8). The ranked RTGs may fill the arrayGroups[] up to a certain rank,
denoted maxRTGRank, which may not necessarily be equal to NumRanks. We then insert
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all rankless RTGs in Groups[maxRTGRank+1]. The array RankSize has maxRTGRank+1
elements, where RankSize[i] contains the number of RTGs whose rank is i; i.e., size of

Groups[i].

TC Example. We partition the RTGs of Prws
according to their ranks. RTGs of Rank 1; i.e.,

having a transition that changes the global state of pws from rank 1 to rank 0, are of the

form:

Rank 1: (cr−1 = cr) ∨ (cr+1 = cr)→ cr := other(cr−1, cr+1)

In fact, by updating cr’s value to one that is different from both its neighbors, all the

transitions in every g ∈ Rank 1 are rank decreasing. The transitions of Rank 1 are assigned

to Groups[1]. The remaining RTGs in (Prws
− Rank 1) are rankless and are assigned

to Groups[2]. That is, maxRTGRank= 2. As a shorthand for cr−1 = er−1 ∧ cr =
er ∧ cr+1 = er+1 → cr := e′r, we omit the variable names and represent an RTG by

er−1erer+1 → er−1e
′
rer+1. We enumerate the list of candidate RTGs in Prws

and their

corresponding ranks as computed by Rank-Approximate and Order.

Groups[1]={001 → 021, 112 → 102, 220 → 210, 000 → 010, 000 → 020, 111 →
101, 111 → 121, 222 → 212, 222 → 202, 022 → 012, 100 → 120, 211 → 201, 002 →
012, 110→ 120, 221→ 201, 011→ 021, 122→ 102, 200→ 210}

Groups[2]={002 → 022, 110 → 100, 221 → 211, 001 → 011, 112 → 122, 220 →
200, 011→ 001, 122→ 112, 200→ 220, 022→ 002, 100→ 110, 211→ 221} �

Algorithm 1: Main

Input : NumThreads, K: integer, Pr: set of representative transition
groups, I: set of states

Output: Prss
: set of representative transition groups, success:

boolean,Groups[..]: array of lists of transition groups,
RankSize[..]: array of integers, NumRanks, maxRTGRank:
integer

Prws
,Ranks, NumRanks ← Rank-Approximate(Pr, I, K);1

Groups, NumGroups, RankSize, maxRTGRank ← Order(Prws
, Ranks,2

NumRanks);
foreach 0 ≤ Thd < NumThreads do3

Prss
, success ←Looper(Thd, Pr, I, K, Groups, NumGroups,4

RankSize, maxRTGRank);

return;5

Figure 4.8: The Main routine.

Phase 3: Spawn Synthesizers. After creating a partial order of RTGs based on the ranks,

the Main routine spawns a fixed number of Looper threads (see Lines 3-4 of Figure 4.8)

each with a unique identifier ThreadIndex. We set the number of threads based on the

available computational resources of the computer cluster. Each Looper thread randomly

reorders the RTGs of each rank (using the ShuffleGroups routine in Figure 4.9) and invokes

the AddConvergence routine in an iterative fashion (see the for-loop in Figure 4.9). The
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total number of RTGs in all ranks is denoted by NumGroups. The ShuffleGroups routine

generates permutations that depend upon the ThreadIndex of that Looper and the iteration

i of the for-loop in Figure 4.9. ShuffleGroups computes a unique integer from the pair

(i, ThreadIndex) which is PIndex= i ∗ NumThreads + ThreadIndex. PIndex is an input

to a standard routine for generating a permutation of a given size. We reuse a variant

of Algorithm L mentioned by Knuth in Section 7.2.1.2 of [31] to establish a one-to-one

correspondence between PIndex and the generated permutation. Since the values of PIndex

generated in each thread are unique to that thread, different Loopers explore different

permutations. We place an upper bound NumGroups on the number of iterations of the

for-loop in Lines 2-8 of Looper to avoid an exponential number of iterations (in the number

of candidate RTGs) during synthesis. Once a Looper thread succeeds in synthesizing a

self-stabilizing protocol, a termination signal is sent to all the Loopers.

Algorithm 2: Looper

Input : ThreadIndex, K, maxRTGRank, NumGroups: integer, Pr : set of
representative groups, I: set of states, Groups[..]: array of
vectors, RankSize[..]: array of integers

Output: Prss
: set of representative groups, success: boolean

success ← false; Prss
← Pr;1

for i← 0 to NumGroups-1 do2

Groupsinterm ← ShuffleGroups(Groups, RankSize[..],3

maxRTGRank+1,ThreadIndex, i);
successinterm, Pinterm ←AddConvergence(Pr, I, K, Groupsinterm);4

if (successinterm = true) then5

Prss
← Pinterm;6

success ← true;7

return;8

return;9

Figure 4.9: The Looper routine.

The AddConvergence routine (see Line 4 of Figure 4.9 and Figure 4.10) takes a

representative process Pr, a state predicate I that is closed in the symmetric protocol

represented by Pr, the number of processes K, and the permuted RTGs in the array

Groups[]. The objective of AddConvergence is to check whether convergence can be

designed by incremental inclusion of RTGs of Groups[i] in Pr, for 1 ≤ i ≤ maxRTGRank

+1 (see the for-loops in Lines 4-5 of Figure 4.10). Initially, we assign Pr to a representative

process Prss that is updated during the inclusion of RTGs (Line 1 in Figure 4.10). Notice

that initially Pr represents the non-stabilizing protocol that does not guarantee convergence

to I . Our goal is to include a subset of RTGs in the set of transitions of Prss such that

the resulting protocol ensures convergence to I . The Unfold routine instantiates Prss for all

0 ≤ r ≤ K − 1 to generate the transition system of an intermediate synthesized protocol

pinterm. Lines 4-14 consider RTG Groups[i][j] where i is the rank of the RTG and j is the
index of the RTG in rank i. Starting from Groups[1], an RTG g is included if and only if

g resolves some deadlock states in ¬I and the inclusion of g preserves the cycle-freedom

of transitions starting in ¬I (Lines 6-9 in Figure 4.10). Line 6 computes the set of source

states of the current RTG and assigns it to Pre. Line 7 checks if Pre resolves any deadlocks,

otherwise the current RTG (Groups[i][j]) is skipped. We reuse a symbolic cycle detection
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algorithm due to Somenzi et al. [32] that we have implemented in the DetectCycles routine

(see Line 8 in Figure 4.10). If an RTG creates a cycle, then we skip its inclusion and check

the feasibility of including the next RTG in the list Groups[1]. The motivation behind the

inclusion of individual RTGs is to simplify cycle-resolution. If we include more than one

RTG per iteration and cycles form in pinterm, deciding on which RTG to remove for cycle

resolution would involve a computational overhead. Upon the inclusion of an RTG in Prss

(Line 9), we unfold the updated structure of Prss to update the intermediate protocol pinterm,
which will be used to recalculate the deadlock states (Lines 10-11 in Figure 4.10). After

all RTGs in Groups[1] are checked for inclusion, then we respectively perform the same

analysis on the RTGs in Groups[2], Groups[3], · · · , Groups[maxRTGRank+1].

Algorithm 3: AddConvergence

Input : Pr: set of transition groups, I: set of states, K: integer,
Groups[maxRTGRank+1]: array of vectors of groups

Output: Prss
: set of transition groups, success: boolean

Prss
← Pr ;1

pinterm ← Unfold(Prss
, K) ; /* generates the whole transition2

system by instantiating Prss
for all processes */

Deadlocks ← {s : (s ∈ ¬I) ∧ (∀g, s1 : (s, s1) ∈ g : g /∈ pinterm)};3

for i← 1 to maxRTGRank +1 do4

for j ← 1 to RankSize[i] do5

Pre ← {s0: ∃(s0, s1) : (s0, s1) ∈ Groups[i][j]};6

if Pre ∩ Deadlocks �= ∅ then7

if DetectCycles(pinterm,Groups[i][j])=false then8

/* Detects cycles created due to including the

transition group Groups[i][j] */

Prss
← Prss

∪ Groups[i][j];9

pinterm ← Unfold(Prss
, K);10

Deadlocks ←11

{s : (s ∈ ¬I) ∧ (∀g, s1 : (s, s1) ∈ g : g /∈ pinterm)};
if Deadlocks = ∅ then12

success ← true;13

return;14

success ← false;15

return;16

Figure 4.10: The AddConvergence routine.

Theorem 4.3.1 (Soundness). AddConvergence is sound and has a polynomial-time

complexity in |Sp|.

Proof. If AddConvergence declares success by returning a solution, then its exit point is

Line 14 and this is only possible if Deadlocks=∅. In Line 11, Deadlocks is assigned the

set of deadlocks of pinterm. Lines 9-11 are executed if and only if the inclusion of the

last candidate transition group does not cause non-progress cycles. Consequently, pinterm
has no cycles and no deadlocks. Thus, Prss represents a symmetric protocol that has no

deadlocks and is cycle-free in ¬I; i.e., Prss represents a self-stabilizing symmetric protocol

(see Proposition 2.1.1).

The nested for-loop in AddConvergence runs for at most the number of all possible groups in

a process. Kulkarni and Arora demonstrate that the total number of groups is polynomial
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in |Sp| [13]. Moreover, the time complexity of the cycle detection algorithm in [32] is

polynomial in |Sp| too.

TC Example. Prws
has 30 candidate RTGs partitioned into 2 ranks. We consider a possible

order that ShuffleGroups generates.

Groups[1]={000 → 010, 000 → 020, 111 → 101, 111 → 121, 222 → 212, 222 →
202, 002 → 012, 110 → 120, 221 → 201, 001 → 021, 112 → 102, 220 → 210, 011 →
021, 122→ 102, 200→ 210, 022→ 012, 100→ 120, 211→ 201}

Groups[2]={011 → 001, 122 → 112, 200 → 220, 002 → 022, 110 → 100, 221 →
211, 001→ 011, 112→ 122, 220→ 200, 022→ 002, 100→ 110, 211→ 221}

Groups[1] and Groups[2] are the input to AddConvergence in the same order presented. We

trace how AddConvergence includes the candidate RTGs to obtain Prss for K = 7. For the
TC input protocol, Deadlocks= ¬Icolor. For i = 1, AddConvergence includes 000 → 010
for j = 1. AddConvergence leaves out 000 → 020 for j = 2 because this RTG resolves

no additional deadlocks. The included RTGs within the for-loop (Lines 4-14) are Prss =
{000 → 010, 111 → 101, 222 → 212, 002 → 012, 110 → 120, 221 → 201, 001 →
021, 112→ 102, 220→ 210}. None of the RTGs in Prss forms non-progress cycles; all of

their transitions are rank decreasing. This is a property of TC that is not necessarily valid

for other input protocols. Moreover, 9 RTGs of Groups[1] are not included in Prss because

they do not resolve additional deadlocks. The omitted transitions depend on the order in

Groups[1]: the last 6 RTGs are skipped because all deadlocks are resolved when j = 12.
RTGs at j = 2, j = 4 and j = 6 are also not included in pinterm because they resolve the

same sets of deadlock states resolved by RTGs at j = 1, j = 3 and j = 5, respectively.
Hence, for the givenGroups[], AddConvergence obtains a solution at i = 1 and j = 12. Prss

is represented by the action (cr−1 = cr)→ cr := other(cr−1, cr+1). �

4.4 Case Studies

In this section, we present some of the case studies that we have conducted with

pSTSyn. The implementation of pSTSyn is in C++ and we use Binary Decision Diagrams

(BDDs) [19] to represent protocols in memory. We have deployed pSTSyn on a computer

cluster with 24 nodes. Each node is an Intel(R) Xeon(R) CPU 5120 @ 1.86GHz (4 cores)

with 4GB RAM and the Linux operating system (kernel 2.6.9-42.ELsmp). The Looper

threads are created using the MPICH2-1.3.2p1 run-time system. Section 4.4.1 discusses

how swarm synthesis simultaneously generates multiple solutions of a Maximal Matching
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protocol that would have been impossible to generate with existing automated approaches.

Section 4.4.2 presents a self-stabilizing agreement protocol. We present a stabilizing

solution to a Leader Election protocol for 5 processes and three alternative solutions to

Maximal Matching in [33].

4.4.1 Maximal Matching

The Maximal Matching (MM) protocol (adapted from [15]) has K > 3 processes

{P0, · · · , PK−1} located on a ring, where P(i−1) and P(i+1) are respectively the left and

right neighbors of Pi, and addition and subtraction are in modulo K (0 ≤ i < K). Each

process Pi has a variable mi with a domain of three values {left, right, self} representing

whether or not Pi points to its left neighbor, right neighbor or itself. Process Pi is matched

with its left neighbor P(i−1) (respectively, right neighbor P(i+1)) if and only if mi = left

and m(i−1) = right (respectively,mi = right and m(i+1) = left). Each process Pi can read

the variables of its left and right neighbors. Pi is also allowed to read and write its own

variable mi. The non-stabilizing protocol is empty; i.e., does not include any transitions.

Our objective is to automatically generate a strongly stabilizing protocol that converges to

a state in IMM = ∀i : 0 ≤ i ≤ K − 1 : LCi, where LCi is a local state predicate of process

Pi as follows

(mi = left⇒ m(i−1) = right) ∧ (mi =right⇒ m(i+1) =left)
∧ (mi =self⇒ (m(i−1) = left ∧ m(i+1) =right ))

In a state in IMM , each process is in one of these states: (i) matched with its right neighbor,

(ii) matched with left neighbor or (iii) points to itself, and its right neighbor points to right

and its left neighbor points to left. TheMM protocol is silent in IMM in that after stabilizing

to IMM , the actions of the synthesized MM protocol should no longer be enabled. Below

actions illustrate a new solution for the MM problem synthesized by pSTSyn. For example,

the first action means that a process sets mi to self if it is not pointing to itself, its left

neighbor points to left and its right neighbor points to right. Other actions can be interpreted

similarly.

(mi−1=left) ∧ (mi �=self) ∧ (mi+1=right) −→ mi:=self

(mi−1 �=left) ∧ (mi=self) ∧ (mi+1 =self) −→ mi:=left

(mi−1=right) ∧ (mi �=left) ∧ (mi+1=right) −→ mi:=left

(mi−1=right)∧(mi=right)∧(mi+1 �=right) −→ mi:=left

(mi=self)∧(mi+1=left) −→ mi:=right
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(mi−1 �=right)∧(mi=left)∧(mi+1 �=right) −→ mi:=right

(mi−1=left)∧(mi �=right)∧(mi+1 �=right) −→ mi:=right

The diversity of solutions we have generated demonstrates the effectiveness of exploiting

randomization and parallelism in automating the design of self-stabilization. We have

synthesized the matching protocol for 5 ≤ K ≤ 14. Figures 4.11 and 4.12 respectively

represent the time and space costs of synthesis, where memory costs are represented in

terms of BDD nodes. Synthesis time captures the time spent in Phases 2 and 3 excluding

the cycle detection time: we illustrate cycle detection time by a separate curve.
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Figure 4.11: Time spent for adding convergence to matching versus the number of

processes

➽

➾➽➽➽

➚➽➽➽

➪➽➽➽

➶➽➽➽

➹➽➽➽➽

➹➾➽➽➽

➽ ➹ ➾ ➘ ➚ ➴ ➪ ➷ ➶ ➬ ➹➽ ➹➹ ➹➾ ➹➘ ➹➚ ➹➴

➮
➱
✃
❐
❒
❒
❮
➱
❰
GH

I JK LMJNOPPOP QLQ

�������	
�����
����������

RSTUV WVXVTXYZ[ \]^TV

\S[X_V`YaVb cdZXZTZU
\]^TV

Figure 4.12: Space usage for adding convergence to matching versus the number of

processes

Notice that pSTSyn synthesizes a self-stabilizing version of MM in less than 10 minutes.

While the ranking time is significant, it is performed only once as a preprocessing phase.
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Figure 4.12 demonstrates that as we scale up the number of processes the space cost of cycle

detection becomes a bottleneck due to the large size of BDDs. We are currently working

on more efficient cycle detection methods. The number of ranks in MM protocol increases

linearly with the number of processesK. Extrapolating our experimental results, we obtain

the relationship NumRanks= 2(⌊K−1
3
⌋+1)where 3 ≤ K ≤ 14. The representative process

of the synthesized solution presented here has 17 RTGs. Due to symmetry, the number of

RTGs is independent ofK.

4.4.2 Agreement

We present a symmetric protocol on a bidirectional ring where the processes need to agree

on a specific value: from an initial arbitrary state, all the variables should eventually be

equal to one another. The ring has K processes Pi (0 ≤ i ≤ K − 1). Each process Pi

can write its local variable ai where ai ∈ {0, · · · , |D| − 1}. Each process Pi can read

its left ai−1, right ai+1 and its own variable ai (operations on process and variable indices

are modulo K). The set of legitimate states is Iagreement =
∧i=K−1

i=1 (ai−1 = ai). The

protocol is not locally correctable: the establishment of ai−1 = ai by an action of Pi can

invalidate ai = ai+1. This fact complicates the search for a solution with similar processes.

Nonetheless, pSTSyn generates the following protocol with 6 processes from an empty

protocol. In this case, our solution is generalizable for anyK.

(ai >ai−1) ∨ (ai >ai+1) −→ ai:=min(ai−1,ai+1)

Figures 4.13 and 4.14 respectively illustrate the impact of the domain size of ai values on
time (respectively, space) efficiency of synthesis. (|P | denotes the number of processes.)

Notice that synthesis time grows slowly (note the scale of the y axis in Figure 4.13),

whereas memory costs increase exponentially as we increase the domain of ai. The

reason behind this is that the size of transition groups (respectively, the size of BDDs

representing them) increases, thereby raising the number of cycles and the time needed for

cycle detection. The number of ranks in the agreement protocol depends on the number of

processes K and the domain size |D|. For example, when |D| = 2, NumRanks= ⌊K
2
+ 1⌋.

The number of RTGs of the representative process depends only on |D| and is independent
of K due to symmetry. For |D| = 3, the number of RTGs is 13. In general, the number

of RTGs is in O(|D|3) because |Rr| = 3. The intuition behind this reasoning is that the

number of local states of a process Pr is in the order of the number of all possible valuations

of the variables in Rr.

67



Keeping the domain size constant (equal to 3), we can scale up the synthesis up to 22

processes (see Figures 4.15 and 4.16). We observe that the super linear jump in the

synthesis time is due to the thrashing phenomenon when the BDD sizes go beyond a

threshold and secondary memory has to be used. (|D| denotes the domain size of ai.)
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Figure 4.13: Time spent for adding convergence to agreement versus the size of the

variable domain
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Figure 4.14: Space usage for adding convergence to agreement versus the size of the

variable domain

Scalability vs. generalization. In this section, we presented our experimental results

just to provide a measure as to how much time (respectively, space) is required for the

synthesis of self-stabilizing protocols with a few processes. While scaling up the synthesis

is useful, scalability is not a high priority objective for us; rather our approach is based on a

paradigm of synthesize in small scale and generalize. We are currently working on a family

of synthesis methods that generate pss for small values ofK (e.g.,K ≤ 20) such that pss is
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generalizable; i.e., pss preserves its convergence property for anyK.
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Figure 4.15: Time spent for adding convergence to agreement versus the number of

processes
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Figure 4.16: Space usage for adding convergence to agreement versus the number of

processes

4.5 Summary and Extensions

We presented a swarm synthesis method that exploits randomization and parallelism to

add convergence to non-stabilizing symmetric protocols. While the problem of adding

convergence to non-stabilizing protocols is known to be in NP, we are not aware of

any algorithm that adds convergence in polynomial-time (in protocol state space) [13].

We conjecture that adding convergence is most likely an NP-hard problem due to the

exponential number of the combinations of recovery actions that could resolve deadlocks

without creating non-progress cycles in the set of illegitimate states of the protocol.
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Existing methods [10], [34] for adding convergence perform a deterministic search in

the state space of non-stabilizing protocols to synthesize necessary convergence actions.

However, such techniques often search only a part of the problem space due to their

deterministic nature, thereby resulting in premature failures in finding a self-stabilizing

protocol. Moreover, swarm verification methods [35] only verify the correctness of an

existing protocol rather than synthesizing a correct protocol. The main contribution of

the proposed approach is to increase the likelihood of success in automated design of

self-stabilization by exploiting randomization and parallelism. We have implemented the

proposed approach in a software tool, called pSTSyn, that has automatically generated

new solutions for several well-known protocols such as maximal matching, graph coloring,

agreement and leader election on a ring. To the best of our knowledge, pSTSyn is the first

tool that enables swarm synthesis of convergence for symmetric protocols.

There are several extensions to this work that we would like to investigate. First, we plan to

devise a method for swarm synthesis of convergence for asymmetric protocols. Second, we

will investigate how pSTSyn can be used for adding convergence to protocols with dynamic

topologies (e.g., overlay networks). The design of protocols with dynamic topologies is

especially challenging as the locality of each process may change, thereby changing the

transition groups that are created due to different scope of readability for processes. As

a result, in a dynamic network, for each configuration of the network topology we have a

distinct set of transition groups that form the transition system of the protocol. Parallelism

can be especially beneficial in tackling this problem.
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Chapter 5

Local Reasoning for Global Convergence

of Parameterized Rings1

This chapter presents a method that can generate self-stabilizing parameterized protocols;

i.e., correct for arbitrary number of finite-state processes. Specifically, we present

necessary and sufficient conditions specified in the local state space of the representative

process of parameterized rings for deadlock-freedom in their global state space. Moreover,

we introduce sufficient conditions that guarantee livelock-freedom in arbitrary-sized

unidirectional rings. We illustrate the proposed approach in the context of several classic

examples including a maximal matching protocol and an agreement protocol. More

importantly, the proposed method lays the foundation of an approach for automated design

of global convergence in the local state space of the representative process.

5.1 Introduction

In this chapter, we present a local reasoning method for the design of global convergence in

parameterized protocols with the ring topology. Recall that in a parameterized protocol, the

code of each process is instantiated from the code of a representative process by variable

substitution. The entire reasoning in the proposed method is performed in the local state

space of the representative process. To ensure convergence to a set of legitimate states I
(specified as the conjunction of a set of local constraints), starting from any state s ∈ ¬I ,
every execution of the protocol from s should eventually reach a state in I . Thus, a protocol

1This chapter is adapted from our own publication [12] in the proceedings of the International Conference on Distributed

Computing Systems, June 2012. Reprinted with permission, please see the supplementary document to this dissertation

for the copyright notice.
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must ensure that it is deadlock-free in ¬I . Moreover, there must be no cycles formed by

processes’ actions such that all states of the cycle belong to ¬I; i.e., livelock-freedom.

For a parameterized protocol, deadlock/livelock-freedom properties must hold for any

number of processes in the ring. To address this problem, we present necessary and

sufficient conditions specified in the local state space of the representative process for

deadlock-freedom in the global state space of the ring (with an arbitrary number of

processes). Moreover, we introduce sufficient conditions that guarantee livelock-freedom

in arbitrary-sized unidirectional rings. Our sufficient conditions are weaker than what is

proposed in existing methods. For instance, as demonstrated in Section 5.3, it is unclear

how existing methods [36], [37] can be used to design convergence for an agreement

protocol. To validate our necessary and sufficient conditions, we apply them for the design

of several parameterized self-stabilizing protocols on a ring including maximal matching

and agreement protocols.

Organization. We present a necessary and sufficient condition for deadlock-freedom

in parameterized rings in Section 5.2. In Section 5.3, we introduce the notion of

a local transition graph and illustrate how we use it to reason about non-terminating

computations in unidirectional rings. We make concluding remarks and outline future work

in Section 5.5.

5.2 Deadlock-Freedom

In this section, we present a necessary and sufficient condition for the deadlock-freedom

of bidirectional parameterized rings. Specifically, we define a relation between the local

states of the representative process Pr. This relation captures the way the local states of a

process are related with the local states of its neighboring processes. Using this relation,

we present a necessary and sufficient condition defined in the local state space of Pr for

global deadlock-freedom of p.

The Right Continuation Relation for Rings. Due to the locality of each process, a local

state sli of process Pi restricts the allowable set of local states for each successor Pj of Pi.

Pj is a successor of Pi (respectively, Pi is a predecessor of Pj) if and only ifWi∩Rj �= ∅. In
a bidirectional ring of sizeK, P(i+1)modK and P(i−1)modK are right and left successors of Pi,

respectively. As such, the right (respectively, left) continuation of a local state sli of Pi is a

local state sli+1 ofPi+1 (respectively, s
l
i−1 ofPi−1) such that for every x ∈ Ri∩Ri+1, x(s

l
i) =

x(sli+1) (respectively, x ∈ Ri ∩Ri−1, x(s
l
i) = x(sli−1))

2; i.e., a continuation of a local state

in Pr is a possible local state of Pr’s successor. Notice that for a unidirectional ring, we

only define a right continuation relation.

2Addition and subtractions of indices are in modulo K.
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Definition 5.2.1. A directed Right Continuation Graph (RCGp) of a ring is a pair (Vr, SR)

such that:

1. Vr is a set of vertices representing local states of the representative process Pr.

2. SR denotes the set of arcs of RCGp, called s-arcs, where SR = {(sl1, s
l
2) ∈ Vr ×

Vr : ∀x ∈ Rr ∩ Rr+1 : x(sl1) = x(sl2) and Pr+1 is a right successor of Pr}. The

left continuation relation, denoted SL, can be defined symmetrically. Thus, SR is

sufficient to define the continuation relation for bidirectional rings.

Our definition of continuation relation naturally extends to network topologies other than

rings. For instance, we construct the continuation graph of a tree from the locality of a

non-root process that includes the writable variables of its parent, itself and its children.

Example 5.2.1. In maximal matching over a bidirectional ring, all processes are similar. Pr

has Pr+1 as the right successor and Pr−1 as the right predecessor. Rr = {mr−1, mr, mr+1},
Wr = {mr} andM(K) = K. Moreover,Wr ∩Rr+1 = Wr ∩Rr−1 = {mr}. Rr ∩Rr+1 =
{mr, mr+1}. Dr = {left, right, self} contains the values of mr meaning that Pr points to

its predecessor, successor or itself, respectively. We illustrate the right continuation graph

over the local state space of Pr in Figure 5.1. The three values inside each vertex represent

the values ofmr−1,mr andmr+1 in the corresponding local state of Pr. For example, when

Pr is in the local state rrs, its right successor can be in either one of the local states rss, rsr

or rsl. That is why there are three outgoing s-arcs from rrs to rss, rsr and rsl, respectively.

The set of local legitimate states LCr is defined by the Boolean expression (mr = right

∧mr+1 = left ) ∨ (mr−1 = right ∧mr = left ) ∨ (mr−1 = left ∧mr = self ∧mr+1 = right

). The gray vertices in Figure 5.1 denote the local legitimate states.

Due to symmetry, local state spaces of all similar processes are captured by Pr’s local state

space Sl
r. We observe that any directed cycle of length L in Figure 5.1 represents a possible

valuation of local states to a ring of processes of size k × L (k a positive integer). For

instance, the cycle between the local state rsr and srs represents the global state of any ring

of size 2k where ifmi =right thenmi+1 =self and vice versa (0 ≤ i ≤ 2k − 1). �

Theorem 5.2.2 (Deadlock-Freedom in Parametrized Rings). A parameterized protocol

p(K) over a ring topology is deadlock-free outside I(K) for every K if and only if the

induced subgraph3 of RCGp over local deadlocks has no directed cycles containing a local

state/vertex in ¬LCr.

3An induced subgraph G′ = (V ′, E′) of a directed graph G = (V,E) is such that V ′
⊂ V , E′ is the maximum subset

of E such that the source and target vertices of every arc in E′ are in V ′.
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Figure 5.1: Continuation relation over all local states of Maximal Matching

Proof. ⇒: Let p(K) be a parameterized protocol that is deadlock-free outside I(K) for
everyK. By contradiction, assume that RCGp has a directed cycle over its local deadlocks

C = {sl0, s
l
1, · · · , s

l
n−1} and for some 0 ≤ j ≤ n − 1, slj /∈ LCr. By definition of RCGp,

sli+1 is a right continuation of sli for every 0 ≤ i < n − 1 and sl0 is a right continuation of

sln−1. By assigning to Pi the local state s
l
i for 0 ≤ i ≤ n− 1, we construct a ring R of size

k × n (k is a positive integer) in which every Pi is locally deadlocked. Moreover, for some

j, Pj is in a local state slj /∈ LCr. Because I(K) is locally conjunctive, the corresponding

global state of R is a global deadlock outside I(K). This contradicts our premise.

⇐: Let RCGp’s induced subgraph over local deadlocks have no directed cycles with a local

state slj /∈ LCr. By contradiction, assume that for some K, p(K) is globally deadlocked

outside I(K). It follows that every process Pi of p(K) is in a local deadlock sldi (0 ≤
i ≤ K − 1) among which there exists a local deadlock sldj /∈ LCr. By definition of the

continuation relation, RCGp captures every possible right continuation of every local state

of Pr. Hence, for every 0 ≤ i ≤ K − 1, (sldi, s
l
di+1) ∈ RCGp. Since p(K) is a ring of local

deadlocks, the induced subgraph of RCGp over local deadlocks should have a directed cycle

containing sldj .

We illustrate the application of Theorem 5.2.2 by the following examples.

Example 5.2.2 (Deadlock-Free Generalizable Maximal Matching). We consider the
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following parameterized protocol for maximal-matching on a bidirectional ring. We have

automatically synthesized this protocol forK = 6 using the STabilization Synthesizer tool
(STSyn) [10].

mr−1 =left ∧mr �= self ∧mr+1 =right→mr := self

mr−1 =self ∧mr =self ∧mr+1 =self →mr := right | left
mr−1 =right ∧mr =self →mr :=left

mr =self ∧mr+1 =left →mr :=right

mr−1 =right ∧mr =right ∧mr+1 �= left→mr :=left

mr−1 �=right ∧mr =left ∧mr+1 =left →mr :=right

mr−1 =self ∧mr �=left ∧mr+1 =right →mr :=left

mr−1 =left ∧mr �=right ∧mr+1 =self →mr :=right

Figure 5.2 illustrates the RCGp of Example 5.2.2 induced over its local deadlocks. As we

can see, there are no directed cycles that include local illegitimate states. This proves the

deadlock freedom of the parametrized maximal matching protocol in Example 5.2.2. To

gain more confidence, we have model-checked this protocol for 6 ≤ K ≤ 10 and found no
deadlocks. �

Figure 5.2: Continuation Relation over local deadlocks of Example 5.2.2

Example 5.2.3 (Non-generalizable Maximal Matching). We automatically synthesized the

following protocol that stabilizes for 5 processes and has deadlocks for a ring of size 6. We

illustrate how the right continuation relation helps us reason about global deadlocks.

mr−1 =left ∧mr �= self ∧mr+1 =right → mr := self

mr−1 =right ∧mr =self ∧mr+1 =left → mr := right

mr−1 =self ∧mr =self ∧mr+1 =self → mr := right
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mr−1 =right ∧mr =right ∧mr+1 = left→ mr :=left

mr−1 =self ∧mr =self ∧mr+1 =right → mr :=left

mr−1 =right ∧mr �=left ∧mr+1 �= left → mr :=left

mr−1 �=right ∧mr �=right ∧mr+1 =left→ mr :=right

Figure 5.3 illustrates a subgraph of the RCG in Figure 5.1 that has been induced over the

local deadlocks of the maximal matching protocol presented in Example 5.2.3. There are

only two directed cycles having local illegitimate deadlocks in Figure 5.3. Both cycles

include the local state 〈left,left,self〉. The first directed cycle has length 4:〈lls, lsr, srl, rll〉
and represents global deadlocks 〈left,self,right,left 〉k in rings whose size is a multiple of 4.

The second directed cycle has length 6. �

Figure 5.3: Continuation Relation over local deadlocks of Example 5.2.3

5.3 Livelock-Freedom

In this section, we focus on the following problem: For a parameterized protocol p(K)
with a unidirectional ring topology and a conjunctive predicate I(K), determine whether
p(K) is livelock-free outside I(K) for all K without exploring the global state space of

p(K). For simplicity, we establish the following assumptions:

1. Every process Pi is self-terminating. As such, every sequence of local transitions of

Pi terminates in a local deadlock.

2. No process Pi has self-enabling actions. An action A: guardA → statementA is

self-enabling if there exists a global transition (sg, s
′
g) ∈ A such that sg ∈ guardA
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and s′g ∈ guardA. Likewise, an action B is self-disabling if and only if B disables

guardB after executing statementB .

Assumption 2 is at no loss of protocol’s generality because self-enabling actions can be

transformed into self-disabling without adding either deadlocks or livelocks in ¬I . If Pi

is self enabling, then for some local state sli1 of Pi, there exists a sequence of local states

〈sli1, s
l
i2, · · · , s

l
ik〉 of Pi such that (slij , s

l
i(j+1)) is a local transition of Pi (1 ≤ j ≤ k − 1)

and slik is a local deadlock (Item 1 prohibits local non-terminating computations). We

substitute every local transition (slij, s
l
i(j+1)), where 1 ≤ j ≤ k − 1, with (slij , s

l
ik). This

substitution renders Pi self-disabling and preserves reachability to s
l
ik from every local state

slij . Moreover, it does not introduce new local deadlock states.

Lemma 5.3.1 (Enablement Propagation). Let C=≪ c1, · · · , ck, · · · ≫ be a computation

of a parameterized protocol p(K) on a unidirectional ring of size K. ∀k > 1 : If (∃j :
Pj is enabled in ck and Pj is disabled in ck−1) then ∃i : Pj is the successor of Pi and

(ck−1, ck) ∈ gK(δi).

Proof. The fact that Pj is not enabled in ck−1 and enabled in ck means that (ck−1, ck) writes
a variable x ∈ Rj . Then x ∈ Wi of some process such that (ck−1, ck) ∈ g(δi). It follows
that {x} ⊂Wi ∩Rj , hence Pj is a successor of Pi.

The significance of Lemma 5.3.1 is to illustrate that in the course of a program computation,

a disabled process is enabled only by the action of its predecessor. In other words, a process

can only pass enablement to its successor. To represent the propagation of enablement in

the local state space of the representative process Pr, we augment the RCG with the local

transitions of Pr, called t-arcs. Thus, the augmented RCG has two types of arcs: s-arcs

that represent the continuation relation and the transfer of control to possible local states of

successor processes, and t-arcs representing local transitions of Pr. We call the new RCG,

the Local Transition Graph (LTG).

Definition 5.3.2. The Local Transition Graph (LTG) of p is a triplet LTGp = (V, T, S).
V is a set of vertices representing the local state space of Pr, T is the set of t-arcs and S
captures the set of s-arcs. We construct LTGp as follows:

1. For the representative process Pr, assign a vertex in V corresponding to each local

state of Pr.

2. In V , add a t-arc (vr, v
′
r) to T to represent a local transition of Pr.
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3. For every local state/vertex in V , add an s-arc (vr, v
′
r) to S if vr represents a local

state of Pr and v′r represents a possible local state of the successor of Pr.

Example 5.3.1 (Binary Agreement). Consider a binary agreement protocol on a

unidirectional ring such that M(K) = K, Rr = {xr−1, xr}, Wr = {xr}, Dr = {0, 1}.
The representative process Pr has the following actions:

t10
r : xr−1 = 0 ∧ xr = 1→ xr := 0

t01
r : xr−1 = 1 ∧ xr = 0→ xr := 1

Intuitively, Pr sets xr to xr−1 whenever xr �= xr−1. Thus, a local legitimate state is such

that xr = xr−1; i.e., the protocol is in a global legitimate state when all variables have

equal values. In Figure 5.4, the left hand-side graph represents the continuation graph

of the agreement (denoted RCGp) and the right hand-side graph is the LTG of agreement

(denoted LTGp).

Figure 5.4: RCGp and LTGp of the Agreement protocol

Definition 5.3.3 (Collision). Let p(K) be a parameterized protocol with a unidirectional

ring topology and Pj be the successor of Pi. Let sli and slj be local states where Pi and

Pj are both enabled, respectively. A collision is an execution of any local transition of Pi

enabled at sli.

Lemma 5.3.4 (Enablement Conservation in a Unidirectional Ring). Let p(K) be a

parameterized protocol on a unidirectional ring of size K. L is a livelock of p(K) if and
only if in every global state of L, the number of enabled processes is the same and greater
than zero.

Proof. Only if: Let s be some global state of L. Assume the number of enabled processes

at s is |E|. From Assumption 2, every local transition of any process Pi disables Pi. Since

every process in a unidirectional ring has one successor, a local transition of any enabled

process will not increase |E|. It follows that |E| can either stay constant or decrease.

However, if an execution of a transition at s decreased |E| to |E| − 1, then since |E| − 1
cannot increase in subsequent transitions, s cannot be re-encountered in L following s.
Therefore, s cannot be in a livelock L. Consequently, |E| is constant in any livelock on a

unidirectional ring.

78



If: In every global state of L, there exists and enabled process that executes. Since p(K)
has a finite number of states, L is a livelock.

Corollary 5.3.5 (Absence of Collisions in Livelocks in Unidirectional Rings). If L is a

livelock on a unidirectional ring then for every global transition t in L, there is no collision
tl such that t ∈ g(tl).

Proof. In a unidirectional ring, a collision decreases the number of enabled processes by

1. This is in contradiction with Lemma 5.3.4.

Corollary 5.3.6 (Insensitivity to Weak Fairness). Let p(K) be a parameterized protocol

on a unidirectional ring of size K. If L is a livelock of p(K) then there is no continuously

enabled process in L.

Proof. Let sg be a global state of L where every process of p(K) is enabled. Hence, any
execution of any enabled process will cause a collision. From Corollary 5.3.5, sg cannot be
in L. It follows that in every global state of L, there exists a disabled process. According to
Lemmas 5.3.1 and 5.3.4, a constant number of enablements propagate along the arcs of the

unidirectional ring. Hence, disabled local states propagate in the opposite direction. Thus,

every process in the ring will eventually be disabled in the reverse direction.

Corollary 5.3.6 implies that the assumption of the existence of a weakly fair scheduler4

does not simplify the design of livelock-freedom in unidirectional rings because no process

stays continuously enabled in a livelock.

Effect of Fairness and Execution Semantics on Livelocks. In a livelockL of a ring p(K),
every process participates in L; i.e., every process executes infinitely often. Therefore,

every livelock is an impartially fair computation.5 Moreover, Lemma 5.3.10 asserts that, in

a livelock L in a unidirectional ring, no matter in what order independent local transitions

execute, the resultant global state is the same. It follows that the simultaneous execution of

two local transitions tr⊕1 and tr is equivalent to the sequential execution≪ tr⊕1, tr ≫, in

Pr⊕1 then Pr, respectively. Thus, Tp(K) also captures the behaviors of livelocks in which

multiple processes execute simultaneously, provided that |E| < K. The case of a fully

synchronous livelock; i.e., when |E| = K, is not captured by Tp(K) since every sequential
propagation of enablements has a collision. However, Lemma 5.3.4 still holds for a fully

synchronous livelock. Thus, our results hold in a parameterized ring for the most general

execution semantics and fairness assumptions.

4A weakly fair scheduler infinitely often executes any action that is continuously enabled.
5A computation C is impartially fair if every process infinitely often participates in C.
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Lemma 5.3.7 (Local Illegitimacy). Let L be a livelock of a parameterized protocol p(K)
on a unidirectional ring. Then, for every global state of L there exists a process Pi in an

illegitimate local state.

Proof. Every global state of L is in ¬I . Since I is locally conjunctive, for every global

state of L, there exists LCi that evaluated to false by the local state of Pi. In other words,

there exists a process Pi whose local state is in ¬LCi.

In every global state of a livelock L, there exists an enabled process Pi and some process

Pj in an illegitimate local state: notice that we do not rule out the possibility of i = j, in
this case Pi’s local state is a corruption.

Lemma 5.3.8 (Local Corruptions). Let L be a livelock of a parameterized protocol p(K)
on a unidirectional ring. Then, for some global state of L there exists a process Pi having

a corruption.

Proof. From Lemma 5.3.7, every global state of L has a process Pi in an illegitimate

local state. Lemmas 5.3.1 and 5.3.4 establish that enabled local states propagate along

a unidirectional ring without collisions. By contradiction, assume that at every global

state of L, all enabled processes are in non-corruptions. Due to closure of I(K) in

p(K), a propagation of a non-corruption in any process Pi should leave Pi in a local

legitimate deadlock. As such, eventually every process Pi will be in a legitimate state.

This contradicts Lemma 5.3.7. Therefore, there exists a global state of L where some Pi is

in a corruption.

To understand how livelocks represent themselves in LTG, we observe that each sequence

Sch of local transitions representing a livelock belongs to an equivalence class of

permutations of Sch whose local transitions preserve some irreflexive and transitive

precedence relation.

Definition 5.3.9 (Livelock Induced Precedence Relation ≺). Let a livelock L be

represented by a sequence of local transitions Sch=≪ tl0, t
l
1, · · · , t

l
n−1 ≫. We say tli

precedes tlj , denoted t
l
i ≺ tlj if and only if

1. the execution of tli enables t
l
j or,

2. if tlj executes, then it collides with tli enabled in Pi or,

3. if 1 and 2 are false, then there exists tlk in Sch such that tli ≺ tlk and t
l
k ≺ tlj .
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Example 5.3.2 (Binary Agreement). Consider an instance of the agreement protocol where

K = 4. As illustrated in the top part of Figure 5.6, we examine a livelock L represented by

the global computation prefix ≪ 1000, 1100, 0100, 0110, 0111, 0011, 1011, 1001 ≫
repeated k times (k is an arbitrary integer). We represent L by the sequence of local

transitions Sch=≪ t01
1, t10

0, t01
2, t01

3, t10
1, t01

0, t10
2, t10

3 ≫. The superscript denotes

the process index and the subscript ij represents a change of value in xr from i to j.

Figure 5.5 illustrates the dependencies between the local transitions of L. Two local

transitions tli and tlj are independent if and only if tli ⊀ tlj and tlj ⊀ tli. Since we have

only three pairs of independent local transitions ((t201, t
0
10), (t

3
01, t

1
10) and (t001, t

2
10)), the

precedence relation allows 8 = 23 possible precedence-preserving permutations of Sch.

Figure 5.6 depicts L and another livelock generated by a permutation of Sch preserving the

precedence relation in Figure 5.5.

Lemma 5.3.10 (Precedence Relation Reduction). Let p(K) be a parameterized protocol

on a unidirectional ring of size K. If p(K) has a livelock L, for some K, whose

local transitions are represented by a sequence Sch=≪ tl0, t
l
1, · · · , t

l
n−1 ≫ then every

precedence-preserving permutation of Sch represents a livelock of p(K).

Proof. Let Sch’ be a precedence-preserving permutation of Sch obtained by swapping

two arbitrary independent local transitions tli and tlj where i < j. Now consider the

subsequence Middle=≪ tli+1, · · · , t
l
j−1 ≫ of Sch, since swapping of tli and tlj in Sch’ is

precedence-preserving, each of tli and t
l
j form independent pairs with every local transition

in Middle. If it is not the case, a swap of tli and tlj would have violated the precedence

relation. Since Sch is precedence-preserving and every transition inMiddle is independent

of tli and tlj , for every tlk : tlk ≺ tlj , t
l
k occurs in Sch before tli and for every tlk : tli ≺ tlk, t

l
k

occurs in Sch after tlj . Thus, the execution of Sch’ proceeds as follows. Every transition tlk
for k < i executes exactly as in Sch. Now tlj is enabled since all local transitions preceding
it already executed, hence, tlj executes as in Sch. None of the transitions inMiddle depends

on tli or on tlj and they execute as in Sch. tlk (k ≥ j) execute as in Sch since all their

preceding transitions already executed. Since no local transition has been disabled due to

the precedence-preserving swap, Sch’ represents a new livelock L′.

Lemma 5.3.10 establishes our observation for a reduction based on an irreflexive partial

order. Godefroid [38] originally introduced partial order reduction to simplify automatic

verification. We accordingly reduce our search for livelocks in unidirectional rings to a

search for a representative livelock that we call a contiguous livelock.

Let L be a livelock on a unidirectional ring having |E| enablements. As illustrated in the

bottom part of Figure 5.6, a contiguous livelock CL has a global state where |E| adjacent
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Figure 5.5: Precedence relation for local transitions in Example 5.3.2

processes are enabled. The subsequent global states of CL are such that only the rightmost

enablement in the segment of adjacent processes propagates while the remaining |E| − 1
enablements do not propagate. After K − |E| propagations of the rightmost enablement,

a new global state with |E| adjacent enablements is reached. Figure 5.6 illustrates this

scenario for K = 4 and |E| = 2. Notice that a K times repetition of the scenario in

Figure 5.6 results in a full rotation of the segment of adjacent enablements. Corollary 5.3.11

directly follows from Lemma 5.3.10.

Corollary 5.3.11. p(K) has a livelock if and only if p(K) has a contiguous livelock.

Figure 5.6: Two precedence-preserving livelocks for Example 5.3.2. The

starting global state is marked by "I"

Lemma 5.3.12 demonstrates the kind of structure LTGp has when p(K) has a contiguous
livelock. We call this structure a contiguous trail of LTGp.

Lemma 5.3.12 (Representation of a Contiguous Livelock in LTGp). Let the parameterized

protocol p(K) on a unidirectional ring have a contiguous livelock CL with |E|
enablements. Then, LTGp has an alternating trail TR of the following format.
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1. if |E| = 1, then TR is an alternating trail of a t-arc followed by an s-arc and vice

versa.

2. if |E| > 1, then TR is an alternation of two types of walks: w1 and w2. w1 consists of

|E| consecutive s-arcs such that every vertex/local state in w1 has an outgoing t-arc

in w2. w2 has 2(K − |E|) arcs of an alternating walk of t-arcs and s-arcs.

We call TR a contiguous trail of LTGp.

Proof. If |E| = 1, then there exists only one enablement in the ring. An enablement

propagation at a process Pi corresponds to a t-arc (sli, s
l
i

′
). Now, Pi+1, the successor of Pi,

is in an enabled local state sli+1 that is a right continuation of s
l
i

′
. Therefore, there exists an

s-arc from sli
′
to sli+1. Following a similar reasoning for every process Pi that propagates a

single enablement along CL, we conclude that TR is a trail of alternating s-arcs and t-arcs

when |E| = 1.

If |E| > 1, CL consists of two types of computations. The first type of computation is such

that p(K) is in a global state sc where |E| enabled processes are adjacent, which implies

a walk of type w1 of |E| consecutive s-arcs in TR. Moreover, every local state in w1 is

an enablement that will eventually propagate. Thus, every local state in w1 should have

an outgoing t-arc participating in TR but not in w1. The second type of computation is

the rightmost enablement propagation through the execution of K − |E| local transitions.
Using a similar reasoning as in the case where |E| = 1, the second type of computation

is represented by a walk of type w2 in TR consisting of an alternating t-arc followed by an

s-arc and vice versa. As such, the length of the alternating walk w2 is 2(K − |E|). Since
CL is an alternation of both types of computations, TR is an alternation of both types of

walks: w1 and w2. Moreover, every s-arc in a walk of type w1 should reach a target local

state that is a source of a t-arc in a walk of type w2 in TR.

In a global livelock, the partial observation of each process Pi on Wi results in a repetitive

sequence of values that we call a pseudo-livelock. For example, a local transition t02
represented by the action y = 0 ∧ x = 0 → x := 2 and a local transition t20 whose

action is y = 1 ∧ x = 2 → x := 0 form a psuedo-livelock; if we project each local

transition on x, we obtain the local transitions t′02 and t′20 represented by x = 0 → x := 2
and x = 2 → x := 0, respectively. t′02 and t′20 form the repeating sequence of values

≪ 0, 2 ≫k for x. However, neither of {t02, t20} enables the other because of different

values of the unwritable variable y. Note that a pseudo-livelock in Pr does not imply the

existence of a global livelock.
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Theorem 5.3.13 establishes a sufficient condition for livelock-freedom in unidirectional

rings.

Theorem 5.3.13 (Sufficient Conditions for Livelock Freedom). For some K, if L is a

livelock in a parameterized protocol p(K) on a unidirectional ring, then LTGp has a

contiguous directed trail TR in LTGp such that:

1. There exists an illegitimate local state in TR, and,

2. All t-arcs of TR form pseudo-livelocks.

Proof. From Lemma 5.3.10, p(K) has a livelock L if and only if p(K) has a contiguous

livelock CL. Lemma 5.3.12 implies that LTGp has a contiguous trail TR representing CL.

According to Lemma 5.3.8, there exists a global state in L such that some process is

corrupted. Since TR is a representation of CL on a ring, we conclude that some vertex

in TR represents a local illegitimate state. This proves Item 1.

Since L is a livelock, for every Pi, the projection of every global transition ti in L on the

writable variables of Pi; a.k.a., ti ↓Wi, induces a repetitive sequence of values for variables

inWi . Therefore, t-arcs in TR form a pseudo-livelock. This proves Item 2.

Note that we use the contrapositive of Theorem 5.3.13 to prove livelock-freedom.

Example 5.3.3 (Binary Agreement). In the right hand-side of Figure 5.4, the local

illegitimate states are {10, 01}, however, it is sufficient to resolve either of them to obtain

a continuation graph that has no directed cycles passing by illegitimate deadlocks. Since

including just one of the candidate local transitions does not form pseudo-livelocks, both

solutions are livelock free; hence convergence. If we unnecessarily include both t01 and t10
that form a pseudo-livelock, we observe TR =≪ 01, t10, 00, s, 01, s, 10, t01, 11, s, 10, s,
01 ≫ as an alternating trail satisfying the implications of Lemma 5.3.12 (see Figure 5.4).

Moreover, t01 and t10 form a pseudo-livelock. Hence, including both t01 and t10 does not
satisfy the sufficient conditions of the contrapositive of Theorem 5.3.13. Notice that if we

apply constraint satisfaction for cyclic constraint graphs as described in [36], there is no

way to differentiate between the case where only one of the convergence actions {t01, t10}
is included in pss, and the case where we include both convergence actions in pss.
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5.4 Application in Automated Design of Convergence

This section presents an outline for a method that synthesizes global convergence for

parameterized protocols in the local state space of the representative process (without

exploring the global state). Previous work on automated design of convergence [10],

[34], [39] mainly explores the global state space of a protocol to synthesize recovery from

any illegitimate state. Moreover, existing work addresses the synthesis of convergence for

protocols with a fixed number of processes; i.e., synthesized solutions are not generalizable.

Thus, the proposed method in this section enables a significant improvement in the

time/space complexity of automated design of convergence.

5.4.1 Synthesis Methodology

Given a parameterized protocol p over a ring whose representative process is Pr and whose

set of legitimate states is defined by LCr, we construct LTGp as in Section 5.3.

1. Identify the subset DL
l ⊂ Sr

l of local deadlocks of Pr. Form the induced subgraph

of RCGp overDL
l.

3-coloring example. Since the input protocol p for 3-coloring is empty, we have

DL
l = Sr

l (Figure 5.7)�.

2. Identify a subset Resolve ⊂ ¬LCr ∩DL
l of local deadlocks that should be resolved

by local t-arcs in the revised protocol pss. As such, RCGpss is the induced subgraph

of RCGp over DL
l− Resolve should represent a deadlock free protocol for everyK.

By Theorem 5.2.2, RCGpss has no directed cycles through any local deadlock in LCr

if and only if pss(K) has no deadlocks for every K. As such, Resolve captures a

minimal subset of local deadlocks of p that should be resolved in pss. One way to

compute Resolve is as aminimal feedback subset6 of RCGp restricted to be a subset of

¬LCi. Therefore, all minimal feedback subsets that are subsets of ¬LCr are possible

candidates for Resolve.

3-coloring example. A parameterized 3-coloring protocol over a unidirectional ring

is defined by a process Pr, a set of variables Φp(K) = {c0, · · · , cK−1} such that cr
takes values from a domainDr = {0, 1, 2}. A local legitimate state of Pr is such that

Pr’s color is different from its predecessor’s; i.e., LCr = (cr �= cr−1). In Figure 5.7,

the set of illegitimate local states identified by uncolored vertices is {00, 11, 22}.

6A feedback subset FS of a directed graph G is a subset of vertices of G such that, when omitted from the G, induces a

subgraph of G with no directed cycles. FS is minimal when it has no subset that is a feedback set.
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Since every illegitimate local state has a self-loop, Resolve= {00, 11, 22}. We denote

a possible local transition of Pr by tij where i, j ∈ Dr, such that tij : cr−1 = cr =
i→ cr := j. �

3. Identify Candidatesr as the set of all possible candidate local transitions tr
l of Pr

that resolve every local deadlock in Resolve. tr
l = (s0

l, s′0
l) ∈ Candidatesr is a local

transition of Pr such that s0
l ∈ Resolve and s′0

l /∈ Resolve. As such, we guarantee

that all actions are self-disabling as in Assumption 2 of Section 5.3.

3-coloring example. The set of candidate local transitions in Figure 5.7 that resolve

all local deadlocks in Resolve is {t01, t02, t10, t12, t20, t21}. �

4. Identify a subset of Non-Pseudo-Livelocks (NPL) of Candidatesr such that:

(a) Local transitions in NPL do not form pseudo-livelocks.

(b) Local transitions in NPL resolve every local deadlock in Resolve.

If such NPL exists, declare success (Theorem 5.3.13).

3-coloring example It is sufficient to include only one local transition originating

at every local deadlock to resolve it. For example, it is sufficient to include either

t01 or t02, but not both, to resolve the local deadlock 00. Every local deadlock

in Resolve is the source state of two possible local transitions in Candidatesr. As

such, 23 possible subsets of Candidatesr render 3-coloring deadlock free for any K.

These subsets are {{t01, t12, t20}, {t01, t12, t21}, {t01, t10, t20}, {t01, t10, t21}, {t02,
t12, t20}, {t02, t12, t21}, {t02,t10,t20}, {t02, t10, t21}}. However, every subset has a

pseudo-livelock. For example, local transitions {t01, t12, t20}, when projected onWr,

form the pseudo-livelock≪ 0, 1, 2 ≫k. Likewise, any two local transitions tij , tji
form a pseudo-livelock. �

5. Identify a subset of Pseudo-Livelocks (PL) of Candidatesr such that:

(a) Local transitions in PL resolve every local deadlock in Resolve.

(b) Local transitions in PL have subsets forming pseudo-livelocks. Otherwise, local

transitions in PL would have been in NPL and we should not have reached the

current step.

(c) Each pseudo-livelock in PL is not forming a contiguous trail TR in LTGp as in

Lemma 5.3.12.

If such PL exists, there are no pseudo-livelocks in PL whose t-arcs form contiguous

trails. Consequently, we can conclude from Theorem 5.3.13 that pss is livelock free

for every size of the ring. Otherwise, declare failure.

3-coloring example. Every subset of t-arcs forming a pseudo-livelock corresponds

to a contiguous livelock. For example, in Figure 5.7, {t01, t12, t20} forms a

pseudo-livelock and creates the contiguous trail TR = {00, 01, 11, 12, 22, 20} that
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includes illegitimate local states. The sufficient conditions for livelock freedom in

the contrapositive of Theorem 5.3.13 are not satisfied. Therefore, we declare failure.

�

Figure 5.7: LTGp of 3-coloring example

5.4.2 Further Examples

In this subsection, we apply our proposed methodology to design three protocols: binary

agreement, two-coloring and sum-not-two protocols. In the latter example, we illustrate

how the conditions of Theorem 5.3.13 are strictly sufficient for livelock-freedom, however,

they are weak enough to provide a converging solution on a symmetric unidirectional ring.

Agreement example. We investigate a parameterized binary agreement protocol as in

Example 5.3.2. A local legitimate state is such that xr = xr−1; i.e., the protocol stabilizes

when all variable values are equal.

Figure 5.8 represents LTGp of the parametrized agreement protocol. t01 and t10 are local

transitions resolving illegitimate local states. t01 : (xr < xr−1) → xr := xr−1 or t10 :
(xr−1 < xr)→ xr := xr−1).

In Figure 5.8, the local illegitimate states are DL
l = {10, 01}, however, it is sufficient

to resolve either of them to obtain a continuation relation that has no directed cycles

passing by illegitimate deadlocks. Therefore, Resolve= {01} or Resolve= {10}. As

such, including either t01 or t10 (but not both!) renders the protocol deadlock free. Since

including just one of the candidate local transitions does not form pseudo-livelocks, both

solutions are livelock free. Hence follows convergence.

If we unnecessarily include both t01 and t10 that form a pseudo-livelock, we observe

TR =≪ 01, t10, 00, s, 01, s, 10, t01, 11, s, 10, s, 01 ≫ as an alternating trail satisfying

the implications of Lemma 5.3.12. Moreover, t01 and t10 form a pseudo-livelock. Hence,

87



including both t01 and t10 does not satisfy the sufficient conditions of the contrapositive of

Theorem 5.3.13.

Notice that if we apply constraint satisfaction for cyclic constraint graphs as described

in reference [36], there is no way to differentiate between the case where only one of

the convergence actions {t01, t10} is included in pss, and the case where we include both

convergence actions in pss. In fact, both constraint graphs are the same since the set of

legitimate states does not change. Moreover, our methodology computes a possibly strict

subset of local deadlocks outside LCr and still guarantees deadlock freedom for every K.

�

Figure 5.8: RCGp and LTGp of Agreement Example

Two-coloring example. For a 2-coloring protocol whose RCG and LTG are represented

in Figure 5.9, Rr = {cr−1, cr} and Wr = {cr}. Dr = {0, 1} and LCr = cr �= cr−1. A

legitimate local state is such that a process and its predecessor should have different colors.

Unlike deadlock states in agreement, 2-coloring requires the resolution of both illegitimate

local deadlocks DL
l =Resolve= {00, 11} because they have self-loops of s-arcs7.

However, the resolution of both local deadlocks results in a directed trail TR as in

Lemma 5.3.12 ≪ 00, t01, 01, s, 11, t10, 10, s, 00 ≫ and not satisfying the sufficient

conditions in the contrapositive of Theorem 5.3.13. As such, we cannot conclude livelock

freedom of 2-coloring for arbitrary K. In fact, 2-coloring self-stabilizing protocols are

impossible in unidirectional rings [40], however our lack of necessary conditions for

livelock freedom prevents us from deducing any impossibility results. �

Figure 5.9: LTGp of the Two Coloring Example

7Recall that for deadlocks-freedom, we make sure that there are no directed cycles over local deadlocks in RCG that

include illegitimate local states.
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Sum-not-two example. We present a hypothetical example to illustrate the interplay

between having a trail, having pseudo-livelocks and having both. The Sum-Not-Two

protocol on a unidirectional ring is such that Pr reads xr−1 and xr and writes xr. For

simplicity of presentation, we restrict our example such that xr takes values in {0, 1, 2}. A
local legitimate state is such that xr + xr−1 �= 2. The input protocol p is empty.

Since p is empty, the set of local deadlocks outside LCr is ¬LCr = {20, 11, 02}. For a

deadlock free protocol, no proper subset of ¬LCr can be resolved to render pss deadlock
free for everyK. Thus, Resolve= {20, 11, 02}.

Figure 5.10 illustrates LTGp of Sum-Not-Two protocol with all candidate t-arcs included.

Every local deadlock has two possible t-arcs that resolve it and hence, we have 23

possibilities for Candidatesr. The following two possibilities form pseudo-livelocks and

each of them participate in a trail: {{t21, t10, t02}, {t01, t12, t20}}. For example, the first

possibility participates in the trail: TR =≪ 02, t21, 01, s, 11, s, 11, t10, 10, s, 02, s,
20, t20, 22, s, 20, s ≫. This possibility forms a pseudo-livelock and participates in a

trail TR as implied by Lemma 5.3.12. Hence, sufficient conditions of the contrapositive

of Theorem 5.3.13 are not satisfied by the first possible set of candidates and we cannot

include this set.

In fact, if we examine TR, it should represent a contiguous livelock L having |E| = 2 and

only one propagation of enablement; i.e.,K−|E| = 1. Hence, TR is possibly representing

a livelock in a ring where K = 3. However, if we try to reconstruct the global livelock of

a ring of three processes using TR, we fail! In other words, TR does not represent a real

livelock and due to the lack of necessity, we could not include {t21, t10, t02} in pss.

None of the remaining candidate subsets of t-arcs forms a trail whose t-arcs are

pseudo-livelocks. For example, let Candidatesr = {t21, t12, t01}. Here, t21 and t12 form

a pseudo-livelock, however, there is no trail where they solely participate and that has

the properties implied in Lemma 5.3.12. Moreover, there is a trail that includes all the

three t-arcs together, but since, together, they do not form a pseudo-livelock, conditions of

the contrapositive of Theorem 5.3.13 remain satisfied. As such, including {t21, t12, t01}
in pss renders Sum-Not-Two converging. The following action captures Candidatesr:

(xr + xr−1 = 2) ∧ (xr �= 2) → xr := (xr + 1) mod 3, (xr + xr−1 = 2) ∧ (xr =
2)→ xr := (xr − 1) mod 3.

To prove convergence of our proposed solution using constraint satisfaction, we must

ingenuously identify a partitioning of the protocols actions. We argue that our methodology

bypasses constraint satisfaction in this respect as we directly design/verify convergence

through local state space exploration. �
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Figure 5.10: LTGp of the Sum-Not-Two example including every candidate

t-arc. To the right, we demonstrate a s-cycle for each individual local

deadlock that we resolved.

5.5 Summary and Extensions

This chapter proposed a method for local reasoning about global convergence of

parameterized network protocols with the ring topology. In such protocols, the code of each

process is instantiated from the parameterized code of a representative/template process by

variable substitution. Parameterized ring protocols have important applications as they can

be used to construct more complicated topologies where multiple rings are intertwined

(e.g., multi-ring token passing in Chapter 3). Global convergence to a set of legitimate

states I requires both deadlock-freedom and livelock-freedom in ¬I . While most existing

design methods enable the design of convergence by reasoning in the global state space of

a protocol, this chapter takes a different approach of reasoning in the local state space

of the representative process to ensure global convergence. Specifically, we presented

necessary and sufficient conditions for deadlock-freedom, and sufficient conditions for

livelock-freedom in parameterized unidirectional rings.

We would like to extend this work in several directions. First, we plan to investigate local

reasoning for global convergence of parameterized protocols with topologies other than

rings (e.g., tree, mesh, etc.). Second, we are currently investigating sufficient conditions

for bidirectional rings. Third, another interesting problem is automation. We will design

synthesis algorithms that can automate the generation of the LTG graphs and can revise

the graphs so they meet our conditions for deadlock/livelock-freedom. Such a synthesis in

local state space is a significant paradigm shift with respect to previous work on automated

design of convergence in global state [10], [13], [34], which could result in producing

software tools that are substantially more efficient in automated design of parameterized

self-stabilizing protocols.
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Chapter 6

An Exact Algebraic Characterization of

Livelocks in Unidirectional Rings

This chapter presents necessary and sufficient conditions for the livelock-freedom of

a subclass of unidirectional rings in which processes are self-disabling; i.e., in each

execution turn, the execution of an action of some process disables all actions of that

process. We present our necessary and sufficient conditions in an algebraic setting that

significantly simplifies reasoning about global livelocks in the local state space of the

processes. The proposed approach enables a design and verification method that solely

relies on local reasoning, thereby eradicating the need for reasoning about livelocks in the

global state space. The proposed approach has several applications including the design

of global convergence for self-stabilizing systems and the verification of livelock-freedom

in unidirectional rings. We evaluate the proposed necessary and sufficient conditions in

the context of several examples including Dijkstra’s self-stabilizing token ring protocol. In

fact, using the proposed necessary and sufficient conditions, we illustrate a simplified proof

of the livelock-freedom of Dijkstra’s self-stabilizing token ring protocol.

6.1 Introduction

Livelocks are among the least understood types of concurrency flaws due to their dynamic,

global and arbitrary nature [41]. We understand by a livelock/non-progress cycle, a

sequence of undesirable global configurations that indefinitely repeat, thereby preventing

further progress towards a global desirable configuration. Examples include process

starvation for a shared resource [42], multi-token circulation in a mutual exclusion protocol

[7], and the design of convergence in distributed protocols [9], [43]; i.e., protocols
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that recover to a desired behavior regardless of their initial configuration. To design

livelock-free protocols irrespective of their number of processes, we investigate properties

of global livelocks as perceived by a single process; i.e., local properties of livelocks. In this

chapter, we establish necessary and sufficient local conditions for global livelock-freedom

in arbitrary-sized/parameterized unidirectional rings.

The problem of livelock-freedom in a parameterized network is generally undecidable.

Apt and Kozen [44] reduce the non-halting problem to livelock-freedom verification of

a parameterized network. Suzuki [45] establishes a similar result for parameterized

unidirectional rings of symmetric processes. Consequently, most of livelock verification

techniques are either (1) incomplete [46]–[50]; i.e., provide strictly sufficient conditions for

livelock-freedom, (2) are applicable to a strict subclass of models of computation [51]–[54],

(3) or are not amenable to automation by using manually designed ranking functions [22],

[46], [55]. Due to their inherent incompleteness, the approaches in the first category do not

exactly characterize livelocks, thereby preventing impossibility proofs similar to the results

exhibited by Shukla et al. [40] for symmetric coloring protocols. The second category

includes techniques that impose strong restrictions on unidirectional rings, thereby could

not explore the convergence of simple protocols. For instance, all our case studies do not

fall in the subclass captured by approaches in (2). Unlike the previous two techniques,

manual methods in category (3) require human ingenuity to create strictly decreasing

ranking functions in order to demonstrate convergence/livelock-freedom; these methods

are not generally suitable for automation.

We extend the second category of techniques by exactly characterizing livelocks in a

subclass of parameterized protocols on unidirectional rings. Due to Suzuki’s undecidability

result [45], we inevitably consider unidirectional rings whose processes are self-disabling.

A process is self-disabling if any of its execution steps disable all actions of that process

until a step of its predecessor process re-enables it. A process is enabled/has an enablement

if and only if its condition for taking a step is satisfied for the current value of its local

variables, otherwise it is disabled. In Chapter 5, we established that a unidirectional ring

propagates a fixed number of enablements along its links if and only if the ring has a

livelock (Property 5.3.4). We formalize the notions of propagation and process local loops

by using local binary relations ǫr and ηr on the steps of every process Pr. Theorem 6.2.4

establishes our main result: a unidirectional ring has a livelock if and only if propagations

are cyclic structure-preserving for local loops, for every process Pr, and there exists a

global configuration from which enablement propagation starts.

Contributions. We establish an equivalence between the set of livelocks in a

unidirectional ring and algebraic properties of binary relations representing local loops

and local propagations of each process in the ring, respectively. The local nature

of our algebraic characterization significantly simplifies reasoning about livelocks in

parameterized unidirectional rings that are not necessarily fully symmetric while avoiding
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exploration of the global state space. Herlihy and Shavit [56] reduce the proof of

existence of wait-free protocols to reasoning about topological properties of combinatorial

representations of the protocols. In a similar spirit, our algebraic representation reduces

design and verification of livelock-freedom to the analysis of a set of algebraic equations

on compositions of binary relations. Our algebraic approach exactly characterizes all the

livelocks Dijkstra’s token ring [7] has, including a case where processes execute in full

synchrony and the number of processes is greater than the size of the variables’ domains

by one.

Organization. We incrementally develop our formal framework for reasoning about

livelocks and establish our main theorem in Section 6.2. Section 6.3 illustrates how

we utilize our formal framework to characterize livelocks/livelock-freedom through three

classical protocols on unidirectional rings. Section 6.4 summarizes our contributions and

discusses potential extensions.

6.2 Algebraic Properties of Livelocks

In this section, we establish necessary and sufficient conditions for livelock-freedom in

parameterized rings in terms of binary relations on local transitions of each process of

the ring. In Subsection 6.2.1, we define a set of binary relations (on the local transitions

of processes) that we shall use in Subsection 6.2.2 to specify necessary and sufficient

conditions for the existence of livelocks in unidirectional rings.

6.2.1 Binary Relations on Local Transitions

We define our binary relations on the set of local transitions of processes. We say a

transition ti = (si0, s
i
1) in a process Pi partially enables a transition tj = (sj0, s

j
1) in a

process Pj if and only if for every variable x ∈ Wi ∩ Rj , we have x(si1) = x(sj0). The

idea behind partial enablement is that the complete enablement of a local transition tr of
Pr depends on xr and xr⊖1. Thus, when a process Pr executes, it may update xr that

could in turn enable its successor depending on the value of xr⊕1. Using the notion of

partial enablement, we relate each local transition of a process with the rest of its local

transitions and with the local transitions of its successor. Formally, we define a binary

relation Hr ⊆ δr × δr that is equal to the following set of pairs of local transitions of Pr:

Hr = {((s
r
i , s

r ′
i), (s

r
j , s

r′
j))|xr(s

r ′
i) = xr(s

r
j)}.

A cycle of local transitions inHr is a pseudolivelock whose set of pairs of local transitions
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defines a relation ηr ⊆ Hr. We denote by Lr
p ⊆ δr the subset of transitions of Pr that

participate in the pseudolivelock ηr.

Likewise, we define a local propagation of Pr to Pr⊕1 as a binary relation Er ⊆
δr × δr⊕1 where (tr, tr⊕1) ∈ Er if and only if tr partially enables tr⊕1. Er =
{((sr, sr′), (sr⊕1, sr⊕1′))|xr(s

r ′) = xr(s
r⊕1)}. A feasible propagation of the transitions of

a pseudolivelock ηr of Pr to the transitions of a pseudolivelock ηr⊕1 is a local propagation

such that ǫr ⊆ Lr
p × Lr⊕1

p is left-total in Lr
p and onto on Lr⊕1

p ; i.e., ǫr is a total binary

relation.

Notation. Let R be a binary relation on a subset of local transitions of p(K), R(ti) denotes
some arbitrary transition tj such that (ti, tj) ∈ R. In other words, tj = R(ti) is a shorthand
for (ti, tj) ∈ R. We denote relation composition from left to right by ’◦’ and a sequence of
composition of binary relations ax◦· · ·◦ay by ax❀y, where composition is along a clockwise

direction of the ring if and only if x < y. am denotes the composition ofm copies of a; i.e.,
exponentiation. a−1 denotes the inverse relation of a. e denotes the identity binary relation;
i.e., e = {(x, x) ∈ A× A}, for some set A.

Example 6.2.1 (3-valued Agreement).

Consider the local transitions δr of a 3-valued agreement protocol defined as follows for

0 ≤ r ≤ K − 1.

tr(2)(0→2) : xr⊖1 = 2 ∧ xr = 0 −→ xr := 2

tr(2)(1→2) : xr⊖1 = 2 ∧ xr = 1 −→ xr := 2

tr(1)(0→1) : xr⊖1 = 1 ∧ xr = 0 −→ xr := 1

tr(1)(2→1) : xr⊖1 = 1 ∧ xr = 2 −→ xr := 1

tr(0)(2→0) : xr⊖1 = 0 ∧ xr = 2 −→ xr := 0

tr(0)(1→0) : xr⊖1 = 0 ∧ xr = 1 −→ xr := 0

We summarize the local transitions of the protocol by the set of parameterized transitions:

tr(v)(v⊕1→v) and tr(v⊕1)(v→v⊕1) .

Figure 6.1 illustratesHr of the local transitions in Example 6.2.1. Every related pair of local

transitions satisfies our definition. For instance, (tr(1)(2→1), t
r
(2)(1→2)) ∈ Hr since tr(1)(2→1)

sets xr to 1 while the local source state of t
r
(2)(1→2) is partially enabled at xr = 1. We apply

the same reasoning to every pair of local transitions in δr in order to build Hr. Using a

fixpoint computation on Hr, we determine that in this case ηr = Hr and Lr
p = δr. For
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the 3-valued agreement, ηr is a strongly connected component that can be decomposed

into the union of the following two bijections: ηr1 and ηr2. ηr1(t
r
(v)(v⊕1→v))= tr(v⊖1)(v→v⊖1) ,

ηr1(t
r
(v)(v⊖1→v)) = tr(v⊕1)(v→v⊕1) , ηr2(t

r
(v)(v⊕1→v)) = tr(v⊕1)(v→v⊕1) and ηr2(t

r
(v⊕1)(v→v⊕1)) =

tr(v)(v⊕1→v) .

Figure 6.2 depicts Er of the local transitions in Example 6.2.1. Every connected pair of

local transitions satisfies our definition of Er. For instance, (t
r
(1)(2→1), t

r⊕1
(1)(0→1)) ∈ Er since

the local source state of tr⊕1
(1)(0→1) and the local target state of tr(1)(2→1) share the value of

xr = 1. We apply the same reasoning to every pair of local transitions in δr × δr⊕1 to build

Er. A potential feasible propagation for the transitions of a given pseudolivelock ηr ∈ Hr

is a total binary relation on Lr
p × Lr⊕1

p .

Figure 6.1: Pseudolivelocks Over Local Transitions of a 3-Agreement

Protocol

Figure 6.2: Feasible Propagations Over Local Transitions of a 3-Agreement

Protocol

We decompose Er into two disjoint bijections ǫr1 : L
r
p → Lr⊕1

p and ǫr2 : L
r
p → Lr⊕1

p .

• ǫr1(t
r
(v)(v⊕1→v)) = tr⊕1

(v)(v⊕1→v) ,

• ǫr1(t
r
(v)(v⊖1→v)) = tr⊕1

(v)(v⊖1→v) ,

• ǫr2(t
r
(v)(v⊕1→v)) = tr⊕1

(v)(v⊖1→v) , and
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• ǫr2(t
r
(v)(v⊖1→v)) = tr⊕1

(v)(v⊕1→v) .

Figure 6.2 captures the decomposition of ǫr into ǫr1 and ǫr2. ⊳

6.2.2 Conditions for Livelock-Freedom in Unidirectional Rings

We incrementally establish a set of necessary and sufficient conditions for livelock-freedom

in unidirectional rings.

Lemma 6.2.1 (Existence of a pseudolivelock). If p(K) has a livelock L, then for every

process Pr there exists a pseudolivelock ηr ⊆ Hr strongly connecting L
r
p.

Proof. Let p(K) have a livelock L. Lemma 5.3.1 implies that every Pr participates

in L. Project L on xr to obtain the recurrent sequence of local transition σr =≪
tr0, t

r
1, · · · , t

r
i , t

r
i⊕1, · · · , t

r
m−1 ≫

∗ of Pr. As such, every tri in σr is infinitely often enabled,

thus, for all 0 ≤ i ≤ m− 1 : tri partially enables tri⊕1 through the update of xr. Therefore,

there exists a cycle ηr = {(tri , t
r
i⊕1)} ⊆ Hr and ηr strongly connects Lr

p = {tri}, where
Lr
p is the set of local transitions in σr. Hence, ηr ⊆ Hr is a pseudolivelock that strongly

connects Lr
p, for every Pr.

Lemma 6.2.2 asserts the existence of feasible propagations ǫr ⊆ (Lr
p×Lr⊕1

p )∩Er for every
Pr in a livelock of p(K).

Lemma 6.2.2 (Existence of a feasible propagation). If p(K) has a livelockL, then for every
Pr there exists a feasible propagation designated by a total binary relation ǫr ⊆ (Lr

p×L
r⊕1
p )

where Lr
p is the set of local transitions of some pseudolivelock generated by L in Pr.

Proof. Since p(K) has a livelock L, every Pr has a pseudolivelock ηr whose set of local

transitions is designated by Lr
p (Lemma 6.2.1). In L, for every Pr, the execution of every

local transition in Lr
p passes an enablement to Pr⊕1 as implied by Properties 5.3.1 and 5.3.4.

As such, the execution of every tr ∈ Lr
p partially enables a transition t

r⊕1 ∈ Lr⊕1
p , for every

0 ≤ r ≤ K − 1. Otherwise, we have two cases: (1) there exists a local transition in Lr
p that

does not enable any transition in Lr⊕1
p , thereby not propagating an enablement to Pr⊕1 or,

(2) there exists a local transition in Lr⊕1
p that is not enabled by any transition in Lr

p, thereby

blocking the pseudolivelock ηr⊕1. Both cases contradict the existence of L. Therefore, ǫr
is a total binary relation consisting of the set of pairs (tr, tr⊕1) ∈ Lr

p × Lr⊕1
p such that the

execution of tr partially enables tr⊕1; i.e., ǫr ⊆ ((Lr
p × Lr⊕1

p ) ∩ Er).

96



For simplicity of presentation, we define the binary relation κr ⊆ Lr
p × Lr⊖1

p linking two

local transitions (tr, tr⊖1) ∈ Lr
p×Lr⊖1 if and only if there exists tr⊖1

p ∈ Lr⊖1
p such that tr⊖1

p

partially enables tr⊖1 in the pseudolivelock ηr⊖1 and t
r⊖1
p partially enables tr in the feasible

propagation ǫr⊖1. Definition 6.2.3 formalizes this notion.

Definition 6.2.3 (Contiguousness). κr = ǫ−1
r⊖1 ◦ ηr⊖1.

We establish our necessary and sufficient conditions for the existence of livelocks in the

following Theorem.

Theorem 6.2.4. p(K) has a livelock L if and only if for every Pr, there exists a

pseudolivelock ηr ⊆ Hr, strongly connecting Lr
p, and a feasible propagation ǫr : Lr

p →
Lr⊕1
p that satisfy the following two equations:

1. Ring Reconstruction Equation: ∃|E| > 0 :

κr❀r−|E|+1=

{

ǫr❀r+K−|E|−1 |E| < K
e |E| = K

}

, and

2. Enablement Flow Equation: ηr ◦ ǫr = ǫr ◦ ηr⊕1.

Proof. Necessity of the Conditions for the Existence of Livelocks: Since p(K) has a livelock
L, it follows from Lemmas 6.2.1 and 6.2.2 that for every Pr, there exist a pseudolivelock

ηr : L
r
p → Lr

p and a feasible propagation ǫr : L
r
p → Lr⊕1

p .

1. Ring Reconstruction Equation. Consider a livelock L with |E| (|E| > 0)
enablements in the ring of size K. There exists a contiguous livelock CL that

preserves the partial order imposed on the local transitions of L (Lemma 5.3.11).

Consider a global state of CL where |E| enablements are adjacent in processes

Pr−|E|+1 to Pr, and t
r
j is enabled in Pr. A propagation of the rightmost enablement in

CL is a sequence of K − |E| propagations from Pr to Pr+K−|E|−1. By definition

of ǫr and κr, the enabled sequence of local transitions along the direction of

propagation of the rightmost enablement of CL is ≪ trj , ǫr(t
r
j), (ǫr ◦ ǫr⊕1)(t

r
j),

· · · , ǫr❀(r+K−|E|−1)(t
r
j) ≫; where t

r⊕K−|E|−1
j = ǫr❀(r+K−|E|−1)(t

r
j). On the other

hand, going anticlockwise along the contiguous sequence of enabled local transitions

reached after K − |E| propagations yields the same t
r⊕K−|E|−1
j = κr❀(r−|E|+1)(t

r
j).

The Ring Reconstruction Equation follows immediately.

2. Flow Equation. For some arbitrary Pr, let t
r
j ∈ Lr

p be an arbitrary enabled local

transition. Since L is a livelock, every local transition in Lr
p eventually executes in

the sequence projected from L on xr and captured by ηr; i.e., σr =≪ trj , ηr(t
r
j), (ηr ◦
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ηr)(t
r
j), · · · , η

mr−1
r (trj) ≫

∗. Since every local transition of Lr
p is self-disabling, σr

can execute if and only if every local transition in σr gets enabled by some local

transition tr⊖1
j ∈ σr⊖1. In fact, the enablement of every trj in a unidirectional ring

depends only on the values of xr⊖1 and xr, i.e.; can only be enabled by the execution

of η−1
r (trj) = trj⊖1 and ǫ−1

r⊖1(t
r
j) = tr⊖1

j . Note that local transitions as illustrated in

Figure 6.4 are not all necessarily distinct, in fact m is the least common multiple of

mr and mr⊕1. In L, trj⊖1 ≺ tr⊖1
j since the execution of tr⊖1

j either (1) collides with

trj⊖1 if |E| > 1 or (2) transitively depends on trj due to a consecutive propagation

on the ring if |E| = 1; i.e., tr⊖1
j = ǫr❀r+K−1(t

r
j⊖1). In case (1), clearly tr⊖1 =

κr(t
r
j⊖1), while in case (2), using the Reconstruction Equation, we reach the same

result. Thus, κr(t
r
j⊖1) = tr⊖1

j for |E| > 0 (Figure 6.3). Combining identities to

obtain relations only on trj , we obtain (κr ◦ ǫr⊖1)(t
r
j) = ηr(t

r
j). By substitution for κr

from Definition 6.2.3, we obtain the Enablement Flow Equation.

Figure 6.3: The source state of tri and tr⊖1
j share the value of xr⊖1, that is

why κr(t
r
i ) = tr⊖1

j for any |E| > 0

.

Figure 6.4: ǫr preserves the cyclic structure of ηr and ηr⊕1.

Sufficiency of the Conditions for the Existence of Livelocks: We demonstrate that, if for

every Pr, there exists ηr and ǫr satisfying the Flow and the Ring Reconstruction Equations
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(κr is redundant according to Definition 6.2.3), then p(K) has a contiguous livelock with

|E| enablements. We construct a livelock with |E| enablements as follows:

Initial State. Let tr ∈ Lr
p be a local transition in the pseudolivelock ηr whose cyclic

structure is preserved by the feasible propagation ǫr, where 0 ≤ r ≤ K − 1. Since the

Reconstruction Equation holds for some |E| andK, we construct a global state sI of p(K)
with |E| enabled local transitions tr = (sr, sr ′) in Lr

p where 0 ≤ r ≤ |E| − 1, t|E|−1 being

the rightmost enabled local transition. For each enabled Pr (0 ≤ r ≤ |E| − 1) in sI , let
tr = κr⊕1(t

r⊕1). Each disabled process Pr, |E| ≤ r ≤ K − 1 is in the target local state sr ′

of its corresponding disabled local transition tr. For each disabled Pr (|E| ≤ r ≤ K − 1)
in sI , let t

r⊕1 = ǫr(t
r). It is easy to verify that the Reconstruction Equation holds for t|E|.

Execution. Substituting the result of Definition 6.2.3 into the Flow Equation, we obtain an

equivalent form of the Flow Equation where κr ◦ ǫr⊖1 = ηr. We use structural induction to

demonstrate that every disabled Pr eventually gets enabled provided that the Flow Equation

holds at every process.

• Base Case. We demonstrate that the execution of t|E|−1 enables P|E|. We apply the

latter form of the Flow Equation at P|E| in the initial global state sI to obtain that

(κ|E| ◦ ǫ|E|−1)(t
|E|) = η|E|(t

|E|). Substituting the value of κ|E|(t
|E|) from sI , we

obtain that ǫ|E|−1(t
|E|−1) = η|E|(t

|E|). However, since t|E| already executed in P|E|;

i.e, is disabled in target local state s|E|′, η|E|(t
|E|) is partially enabled by t|E| and the

execution of t
|E|−1
j fully enables η|E|(t

|E|) in P|E|.

• Induction Hypothesis. The execution of every disabled process Pq for |E| ≤ q < r
enables Pq⊕1.

• Induction Step. Pr is enabled in ηr(t
r), Pr⊕1 is disabled in sr⊕1′ and tr⊕1 partially

enables ηr⊕1(t
r⊕1) in Pr⊕1. In sI , t

r⊕1 = ǫr(t
r), therefore, (1) tr⊕1 partially enables

(ǫr ◦ ηr⊕1)(t
r). In Pr, (2) ηr(t

r) partially enables (ηr ◦ ǫr)(t
r). Since the Flow

Equation holds at Pr, we conclude from (1) and (2) that ηr(t
r) and tr⊕1 partially

enable the same local transition ηr⊕1(t
r⊕1). By the induction hypothesis, ηr(t

r) is
enabled in Pr, and ηr⊕1(t

r⊕1) is partially enabled by the executed tr⊕1. Thus, the

execution of ηr(t
r) in Pr fully enables ηr⊕1(t

r⊕1).

• Terminal Case. At PK−1, applying the Flow Equation yields ǫK−1(ηK−1(t
K−1)) =

ηK(t
0). However, the execution of tK−1 does not enable ηK(t

0) and disables t0 that
has not executed yet, thereby contradicting the Flow Equation. Thus, no collision

occurs at PK−1 with P0.

This proves that as long as the Flow Equation holds, collisions do not occur and propagation

always occurs for every Pr.
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By repeating the similar structural induction for every propagation of the rightmost

enablement, and since ηr is a cycle, we construct a contiguous livelock CL of p(K) having
|E| enablements. Thus follows from Lemma 5.3.11 that p(K) has a livelock L.

The local nature of pseudolivelocks and feasible propagations allows us to exactly

characterize livelocks in a unidirectional ring for arbitraryK. Intuitively, the Flow Equation

asserts that ǫr ⊆ Lr
p × Lr⊕1

p is a cyclic structure-preserving total binary relation. Given an

initial global state from which pseudolivelocks could start their execution by satisfying

the Reconstruction Equation, the Flow Equation guarantees a seamless propagation of

enablements for every process Pr. Therefore, a livelock exists. Conversely, the existence

of a livelock L under the assumption of self-disablement imposes an order on the execution

of enabled local transitions in adjacent processes to avoid collisions (Lemma 5.3.10).

As such, the structure of pseudolivelocks, whose connectedness is preserved by feasible

propagations, is the only representation for L.

Example 6.2.2 (3-valued Agreement).

Consider the pseudolivelock represented by Hr = ηr1 ∪ ηr2 as in Figure 6.1. Consider

Er = ǫr1 ∪ ǫr2 as depicted in Figure 6.2. For simplicity of presentation, we check for

potential livelocks formed by ηr1 and ǫr1 restricted to Lr
p = {t

r
(v⊕1)(v→v⊕1)|0 ≤ v ≤ 2}.

In Figure 6.1, ηr1(t
r(v)) = tr(v ⊕ 1). Figure 6.2 illustrates that ǫr1(t

r(v)) = tr⊕1(v).
Checking the Flow Equation, we obtain (ηr1◦ǫr1)(t

r(v)) = ǫr1(t
r(v⊕1)) = tr⊕1(v⊕1). The

right hand side of the Flow Equation evaluates to (ǫr1 ◦ η(r⊕1)1
)(tr(v)) = η(r⊕1)1

(tr⊕1(v))
=tr⊕1(v ⊕ 1). Therefore, the Enablement Flow Equation holds for ηr1 as a pseudolivelock
and ǫ1r as a feasible propagation. Since our derivation is independent of r, the Flow

Equation holds for every Pr. Note that ηr1 ◦ ǫr2 �= ǫr2 ◦ η(r⊕1)2
; i.e., ǫr2 does not preserve

the cylic structure of ηr1 in η(r⊕1)2
.

To apply the Reconstruction Equation, we evaluate κr(t
r(v)) = (ǫ−1

r⊖1 ◦
ηr⊖1)(t

r(v))=tr⊖1(v ⊕ 1). We substitute tr(v) into the Reconstruction Equation to

obtain tr−|E|(v ⊕ |E|) = tr−|E|(v). In other words, |E| = 0 in modulo 3; i.e., |E| is a

multiple of 3 regardless of the value ofK. Thus, 3-valued agreement has a livelock formed

by local transitions in Lr
p. This completes our proof. ⊳

Notice that, using the Reconstruction Equation at some local transition trj ∈ Lr
p, we can

form an initial global state of a contiguous livelock in p(K) with |E| enabled processes.

The universally quantified version of the Reconstruction Equation follows directly from

the iterative application of the Flow Equation to the initial global state. In this way,

the Reconstruction Equation needs to hold only for some process Pr and at some local

transition in Lr
p.
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Example 6.2.3 (6-valued Agreement).

To appreciate the independence of the Flow and Reconstruction Equations, consider a

6-valued agreement protocol where K = 4 and consisting of transitions in δr = Lr
p =

{tr(v⊕1)(v→v⊕1)|0 ≤ v ≤ 5}. Despite the fact that the Flow Equation holds at every Pr,

using a similar reasoning to the one in Example 6.2.2, the Ring Reconstruction Equation

holds only for |E| = 0 when K = 4. In fact, substitution in the reconstruction equation

yields that |E| is a multiple of 6. This demonstrates that 6-valued agreement is livelock

free for 2 ≤ K ≤ 5. ⊳

Corollary 6.2.5 establishes another form of the Ring Reconstruction Equation.

Corollary 6.2.5 (Calculation of |E|). If p(K) has a livelock L with |E| enablements, then

η
|E|
r = ǫr❀r+K−1, for every process Pr.

Proof. We present a sketch of the proof. We advise the reader to workout the details of

the algebra as an exercise. Theorem 6.2.4 implies the Flow and Reconstruction Equations.

Substitute for κr from Definition 6.2.3 in the Ring Reconstruction Equation to obtain an

expression in terms of ηr and ǫr. Right and left-compose the Flow Equation by ǫr
−1. The

result allows to drag left all of ηr in the Reconstruction Equation and the lemma follows.

Corollary 6.2.5 is not sufficient for proving the existence of livelocks. To illustrate that, we

consider a Sum-Not-Two Example.

Example 6.2.4 (Sum-Not-Two).

The Sum-Not-Two protocol has variables’ domains Dr = {0, 1, 2}. The set of legitimate

states is such that, for every Pr, xr + xr⊖1 �= 2.

The set of local transitions is δr = {t
r
(v)((2⊖v)→(3⊖v)) |v ∈ Dr}. Thus, δr has only three local

transitions in a pseudolivelock; i.e.,Lp
r = δr. Since the transitions of δr are fully determined

by v, we use the shorthand tr(v) for tr(v)((2⊖v)→(3⊖v)) . ηr(t
r(v)) = tr(v⊖1)((3⊖v)→(1⊖v)) =

tr(v ⊖ 1). ǫr(t
r(v)) = tr⊕1(3 ⊖ v). The left hand side of the Flow Equation evaluates to

tr⊕1(1 ⊖ v) while the right hand side evaluates to tr⊕1(2 ⊖ v). Thus, the Flow Equation

does not hold and p(K) is livelock-free.

On the other hand, applying Corollary 6.2.5 generates a pair of values forK and |E| where
K is even and |E| is a multiple of 3. Consequently, Corollary 6.2.5 provides a necessary

but insufficient condition for the existence of livelocks. ⊳
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Example 6.2.5 (l-valued Agreement).

Consider a general agreement protocol where Dr| = {0, 1, · · · , l − 1} for all r. The set of
local legitimate states of Pr is captured by xr⊖1 = xr. Consider the following candidate

protocol.

tr(v, w) : (xr⊖1 = w) ∧ (xr = v)→ xr := w

where v, w ∈ Dr are parameters. We demonstrate how to determine what type of

constraints are put on tr(v,w).

By definition of ηr, we get ηr(t
r(v, w)) = tr(w, y), where y ∈ Dr. Applying ǫr to tr(w, y)

generates tr⊕1(z, y). Computing the right hand side of the Flow Equation in a similar

way, we obtain ǫr(t
r(v, w)) = tr⊕1(y1, w) and ηr⊕1(t

r⊕1(y1, w)) = tr⊕1(w, z1). The Flow
Equation holds if and only if w = z and y = z1. Thus, ǫr(t

r(v, w)) = tr⊕1(v, w). In

other words, the Flow Equation holds for an l− 1 Agreement protocol if and only if a local

transition in an arbitrary pseudolivelock of Pr enable exactly the same local transition in

Pr⊕1.

Let m denote the length of a sequence of local transitions inside repeat inside a

pseudolivelock; i.e., the multiplicity/periodicity of ηr. The calculation of |E| according

to Corollary 6.2.5 yields η
|E|
r (tr(v, w)) = tr(v, w), this is possible if and only if |E| is a

multiple ofm.

As such, we exactly characterize the set of possible livelocks in an l−1 agreement protocol

of arbitrary size. We conclude that breaking symmetry, guarantees livelock-freedom for a

general agreement protocol. ⊳

6.3 Additional Examples

In this section, we examine three classical protocols on a unidirectional ring to exactly

determine their livelocks.

Example 6.3.1 (l-coloring).

A general parameterized set of local transitions for an l-coloring protocol has the form:

tr(v, w) : (v)(v → w), where v �= w. We start by applying the Flow Equation to tr(v, w).

102



ηr(t
r(v, w)) = tr(w, y) and ǫr(t

r(w, y)) = tr⊕1(y, z). ǫr(t
r(v, w)) = tr⊕1(w, y1) and

ηr⊕1(t
r⊕1(w, y1)) = tr⊕1(y1, z1). The Flow Equation holds if and only if y1 = y and

z1 = z. Substituting into the definitions of ηr and ǫr, we deduce that ǫr = ηr◦ shift1 =

shift1 ◦ ηr⊕1, where shiftk(t
r(v)) = tr⊕k(v). Clearly, shiftK = shiftK1 = e. We identify this

commutativity property as a shift invariance property.

By substitution into the result of Corollary 6.2.5 and reuse of the shift invariance property,

we obtain that η
|E|
r = ηKr . Thus follows that K − |E| is a multiple of m, where m is the

length of the cycle of pseudolivelock ηr. Note that shift invariance holds if and only if Lr
p

are all symmetric; i.e., have the same set of transitions upto shifts.

Since every local state of Pr where xr = xr⊖1 should have an outgoing local transition in a

self-stabilizing coloring protocol [57], our result implies an impossibility of self-stabilizing

symmetric l-coloring over unidirectional rings.

Example 6.3.2 (Sum-Not-(l − 1)).

In a Sum-Not-(l−1) protocol, a legitimate local state is such that xr⊖1+xr �= l−1, where
Dr = {0, 1, · · · , l − 1}. A general parameterized action detects whether the sum of xr⊖1

and xr is l − 1 and updates the value of xr accordingly. We study the conditions under

which livelocks form in Sum-Not-(l − 1).

A parameterized local transition of Pr has the form tr(v) : (l − 1 ⊖ v)(v → f r(v)),
where f r : Dr → Dr is an arbitrary bijection. Applying the Flow Equation on tr(v),
(ηr◦ǫr)(t

r(v)) = ǫr(t
r(f r(v))) = tr⊕1(l−1⊖f r(v)). (ǫr◦ηr⊕1)(t

r(v)) = ηr⊕1(t
r⊕1(l−1⊖v))

= tr⊕1(f r⊕1(l − 1⊖ v)). Hence, the Flow Equation holds if and only if f r⊕1(l − 1⊖ v)⊕
f r(v) = l − 1. Choosing f r(v) = v ⊕ ir for every r; the Flow Equation reduces to

l − 1⊖ (v ⊕ ir) = (l − 1 ⊖ v)⊕ ir⊕1. This holds only when ir ⊕ ir⊕1 = 0 in modulo l. In
fact, choosing ir = ir⊕1 �= l/2 guarantees livelock freedom.

Example 6.3.3 (Dijkstra’s Token Ring).

Dijkstra’s token ring [7] is a mutual exclusion protocol over a unidirectional ring where

Dr = {0, · · · , l − 1}. A legitimate global state of the ring is such that |E| = 1. Dijkstra
provides a protocol where δ0 has the parameterized local transition t0(v) : (v)(v → v ⊕ 1)
and δi (1 ≤ i ≤ K − 1) consists of the local transitions ti(v, w) : (w)(v → w), (v �= w).
We illustrate a proof of livelock-freedom for |E| > 1 when l ≥ K − 1 by using the Flow

Equation in Theorem 6.2.4 and Corollary 6.2.5.

At P0, we apply the Flow Equation to obtain, η0(t
0(v)) = t0(v ⊕ 1) and ǫ0(t

0(v ⊕ 1)) =
t1(w, v ⊕ 2). ǫ0(t

0(v)) = t1(w1, v ⊕ 1) and η1(t
1(w1, v ⊕ 1)) = tr(v ⊕ 1, z1). The Flow
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Equation holds if and only if w = v ⊕ 1 and z1 = v ⊕ 2. Thus, ǫ0(t
0(v)) = t1(v, v ⊕ 1),

w1 = v, η1(t
1(v, v ⊕ 1)) = t1(v ⊕ 1, v ⊕ 2) and L1

p = {t
1(v, v ⊕ 1)|v ∈ D1}.

At Pi, 1 ≤ i ≤ K − 2, (ηi ◦ ǫi)(t
1(v, v ⊕ 1)) = ǫi(t

i(v ⊕ 1, v ⊕ 2)) = ti⊕1(w, v ⊕ 2).
(ǫi ◦ ηi⊕1)(t

1(v, v⊕ 1)) = ηi⊕1(t
i⊕1(w1, v⊕ 1)) = ti⊕1(v⊕ 1, z1). The Flow Equation holds

if and only if w = v⊕ 1 and z1 = v⊕ 2. It follows that ǫi(t
i(v, v⊕ 1)) = ti⊕1(v, v⊕ 1) and

w1 = v. Thus, ηi⊕1(t
i⊕1(v, v ⊕ 1)) = ti⊕1(v, v ⊕ 1) and Li⊕1

p = {ti⊕1(v, v ⊕ 1)|v ∈ Di⊕1}.

So far, the feasible propagation at PK−1 is the only undetermined relation. We apply the

Flow Equation at PK−1. (ηK−1 ◦ ǫK−1)(t
K−1(v, v ⊕ 1)) = ǫK−1(t

K−1(v ⊕ 1, v ⊕ 2)) =
t0(v ⊕ 2). (ǫK−1 ◦ η0)(t

K−1(v, v ⊕ 1)) = η0(t
0(v ⊕ 1)) = t0(v ⊕ 2). Hence, the Flow

Equation holds at every Pr.

To summarize our results, we have ηr(t
r(v, v ⊕ 1)) = tr(v ⊕ 1, v ⊕ 2) for r �= 0, η0(t

0(v))
= t0(v ⊕ 1), ǫr(t

r(v, v ⊕ 1)) = tr⊕1(v, v ⊕ 1) for 1 ≤ r ≤ K − 2, ǫ0(t
0(v)) = t1(v, v ⊕ 1)

and ǫK−1(t
K−1(v, v ⊕ 1)) = t0(v ⊕ 1).

Applying Corollary 6.2.5 at P0, we obtain that t0(v ⊕ |E|) = t0(v ⊕ 1); this holds if and
only if |E| − 1 is a multiple of l: t0(v) increases v by 1 in modulo l. That is to say,

|E| = (k × l) + 1, where k ∈ N. It follows that |E| ∈ {1, l + 1, 2l + 1, · · · , kl + 1, · · · };
these are the values of |E| for which Dijkstra’s token ring has livelocks. To guarantee

livelock freedom for |E| �= 1, l ≥ K should always hold. For the case where l = K − 1,
Dijkstra’s token ring has a livelock with K enablements, however, this livelock exactly

occurs when all processes synchronously execute; i.e., under fully synchronous execution

semantics. In other words, Dijkstra’s token ring has no livelocks with |E| > 1 for l ≥ K−1
assuming that all K processes can never execute together. For l ≥ K, the protocol has no

livelocks with |E| > 1 assuming no constraints, whatsoever, on the execution semantics.

Our method detects that the only class of livelocks in Dijkstra’s token ring are propagations

of only one enablement: this is a legitimate behavior of Dijkstra’s token ring. Since our

equations capture the set of all livelocks in p(K), this proves that Dijkstra’s token ring has

no livelocks outside I(K).

6.4 Summary and Extensions

Livelocks are among the most intricate concurrency flaws in distributed algorithms.

Verification of livelocks in arbitrary-sized rings is generally undecidable [45]. We devised

an exact characterization of livelocks in a subclass of protocols on unidirectional rings

whose processes are self-disabling; i.e., the execution of an action of some process

disables all the actions of that process. Our characterization reduced verification and
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design of livelock-freedom to the solution of equations on compositions of binary relations

representing processes local looping: pseudolivelocks, and dependency among local loops:

feasible propagations. Due to the local nature of our binary relations, our characterization is

independent of the number of processes in the network, thereby circumventing global state

space exploration. We illustrated the feasibility of our mathematical model through four

examples: agreement, l-coloring, sum-not-(l−1) and the classical Dijktra’s token-ring [7].

One major application of our framework is in the automatic design and verification of

convergence [9]. By combining methods for local reasoning about deadlocks, described in

Chapter 5, with our algebraic characterization of livelocks. We shall investigate sound and

complete algorithms – that hinder altogether state explosion – for the automatic synthesis

of convergence in unidirectional rings. We plan to generalize our current results to a wider

class of protocols in two directions: (1) we shall consider arbitrary network topologies with

self-disabling processes, (2) we shall investigate unidirectional rings whose processes are

not necessarily self-disabling. In the first case, our current characterization is sufficient

for proving the existence of livelocks in a sub-ring of the arbitrary network. In the second

case, the undecidability of the problem enforces us to study non-identical necessary and

sufficient conditions for livelock-freedom.
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Chapter 7

Application: Fault Tolerance of Wireless

Sensor Nodes1

Most existing techniques for the design and implementation of fault tolerance use resource

redundancy. As such, due to scarcity of resources, it is difficult to directly apply them

for adding fault tolerance to sensor nodes in Wireless Sensor Networks (WSNs). Thus,

it is desirable to develop techniques that implement fault tolerance under the constraints

of memory and processing power of sensor nodes. We present a novel method for

designing recovery from transient faults that cause non-deterministic bit-flips in the task

queue of the scheduler of TinyOS, which is the operating system of choice for sensor

nodes. Specifically, our approach exploits computational redundancy for the design of

recovery instead of using resource redundancy. The presented fault-tolerant task queue

recovers from bit-flips with significantly lower space/time overhead compared with the

Error Correction Codes.

7.1 Introduction

Wireless Sensor Networks (WSNs) are increasingly used in mission-critical applications

(e.g., body sensor networks, habitat monitoring, flood forecasting, etc.), where they have

to be deployed in harsh environments (e.g., volcano, forest, battle field, etc.). On one hand,

WSNs must exhibit a high degree of service dependability due to application requirements,

and on the other hand, unexpected environmental events, i.e., faults, may negatively

1This chapter is adapted with permission from our publication [58] in the proceedings of the Conference on Software

Engineering and Knowledge Engineering (SEKE 2011), Miami, Florida, July 2011. Please refer to the corresponding

permission letter in the supplementary document to this dissertation.
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affect their quality of service. For example, transient faults may cause non-deterministic

bit-flips in the main memory of sensor nodes (a.k.a. motes), thereby perturbing the state

of the running program to an arbitrary state in its state space. Since the quality of the

service provided by the entire sensor network heavily relies on the dependability of the

controlling software of motes, fault tolerance techniques should be applied to improve the

dependability of motes. Nonetheless, due to their limited computational (e.g., memory

and processing power) and energy resources, it is impractical to apply the traditional

fault tolerance methods (e.g., Error Correction Code (ECC) [59]) to motes. This chapter

proposes a novel method that exploits computational redundancy for the addition of

recovery to transient bit-flips in the task queue of TinyOS [60].2

Most existing techniques [61]–[65] present solutions for the design of fault-tolerant

protocols for WSNs rather than focusing on the fault tolerance of individual sensor nodes.

For instance, techniques for reliable transmission are mostly based on redundant and/or

multi-path retransmission [63]. Several methods exist for (i) designing self-stabilizing

WSN communication protocols [64] that ensure a correct synchronization among sensor

nodes starting from an arbitrary non-synchronized state, and (ii) providing recovery for

data dissemination in WSNs [65]. ECC methods (e.g., Hamming code [59]) often require

extensive memory redundancy for storing extra parity bits in code words. Moreover,

decoding/coding algorithms in these methods are computationally expensive.

We propose a novel approach that enables space/time-efficient recovery to transient

Bit-Flips (BFs) in motes. The proposed approach is based on the detection of the

violations of invariance conditions that must always be true and dynamic corrections of

such violations. Specifically, we focus on the task queue of the TinyOS as it is one of the

most critical components of the kernel of TinyOS and its structure is heavily sensitive to

BFs. We first define conditions under which the task queue has a valid structure, called

the structural invariant. Then, before and after the addition/removal of a task to/from

the task queue, we check whether the structural invariant holds. In case of the violation

of the invariant, we identify different failure scenarios created due to the occurrence of

BFs and systematically correct them, thereby recovering to the structural invariant. The

proposed approach enables the detection and correction of multiple BFs in a single-byte

variable in a space/time-efficient fashion. Compared with the Hamming Code (HC) [59],

our approach needs at least 20% less memory and performs at least twice as fast as HC. The

time complexity of our approach is linear in the size of the task queue. We also note that

HC cannot correct multiple BFs whereas our approach enables the correction of multiple

BFs as long as they occur in the same variable. Furthermore, for some special cases, the

proposed approach corrects BFs in multiple variables as well.

Organization. Section 7.2 illustrates the structure of the TinyOS task queue. Then, Section

2TinyOS is the operating system of choice for sensor nodes in WSNs.
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7.3 presents our approach for the detection and correction of transient bit flips in the

TinyOS task queue. We also demonstrate the superiority of the space/time efficiency of

the proposed approach compared with the ECC methods. Section 7.4 makes concluding

remarks and outlines future research directions.

7.2 Structural Invariance of TinyOS Task Queue

In this section, we define what constitutes a valid structure of TinyOS’s task queue. In

Tiny OS version 2.x, the task queue is a linked list of task identifiers implemented as

a statically allocated array of 256 entries (see Figure 7.1). Figure 7.2 illustrates the

implementation of the task queue in nesC [66], which is a component-based variant of the C

programming language used for application development on TinyOS. Each identifier (ID)

is an integer between 0 and 255 inclusive. The set of variables of interest are m_head,

m_tail and m_next[256]. m_head holds the index of the oldest ID in the queue,

and m_tail holds the ID of the most recent task inserted in the queue. Every value

in m_next is an ID for the next task to be executed and an index (i.e., pointer) to the

successor entry in m_next. A distinguished task has the identifier NO_TASK = 255.
NO_TASK is the value of m_next[m_tail] and it is the successor of all non requesting

identifiers. For example, as depicted in Figure 7.1, a queue state s1 consists of m_head=12,
m_next[12]=3, m_next[3]=255, m_tail=3, and ∀j : (j �= 12) : m_next[j]=255.

Figure 7.1: Example states of the task queue.

The state s1 represents a task queue having only two pending tasks of identifiers 12 and

3 respectively. The effect of popTask() on s1 is a transition to state s2 (see Figures

7.2 and 7.1). In state s2, m_head=3, m_next[3]=255, m_tail=3, and ∀j : (0 ≤
j ≤ 255) : m_next[j]=255. The effect of pushTask(5) on s1 is a transition to

state s3 (see Figures 7.2 and 7.1), where m_head=12, m_next[12]=3, m_next[3]=5,
m_next[5]=255, m_tail=5, and ∀j : (j �= 12) ∧ (j �= 3) ∧ (0 ≤ j ≤ 255):
m_next[j]=255.
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inline uint8_t popTask()

{
if( m_head != NO_TASK ) {
uint8_t id = m_head;

m_head = m_next[m_head];

if( m_head == NO_TASK ) m_tail = NO_TASK;

m_next[id] = NO_TASK;

return id; }
else return NO_TASK;

}

bool isWaiting( uint8_t id )

{ return (m_next[id] != NO_TASK) || (m_tail == id); }

bool pushTask( uint8_t id ) {
if( !isWaiting(id) ) {
if( m_head == NO_TASK ) { m_head = id; m_tail = id; }
else { m_next[m_tail] = id; m_tail = id; }
return TRUE;

} else return FALSE; }

Figure 7.2: Excerpt of the Tiny OS Scheduler.

Structural Invariant. A valid state of the task queue is a state where the queue has a linear

structure with its head (m_head) pointing to its beginning and its tail (m_tail) pointing

to the most recently added identifier to the task queue. Each element of m_next with a

non-255 ID is reachable from the head. Each entry of m_next that is not in the queue

holds the value of NO_TASK, and m_next[m_tail] is equal to NO_TASK. Moreover,

the task IDs belong to the interval 0 ≤ ID ≤ 255. Figure 7.3-(a) illustrates a sample valid

state of the task queue. Furthermore, any operation performed on the queue should remove

an element from the head (i.e., popTask()), add an element to the tail pushTask() or

leave the structure of the queue and the task IDs unchanged.

Figure 7.3: Valid and invalid task queue structures.

Transient faults. Transient faults may toggle multiple bits in a single variable; i.e.,

m_head, m_tail or a memory cell of m_next[]. The case of multi-variable corruption

is the subject of our current investigation. Bit-flips may perturb a task ID and the structure

of the task queue to an invalid state. For example, Figure 7.3 demonstrates how resetting the

most significant bit of m_next[126] could change its content from 255 to 127, thereby

pointing to m_next[127] instead of pointing to NO_TASK.
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7.3 Addition of Recovery

Section 7.3.1 analyzes the memory and time requirements of correcting BFs with the

Hamming code. Section 7.3.2 illustrates how our approach enables recovery from BFs

by detecting invalid queue structures and correcting them.

7.3.1 Correcting Bit-Flips with ECC

One approach for recovery from transient faults that cause bit-flips is to use error detection

and correction codes such as the Hamming Code (HC) [59]. However, due to high

memory/CPU cost of the encoding/decoding algorithms these approaches seem impractical

in the context of WSNs. For example, there are two ways to deal with bit-flips in the

task queue using HC; consider either individual memory cells of the m_next[] array as

separate data words, or the entire 256 bytes of the task queue as one data word.

In the first case, each cell of the m_next[] array should be encoded before storing a value

and it should be decoded before reading its contents. To encode 8 bits of data with HC,

we need 4 extra parity bits, which results in a code word with 12 bits in the following

format: p1p2d1p3d2d3d4p4d5d6d7d8, where dj denotes data bits for 1 ≤ j ≤ 8, and pi
represents the parity bits for 1 ≤ i ≤ 4. The encoding algorithm of HC determines

the 12-bit code word by multiplying a 12 × 8 matrix by a vector made of the data bits.

Such a matrix multiplication takes 96 multiplications and 84 additions; i.e., totally 180

basic operations in addition to one read and write operation on each memory cell, where

a basic operation includes arithmetic and logical operations as well as comparisons and

load/store. The decoding algorithm also multiplies a 4 × 12 matrix by a vector containing

the 12-bit code word, which results in a 4-bit syndrome vector representing the position of

the corrupted bit. (Thus, each decoding takes 48 multiplications and 44 additions, totally

92 basic operations.) Notice that for each byte allocated in m_next[] 4 extra bits should

be considered for parity. That is, 256/2 = 128 extra bytes should be allotted along with

the 256 bytes allocated for m_next[]. Besides, every time a task ID is stored/retrieved

to/from a memory cell in m_next[], the encoding/decoding algorithm must be executed.

That is, for one round of detection and correction, 256 × (180 + 92) = 69632 basic

operations should be performed.

In the second case, the queue comprises a bit pattern with 256× 8 = 2024 bits, for which

1+ log 2024 = 12 parity bits are needed in HC. Thus, the size of the code word is equal to
2024 + 12 = 2036 bits. The encoding takes 2024 × 2036 = 4120864 multiplications and

2023 × 2036 = 4118828 additions; i.e., totally 8239692 basic operations. For decoding,
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we will need 12 × 2036 multiplications and 12 × 2035 additions resulting in 48852 basic

operations. This analysis clearly illustrates the impracticality of using HC on sensor nodes

with a small memory and a limited processing power. While other ECC methods (e.g.,

Forward Error Correction (FEC) [67] and Reed-Solomon (RS) [68]) can correct cases

where multiple variables are corrupted, they are even more expensive than HC in terms

of either space or time. For example, the RS method needs t bits for the correction of ⌊t/2⌋
bits and O(t2) is its time complexity.

7.3.2 Adding Recovery to Task Queue

This section illustrates how we enable recovery to a valid queue structure from transient

BFs. Figure 7.4 depicts a state machine that demonstrates the impact of transient faults and

how recovery should be achieved. Since the task queue is a centralized program running on

a single CPU, we can benefit from a high atomicity model in which a set of instructions can

be performed atomically. In fact, the nesC language provides atomic blocks that capture a

sequence of statements that are supposed to be executed without interruption. The essence

of the addition of recovery in high atomicity [10] is based on detecting the violation of

the invariant due to the occurrence of faults, and providing recovery from every invalid

state to the invariant. Thus, we present the function DetectCorrect() (see Figure 7.5)

that we add to the Tiny OS scheduler to enable the detection and correction of BFs before

and after any push/pop operations on the task queue. The function DetectCorrect()

should be invoked in an atomic block (i.e., atomic{DetectCorrect()}) to ensure

that detection and correction are not interrupted during execution. Depending on the

harshness of the environment where the motes are deployed, the period of invoking

DetectCorrect() could be changed by the developers; i.e., DetectCorrect() can

be invoked in an adaptive fashion by the scheduler of TinyOS in order to enable a tradeoff

between the degree of dependability and the energy cost of providing recovery. Next, we

explain different parts of DetectCorrect() to illustrate how detection and correction

are achieved.

Figure 7.4: Adding recovery to the task queue.

Data structures. To detect and correct corruptions of the task queue,

DetectCorrect() gathers some information about the structure of the queue
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and stores them in these data structures (see Figure 7.5):

DetectCorrect(int q_size) {
uint8_t previous;

uint8_t current=m_head;

uint8_t Index=0;

uint8_t dangleElem=0;

uint8_t non255 =0; // Number of non-255 elements

uint8_t qLength =0; // Number of elements in the queue

uint8_t cyclePoint =0; // The corrupted element that

// points back and creates a cycle

component visited = new BitVectorC(256);

visited.clearAll();

component pointedTo = new BitVectorC(256);

pointedTo.clearAll();

component pointsToNoTask = new BitVectorC(256);

pointsToNoTask.clearAll();

bool cyclic = FALSE;

bool pointedByHead = FALSE;

Figure 7.5: Data structures.

(1) previous, current, dangleElem and cyclePoint are pointers that are

used during the traversal of the queue; (2) non255 keeps the number of memory cells

in m_next that contain non-255 values; (3) qLength stores the number of non-255

elements reachable from the head of the queue (m_head); (4) the visited bit vector

allocates one bit corresponding to each element of m_next illustrating whether or not it

has been visited previously in a queue traversal for cycle detection; (5) the pointedTo bit

vector keeps a bit for each element of m_next demonstrating whether or not that element

is being pointed to by some other element; (6) the pointsToNoTask bit vector allocates

a bit corresponding to each memory cell of m_next that contains NO_TASK; (7) the

cyclic flag is set if a cycle is detected in the structure of the task queue, and (8) the

pointedByHead flag is true if and only if there is an element in the queue that is pointed

by both m_head and another element in the queue. We use the pointedByHead flag in

detecting/correcting the corruption of m_head. Notice that, we allocate 96 bytes for the

bit vectors and 7 bytes for other variables (i.e., 103 bytes totally) capturing local variables;

i.e., when DetectCorrect() returns this memory is released.

Initialization. In this step, we first count the total number of elements in m_next that

contain non-255 values. Then, we initialize the pointedTo and pointsToNoTask bit

vectors. This step incurs 256× 15 = 3840 basic operations on our solution.

// Count the number of non-255 elements in array m_next

for(Index=0; Index<NO_TASK; ++Index)

if (m_next[Index] != NO_TASK) non255++;

// Determine the elements that are being pointed to

for(Index=0; Index<NO_TASK; ++Index)

pointedTo.set(m_next[Index]);

// Determine the elements that point to NO_TASK

for(Index=0; Index<NO_TASK; ++Index)

if(m_next[Index] == NO_TASK) pointsToNoTask.set(Index);

Detection and correction of m_head. Since the traversal of the queue for subsequent
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processing is performed using the m_head pointer, we first ensure that m_head is

corrected. If m_head points to NO_TASK (see Figure 7.6), then we set m_head to the

index of the element to which no other element points, and exit (because, by assumption,

our focus is on single-variable corruption). Otherwise, we detect whether m_head points

to another non-255 element in the queue. (Please see Figure 7.7 and the first for-loop in

the else part of Figure 7.6.) If so, then we set m_head to the index of the non-255 element

to which no other element points. (See the second for-loop in the else part of Figure 7.6.)

Figure 7.7 illustrates a case where the value of m_head has been corrupted from 12 to 4.

if (m_head == NO_TASK) {
for(Index=0; Index<NO_TASK; ++Index)

if(!pointedTo.get(Index) && m_next[Index] != NO_TASK) {
m_head = Index; return; } }

else {
for(Index=0; Index<NO_TASK; ++Index)

if(pointedTo.get(Index) && Index == m_head) {
pointedByHead = TRUE; break; }

if (pointedByHead)

for(Index=0; Index<NO_TASK; ++Index)

if(!pointedTo.get(Index) && m_next[Index] != NO_TASK) {
m_head = Index; return; }

}

Figure 7.6: Detect and correct m_head.

The time complexity (and energy consumption) of this step is proportional to the maximum

number of basic operations. If m_head = NO_TASK, the for-loop in the if part of

Figure 7.6 will be executed, which has one comparison and one increment for the loop

counter in each iteration. Moreover, the if-statement inside the for-loop performs

two load operations, one comparison and two logical operations per iteration. Thus, in

the worst case, we have 7 basic operations in each iteration of this for-loop, which

results in 256× 7 = 1792 basic operations if m_head = NO_TASK. A similar reasoning

illustrates that, in the worst case, we perform 256×15 = 3840 basic operations if m_head
�= NO_TASK. Therefore, since either the if part or the else part is executed in Figure

7.6, the correction of m_head takes at most 3840 basic operations.

Figure 7.7: Corruption of m_head.

Detection and correction of cyclic structures. The do-while loop in the below code

uses the visited bit pattern to determine whether there is a cycle in the queue. This loop

also stores the number of elements in the queue that are reachable from m_head in the

qLength variable.

A cycle could be formed in two ways: either the tail points back to some element including
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// Detect cycles

do {
if(!visited.get(current)) visited.set(current);

else { cyclic = TRUE;

cyclePoint = previous; break; }
previous=current;

current=m_next[previous];

qLength++;

} while(current != NO_TASK && m_tail!=previous);

// Correct cycles

if (cyclic && (cyclePoint == m_tail)) {
m_next[cyclePoint] = NO_TASK; return; }

if (cyclic && cyclePoint != m_tail)

for(Index=0; Index<NO_TASK; ++Index)

if(!pointedTo.get(Index) &&

(m_next[Index] != NO_TASK) && (Index != m_head)) {
m_next[cyclePoint] = Index; return; }

itself (see Figure 7.8-(a)), or another element points back to some element including

itself (see Figure 7.8-(b)). If a cycle is detected, then the cyclic flag is set and the

index of the element pointing back is stored in cyclePoint. In case cyclePoint

is equal to m_tail, then that means the tail of the queue is pointing back to some

element instead of pointing to NO_TASK. Otherwise, to fix the cycle, we set the contents of

m_next[cyclePoint] to the index of the element that has become dangled due to the

cycle creation; i.e., the element to which no element points, does not point to NO_TASK,

and is not equal to m_head. This correction will take at most 256 × 26 = 6656 basic

operations.

Figure 7.8: Cyclic corruption of the task queue.

Detection and correction of queue size and non-255 elements. To detect discrepancies in

the size of the task queue, we add a new variable q_size to the TinyOS scheduler to store

the size of the queue outside the DetectCorrect function. Nonetheless, q_size could

be perturbed by transient faults. The first if statement in Figure 7.9 corrects q_size.

Notice that DetectCorrect can simultaneously correct q_size and m_head, which

is a special case of correcting MBFs in multiple variables. Moreover, faults may change

the value of an array element from 255 to some other value. This means that that element
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points to some queue element. Such a link is not part of the task queue and should be

eliminated. To this end, we assign 255 to an element to which no other element points,

points to a non-255 element and is not equal to m_head. The for-loop in the second

if statement could take at most 256× 11 = 2816 basic operations.

if (qLength == non255) {
if (q_size != qLength) { q_size = qLength; return; }

else return; // Task queue is NOT corrupted.

}

if (non255 > q_size) // some 255 element has become non255

for(Index=0; Index<NO_TASK; ++Index)

if (!pointedTo.get(Index) &&

(m_next[Index] != NO_TASK) && (Index != m_head)) {
m_next[Index] = NO_TASK; return; }

Figure 7.9: Detect and correct queue size.

Detection and correction of m_tail. To detect and correct the corruptions of m_tail,

we set m_tail to the index of the first element whose contents point to NO_TASK (see

below). For example, in Figure 7.10, m_tail is set to 17. The for-loop in the below

code performs at most 2560 basic operations.

for(Index=0; Index<NO_TASK; ++Index) {
if ((!pointsToNoTask.get(Index)) &&

(m_next[m_next[Index]] == NO_TASK) &&

(m_tail != m_next[Index])) {
m_tail = m_next[Index]; return; } }

Figure 7.10: Corruption of m_tail.

Detection and correction of corrupted acyclic structures. If faults corrupt a non-255

element so it points to one of its successors, then a structure similar to Figure 7.11 could

be created. In this example, the contents of m_next[4] is changed from 18 to 25 and

m_next[18] becomes unreachable from head; i.e., a dangling element. One way to

detect this case is to simply compare qLength with the number of non-255 elements; if

qLength �= non255, then either this case has occurred or the corruption of m_head.

Nonetheless, if the code of the DetectCorrect() routine reaches this point, then it

means that m_head has the correct value.

The identification of the corrupted element in Figure 7.11 is not straightforward.

Our strategy is to determine the index of the element in the queue that is pointed by two

internal elements of the queue (see m_next[25] in Figure 7.11). Such an element must

be in the fragment of the queue that starts with the dangling element. Thus, we first find

the index of the dangling element by the first for-loop in Figure 7.12. If there is such a

dangling element, then we reset the pointedTo bit vector. Then, in the first do-while
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Figure 7.11: Corrupted acyclic structure.

in Figure 7.12, we start setting the bits of pointedTo corresponding to the fragment

of the queue that starts with the dangling element. In the second do-while, we search

the first fragment of the queue (starting from m_head) for the element that points to an

element whose corresponding bit is already set in the pointedTo vector. Once we find

such an element, we set its content to the index of the dangling element, and the queue is

corrected. This step includes 27× 256 = 6912 basic operations in the worst case.

dangleElem = NO_TASK;

for(Index=0; Index<NO_TASK; ++Index)

if(!pointedTo.get(Index) &&

m_next[Index] != NO_TASK &&

Index != m_head) {
dangleElem = Index; break; }

if (dangleElem == NO_TASK) return;

pointedTo.clearAll();

current = dangleElem;

do {
pointedTo.set(m_next[current]);

previous=current;

current=m_next[previous];

} while(current != NO_TASK && m_tail!=previous);

current = m_head;

do {
if (pointedTo.get(m_next[current]) {

m_next[current] = dangleElem; return; }
previous=current;

current=m_next[previous];

} while(current != NO_TASK && m_tail!=previous);

}

Figure 7.12: Detect and correct acyclic structures.

Time complexity of DetectCorrect(). Since the code of DetectCorrect() does

not include nested for-loops, its time complexity is linear in the size of the task queue.

Figure 7.13 presents a comparison of the time/space cost of the proposed method of

this chapter with two scenarios of using the Hamming code for correction of BFs: HC1

represents the case where each element of m_next is encoded with HC, and HC2 denotes

the case where the entire m_next is encoded as a single word. Notice that, our approach

outperforms HC1 in terms of both time and space efficiency, respectively by a factor of

20% and 60%. More importantly, the required memory (i.e., 103 bytes) is temporary;

i.e., when DetectCorrect() returns this memory is released. The HC2 method seems

impractical due to expensive computing requirements.
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Approach Memory Cost # of Operations

Hamming Code for each element of m next (HC1) 128 Bytes ≃ 70000

Hamming Code for the entire m next (HC2) 12 bits ≃ 4.17 million

Proposed Method 103 Bytes 28000

Figure 7.13: Space/Time cost of correction of BFs.

Scope of correction. The scope of correction in these three methods is different. Figure

7.14 demonstrates that our approach can correct multiple bit-flips in a single variable, which

cannot be achieved by HC1 and HC2. However, HC1 can correct single bit-flips in multiple

variables, which we do not currently have a solution for it.

Approach Corrects SBFs Corrects MBFs Corrects SBFs Corrects MBFs

in a Variable in Multi Vars in Multi Vars

HC1 Yes No Yes No

HC2 Yes No No No

Proposed Method Yes Yes No No

Figure 7.14: Scope of correction for Single Bit-Flips (SBFs) and Multiple Bit-Flips

(MBFs).

Fault tolerance of DetectCorrect(). In case transient faults perturb the local

variables and/or the control flow of DetectCorrect(), the current round of execution

of DetectCorrect() may not recover the structure of the task queue. However, since

DetectCorrect() is executed repeatedly and transient faults eventually stop occurring,

DetectCorrect() will eventually provide recovery.

7.4 Summary and Extensions

We presented a novel method for the detection and correction of transient Bit-Flip

(BF) in the task queue of the TinyOS, which is the operating system of choice for

sensor nodes. Since motes have limited computational and energy resources, instead of

using resource redundancy, the proposed approach exploits computational redundancy to

efficiently recover from transient BFs that corrupt the contents and the structure of the

task queue. The essence of our approach is based on the detection of invalid structures

of the queue that might be created due to transient faults. Upon reaching an invalid

structure, we analyze the structure of the task queue to determine which failure scenario

has occurred and recover to a valid state. Using this method, we can correct Multiple BFs

(MBFs) in single-byte variables. We illustrate that the proposed approach can provide a

better time/space efficiency with respect to Error Correction Codes such as the Hamming

code [59] (see Figures 7.13 and 7.14).

Several techniques exist for designing fault-tolerant data structures. Aumann et al. [69]

present alternative implementations for pointer-based data structures by adding redundant
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links. Finocchi et al. [70] provide resilient search trees through periodic checkpoints.

Jørgensen et al. [71] devise a method that ensures the resilience of priority queues by

storing pointers in resilient memory locations. By contrast, our approach continuously

monitors a structural invariance and provides recovery if the invariant is violated.

Future/ongoing work focuses on techniques for the correction of MBFs in multiple

variables. Moreover, we would like to leverage our work in Chapter 3 on automated

addition of convergence for the addition of recovery to data structures. Specifically, we

modeled a state as a unique valuation of variables of primitive types (e.g., Boolean and

integer). Nonetheless, we need to create richer models that capture the state of complex

data structures. We will also work on models where ECC methods and our approach are

used in a hybrid fashion.
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Chapter 8

Tools for Automated Synthesis of

Convergence

In this chapter, we demonstrate the architecture and design of two software tools that we

have developed to synthesize convergence. In Section 8.1, we illustrate the constituents

of STSyn, a software tool that synthesizes convergence on single processor based on

the algorithms in Chapter 3. In Section, 8.2, we explain pSTSyn; the tool that exploits

the power of computer clusters as in Chapter 4 to synthesize convergence in symmetric

protocols.

8.1 STabilization Synthesizer (STSyn)

STSyn is a software tool that modifies a non-stabilizing protocol p, represented in guarded

command-like language, and generates a protocol pss that has exactly the same state space.

Moreover, pss behaves like p starting from any legitimate state; i.e., a state in I . Starting
from any global state outside I , pss strongly converges to I . pss is represented in the same

language as p. A web interface for STSyn is available at http://c28-0206-01.ad.mtu.edu:

8888/SynStable/.

STSyn implementation consists of the following modules:

• Input Protocol Parser. The input protocol parser transforms the input language

of the protocol into our native data structures representation. We imported the

input language parser of an automated synthesis tool, sycraft, by Bonakdarpour
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et al. [72]. For details about the syntax and semantics of the input protocol

language, please refer to sycraft’s user manual http://www.cse.msu.edu/~borzoo/

sycraft/sycraft-user-manual.pdf.

In this version of STSyn, we use Multivalued Decision Diagrams (MDD’s) [73]

to represent protocols as logic expressions in the working memory of STSyn. An

MDD is a representation of a logic expression over variables that generally assume

multiple values. This representation is in the form of a directed acyclic graph whose

nodes represent variables and arcs represent variable valuations. The sink vertices

of the acyclic graph are evaluations to either true or false. A valuation of the logic

expression is therefore a path in the graph following a specific order for variable

valuation.

• Protocol Encoder. The protocol encoder provides the essential functionalities

to manipulate the protocol representation including adding/removing groups of

transitions to a process, forming groups for sets of transitions of a specific process,

enforcing write restrictions on a set of protocol transitions and manipulating sets of

states.

• Convergence Synthesizer. The convergence synthesizer implements the algorithms

in Chapter 3 to add convergence to an input protocol p. If the synthesizer succeeds
in adding convergence to p, it generates a self-stabilizing protocol pss, otherwise, the
synthesizer declares failure.

• Cycle Detection and Resolution. An essential module to implement our synthesis

algorithms is the cycle detection and resolution module. We implemented a

set of cycle detection algorithms [23], [32], [74] that run on implicit/symbolic

representations of directed graphs. A representation of a graph is symbolic if it is

in the form of a logic expression over possible valuations of its vertices and arcs.

An MDD is one example of an implicit representation of the transition relation of a

protocol.

• State Space Partitioning and Ranking. Prior to synthesis, STSyn exhibits a

partitioning of the global state space into ranks based on the shortest distance from a

global state to the set of legitimate states. Partitioning and ranking is a pre-synthesis

step which generates an approximate weakly stabilizing version of the input protocol.

During synthesis, the set of partitioned global states guides our heuristics to increase

their chance of finding a strongly stabilizing solution.

• Output Generator. STSyn generates two output files. The first file is a .log, a log

file that includes the details of ranking, cycle resolution and synthesis operation. The

second file is a .fout; an output file that includes the guarded commands of the output

protocol pss, if any. We reuse a multi-valued logic minimizer (MVSIS) from the

University of California, Berkley [75] to minimize our output representation1.

1Information about MVSIS can be found in this link http://embedded.eecs.berkeley.edu/mvsis/.
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Figure 8.1: Modules Included in the Implementation of STSyn

Figure 8.1 summarizes the architecture of STSyn.

8.2 Parallel STabilization Synthesizer (pSTSyn)

Similar to STSyn, pSTSyn is a software tool that generates a stabilizing protocol pss
provided with an input non-stabilizing protocol p. pSTSyn exploits the computational

redundancy available in computer clusters. The tool runs parallel independent versions

of the convergence synthesizer on an input protocol and leverages randomization in order

to explore disjoint regions of the solution space.

pSTSyn consists of the following modules per each parallel thread:

• Protocol Encoder. In addition to the functionalities of the protocol encoder in

STSyn, pSTSyn manipulates the global transition relation of p by adding/removing

single transitions groups. Such fine grained manipulation allows the implementation

of backtracking algorithms for a group by group addition to the working set of

transition groups. Read and write restrictions are imposed on the transitions

of a process by applying existential quantification over unreadable variables

and imposing equality constraints between the pre and post-transition values of

unwritable variables. Pre-transition and post-transition values of unwritable variables

are the values of the unwritable variables in the source and target states of a global
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transition, respectively.

• Convergence Synthesizer. The convergence synthesizer implements the algorithms

in Chapter 4 to add convergence to an input protocol p. The main difference is that

transition groups are included one-by-one to the working set of transition groups.

In addition, we implemented a backtracking version of the convergence synthesizer

that is complete. However, backtracking demonstrates impracticality due to its

exponentially growing time complexity in the size of the global state space.

• Cycle Detection and Resolution. This module is almost similar to its counterpart in

STSyn. The only difference is that it makes use of the fact that groups are added

one-by-one, so the transition relation depth-first search algorithm does not need

to rerun every time a transition group is added. In other words, cycle resolution

memorizes its previous state, thus optimizes its search for cycles by adding new

transition groups.

• State Space Partitioning and Ranking. This module is exactly the same as its

counterpart in STSyn

• Groups Shuffler. A group shuffler randomly shuffles the transition groups in every

partition such that each of them constitutes a seed to a different thread of pSTSyn.

We chose our shuffler in such a way that the synthesizer explores disjoint areas of the

solution space. As such, we increase the number of discovered stabilizing solutions,

if any.
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Chapter 9

Related Work: A Taxonomy

In this chapter, we classify the existing work related to design and verification of

self-stabilization in particular and of properties expressible in temporal logic in general.

We adopt the following two criteria for our literature classification: the discipline and

the problem type. Three disciplines are of interest: control-theoretic where stabilization

is studied in the context of Discrete-Event Systems (DES) [4], game-theoretic (open

systems) where the behavior of the system under study is affected by the environment as

an opponent [76], and distributed algorithms where the dynamic system/program and the

environment’s behavior are modeled as a whole closed entity; i.e., closed system [77]. We

consider two major problems: analysis (verification) vs. design (synthesis). Researchers

tackle these problems using different approaches. For analysis, there is a model-theoretic

vs. a proof-theoretic approaches. Whereas in design, we encounter specification-based

synthesis vs. program revision. Such taxonomy partitions the related work into twelve

different categories. Figure 9.1 illustrates these categories with key works/authors in each

category. Note that we further refine the revision-based design of distributed algorithms

to manual vs. automated methods. This is the category where our contributions reside.

In addition, in distributed algorithms verification, we only list work related to automated

verification of self-stabilization due to the extensive scope of automated verification,

especially model checking [78]. We quote Baier and Katoen’s definition [79]:

Model checking is an automated technique that, given a finite-state model of

a system and a formal property, systematically checks whether this property

holds for (a given state) in that model.
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Figure 9.1: Taxonomy and key authors

9.1 Control-Theoretic Approach

The concept of stabilization in control systems is well-established and mature. However,

controller synthesis in Discrete-Event Systems (DES) is relatively a recent field [4].

Control-theoretic methods take a model of an uncontrolled plant and the specification

of a desired controlled plant, often expressed in terms of a formal language. Then they

synthesize a DES controller whose composition with the uncontrolled plant results in a

system that meets the formal specification of the controlled plant. In particular, the DES

controller restricts events applicable to the plant based on the current state of the plant. The

problem is set up as a feedback control loop as encountered in the context of control theory.

9.1.1 Design

In the eighties, Ramadge and Wonham introduced the synthesis of supervisory control in

DES [80]. They established a formal language framework for the study of DES controller

synthesis. A set of event sequences; a.k.a., strings, defines all the admissible behaviors of

the system in terms of a formal language L over a finite alphabet of possible events. In

addition, a subset of this language Lm consists of the marked behaviors of the system; i.e.,

the behaviors reaching a required set of states called marked states. For example, in the
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context of a car assembly line, a painted car defines a desirable state and any behavior

of the assembly line that reaches this state is a marked behavior/string. Supervisory

control defines a function that restricts allowable events based on the current system’s

state. The generated language is Ls ⊂ Lm. Lin and Wonham introduce decentralized

supervisory control [81]. Decentralized control has the effect of grouping event sequences

into equivalence classes due to the partial observation of the current system state by a

system’s submodule.

In contrast to the formal language approach, Ozveren and Willsky adopt a state-based

approach to controller synthesis [82]. They define the controller synthesis problem for

regulatory purposes, i.e., the controller guarantees that the language of the plant has finite

prefixes in the set of illegitimate states. Their notion of closure is weaker than the one we

introduce in Chapter 2. They define a stabilizing behavior as a string of events that visits

infinitely often a legitimate state. They provide a polynomial time algorithm in the size of

the state space for synthesizing a stabilizing controller. However, their approach does not

handle decentralization and partial information.

9.1.2 Analysis

Passino et al. pioneered the study of DES stability analysis [83]–[85]. The authors

reused several notions of stability in classical control theory like Lyapunov Stability and

Lagrange Stability [86]. A Lyapunov function is a scalar real-valued function of the state

of a control system. The system analyzer chooses a strictly decreasing function along the

trajectories of the dynamic system in such a way that the function value vanishes at the

(presumably) stable points of the dynamic system. The choice of a suitable Lyapunov

function is not systematic and depends on the analyzer’s ingenuity. Lagrange stability

focuses on boundedness of motion. It defines an invariant set of states within which system

trajectories are always confined. For example,

the number of customers in a cashier line should not exceed five

is a boundedness condition. In either Lyapunov or Lagrange stability, a metric is defined

on the set of system states. A metric is a scalar positive-valued measure on pairs of

states: for example, the number of ’1’s in the bitwise XOR of two bit vectors is a metric

on a bit-vector space. This is how neighborhoods are defined on the state space and

accordingly, monotonic decrease of Lyapunov functions and boundedness of invariant sets

are defined. Notice how Lyapunov stability captures the concept of convergence while

Lagrange stability captures closure. However, our definitions in Chapter 2 of closure and
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convergence do not require a metric space.

Oehlerking and Theel [87] use Lyapunov functions to verify convergence in distributed

systems. To this end, a transformation from the distributed system model to a DES

representation is necessary. They then take the matrix form of a discrete linear-time system

and apply Lyapunov method to prove the stability of the distributed protocol. Their work

differs from Passino et al.’s in that, in the latter, they directly verify a nonlinear DES model

using a Lyapunov function; i.e., there is no need for a transformation from a distributed

system model to a difference-equation representation.

Kumar and Garg characterize properties of stabilization in terms of formal languages [88].

They demonstrate different types of stability as language properties. They argue that

the traditional notion of stabilization; i.e., the definition based on partitioning the state

space into legal and illegal states, is not general enough for the purposes of the author.

They introduce a language-based definition of stabilization where legal behaviors may

include a bounded number of iterations in a non-progress cycle if they eventually reach

a legal state. They prove that such type of stabilization cannot be implemented using static

feedback controller; i.e., a controller that takes its decision based only on state information.

They suggest a dynamic feedback controller that takes its decision based on the current

computation prefix (possibly including cycles) rather than the current state. In addition,

they provide algorithms for the verification of language stability. They introduce the notion

of ω- language stability which is stability for infinite-length behaviors.

Young and Garg [89] define stabilization in such a way that the whole transition system

consists of only legal behaviors: from any state of the systems, all computations are legal.

Their main contribution includes methods for determining how system specification can be

strengthened/weakened to become satisfied by an existing stabilizing system according to

their own definition of stabilization.

Our proposed approach considers a state-based method unlike Ramadge et al.’s original

setting. Supervisory control addresses the synthesis of safety properties1 and a subset of

liveness2 called (nonblocking) properties. In particular, we consider the set of marked

states of a DES. A nonblocking supervisory control enforces that every string in Ls can

be extended to a string with a marked state in Ls. However, to the best of our knowledge,

we are not aware of contributions in synthesizing nonblocking-decentralized controllers

in a state-based approach. Moreover, controller synthesis covers only regular languages

whereas stabilization in distributed systems is considered in the context of languages with

1Safety properties require that nothing "bad" should happen and are verifiable by examining finite prefixes of

computations.
2Liveness properties mandate that something "good" should happen and are generally verifiable by examining infinite

length computations. Note that any program property can be specified as the intersection of safety and liveness

properties [90].
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infinite-length strings; i.e., protocol executions that possibly do not terminate (exception is

work by Kumar and Garg [88]. In this vein, it is worth mentioning that the approach by

Young and Garg [89] helped to generate a specification for a stabilizing system defined in

terms of regular languages; i.e., a specification that is reusable as an input to the controller

synthesis problem.

9.2 Game-Theoretic Approach

Game-theoretic approaches model protocols/programs/dynamic systems as transition

systems with two players in action: the concurrent program, and the environment. We

can think of the environment as an opponent trying to perturb the program’s behavior. As

players, the program and the environment take turns when acting upon the program’s state.

Such programs correspond to open systems as they interact with their environment.

The interface between the environment and the program is through input/output

(output/input) of the program (environment), respectively. In this setting, the environment

generates possibly infinite length strings as input to the concurrent program and

the program instantly responds interactively with infinite length output strings to

the environment. The environment behavior is uncontrollable, and most generally,

malicious. The requirements on the program’s behavior are expressed as constraints on

its input/output. We call these constraints the system’s specification. A realization of the

program is a description of its semantics such that the program’s behavior satisfies the

input/output specification.

9.2.1 Synthesis

The problem of synthesis from specification takes as input a representation of constraints on

the input/output infinite length strings of the program and generates as output a realization

(an automaton, a circuit) of these constraints. Such constraints constitute a specification to

which the concurrent program should adhere.

Historically, automated synthesis of a program from its specification has been suggested by

Church [91], [92] and has been thereafter addressed as Church’s problem in the framework

of mathematical logic. Under the same framework, two attempts have provided a solution

to Church’s problem either as an emptiness problem to a tree automaton [93], or as a

solution to a two-party game [94].
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9.2.1.1 Synthesis from Specification

In the context of open systems synthesis, Pnueli and Rosner [95], [96] introduced a

method for synthesizing a module interacting with its environment from a temporal logic

specification on its input and output. Their approach is an extension of the idea of finding

a proof of validity of a temporal logic formula. The validity proof constructs a model for

the temporal logic specification. In the case of a propositional temporal logic, validity

is decidable. They demonstrate that, for an open system, the synthesized protocol/circuit

satisfies the temporal logic formula, for all possible input valuations, unlike the closed

system case where it is only sufficient to find one satisfying valuation for the input. This

result stems from the fact that the designer has no control over the environment, and hence

the synthesized model satisfies a universally quantified BTL formula. The main result

of this paper is that for a specification Ψ(x, y) (x is the input to the concurrent program

and y is the output from the concurrent program) to be implementable, it is necessary

and sufficient for a BTL formula to be satisfiable. Ψ(x, y) is said to be implementable3

iff for x, y ∈ D, there exists fP : D+ → D; i.e., a function mapping non-zero

length strings over D to elements of D such that for xi = a1a2a3...ai, every possible

behavior 〈a1, fP (x1)〉, 〈a2, fP (x2)〉, 〈a3, fP (x3)〉, · · · , 〈ai, fP (xi)〉, · · · satisfies Ψ(x, y).
This reduces the synthesis problem to a satisfiability proof when x and y belong to finite

domains. In the finite state case, the authors extend the work of Rabin et al. [93]. They

build a labeled tree from the formula Ψ(x, y) with values of pairs 〈x, y〉 at each node

of the tree. Then, they transform it to a finite state tree automaton using techniques

from [93]. However, the presented approach has an improved time complexity. The

synthesis algorithm is polynomial in the number of states of the automaton and takes a

double-exponential time as a function of the temporal logic formula length.

More recently, Piterman and Pnueli [97] consider a subclass of useful temporal properties

for which Church’s problem is solvable in at most a cubic-time in the size of the state space.

Such an approach, together with the considerable increase in the computational power of

current computers, revived research for instances of practical size. In particular, hardware

synthesis from specification attracts Jobstmann, Bloem et al. to develop a tool [98]

implementing the method in [97] and synthesize - for the first time - real circuits from

specifications [99].

A hardness result is established by Pnueli and Rosner for the implementation of a

synchronous reactive system on a given distributed architecture. They proved that the

3Realizability is the ability of an open system to satisfy its specification for all possible inputs from the environment.

In other words, it is having a winning strategy for the open system in its two-party game with the environment: the

environment plays a value of x and the game plays a value of y. However, realizability does not restrict a specific model

for an open system as the definition of implementability herein. Thus, implementability in that sense is a special case of

realizability.
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existence of an open system implementation of a propositional temporal logic specification

on a given distributed architecture is semi-decidable4 [100]. Kupferman and Vardi [101]

identify a decidable subproblem by considering a subset of architectures where information

is restricted to flow between processes in a specific order. These results provide insight as

to how distribution complicates the synthesis problem.

9.2.1.2 Program Revision

Program revision is the modification of an existing program to render it satisfying a

modified specification. Jobstmann et al. consider program repair/revision as a strategy

design in a game [102]. They design a heuristic to find a memoryless strategy for the

product automaton of the original program with an LTL specification automaton5. A

memoryless strategy means that repair modifies existing program text without adding new

variables. The authors assumed that the required repair is localized in the program text and

accordingly, represent this portion of the code as an unknown action. A winning strategy

of the product automaton is an assignment of a specific action to the unknown part of code.

As such, for every possible input sequence from the environment, the program satisfies

its LTL specification. The authors demonstrate that the decision version of this problem is

NP-Complete and they present a heuristic for its solution. This heuristic, for the subclass of

LTL safety properties expressed as invariants, becomes a complete algorithm. An invariant

is a property satisfied by every reachable program state during execution. Jobstmann et

al. use symbolic methods to extract the repair from the winning strategy. Griesmayer et

al. [104] apply Jobstmann’s work by considering repair-as-a-game of Boolean C programs

using memoryless stack-less strategies. A Boolean C program has only Boolean variables.

Stack-less strategy means that any repair should not make use of the stack. They provide

a model for Boolean C programs and apply an algorithm similar to the one in [102] to

identify a repair for a suspected statement in the program text. Their contribution is the

generation of such repairs for real code.

We are not aware of studies of self-stabilization within the open systems framework. In

fact, convergence assumes that perturbations to the system’s state stop occurring during

recovery; i.e., convergence does not require recovery in the presence of perturbations of

the environment. That is why it is adequate to study self-stabilization in a closed-system

context.

4A decision problem (yes/no problem) is semi-decidable if there is no algorithm that answers "No" on all its negative

instances. Moreover, a semi-decidable problem has only algorithms that answer "yes" on its positive instances and

possibly do not halt on some of its "No" instances.
5A specification automaton is a finite state machine whose set of computations exactly matches the computations

satisfying a given LTL property. For further reading, consult Vardi et al. [103].
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9.2.2 Verification

In verification of reactive modules/open systems, all the possible environment behaviors

are considered by the verification algorithm. Pnueli’s seminal work on program verification

presented a proof-theoretic approach to program correctness [105]6. Kupferman and Vardi

introduce module checking [108] for the algorithmic verification of finite-state reactive

(open) systems. A module is an open system interacting with its environment. Its input

x takes arbitrary values from the environment and the module should interactively compute

its output y to satisfy its specification. The authors partition the module’s state space into

system and environment states. A system state can only be altered by program actions

while an environment state can only be altered by the action of the environment. It turns

out that model-based automated verification of both closed systems and open systems, with

respect to LTL specifications, belongs to the class of PSPACE problems (in the length of the

temporal specification). However, the authors’ [108], [109] main result demonstrates that

module checking against CTL specifications is harder than its closed system counterpart;

the former is EXPTIME-Complete while the latter has a polynomial-time algorithm in the

length of the specification. Kupferman and Vardi argued that although such results are

discouraging, fragments of CTL (for instance, universally quantified CTL) are as efficient

as their closed systems counterparts; i.e., modules in this fragment of CTL are checkable in

polynomial-time. These results raise questions about how feasible is CTL versus LTL.

Despite that CTL and LTL have incomparable expressive power, arguments about the

superiority of CTL over LTL – which has simpler syntax and semantics – in model-based

verification are not settled yet.

Vardi et al. [110] consider cases where all the environment behaviors should either be taken

into account, or not, depending on the kind of temporal logic used for the specification.

Kupferman et al. [109] distinguish cases where the environment has incomplete knowledge

about the system, and prove their respective complexity bounds; this is analogous to

decentralized/distributed systems.

9.3 Distributed Algorithms Approach

Self-stabilization was originally defined in the context of distributed algorithms [7]. Except

for a handful of papers, boosting research in self-stabilization did not take place until

Lamport’s ACM address [111] stating that self-stabilization is one of Dijkstra’s most

brilliant ideas.

6For a comprehensive treatment of temporal logic in specification and verification of sequential and concurrent programs,

please consult [106], [107].
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Design of self-stabilization is a hard problem. To overcome some of its difficulties, authors

propose weaker types of stabilization. Gouda et al. [14] introduce weak stabilization as

a possibility for a system to reach its legitimate behavior: the existence of a computation

that reaches a legitimate behavior from every state is necessary and sufficient for weak

stabilization. Whereas strong stabilization requires that every computation from every state

reaches a legitimate behavior [6]. As such, every strongly stabilizing protocol is weakly

stabilizing; the converse is not necessarily true. Burns et al. introduce pseudostabilization

as another relaxation of strong stabilization: stabilizing computations can bounce between

legitimate and illegitimate states as long as they will eventually settle to a legitimate

behavior [112].

Burns et al. [113] treat the effect of execution semantics on self-stabilization. In

interleaving semantics, only one enabled process is allowed to execute at a time,

while in concurrent semantics, subsets of enabled processes are allowed to execute

simultaneously. The authors define conditions on protocols such that stabilization

under interleaving execution semantics are sufficient for stabilization under concurrent

(subset) semantics. Follow-up work provide transformations of stabilizing protocols under

interleaving semantics to stabilize under concurrent semantics [114], [115]. Gradinariu and

Tixeuil [115] propose a conflict manager at each network node to prevent two neighboring

nodes from reading a shared variable concurrently; i.e., provide local mutual exclusion

between neighboring processes. This way, a concurrent execution of processes is equivalent

to an interleaved execution; in fact, the execution of non-neighboring processes do not

interfere.

9.3.1 Manual Design

Most of the work done for designing convergence/stabilization advocates manual methods.

In this subsection, we study the main approaches to manual design of self-stabilization.

9.3.1.1 Convergence Stairs/Ranking Functions

Manual methods define a decreasing ranking function to generate the recovery actions [55],

[116]. Equivalently, manual methods use a layering/ranking approach to construct an order

on sets of states from where the protocol eventually reaches its legitimate behavior [21],

[22].

The fact that a strongly stabilizing system has no cycles in its set of illegitimate states
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(Chapter 2) means that its corresponding transition graph is acyclic (in the set of illegitimate

states). The transitive closure of the digraph/transition relation can be used to define a

partial order on its set of vertices/states such that (s, s′) is an arc/transition iff (s′ < s).
Equivalently, a ranking function fr is a monotonic function on the set of states; i.e., it

preserves the partial order. A candidate ranking function is such that frl(s) is the longest
path from s to a legitimate state. fr partitions the set of illegitimate states into ranks or

stairs. Two states s1 and s2 have the same rank iff fr(s1) = fr(s2). In the special case

of frl, two states have the same rank if their longest paths to some legitimate state are of

the same length. Consequently, partial orders on states, monotonic ranking functions and

convergence stairs represent equivalent techniques for proving convergence.

Some manual methods use layering and modularization [21], [117] to enable the design

of self-stabilization by incremental construction of convergence using either strictly

decreasing [55] or non-increasing ranking functions [116]. Arora et al. [36], [117] provide

a method based on constraint satisfaction, where they create a dependency graph of local

constraints whose satisfaction guarantees recovery of the entire system. The dependency

graph has arcs labeled by protocol actions (equivalently by the constraints they should

establish). Each node is labeled by a variable name. An arc (n1, n2) corresponds to an

action that reads variables of nodes n1 and n2 and modifies variables in node n2 to establish

its labeling constraint. As such, this graph models the interdependency between constraints

and how establishing some of the constraints can violate others. The authors define three

classes of dependency graphs: (1) Acyclic graphs, (2) acyclic graphs with self-loops and (3)

cyclic graphs reducible to acyclic graphs with self-loops. In case (1), no cyclic corruption

of constraints can occur then, eventually, all constraints will be established. In case (2),

the designer should guarantee that establishing a constraint does not violate constraints of

the loops. In case (3), the authors partition convergence actions into layers, each with its

own acyclic constraint graph. Actions of a higher layerK should eventually establish all its

constraints and consequently, pass control to actions of layerK−1. This process continues
until all constraints are established.

9.3.1.2 Local Checking and Correction, Snapshots and Global Reset

Katz and Perry [118] present a general (but expensive) method for transforming a

non-stabilizing system to a stabilizing one by taking global snapshots7 and resetting the

global state of the system if necessary. Their method assumes that there is one master

process that initiates global resets based on the snapshot result; i.e, whether the global

snapshot is a legitimate state or not.

7A global snapshot is a distributed computation where a process initiates a request to read the values of all the variables

in the network and eventually receives these values.
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To avoid the expense of taking global snapshots, some of the design methods focus on a

class of protocols whose set of legitimate states can be checked and corrected by a single

component (i.e., locally checked/corrected). Varghese [1] define local checking and local

correcting of protocols. Consider L to be the set of legitimate states for the protocol p. p
is locally checkable if there exists L′ ⊂ L such that L′ is a conjunction of local predicates

(a.k.a, a predicate defined over the local variables in rj for a process Pj , for some j). Hence,
establishing L′ sufficiently establishes L. Moreover, Varghese defines local correction as

a function in the local state of a node as well as its neighbors. For each link between

two nodes in the network, he introduces a link predicate representing the constraint that

needs to be established for the link variables. The existence of a transformation over link

predicates that do not cause interference between processes is a necessary condition for

local correction. Most of Varghese’s work captures protocols for message passing models.

He demonstrates that any locally checkable protocol can be transformed into a stabilizing

one using global correction in at most N steps where N is the number of nodes in the

network. Moreover, Varghese devises a definition of local checking and correction for

shared memory models.

Awerbuch et al. [119] provide a compiler that produces self-stabilizing protocols given a

synchronous, deterministic, non-interactive input protocol in the message passing model.

They suggest a resynchronizer to augment the input protocol by a global state checker;

then they apply techniques for correction either by using local correction or a global reset

as described in [120], [121]. To design non-locally checkable systems, Varghese [122]

proposes a counter flushing technique, where a leader node systematically increments and

flushes the value of a counter throughout the network.

9.3.2 Automated Synthesis from Specification

We demonstrate attempts to solve Church’s problem in the context of closed-systems.

Emerson and Clarke [123] address the design of synchronization skeletons8 of concurrent

programs from their branching time logic specification. Their approach uses a

tableau-based proof of the satisfiability of a branching temporal logic formula and generates

a shared-memory model of this formula accordingly. They represent the tableau by and-or

nodes where each node is a subformula of the original specification. Every atom/leaf of the

tableau proof has a corresponding model (satisfying tree). They introduce a step to build

these models from the tableau proof into Kripke structures9 that satisfy the temporal logic

formula; i.e., the system’s specification. If the temporal logic formula is unsatisfiable, the

8Synchronization skeletons are portions of concurrent programs executing interprocess communication and

synchronization as opposed to functional parts.
9Kripke structures are finite models for modal logics and can be represented by a relation between a finite number of

worlds. Each of these worlds maintains the truth of a finite set of logical atoms; i.e., propositions [124].
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specification is inconsistent.

Manna and Wolper [125] follow a similar track to Emerson and Clarke’s. However, they

use LTL as a specification method and use communicating sequential processes [126]

for their model of concurrent programs. They justify their use of LTL by arguing that

BTL is not necessary for expressing concurrency. Moreover, they criticize the use of a

shared memory model by Emerson and Clarke because all the variables have to be globally

declared. The alternative to shared memory in their approach is that all processes should

exchange messages; their interconnection network is a complete graph.

9.3.3 Automated Program Revision

Automated program revision considers modification of protocols/programs/dynamic

systems in the context of fault tolerance [9], [13]. Despite that systems are closed, the role

of the environment is captured by a fault-model. Faults are global transitions that perturb

the state of the protocol/program/dynamic system, but have the specific property that they

are non-deterministic. For instance, consider a deadlock state where a fault transition f
is enabled; f may not execute forever, that is, such a state is a deadlock. In other words,

computations involving fault transitions are not maximal (Chapter 2), unlike computations

involving only program transitions. This way, some of the general properties of open

systems are captured by closed system models.

Most of the work on automated program revision focuses on adding safety properties

to distributed protocols [127] to render them fault-tolerant. Ebnenasir et al. devise a

framework for the addition of fault tolerance using an enumerative representation of states

and transitions [128]. Kulkarni and Ebnenasir prove that addition of fail-safe fault tolerance

to a distributed protocol is NP-Complete in the size of the state space [129]. A protocol is

fail-safe fault-tolerant if under a certain fault model, it will never violate the safety part of its

specification [13]. Bonakdarpour and Kulkarni design and implement symbolic heuristics

to add safety and liveness properties to distributed protocols [39]. They demonstrate that

the addition of liveness to distributed UNITY programs is NP-Complete (in the size of the

state space) [130]. Moreover, they devise a heuristic for the synthesis of leads-to properties

in a distributed program.

Other automated techniques augment the input protocol transition system with recovery

actions to enable the protocol’s convergence to its legitimate behavior for a class of

locally correctable protocols [131]. Abujarad and Kulkarni present a method for adding

convergence to acyclic network topologies. It is known from Varghese et al. that

acyclic topologies can be made stabilizing by local corrections [1]: for such topologies,
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non-progress cycles of illegitimate behavior can be avoided easily by spreading the state

corruption to the leaf nodes of the network.

We consider a program revision approach for the specific problem of adding

convergence/stabilization to distributed protocols. Our contribution is to create a set of

heuristics that, together, provide help for the designer by generating candidate solutions

that are correct-by-construction. We do not restrict our network topologies to any specific

class. Moreover, we consider heuristics that cover cases that cannot be solved automatically

by heuristics as in [128], [130], [131] like cyclic network topologies.

9.3.4 Automated Verification of Self-Stabilization

A few authors investigate verification of self-stabilization from either a model-checking or

an automatic theorem proving perspectives.

Merz et al. [132] illustrate a mechanical proof using Isabelle [133] to Dijkstra’s

mutual exclusion algorithm [7]. They establish a series of lemmas and corollaries

through mechanical verification by defining a decreasing function of network states to

prove convergence. Similarly, Qadeer and Shankar [134] automatically verify a proof

for Dijkstra’s mutual exclusion algorithm using the PVS theorem prover [135]; they

demonstrate the challenges of mechanically verifying stabilization as compared to manual

proofs. Kulkarni et al. [136] illustrate how decomposition of a distributed protocol can help

its mechanical verification. They use PVS to prove the correctness of Dijkstra’s mutual

exclusion algorithm by splitting it into a convergence component and a closure component.

Shukla et al. [137] develop a tool that reuses the SPINmodel checker [26] for the purpose of

verifying self-stabilization. Tsuchiya et al. exploit the SMVmodel checker to symbolically

verify [138] several protocols for self-stabilization and discover a bug in an otherwise

stabilizing protocol. Their results illustrate that, although symbolic model checking permits

the exploration of a larger state space, the size of the verified protocols was still limited (8

to 10 processes). Their work is usually cited as an experimental witness of the hardness of

verification of self-stabilization; let alone its synthesis.

To overcome the state explosion problem in verification of self-stabilization, Liveris et

al. consider program abstraction for verification of parametrized10 protocols [139]. They

apply some sufficient conditions due to Kesten and Pnueli [140] for verifying liveness

in parametrized systems by transforming each process with a parameterized number of

10A parametrized protocol is correct regardless of its number of processes. Here parameterization is with respect to the

number of processes.
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variables to one with fixed number of variables. They illustrate their approach on three

case studies: leader election, coloring and spanning tree construction.

9.3.5 Parameterized Verification of Convergence

We summarize related work to the verification of properties of parameterized networks. In

particular, we focus on the verification of convergence in arbitrary-sized networks and how

it compares to the results of Chapters 5 and 6.

Parameterized Verification Using Cutoffs. Emerson et al. [51]–[54] reduce subclasses

of the parameterized verification problem to the verification of small network sizes with

fixed number of processes. Emerson and Namjoshi [51] assume a ring of symmetric

processes that communicate by means of a token. They demonstrate that the verification of

conjunctive properties over pairs of processes reduces to verification of rings with a fixed

size. Moreover, the authors demonstrate that adopting value-carrying tokens renders the

verification problem undecidable. In [52], Emerson and Namjoshi extend their approach by

reducing arbitrary-sized, star-interconnected, synchronous protocols to abstract graphs of

finite size. Emerson and Kahlon [54] demonstrate the existence of small model reductions

to parameterized valued-token passing rings as long as every process passes the tokens for a

finite number of times. In [53], they extend their reduction to arbitrary sized models whose

actions have conjunctive or disjunctive guards. Their model can only capture processes all

of which access the same set of variables.

Our model of a unidirectional ring is incomparable to Emerson et al.’s. First, we do not

assume symmetry. Second, our model represents processes that communicate multi-valued

tokens. However, our assumption of self-disabling processes is more restrictive than

Emerson et al.’s. Nevertheless, a unidirectional ring with self-disabling processes captures

a class of useful distributed protocols that is not covered by the aforementioned methods.

Verification by abstraction. A considerable amount of work adopt abstraction to handle

the infinite number of states in parameterized verification. Network invariants are

introduced by Wolper and Lavinfosse [141] to capture all possible behaviors of an arbitrary

number of processes in the network. A property satisfied by a network invariant is satisfied

by any instance of the network but not necessarily the converse; abstraction is hence

necessarily incomplete. Kurshan and McMillan [142] demonstrate a general abstraction

rule based on composition and induction over a sequence of processes. The generality of

their approach is due to the abstract properties of their composition operators and partial

order relations on processes. Kesten et al. [143] present yet another induction method using

network invariants with a proof rule based on an abstraction relation and composition of
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processes.

The main drawback of abstraction methods with respect to convergence synthesis is their

dependence on human ingenuity for generating abstractions; every protocol requires a

different abstract network invariant that, in general, cannot be automatically computed. To

overcome this drawback, Pnueli et al. [144] demonstrate a method where conjunctive sets

of reachable states can be automatically deduced. They project the set of reachable states,

for a specific network size, over a subset of "variables of interest" in some conjunct. Their

method generalizes the projected conjunct for every process in the network. They provide

a cutoff theorem, thereby reducing verification of an arbitrary-sized network to a finite

number of protocol instances. Despite the inherent incompleteness of this method, it has

proved that it is of practical values in automated verification of safety properties. A similar

approach for verifying response properties by Fang et al. [145] abstracts out decreasing

ranking functions for an arbitrary protocol instance. They generalize the convergence stairs

likewise while using a cutoff theorems proper to response properties.

Namjoshi [146] illustrates that the cutoff method for verification of parameterized systems

is complete for safety properties. That is, there always exists a maximum size for the

number of symmetric processes that captures all the "behaviors of interest" in the network

with respect to a given safety property. Furthermore, he provides a modification to the

method by Pnueli et al. [144] to accommodate his completeness result.

Network grammars. Shtadler and Grumberg [147] introduce network grammars as a

means to representing global states of arbitrary-sized networks of linear or ring topologies,

as words generated by network grammars. For verification purposes, they compute an

equivalent network invariant to the network grammar and apply finite state verification on

the equivalent model/abstraction. As an extension, Clarke et al. [148] relax the equivalence

relation between the model and its network invariant to a pre-order relation such that

the network invariant abstracts out the grammar; this relaxation increases the possibility

of finding an invariant at the cost of completeness. Kesten et al. [149] restrict network

grammars to regular languages; however their approach extends verification to tree-like

topologies by capturing their global states as accepted trees by a tree-automaton. Moreover,

they represent reachable sets of states by finite automata, thereby reducing the verification

of safety properties to automata-theoretic product and emptiness problems.

A follow-up of the aforementioned approaches generated a plethora of publications in what

is now called regular model checking. Jonnson and Nilsson [150] describe how to derive a

finite state transducer representing the transitive closure of the network’s transition relation.

A finite state transducer is a finite state automaton augmented with a function that maps

the set of input alphabet to the set of output symbols. Subsequently, they illustrate how

to verify safety properties using their derived transitive closure automaton. Bouajjani et

al. [151] demonstrate different techniques to compute finite state transducers representing
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the set of reachable states and the transitive closure relation of a parameterized protocol,

respectively. They illustrate how to make use of the transitive closure relation to verify

liveness properties. Abdulla et al. [152] introduce an abstraction on regular model checking

by assuming a preorder relation between words representing states. This relation eliminates

transducers in verification of safety properties, thereby simplifying the computationally

demanding automata-theoretic operations required by regular model checking. Due to the

extensive literature on regular model checking, we direct the reader to a survey by Abdulla

et al. [153].

Livelocks in Network Protocols. In one of the early investigations of livelocks,

Kwong [41], [46] characterizes a livelock in a parallel program by an infinite computation

where some process is never executed; a.k.a., starvation. Kwong demonstrates two

techniques for proving livelock-freedom: (1) Sufficient conditions that guarantee the

absence of livelocks and, (2) a well-founded set technique. Kwong’s first method is

amenable to automatic verification, however, the sufficient conditions he establishes are

applicable only to deterministic protocols, with non-interfering11 and independent local

transitions. Gouda and Chang [47] identify a subset of networks that can be exactly

abstracted by finite graphs and thus, whose livelock-freedom is decidable. Despite the fact

that Gouda and Chang [47] capture unbounded channels, their approach is not applicable

for our purpose of proving livelock-freedom in a parameterized ring.

Static Analysis of Livelocks Leue et al. [48], [154], [155] devise the notion of cycle

dependency for control flow analysis. Intuitively, a cycle dependency is a relation between

local cycles C1 and C2 such that C2 continues to execute if C1 is executed repeatedly.

The authors demonstrate a sufficient test for livelock-freedom by transforming the input

protocol to an integer linear program. Their knowledge of cycle dependencies often results

in better scaling of their exploration for livelocks. Ouaknine et al. [49] provide a sound but

incomplete syntactic check on CSP12 protocols for livelock-freedom. Blieberger et al. [50]

conservatively check livelock-freedom in Ada programs by examining the communication

patterns between potential loops. In a sense, our feasible propagation is a formalization of

the notion of dependency between local cycles captured by Leue et al. and Blieberger et

al. [50], [155], respectively.

We summarize in Table 9.1 the direct contribution of each approach to the design and

verification of self-stabilization.

We summarize the complexity results of different categories in Table 9.2.

11Non-interfering local transitions do not disable each other
12Communicating Sequential Processes
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Table 9.1

Contribution of approaches to design and verification of self-stabilization

Problem Supervisory Open Systems Closed Systems

Control

Model-Based LTL N/A No Yes

Verification CTL N/A No Yes

Spec-Based Centralized Yes No No

Synthesis Distributed No No No

Program Centralized N/A No Yes

Revision Distributed N/A No Noa

aThis is where we contribute

Table 9.2

Summary of Complexity Results

Problem Open Systems Closed Systems

Model-Based LTL PSPACE (l)a PSPACE (l)

Verification CTL EXPTIME-Complete (s) PTIME (s)

Spec-Based Centralized PTIME (s)b PTIME (s)

Synthesis Distributed Undecidable PSPACE (s)

Program Centralized NP-Complete (s)c PTIME (s)

Revision Distributed N/A NP-Complete (s)d

al: length of the specification. s: size of the state space
bHowever, time complexity increases exponentially with the number of accepting states in an

intermediately generated automaton
cFor a subset of invariant properties, repair as a game takes a polynomial time in the size of the state

space
dAddition of convergence is in NP but we are not aware of neither polynomial-time synthesis algorithm,

nor a proof of completeness.

9.4 Discussion

We proposed an approach as an extension of program revision for synthesis of

convergence/stabilization in closed systems. We considered a transient fault model that can

non-deterministically corrupt the state of a distributed program/protocol without causing

any permanent damage. We also assumed that faults will eventually stop occurring so

recovery can be guaranteed. We explored properties of transition systems of stabilizing
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Figure 9.2: Synthesize in Small Scale and Generalize

protocols. We provided algorithmic methods (heuristics) to intelligently and efficiently

transform the non-stabilizing transition system into a stabilizing one. As contrasted to

Awerbuch et al.’s compiler, our approach automatically produced a tailored stabilizing

solution for each given protocol (like Dijkstra’s solution in [7]) without imposing global

snapshot algorithms or global resets which are, in general, expensive. Unlike Awerbuch et

al.’s compiler, our heuristics could handle nondeterministic, asynchronous and interactive

protocols. Our synthesized solution is in the worst case, as expensive as the approach in

Awerbuch et al. [119].

Our approach is significantly different from Varghese’s as we handled shared-memory

models. We did not assume local predicates on links; i.e., predicates on the messages

sent over links, and hence, Varghese’s theorem for linear recovery time does not apply to

our case.

We devised sound but incomplete algorithms (i.e., heuristics) in Chapter 3 for automating

the design of convergence while mitigating the entangled cycle and deadlock resolution

problems. Our heuristics may fail to find a design while there exists one, but if they

find one, this design is self-stabilizing by construction. Moreover, we kept our approach

lightweight: we obtained solutions for input instances having a few number of components

and inductively reasoned about them by gradually increasing the number of components as

far as our computational resources permitted. In fact, we leveraged the power of computer

clusters to design convergence in symmetric protocols (Chapter 4). To circumvent the state

explosion problem, we resorted to symbolic (implicit) methods for representing transition

systems [19], [138].

To alleviate the difficulty of scaling-up our stabilizing solutions, we pursued an approach
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where we design-in-small-scale and generalize; Figure 9.2 summarizes how our paradigm

differs from the traditional methods for designing self-stabilization. We founded a

theory for the study of deadlocks and livelocks in unidirectional rings of arbitrary sizes.

Specifically, we provided in Chapter 5 necessary and sufficient conditions – verifiable in the

local state space of each process– for the deadlock-freedom of ring networks. Moreover,

we illustrated our preliminary results about livelocks in unidirectional rings and derived

thereof an algorithm sketch for designing convergence in unidirectional rings. Chapter 6

established an algebraic representation of livelocks in unidirectional rings.

Our local approach to verification and design reasons about a variety of possible solutions

for a given conjunctive set of legitimate states closed in the input protocol. We investigated

generalization in local state spaces, thereby enabling a method that combines design and

verification instead of conceiving them as separate tasks. Thus, our approach differs from

automated abstraction techniques like Fang et al.’s decreasing ranking functions [145], or

any of the aforementioned regular model checking techniques.

Our local algebraic characterization is necessary and sufficient for livelocks in

unidirectional rings whose processes are self-disabling. In spite of our restricted model

of computation, we managed to capture many protocols of interest that have self-disabling

processes. A relaxation of self-disablement renders our characterization only necessary

but insufficient for livelock-freedom. A more powerful model of computation on a

unidirectional ring converts livelock-freedom verification to an undecidable problem. As

such, an acceptable characterization of livelocks in more general models of computation

(as in Suzuki [45]) essentially has non-identical necessary and sufficient conditions for

livelock-freedom. We believe that our exploration of the local state space laid a starting

point for efficient reasoning about convergence of distributed protocols, thereby alleviating

the hardness of global state space exploration.
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Chapter 10

Concluding Remarks

We present in this chapter a summary of the contributions of this dissertation. Section 10.1

is a recall of the main results we covered throughout our exposition. In Section 10.2, we

summarize a set of related open problems that still require further investigation.

10.1 Summary

In Chapters 3 and 4, we developed heuristics for synthesizing convergence into

non-stabilizing protocols that satisfy closure. The first heuristic transforms a

non-converging protocol to a converging protocol, while the second heuristic ensures that

the output protocol is symmetric provided the symmetry of the input protocol. We capture

a protocol’s atomic execution steps by actions. Our heuristics keep adding convergence

actions to resolve deadlocks while ensuring livelock-freedom in the set of illegitimate

global states; i.e., the heuristic discards actions forming global non-progress cycles.

Our heuristics include convergence actions enabled only outside the set of legitimate

configurations to ensure closure. For cycle resolution, we implemented a Strongly

Connected Component (SCC) detection algorithm by Gentitlini et al. [23].

Our heuristics automatically generated solutions to Dijkstra’s token passing protocol (for

the first time). They also generated solutions for maximal matching on a ring adapted

from [15]. Our heuristics corrected a pitfall in a solution for matching on a ring. This

further motivates the need for automated design methods. Our heuristics also generated

symmetric and non-symmetric solutions to ring coloring, leader election and agreement

protocols with network sizes up to 40 nodes [10].
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Our experiments on global state space always hit the bottleneck of state space explosion.

Moreover, the local nature of information about the global state in the process of

a distributed system imposed transition grouping constraints during the addition of

convergence. Complete algorithms for the addition of convergence could not ignore

the combinatorial search problem for a stabilizing solution in the global state space.

Furthermore, solutions found by global state space exploration are not necessarily

generalizable; even if our heuristics succeed in finding a solution for a specific network

size, there are no guarantees that generalizations of the obtained solution will preserve

convergence for an arbitrary number of processes.

In Chapters 5 and 6, we demonstrated a theoretical foundation for reasoning locally about

global properties of network protocols. Specifically, we illustrated how a protocol on a

ring topology is provably deadlock-free by examining the local state space of each process

in the ring. Interestingly enough, we proved the existence of locally verifiable necessary

and sufficient conditions for livelock-freedom of protocols on unidirectional rings. We

illustrated the power of our theory by providing, in Section 6.3, yet another proof of

livelock-freedom of Dijkstra’s celebrated token ring protocol [7]. A pleasant outcome

of our theory about livelock-freedom in unidirectional rings is that it holds for protocols

irrespective of their concurrency execution semantics, or fairness assumptions.

In Chapter 7, we presented an application of the design of convergence in wireless sensor

nodes. We demonstrated how to add recovery to the TinyOS scheduler in order to

maintain an intact linked list of tasks identifiers. We illustrated that our approach surpasses

traditional error detecting and correcting codes in terms of time and space usage.

10.2 Extensions

We conjecture that local reasoning is very promising in that it eliminates the need for global

state space exploration, thereby obviating state space explosion and enabling proofs of

properties that hold for arbitrary number of processes. In order to demonstrate the impact

of our theory, we shall develop algorithms and tools for the design of convergence in local

state space, in the same vein as the methodology that we have illustrated in Section 5.4.

Deadlock-Freedom and Local Safety Properties. We will extend our theory for

deadlock-freedom in two directions. First, we will consider formulating a theory for

deadlocks in arbitrary network topologies. It turns out that the continuation relation

on local states is definable for arbitrary topologies and not just for rings. It remains

to demonstrate how the recursive addition of nodes/processes to a distributed protocol

affects the continuation relation of each of its processes, thereby affecting the finiteness

146



of the continuation graph for arbitrary network sizes. Second, we will equally consider

reachability properties of subsets of local states. Specifically, we will investigate the

possibility of designing general safety properties in arbitrary networks by exploring the

local state spaces of their processes in a way similar to local reasoning about deadlocks.

Livelock-Freedom and Non-Self-Disablement. Despite the fact that the verification of

livelocks in unidirectional rings is undecidable in general [45], we consider formulating

non-identical necessary and sufficient conditions for the livelock-freedom of general

protocols on unidirectional rings. We shall develop similar conditions for arbitrary

networks too. It turns out that, in arbitrary networks of self-disabling processes, the absence

of sub-rings of processes where the Flow Equation, as defined in Section 6.2 does not

hold, is sufficient for proving global livelock-freedom of the ring. On the other hand,

having an isolated sub-ring of processes in an arbitrary network, where both the Flow and

Reconstruction Equations of Chapter 6 hold, sufficiently prove the existence of a livelock.

A sub-ring is isolated if and only if every local transition participating in the global

livelock does not access variables other than those in the designated sub-ring. We shall

investigate the possibility of further weakening (strengthening) these sufficient (necessary)

conditions for livelock-freedom. Ultimately, we plan to develop synthesis algorithms and

corresponding tools that reason about deadlocks, livelocks and local safety properties for

arbitrary distributed protocols.
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[154] S. Leue, A. Ştefănescu, and W. Wei, “A livelock freedom analysis for infinite state

asynchronous reactive systems,” CONCUR 2006–Concurrency Theory, pp. 79–94,

2006.

[155] ——, “Dependency analysis for control flow cycles in reactive communicating

processes,”Model Checking Software, pp. 176–195, 2008.

160


	Automated design of self-stabilization
	Recommended Citation

	viewcontent.cgi

