
Research Article

Automated Design Space Exploration with Aspen

Kyle L. Spafford and Jeffrey S. Vetter

Oak Ridge National Laboratory, One Bethel Valley Road, Building 5100, MS-6173 Oak Ridge, TN 37831-6173, USA

Correspondence should be addressed to Je�rey S. Vetter; vetter@computer.org

Received 22 April 2014; Accepted 2 November 2014

Academic Editor: RomanWyrzykowski

Copyright © 2015 K. L. Spa�ord and J. S. Vetter.�is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

Architects and applications scientists o	en use performance models to explore a multidimensional design space of architectural
characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations
forced users to
rst develop a performance model and then repeatedly evaluate and analyze the model manually. �ese manual
investigations proved laborious and error prone. More importantly, the complexity of this traditional process o	en forced users
to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable
Performance Engineering Notation) language with three new language constructs: user-de
ned resources, parameter ranges, and
a collection of costs in the abstract machine model. �en, we use these constructs to enable automated design space exploration
via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived
from Aspen models and formulated as pure nonlinear programs. �e analysis tools are demonstrated using examples based on
Aspen models for a three-dimensional Fast Fourier Transform, the CoMDmolecular dynamics proxy application, and the DARPA
Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling
questions quickly and rigorously when compared to the traditional manual approach.

1. Introduction

�e design of next generation Exascale computer architec-
tures aswell as their future applications is complex, uncertain,
and intertwined. Not surprisingly, modeling and simulation
play an important role during these early design stages as
neither the architectures nor the applications yet exist in
any substantive form. Consequently, relevant performance
models need to describe a complex, multidimensional design
space of algorithms, application parameters, and architec-
tural characteristics. Traditional performancemodeling tools
made this process di�cult and resulted in a tendency to use
simpler, less accurate models.

In our earlier work, we designedAspen (Abstract Scalable
Performance Engineering Notation) [1], a domain speci
c
language for structured analytical performance modeling,
to allow scientists to construct, evaluate, verify, compose,
and share models of their applications. Aspen speci
es a
formal language and methodology that allows modelers to
quickly generate representations of their applications as well
as abstract machine models. In addition, Aspen includes

a suite of analysis tools that consume thesemodels to produce
a variety of estimates for computation, communication, data
structure sizes, algorithm characteristics, and bounds on
expected runtime. Aspen can generate all of these estimates
without application source code or low-level architectural
information like Register Transfer Level (RTL).�is ability to
copewith high levels of uncertainty distinguishesAspen from
simulators, emulators, and other trace-driven approaches.

In fact, Aspen (and analytical modeling in general) is
particularly useful at an early time horizon in the codesign
process where the space of possible application parame-
ters, algorithms, and architectures is too large to search
with computationally intensive methods (e.g., cycle-accurate
simulation) [2]. With this much uncertainty, application
developers tend to identify important ranges of application
parameters, rather than discrete values. Similarly, hardware
architects may have identi
ed a range of possible computa-
tional capabilities, but the machine characteristics have not
been
nalized. For example, feasible clock ranges may be
dictated by the feature size and known well in advance of
fabrication. Finding optima within these ranges transforms

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 157305, 10 pages
http://dx.doi.org/10.1155/2015/157305

2 Scienti
c Programming

a typical performance modeling projection into an optimiza-
tion problem.

1.1. Key Contributions. To address this challenge of design
space exploration, we have extended our Aspen language and
environment with expressive semantics for characterizing
�exible design spaces rather than single models. Speci
cally,
we add three new language constructs to Aspen: user-de
ned
resources, parameter ranges, and a collection of costs in the
abstract machine model. �en, we use these constructs to
enable automated design space exploration via a nonlinear
optimization solver. �e solver uses these ranges (along with
other constraints) to evaluate the Aspen performancemodels
and evaluate a user-de
ned objective function for each point
in the design space. As we will show, this automated process
can allow thousands of model evaluations quickly and with
minor regard to the performance model complexity.

�e key contributions of this paper are as follows:

(1) a description of Aspen’s syntax and semantics for
specifying resources, parameter ranges, and costs in
the abstract machine model;

(2) a formal problem description for four types of opti-
mization problems derived from Aspen models;

(3) a description of new Aspen analysis tools which
consume Aspen models and explore the design space
with a standard nonlinear optimization solver;

(4) a demonstration of these new capabilities on existing
Aspen models for 3DFFT, CoMD, and the Streaming
Sensor Challenge Problem [3].

1.2. Related Work. In the space of analytical models, Aspen’s
approach to the abstract machine model is conceptually in
between pure analytical models and semiempirical power-
performancemodels based ondirectmeasurement. Examples
of the former include BSP [4] and Log� variants [5, 6]
that focus strictly on algorithmic bounds. Examples of the
latter include models based on performance counters or
measurements [7–12] including proposed counters such as
the leading loads counter [13]. Aspen is distinguished from
these works in that it is capable of modeling machines
and applications in more detail than the pure analytical
models while obviating the requirement of the semiempirical
approaches for an instrumented execution environment.
Other related approaches are trace-driven and use linear
programming for power-performance exploration, especially
for searching the con
guration space of dynamic voltage and
frequency scaling [14, 15] or making decisions under explicit
hardware power bounds [16].

On the application side, our goals for the use of Aspen
and the 3DFFT model are directly related to the Exascale
feasibility and projection studies of Gahvari and Gropp [17],
Bhatele et al. [18], and Czechowski et al. [19].

In terms of design space exploration itself, an automated
approach is a well-studied topic. Hardware-focused studies
are also common, although they typically focus on recon
g-
urable architectures [20–22], particularly in well-constrained

compiler-based planning or system on a chip (SoC) designs
[23–26].

Several works focus on the theoretical aspects of explor-
ing design spaces. Peixoto and Jacome examine metrics for
the high-level design of such systems [27]. �ere are also
works focusing on the abstractions [28] and algorithms
for the search [29], environments where source code is
available and modi
able [30], and specialized approaches for
multilevel memory hierarchies [30]. In general, these works
have similar goals and overall function to DSE in Aspen, but
they consider very di�erent machine models (usually with
much more certainty and detail than the Aspen AMM).

2. Aspen Overview

While a more detailed description of Aspen has been
published elsewhere [1], we brie�y provide an overview
and illustrate its use on an example model for a 1D Fast
Fourier Transform (FFT). Aspen’s domain speci
c language
(DSL) approach to analytical performancemodeling provides
several advantages. For instance, Aspen’s control construct
helps to fully capture control �ow and preserves more
algorithmic information than traditional frameworks like
BSP [4] and Log� variants [5, 6]. Similarly, the abstract
machine model is more expressive than frameworks that
reduce machine speci
cations to a small set of parameters.

�e formal language speci
cation forces scientists to
construct models that can be syntactically checked and
consumed by analysis tools; this formal speci
cation also
facilitates collaboration between domain experts and com-
puter scientists. Aspen has also been de
ned to include the
concept of modularity, so that it is easy to compose, reuse,
and extend performance models.

Furthermore, this speci
cation allows scientists to
include application speci
c parameters in their model
de
nitions, which would otherwise be di�cult to infer. With
this feature, Aspen can help answering application-speci
c
questions such as how does parallelism vary with the number
of atoms? And, this type of approach also allows inverse
questions to be asked, such as, given a machine, what appli-
cation problem can be solved within the system constraints?

Aspen is complementary to other performance predic-
tion techniques including simulation [31, 32], emulation, or
measurement on early hardware prototypes. Compared to
these techniques, Aspen’s analytical model is machine-
independent, has fewer prerequisites (e.g., machine descrip-
tions, source code), and decreased computational require-
ments. �is positions Aspen as an especially useful tool
during the early phases in the modeling lifecycle, with con-
tinuing use as a high-level tool to guide detailed studies with
simulators. Hence, the primary goal of Aspen is to facilitate
algorithmic and architectural exploration early and o	en.

2.1. Example: FFT. �eFFT is a common scienti
c kernel and
plays an important role in the image formation phase of SSCP
[3], explored further in Section 5. Fortunately, FFT is also a
well-studied algorithm, and tight bounds on the number of
operations in an FFT are known.

Scienti
c Programming 3

(1) kernel 1DFFT {
(2) exposes parallelism [n]

(3) requires flops [5 * log2(n)] as dp, complex, simd

(4) requires loads [a * max(1, log(n)/log(Z)) * wordSize] from

fftVolume

(5) }
Listing 1: Aspen kernel for 1D FFT.

(1) param n = 1 .. 100 // Basic Syntax

(2) param n = 100 in 10 .. 1000 // Default Value

Listing 2: Syntax for an Aspen range.

For an �-element Cooley-Tukey style 1D FFT [33], the
required number of �oating point operations is bounded
by O(5� log2�), with some implementations requiring only
80% of this upper bound [34]. �e number of cache misses
has also been bounded for any FFT in the I/O complexity
literature (on any two-level memory hierarchy which meets
the tall cache assumption [35]) as Θ(1 + (�/�)(1 + log��)),
where � is the cache line size in words and � is the cache
capacity in words. For su�ciently large �, the number of
cachemisses,��, approaches�� = ��max(log��, 1), where� is a constant [19, 35] which translates the upper bound to an
explicit count. Using the same variable names, these bounds
roughly translate to two Aspen kernel clauses, as shown in
Listing 1.

�e listing also highlights the use of Aspen traits to
add semantic information to specialize the �ops, indicating
that they are double precision, complex, and amenable to
execution on SIMD FP units. �e trait on the second clause
speci
es that the memory tra�c in this kernel is from the
fftVolume data structure.

�e other variable, 	, is a constant that arises from the
nature of characterizing requirements by asymptotic bounds
(e.g., O()) [35]. Due to the complexity in modeling the
memory hierarchy (e.g., from multilevel cache hierarchies,
replacement policies) this type of constant is frequently
measured using performance counters on an existing imple-
mentation of the algorithm to calibrate the model. It is a
particularly common approach for characterizing memory
tra�c, even in the case of much simpler kernels, like matrix
multiplication [36].

3. Modeling Methodology

In order to facilitate the evaluation of optimization problems,
Aspen has been extended with three new language constructs
to increase expressiveness.

3.1. User-De
ned Resources. Prior work [1] with Aspen con-
strained modelers to a small set of prede
ned quantities
of interest: �ops, loads, stores, and messages. Since then,
requests for modeling more exotic resources like system
calls, allocation/deallocation, and more detailed modeling
of system data paths (PCIe, QPI) have necessitated a more
�exible system.

�e
rst addition to Aspen is the ability for custom
resources to be de
ned at arbitrary points in the abstract
machinemodel (AMM) hierarchy. For instance, integer oper-
ations can be de
ned at the core level and access to a center-
wide, shared
lesystem could be de
ned at the machine
level. Resources may also de
ne custom traits with optional
arguments. All new de
nitions, however, must provide an
expression for how the resource maps to time and how the
traits commutatively modify or replace the base expression
(the mapping when no traits are present). An example of the
new syntax is shown in Listing 3.Note that the newconflict
statement describes the sets of resources that cannot overlap.

Furthermore, the AMM’s assumptions of a completely
connected socket topology and linear contention [1] are
unchanged and apply equally to user-de
ned resources.

3.2. Ranges. �e next construct is the range, illustrated in
Listing 2. �e range or interval is a familiar concept to pro-
grammers, has implementations in most modern languages,
and is fairly easy to express and reason about.

More precisely, a range in Aspen is a closed, inclusive,
connected, and optimal set of real numbers,
. A range that
is closed and inclusive indicates that the interval contains
lower and upper bounds 	 and � such that 	 ≤ ≤ �,∀, 	, � ∈
, and ∀
 ∈ R. Optimal, in this case, means
that range should be as narrow as possible. Aspen also allows
for the speci
cation of an explicit default value. �is default
value provides a convenient way for modelers to encode the
“common case.” When le	 unspeci
ed, the lower bound is

4 Scienti
c Programming

(1) core snbCore {
(2)
(3) resource flops(number) [number / snbIssue]

(4) // Traits

(5) with dp [base * 2],

(6) // Optional Trait Argument

(7) simd(width) [base / min(width, snbSIMDWidth)],

(8) fmad [base / 2]

(9) // Per-resource, per-core dynamic power

(10) dynamic power [(tdp - snbIdlePower) / snbNumCores]

(11)
(12) resource intops(number) [number / snbIssue]

(13) dynamic power [(intMaxPower - snbIdlePower) / snbNumCores]

(14)
(15) resource aesops(number) [number / snbIssue]

(16) dynamic power [(aesMaxPower - snbIdlePower) / snbNumCores]

(17)
(18) conflict (flops, intops, aesops)

(19)
(20) // Shared static power cost

(21) static power [snbIdlePower]

(22) }
Listing 3: Aspen core model with static and dynamic costs.

used (by convention) in single analyseswhich do not consider
ranges.

3.3. Including Costs in the Abstract Machine Model. �e sec-
ond extension to Aspen includes the incorporation of several
new types of costs into the abstract machine model: rack
space, die area, static power, dynamic power, and component
price. Each type of cost has rules for which components of
the AMMhierarchy are applicable. However, all of these costs
are optional. �e only required cost is the speci
cation of the
time it takes to process a given resource.

Available rack space, the simplest cost, is speci
ed at the
machine level and associated costs are de
ned per node in
standard units.

Total available die area is provided at the socket level and
area costs are listed explicitly for all core, cache, and memory
components. �is allows, for instance, exploration of the
tradeo� between die area spent on cache and the number of
cores.

Static power costs are speci
ed by providing each com-
ponent of the AMMhierarchy with an idle wattage. Dynamic
power is similarly speci
ed at each point in the hierarchy, but
it is also split by resource.�at is, for a given component, per-
forming di�erent operations may result in di�erent dynamic
power requirements. A trivial example of this di�erence is an
AMMwhere the cost of a �oating point operation exceeds the
cost of an integer operation.

Consider the example shown in Listing 3, where anAMM
model for an Intel Sandy Bridge processor distinguishes
between the power costs of a standard integer operation and
the execution of the new advanced encryption instruction

set. While this example may seem somewhat contrived with
existing hardware, its inclusion as a feature is important
in future-proo
ng Aspen against the general trend towards
more specialized instructions and
xed-function units that
may vary widely in energy consumption.

�ese power costs also allow specifying constraints for
maximum instantaneous power draw (i.e., highest wattage)
and total energy consumption. Maximum power draw for an
application is computed as the sum of all AMM component
static costs and the largest of the sums of dynamic costs for
each kernel:

�max =
static⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

M∑
�
��idle +

dynamic⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
K

max
�

(R�∑
�
��dyn), (1)

where M is the set of all components in the AMM,�� is the
idle power draw of component �, K is the set of all kernels in
the application model, R� is the set of all resources required
by kernel �, and��dyn is the dynamic power cost of resource �.
In the absence of an application model, the maximum power
draw is given by upper bound as the sum of static costs and
the dynamic costs of all noncon�icting resources.

Similar to Aspen’s other assumptions, these power cal-
culations represent a simpli
ed model which neglects sev-
eral physical factors including cooling costs and transitions
between component idle/peak states.

�e Aspen tools already include the capability to produce
bounds on predicted runtime by kernel clause [1], and

Scienti
c Programming 5

the total energy cost of an application model is hence
computed by the following:

�energy = static⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(�idle × �total) +
dynamic⏞⏞⏞

K∑
�
(calls� ∗ C∑

�
(�� ×��)), (2)

where �idle is the total system idle power, �total is the total
runtime,K is the set of all application kernels, calls� indicates
the number of calls to kernel �, C is the set of all clauses in
kernel �, �� is the runtime bound on clause �, and �� is the
dynamic power cost of the resource associated with clause �.
4. Nonlinear Optimization Solver

Using these new ranges and costs, a variety of optimization
problems can be derived from Aspen models. �ese opti-
mization problems have the following form.

(i) (x⃗) is an objective function which must be maxi-
mized or minimized such as runtime, energy con-
sumed, or problem size.

(ii) x⃗ = 1, 2, . . . , � is a vector of decision variables
with upper and lower bounds, sometimes called free
variables. �ese bounds are typically derived from a
range construct. Some examples include the number
of nodes, problem sizes, and clock frequencies. �e
number of decision variables is known as the dimen-
sionality of the problem.

(iii) ℎ�(x⃗) = 0, � ∈ 1, . . . , #, is a set of# equality constraints,
which are arbitrary functions of the decision variables
that must be equal to zero.

(iv) $�(x⃗) ≤ 0, � ∈ 1, . . . , %, is a set of % inequality
constraints, which are functions on the decision
variables that must be less than or equal to zero.

�e di�culty of these optimization problems depends
on several factors. In the best case, the constraint functions
and the objective function are linear, and all of the decision
variables are reals. �is results in a traditional linear pro-
gramming problem which can be trivially solved given the
relatively low number of decision variables derived from an
Aspen model.

If, however, some decision variables are integers, the
problem is a mixed integer-linear program and is NP-
complete. Similarly, di�culty is increased if the objective
function or any of the constraint functions is nonlinear (i.e.,
nonlinear programming). And, if the objective function is
not di�erentiable, a large class of e�cient gradient-based
methods cannot be used.

�e current set of Aspen optimization tools relaxes all
integer variables such that the typically generated optimiza-
tion problem is a completely bounded, pure nonlinear pro-
gram where the objective function may not be di�erentiable.
An example of a relaxed integer variablemight be the number
of nodes (which, in practice, is easy to round to the nearest
integer a	er optimization).

Since the objective or constraints may be complex,
derived expressions (e.g., projected runtime, energy costs,
and operation counts), these functions may be nonlinear
and nondi�erentiable. Hence, all optimization problems are
solved using a gradient-free improved stochastic ranking
evolution strategy (ISRES) [37] algorithm from the NLopt
package [38].

Because no feasible point may be known a priori, these
are considered global (as opposed to local) optimization
problems. Establishing the criteria for termination is not
always straightforward. However, due to the relatively low
dimensionality (ISRES scales to thousands of variables) of
Aspen-generated problems, we select NLopt’s time-based
stopping criterion with a threshold of a few seconds.

An interesting facet of this approach is that a user can
constrain any combination of the parameters, leaving the
objective function to include the remaining parameters. For
example, in the Machine Planner scenario, the user de
nes
the application model and constraints, general parameters
of time to solution or power, and they use the design space
exploration to search for the best combination of machine
parameters. In another example, the Problem Size Planner,
the user de
nes themachine parameters, constrains the same
general parameters of time to solution or power, and then
maximizes the application input problem that can be solved
with that con
guration.

5. Design Space Exploration

Combined with the existing analysis tools, the new range and
cost constructs enable the formulation of a vast number of
optimization problems for design space exploration. Combi-
nations of the number and type of Aspen models involved,
the portions of those models that are
xed or free variables,
the goal (maximization or minimization), objective function,
and additional constraints rapidly grow out of control. To
constrain this otherwise unwieldy variety, the tool interface
for design space exploration is centered on four common
scenarios, summarized in Table 1.

5.1. Implementation Overview. �e implementation of the
tools, however, enables roughly the same work�ow for each
of the four scenario types, as depicted in the process diagram
in Figure 1. �is work�ow has two main phases, problem
formulation and optimization.

First, depending on the scenario, one of the Aspen opti-
mization tools is run.�is tool consumes one or more Aspen
model
les as input and collects the relevant ranges from
the model into the vector of decision variables, x⃗. Additional
constraints such as time, energy, space, capacity, or price are
speci
ed via command line option. Also speci
ed via the
command line are nonstandard objective functions, which
may include one or more parameters, derived capabilities, or
weighted combinations of parameters and capabilities.

Based on these inputs, the Aspen optimization tools gen-
erate a single C++ code
le that drives NLopt’s standard API.
�is generated code preserves the semantics of the original
Aspen models such that variable names are consistent and

6 Scienti
c Programming

Table 1: Comparison of Aspen scenarios for design space exploration.

Name Application model AMM Constraints Objectives

Parameter tuner Single, free None Param ranges
Minimize op counts,

data sizes

Problem size planner Single, free Single,
xed
Param ranges, energy
budget, and time limit

Maximize App
params

Machine planner Single,
xed Single, free
Param ranges, energy
budget, and time limit

Minimize AMM
params

AMM architect None Multiple, free
Param ranges, power
budget, and price

Maximize capability,
minimize costs

AMM �le

Application

model �le

Full trace

(.dat �le)

Optimization

tool suite
Optimize

NLOpt
driver
(C++)

Feasibility,
optimum,

and x

Constraints,

weights (CLI)
f(x), and

Figure 1: Process diagram of the design exploration work�ow. CLI
indicates inputs speci
ed via command line options to the four
problem formulation tools. (x⃗) refers to the objective function and
x⃗ is the vector of decision variables.

the code is amenable to inspection and modi
cation for
special use cases.

In the optimization phase, the generated C++ code is
compiled and run. �is code prints the value of the objective
function at the optimum as well as the values of all of the
decision variables. Or, in the case of unfeasible problems, it
indicates that no optimum was found. It optionally generates
a trace
le that contains all the values of x⃗ and (x⃗) for each
evaluation of the objective function for postprocessing and
visualization.

5.2. DSE Scenarios. In the following sections, we provide
an overview of each scenario (and Aspen tool) in more
detail and provide some pertinent example analyses. Note
that, for these examples, we use relatively straightforward
objective functions and only a handful of decision variables,
but Aspen can handle problems of arbitrary complexity and
dimensionality (given a reasonable solution timeframe).

5.2.1. Parameter Tuner. �e
rst optimization tool addresses
application models with tunable parameters that have a
signi
cant impact on performance. While this is generally
applicable to application-speci
c parameters, our motivating
use case is a tiling factor. �is type of factor (equivalent to
blocking and chunking factors for our purposes) is quite

common due to data-parallel decomposition and cache-
blocking techniques.

As a motivating example, we consider the DARPAUHPC
Streaming Sensor Challenge Problem (SSCP) [3]. In this
challenge problem, dynamic sensor data are converted to an
image and pushed through a multistep, data-parallel analysis
pipeline. �e image is split into tiles according to a tiling
factor, tf, which speci
es how many tiles to use in each
dimension.�e two primary phases of the pipeline are digital
spotlighting and backprojection.

�e tf factor has a particularly interesting e�ect on total
�oating point operation count. Digital spotlighting kernels
tend to require less work with smaller tiling factors (largely
due to a requirement for fewer FFTs) while backprojection
is more e�cient at larger tiling factors. Choosing poor tf
results in a potential for substantial unnecessary work (and,
consequently, poor performance and low energy e�ciency).

In order to characterize this tradeo� with the Paramater
Tuner, the Aspen model for SSCP encodes the tiling factor as
a range:

param tf = 32 in 16 .. 64
Combined with a command line argument for the

resource of interest (e.g., �ops, memory capacity), the Param-
eter Tuner generates a minimization problem with one
bounded decision variable (tf) and an objective function that
computes the total number of that resource required by the
kernels in SSCP.

Prior to this work, Aspen had the capability to plot
resource requirements in terms of one or two variables [1].
Figure 2 depicts a standard resource plot annotated with a
tick for the
rst 250 points where the objective function was
evaluated, with the minimum found at 7.009e + 13 total �ops
at a tf of 34.

We note two observations concerning Figure 2. First,
each objective function evaluation is consistent with the
analytically computed total �op count, indicating consistency
across di�erent Aspen tools. Second, the linear relaxation of
tf (an integer) introduces some minor ine�ciency, as the
objective function is evaluated multiple times for equivalent
values.

5.2.2. Problem Size Planner. �e second optimization tool
is focused on the exploration of what problems are feasible
to solve on a machine given a set of constraints. �ese

Scienti
c Programming 7

20 25 30 35 40 45 50 55 60

T
o

ta
l �

o
p

s

Total �ops for image formation

SincInterp

�1d.�

Backprojection

PhaseShi�

All kernels

1.2e + 14

1e + 14

8e + 13

6e + 13

4e + 13

2e + 13

0

Eval. points

tf

Figure 2: A characterization of the total number of �ops required
for SSCP image formation by kernel. Each black tick indicates
a single evaluation of the objective function by the nonlinear
optimizer as it is executed.

constraints can consist of time, power, energy, and/or capacity
limits. In addition to traditional runtime and allocation
planning, searching this design space can help provide an
application-speci
c perspective on the bene
ts of obtaining
new hardware by comparing results across di�erent machine
models.

Tomotivate this tool, we consider amodel for a 3DFFT [1]
and want to answer the question of what is the largest 3DFFT
we can solve such that

(i) the fftVolume data structure
ts into the aggregate
memory of the GPUs on the NSF Keeneland system
[39];

(ii) it has an estimated runtime of less than ten seconds;

(iii) it has an estimated total energy consumption of no
more than
ve megajoules.

Our optimization problem, then, is a maximization prob-
lem of dimensionality one where the single decision variable
(and objective function) is n, the dimension of the 3DFFT
volume. Furthermore, each of the three requirement state-
ments above corresponds to a single inequality constraint.
Figures 3, 4, and 5 show how the requirements for the 3DFFT
scale with n.

�is energy calculation is based on a simple power model
where the dynamic power requirement of the GPU is the
manufacturer’s stated thermal design point (250W) when
performing �oating point operations or memory transfers,
and the static/idle power is that measured using the NVIDIA
system management interface (30W). Transitions between
states are assumed to be instantaneous and without cost.
While simple, this model approximates the race-to-idle
behavior. In future work, this model could be improved by
measuring power draw for each resource using a synthetic
benchmark (e.g., only �ops, only loads/stores, and only MPI
messages).

1.6e + 13

1.4e + 13

1.2e + 13

1e + 13

8e + 12

6e + 12

4e + 12

2e + 12

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
at

a
si

ze
 (

b
yt

es
)

GPU memory capacity

Keeneland capacity

Size of data object: fftVolume

fftVolume

n

Figure 3: �is chart shows the growth in the fftVolume data
structure as a function of n relative to the memory capacity
constraint (GPU physical memory on Keeneland).

0

10

20

30

40

50

60

70

80
E

st
im

at
ed

 r
u

n
ti

m
e

(s
)

Estimated runtime by kernel for 3DFFT

LocalFFT

Shu�e

Exchange

Total (w/CF)

Time budget

Time budget

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n

Figure 4: �is chart shows the increase in predicted runtime as a
function of the dimension of the volume n and its relation to the
speci
ed constraint of
ve seconds. In addition to overall runtime
(CF = control �ow), runtime per invocation of each kernel is also
shown.

5.2.3. Machine Planner. �e third interface for formulating
optimization problems with Aspen models is the Machine
Planner. In contrast to the
rst two tools, the Machine Plan-
ner
xes the application model and focuses on identifying
application-speci
c targets for machine capabilities. In other
words, it explores what minimum level of performance the
machine must attain to complete a workload within a set
amount of time, energy, and/or other constraints.

�is scenario is typically a minimization problem over
parameters in the abstract machine model. As an illustrative
example, we consider a model for the CoMD molecu-
lar dynamics proxy application and the Keeneland AMM.
Speci
cally, we want to
nd the minimum clock frequencies
for a Fermi GPU’s cores and memory that are required to
complete a thousand iterations of CoMD’s embedded atom

8 Scienti
c Programming

0

E
st

im
at

ed
 e

n
er

g
y

(J
)

Estimated energy by kernel for 3DFFT

2e + 06

4e + 06

6e + 06

8e + 06

1e + 07

1.2e + 07

LocalFFT

Shu�e

Exchange

Static energy (w/CF)

Total energy (w/CF)

Energy budget

Energy budget

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n

Figure 5: �is chart shows the relationship between n and overall
energy consumption, relative to the constraint of
ve megajoules.
In addition to overall and per-kernel dynamic consumption, static
costs for Keeneland are also shown.

4

3.5

3

2.5

2

1.5

1

0.5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Core clock (GHz)

Feasible clock range for CoMD EAM kernel

M
em

o
ry

 c
lo

ck
 (

G
H

z)

Figure 6: �is
gure shows the feasible core and memory clock
ranges for computing one thousand iterations of the CoMD EAM
force kernel on a Fermi GPU within one second. Green markers
indicate evaluation points that satisfy the constraints and red
markers indicate infeasible clock settings.

method (EAM) force kernel for just over a million atoms
(1048576) in one second.

�e parameter hierarchy in Listing 4 shows how the
e�ectivememory bandwidth is computed as a derived param-
eter from the clock rate that incorporates aspects of the
GDDR5 architecture including the interface width and the
measured overheads associated with using ECC. GDDR5’s
quad pumping, transferring a word on the rising and falling
edge of two clocks, is accounted for within the gddr5Clock
parameter, although this could be broken out into a separate
parameter. Furthermore, eccPenalty accounts for over-
heads and sustained is based on measurements from the
SHOC benchmark suite [40] that accounts for the di�erence
between maximum sustained and peak bandwidth.

Figure 6 shows the feasible range for both clocks and
provides two insights. First, the EAM kernel is strongly
memory-bound and is feasible at the lowest point in

the core clock range. And second, the increased concentra-
tion of evaluation points toward the computed optimum (1e
+ 08, 1.27e + 09) shows NLopt converging on the solution.

5.2.4. AMM Architect. �e fourth tool is the AMM Archi-
tect which focuses on application-independent analyses. It
primarily facilitates solving two types of problems—capacity
planning under constraints and optimizing within a bounded
projection for future performance targets (similar to the
projections from the Echelon project [41] and DARPA Exas-
cale Study [42]). �ese scenarios are typically maximization
problems, where the objective function is some machine
capability like peak �ops, bandwidth, or capacity.

As an example calculation, we consider a sample prob-
lem which maximizes the �oating-point capability for a
Keeneland-like architecture under the following constraints:

(1) space and power budget of 42U (one rack) and 18KW,
respectively,

(2) minimum double precision FP capability of 50TF,

(3) minimum aggregate FP capability to memory band-
width ratio of 3 : 1 �ops : bytes.

�e decision variables correspond to all the ranges in
the machine model including the number of nodes, number
of sockets (1–4) and GPUs per node (1–8), and all the
clock frequencies (CPU core, DDR3 memory, GPU core, and
GDDR5 memory).

A	er running the AMM Architect, we discover that
this problem has no feasible solution. �is problem was
chosen to highlight one of the limitations of the optimization-
based approach: when there is no feasible solution for a
multiconstraint problem, determiningwhy the solution is not
feasible or how “close” to feasibility the best point is requires
nontrivial postprocessing. In practice, however, this can
usually be overcome by iteratively relaxing the constraints.

6. Conclusions

Most scientists that use performance modeling are seeking
to understand systems or optimize speci
c con
gurations,
rather than generating a single forward performance projec-
tion. Likewise, many of the performance modeling scenarios
facilitated by Aspen are concerned with the exploration of a
multidimensional design space. �e addition of user-de
ned
resources, parameter ranges, and AMM costs substantially
increases Aspen’s �exibility and helps facilitate more complex
modelingwork�ows.�e ability to specify static and dynamic
energy costs is especially important for models that describe
extreme-scale or energy-constrained environments.

With these new costs, the vast array of potential optimiza-
tion problems can be unwieldy. Aspen attempts to streamline
problem formulation by constraining the interface to four
speci
c scenarios.While these tools do not address all poten-
tial problems of interest (and we anticipate that expert users
will modify these tools and generate their own scenarios),
they do automate the process for common performance
modeling tasks.

Scienti
c Programming 9

(1) // Effective clock (includes quad-pump)

(2) param gddr5Clock = 3.7 * giga in 100 * mega .. 4 * giga

(3) param gddr5Width = 48

(4) param eccPenalty = 0.88

(5) param sustained = 0.852// measured

(6) param gddr5BW = gddr5Clock * gddr5Width * eccPenalty * sustained

Listing 4: Aspen parameters for GDDR5 bandwidth.

6.1. Future Work. In the course of this work, we have iden-
ti
ed two major challenges that require further study. First,
complex models, especially those with high dimensionality,
will require additional techniques to e�ectively visualize
the design space. While some visualizations geared towards
multidimensional data exist (e.g., parallel coordinates), visu-
alizing ten or more dimensions is a common problem in
scienti
c visualization. �e current optimization tools write
out a data
le that contains each evaluation of the objective
function, and the search space can be visualized a few
dimensions per plot.

Another challenge for generating optimization problems
involves specifying weights for complex objective functions.
Directly adding weights to Aspen parameter de
nitions
proved cumbersome and failed to address objective func-
tions with nonparameter, derived quantities. Instead, the
current tools require explicit command-line options for these
weights.

Conflict of Interests

�e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgments

�is research is sponsored by the O�ce of Advanced Scien-
ti
c Computing Research in the U.S. Department of Energy
and DARPA Contract HR0011-10-9-0008. �e paper has
been authored by Oak Ridge National Laboratory, which
is managed by UT-Battelle, LLC under Contract DE-AC05-
00OR22725 to the U.S. Government. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution,
or allow others to do so, for U.S. Government purposes.

References

[1] K. L. Spa�ord and J. S. Vetter, “Aspen: a domain speci
c
language for performance modeling,” in Proceedings of the
24th International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’12), pp. 1–11, IEEE, Salt
Lake City, Utah, USA, November 2012.

[2] J. J. Yi, L. Eeckhout, D. J. Lilja, B. Calder, L. K. John, and J. E.
Smith, “�e future of simulation: a
eld of dreams?” Computer,
vol. 39, no. 11, pp. 22–29, 2006.

[3] D. Campbell, D. Cook, and B. Mulvaney, “A streaming sensor
challenge problem for ubiquitous high performance comput-
ing,” in Proceedings of 15th Annual Workshop on High Perfor-
mance Embedded Computing (HPEC ’11), November 2011.

[4] L. G. Valiant, “Bridging model for parallel computation,” Com-
munications of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[5] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: incorporating long messages into the LogP model,”
in Proceedings of the 7th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’95), pp. 95–105, July 1995.

[6] D. Culler, R. Karp, D. Patterson et al., “LogP: Towards a
realisticmodel of parallel computation,” inProceedings of the 4th
ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming, pp. 1–12, May 1993.

[7] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.
Nikolopoulos, “Online power-performance adaptation of mul-
tithreaded programs using hardware event-based prediction,”
in Proceedings of the 20th Annual International Conference
on Supercomputing (ICS ’06), pp. 157–166, Association for
Computing Machinery, July 2006.

[8] S.-J. Lee, H.-K. Lee, and P.-C. Yew, “Runtime performance
projectionmodel for dynamic powermanagement,” inAdvances
in Computer Systems Architecture, vol. 4697 of Lecture Notes in
Computer Science, pp. 186–197, Springer, Berlin, Germany, 2007.

[9] D. Snowdon, G. Van Der Linden, S. Petters, and G. Heiser,
“Accurate runtime prediction of performance degradation
under frequency scaling,” in Proceedings of the Workshop on
Operating Systems Platforms for Embedded Real-Time Applica-
tions, 2007.

[10] S. Song and K. W. Cameron, “System-level power-performance
e�ciency modeling for emergent GPU architectures,” in Pro-
ceedings of the 21st International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT ’12), pp. 473–474,
ACM, September 2012.

[11] S. Song,M. Grove, and K.W. Cameron, “An iso-energy-e�cient
approach to scalable system power-performance optimization,”
in Proceedings of the IEEE International Conference on Cluster
Computing (CLUSTER ’11), pp. 262–271, September 2011.

[12] S. Song, C.-Y. Su, R. Ge, A. Vishnu, and K. W. Cameron, “Iso-
energy-e�ciency: an approach to power-constrained parallel
computation,” in Proceedings of the 25th IEEE International
Parallel and Distributed Processing Symposium (IPDPS ’11), pp.
128–139, IEEE, May 2011.

[13] B. Rountree, D. K. Lowenthal, M. Schulz, and B. R. De
Supinski, “Practical performance prediction under dynamic
Voltage frequency scaling,” in Proceedings of the International
Green Computing Conference (IGCC ’11), July 2011.

[14] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de
Supinski, and M. Schulz, “Bounding energy consumption in

10 Scienti
c Programming

large-scale MPI programs,” in Proceedings of the ACM/IEEE
Conference on Supercomputing (SC ’07), pp. 49:1–49:9, ACM,
November 2007.

[15] B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz,
V. W. Freeh, and T. Bletsch, “Adagio: making DVS practical
for complex HPC applications,” in Proceedings of the 23rd
International Conference on Supercomputing (ICS ’09), pp. 460–
469, ACM, Newport Beach, Calif, USA, June 2009.

[16] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal,
and M. Schulz, “Beyond DVFS: a
rst look at performance
under a hardware-enforced power bound,” in Proceedings of
the IEEE 26th International Parallel and Distributed Processing
Symposium Workshops (IPDPSW ’12), pp. 947–953, Shanghai,
China, May 2012.

[17] H. Gahvari andW. Gropp, “An introductory exascale feasibility
study for FFTs and multigrid,” in Proceedings of the IEEE
International Parallel and Distributed Processing Symposium
(IPDPS ’10), pp. 1–9, IEEE, Atlanta, Ga, USA, April 2010.

[18] A. Bhatele, P. Jetley, H. Gahvari, L. Wesolowski, W. D. Gropp,
and L. Kalé, “Architectural constraints to attain 1 exa�op/s for
three scienti
c application classes,” in Proceedings of the IEEE
International Parallel and Distributed Processing Symposium
(IPDPS ’11), pp. 80–91, IEEE, Anchorage, Alaska, USA, May
2011.

[19] K. Czechowski, C. Battaglino, C. McClanahan, K. Iyer, P.-K.
Yeung, andR.Vuduc, “On the communication complexity of 3D
FFT and its implications for exascale,” in Proceedings of the 26th
ACM International Conference on Supercomputing (ICS ’12), pp.
205–214, June 2012.

[20] K. S. Chatha and R. Vemuri, “An iterative algorithm for
hardware-so	ware partitioning, hardware design space explo-
ration and scheduling,” Design Automation for Embedded Sys-
tems, vol. 5, no. 3, pp. 281–293, 2000.

[21] E. Sotiriades and A. Dollas, “Design space exploration for
the BLAST algorithm implementation,” in Proceedings of the
15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM ’07), pp. 323–325, April 2007.

[22] A. Stammermann, L. Kruse, W. Nebel et al., “System level
optimization and design space exploration for low power,”
in Proceedings of the 14th International Symposium on System
Synthesis (ISSS ’01), pp. 142–146, ACM, October 2001.

[23] J. Keinert,M. Streubuhr, T. Schlichter et al., “SystemCoDesigner
an automatic ESL synthesis approach by design space explo-
ration and behavioral synthesis for streaming applications,”
ACM Transactions on Design Automation of Electronic Systems,
vol. 14, no. 1, article 1, 2009.

[24] K. Lahiri, A. Raghunathan, and S. Dey, “E�cient exploration
of the SoC communication architecture design space,” in Pro-
ceedings of the IEEE/ACMInternational Conference onComputer
Aided Design (ICCAD ’00), pp. 424–430, IEEE, Piscataway, NJ,
USA, 2000.

[25] K. Lahiri, A. Raghunathan, and S. Dey, “Design space explo-
ration for optimizing on-chip communication architectures,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, no. 6, pp. 952–961, 2004.

[26] M. Palesi and T. Givargis, “Multi-objective design space explo-
ration using genetic algorithms,” in Proceedings of the 10th Inter-
national Symposium on Hardware/Soware Codesign (CODES
’02), pp. 67–72, May 2002.

[27] H. P. Peixoto and M. F. Jacome, “Algorithm and architecture-
level design space exploration using hierarchical data �ows,” in

Proceedings of the IEEE International Conference onApplication-
Speci
c Systems, Architectures and Processors (ASAP ’97), pp.
272–282, July 1997.

[28] P. Mishra, N. Dutt, and A. Nicolau, “Functional abstrac-
tion driven design space exploration of heterogeneous pro-
grammable architectures,” in Proceedings of the 14th Interna-
tional Symposium on System Synthesis (ISSS ’01), pp. 256–261,
ACM, New York, NY, USA, October 2001.

[29] I. Karkowski and H. Corporaal, “Design space exploration
algorithm for heterogeneousmulti-processor embedded system
design,” in Proceedings of the 35th Annual Design Automation
Conference (DAC ’98), pp. 82–87, San Francisco, Calif, USA,
June 1998.

[30] R. Szymanek, F. Catthoor, and K. Kuchcinski, “Time-energy
design space exploration formulti-layermemory architectures,”
in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, vol. 1, pp. 318–323, February 2004.

[31] C. L. Janssen, H. Adalsteinsson, and J. P. Kenny, “Using sim-
ulation to design extremescale applications and architectures:
programming model exploration,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 38, no. 4, pp. 4–8, 2011.

[32] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett et al., “�e
structural simulation toolkit,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 4, pp. 37–42, 2011.

[33] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,”Mathematics of Compu-
tation, vol. 19, no. 90, pp. 297–301, 1965.

[34] S. G. Johnson and M. Frigo, “A modi
ed split-radix FFT
with fewer arithmetic operations,” IEEE Transactions on Signal
Processing, vol. 55, no. 1, pp. 111–119, 2007.

[35] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-oblivious algorithms,” in Proceedings of the IEEE 40th
Annual Conference on Foundations of Computer Science, pp.
285–297, October 1999.

[36] T. Hoeer, W. Gropp, W. Kramer, and M. Snir, “Performance
modeling for systematic performance tuning,” in Proceedings of
the State of the Practice Reports (SC ’11), pp. 6:1–6:12, 2011.

[37] T. P. Runarsson and X. Yao, “Search biases in constrained
evolutionary optimization,” IEEE Transactions on Systems, Man
and Cybernetics Part C: Applications and Reviews, vol. 35, no. 2,
pp. 233–243, 2005.

[38] S. Johnson, “�e NLopt nonlinear optimization package,”
http://ab-initio.mit.edu/nlopt.

[39] J. S. Vetter, R. Glassbrook, J. Dongarra et al., “Keeneland:
bringing heterogeneous GPU computing to the computational
science community,”Computing in Science and Engineering, vol.
13, no. 5, pp. 90–95, 2011.

[40] A. Danalis, G.Marin, C.McCurdy et al., “�e scalable heteroge-
neous computing (SHOC) benchmark suite,” in Proceedings of
the 3rdWorkshop on General-Purpose Computation on Graphics
Processing Units (GPGPU ’10), pp. 63–74, ACM, March 2010.

[41] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D.
Glasco, “GPUs and the future of parallel computing,” IEEE
Micro, vol. 31, no. 5, pp. 7–17, 2011.

[42] P. Kogge, K. Bergman, S. Borkar et al., “Exascale computing
study: technology challenges in achieving exascale systems,”
Tech. Rep., DARPA Information Processing Techniques O�ce,
2008.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

