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ABSTRACT Oral cancer is a major global health issue accounting for 177,384 deaths in 2018 and it is

most prevalent in low- and middle-income countries. Enabling automation in the identification of potentially

malignant and malignant lesions in the oral cavity would potentially lead to low-cost and early diagnosis

of the disease. Building a large library of well-annotated oral lesions is key. As part of the MeMoSA R©

(Mobile Mouth Screening Anywhere) project, images are currently in the process of being gathered from

clinical experts from across the world, who have been provided with an annotation tool to produce rich labels.

A novel strategy to combine bounding box annotations from multiple clinicians is provided in this paper.

Further to this, deep neural networks were used to build automated systems, in which complex patterns were

derived for tackling this difficult task. Using the initial data gathered in this study, two deep learning based

computer vision approaches were assessed for the automated detection and classification of oral lesions for

the early detection of oral cancer, these were image classification with ResNet-101 and object detection

with the Faster R-CNN. Image classification achieved an F1 score of 87.07% for identification of images

that contained lesions and 78.30% for the identification of images that required referral. Object detection

achieved an F1 score of 41.18% for the detection of lesions that required referral. Further performances are

reported with respect to classifying according to the type of referral decision. Our initial results demonstrate

deep learning has the potential to tackle this challenging task.

INDEX TERMS Composite annotation, deep learning, image classification, object detection, oral cancer,

oral potentially malignant disorders.

I. INTRODUCTION

Oral cancer is one of the most common cancers worldwide

and is characterized by late diagnosis, high mortality rates

The associate editor coordinating the review of this manuscript and

approving it for publication was Essam A. Rashed .

and morbidity. GLOBOCAN estimated 354,864 new cases

and 177,384 deaths in 2018 [1]. Two-thirds of the global

incidence of oral cancer occurs in low- and middle-income

countries (LMICs), half of those cases are in South Asia [2].

Tobacco use, in any form, and excessive alcohol use are the

major risk factors for oral cancer. A factor most prominent in
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South and Southeast Asia is the chewing of betel quid which

generally is comprised of areca nut, slaked lime, betel leaf and

may contain tobacco [3]. Nowadays, these quids are available

commercially in sachets and are popular in public due to vig-

orousmarketing strategies. Oral cancer is typically associated

with late presentation, particularly in LMICs, where more

than two-thirds present at late stages and as a result survival

rates are poor [4]. Management of cancers, especially at the

late stages, is very costly [5]. The lack of public awareness

and the lack of knowledge of health professionals concerning

oral cancer is an important reason for late detection [6].

Late diagnosis does not need to be a defining attribute as

oral cancer is often preceded by visible oral lesions termed

as oral potentially malignant disorders (OPMDs) which can

be detected during routine screening by a clinical oral exam-

ination (COE) performed by a general dentist. If a suspicious

lesion is identified the patient is referred to a specialist for

confirmation of diagnosis and further management. Previous

studies in India reveal screening has resulted in early diag-

nosis, down-staging of the disease and reduction in mortality

amongst individuals who use tobacco and alcohol [7]. With

most of the burden of oral cancer falling on LMICs due to the

limited number of specialists and health resources, it is vital

that screening programs must offer a low-cost and efficient

approach to diagnosis. Such a viable approach would be the

use of telemedicine. Haron et al. [8] showed a moderate

to high concordance between the clinical diagnoses made

by specialists performing a COE compared to when they

review images captured from mobile phones. This remote

consultation by specialists may improve the referral accuracy

of screening programs. Taking this concept one step further

by incorporating an automated detection system linked to

artificial intelligence to analyze mobile phone images would

be greatly beneficial.

Methods related to the automated diagnosis of oral can-

cer, OPMDs and benign lesions are largely based on micro-

scopic images [9]–[12]. Other literature covers the use of

multi-dimensional hyperspectral images of the mouth [13],

the use of CT (computed tomography) images [14], the use

of autofluorescence [15], [16] and fluorescence imaging [17]

which focused on relative close-ups of the oral lesions and,

finally, standard white light images which captured oral cav-

ity structures [18]–[20].

Early publications in the field focused on texture

based features, Thomas et al. [18] used the grey level

co-occurrence matrix and grey level run-length, whilst Krish-

nan et al. [9] made use of higher order spectra, local

binary pattern and laws texture energy. The more recent

papers [10]–[17], [19], [20] have made the shift towards

employing deep learning, which are artificial neural networks

that consist of many layers of neurons and rely on large

datasets and fast computing power to enable them to learn

complex patterns. More specifically these publications made

use of the deep convolutional neural network (CNN) whose

architectures made the explicit assumption that the inputs

were in the form of images. Since winning the ImageNet [21]

image classification competition in 2012 with AlexNet [22],

CNNs have gained wide popularity in the field of computer

vision. A summary of related work is provided in Table 1.

Whilst CNNs are primarily used for image classification

(an image classified into a certain class), building frameworks

based around CNNs has shown considerable progress in the

field of object detection (predicting bounding boxes and each

box was classified into a certain class) for natural image

datasets such as Pascal VOC (Visual Object Classes) [23]

and COCO (Common Objects in Context) [24] which con-

tained object classes such as cats, dogs, cars, bicycles etc.

The highest accuracy object detectors to date were based

on a two-stage approach popularized by the R-CNN fam-

ily, which were region-based CNN approaches and included

R-CNN [25], Fast R-CNN [26], Faster R-CNN [27] and

most recently the Mask R-CNN [28] which could also out-

put object instance segmentation. One-stage detectors such

as YOLO (You Only Look Once) [29] and SSD (Single

Shot Detector) [30] had the potential to be faster, at the

cost of accuracy. Object detection frameworks have been

explored in the medical imaging domain, with the Faster

R-CNN being applied to colon polyp detection [31] and

detection and classification of lesions on mammograms [32].

Anantharaman et al. [20] applied the Mask R-CNN to oral

images using a dataset of 40 images, to detect the benign

oral lesions of cold sores (herpes labialis) and canker sores

(aphthous ulcers). Their evaluation was based on instance

segmentation as opposed to bounding box detection.

To find a solution to the early detection of oral cancer,

gathering reliable clinically labelled data is key to enable

automated systems to be built. This has to be done at large

scale to take advantage of deep learning. This paper presents

a multidisciplinary collaboration that intends to build this

dataset, providing clinical experts with the tools required to

produce rich annotations. We also introduce a novel strategy

to combine bounding box annotations from multiple clini-

cians. Using this data, we decided to assess two different

approaches for the automated detection and classification

of oral lesions, a deep learning based image classification

framework and a deep learning based object detection frame-

work. The former made use of ResNet-101 [33] which was

a powerful CNN. The latter built on other work [20], but

used the Faster R-CNN rather than the Mask R-CNN in order

to focus on bounding box detection performance and, more

importantly, this framework was now applied to oral cancer

and OPMDs. Fig. 1 demonstrates a simplified version of the

outcome expected from each approach. The initial dataset

had 2155 images, despite being larger than the majority

of cases presented in Table 1, this was small particularly

when one considers the variation of the oral disease presen-

tations. Despite this, the intention was to demonstrate proof

of concept before proceeding with further investigation. This

study was approved by the respective institutional review

boards.
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TABLE 1. Summary of related work.

II. MATERIALS

With the long term goal of using telemedicine to facilitate

the management of patients, Cancer Research Malaysia has

developed a mobile phone App called MeMoSA R© (Mobile

Mouth Screening Anywhere) [34]. MeMoSA R© allows for

the easy documentation of oral lesions through a mobile

phone camera and enables seamless two-way communica-

tion between primary healthcare practitioners and specialists

located off-site. The future scope would be the integration

of automated detection systems to further assist with patient

triaging at the primary care level.

In addition to this, MeMoSA R© Annotate is a separate

browser-based annotation tool, created to build a library of

well-annotated images of oral lesions which can be used

both for a better understanding of disease appearance and

the development of artificial intelligence algorithms specif-

ically geared to the early detection of oral cancer. Images

are currently in the process of being gathered from clinical

experts with image capture protocols in place to help with

standardization. Metadata will also accompany the images

and includes age, gender, and their status with respect to

risk factors (i.e. smoking, alcohol and betel quid chewing).

Each clinician can annotate multiple lesions per image using

multiple rectangular bounding boxes and labels for each

bounding box that include lesion type, lesion description,

disease type, referral decision and numerous other labels.
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FIGURE 1. Image classification outcome versus object detection outcome.

The intention is for each image to be separately annotated

by multiple clinicians to provide a richer data source, and

to use agreement between clinicians which provides high

concordance to a COE (to be presented separately).

For this initial study we had access to a set of 2155 oral

cavity images from 1085 individuals, which were a mixture

of images with and without lesions. This included images

captured during the testing of the MeMoSA R© App, images

received from clinical experts and images downloaded from

web search engines. The images were comprised of differ-

ent oral cavity structures including buccal mucosa, tongue,

palate, floor of the mouth etc. The images were of varying

size, the largest was 5472 x 3648 pixels and the small-

est was 119 x 142 pixels. Using MeMoSA R© Annotate,

800 images were separately annotated by between 3-7 expert

clinicians and to boost the size of the dataset, a further 1355

images were annotated by a single expert clinician. The afore-

mentioned patient related metadata was not available for the

entire dataset and therefore, was not included at this stage of

the study. Also, we focused only on the referral decision label

of the lesion. Table 2 describes what each referral decision

represents in terms of disease type of the lesion.

III. METHOD

A novel strategy to combine bounding box annotations from

multiple clinicians is introduced in Section III.A. The resul-

tant annotated data was used to build and assess two com-

puter vision approaches to tackle the automated detection

and classification of oral lesions for the early detection of

oral cancer. Firstly, deep learning based image classification

which is covered in Section III.B, followed by deep learning

based object detection which is covered in Section III.C.

A. COMPOSITE ANNOTATION

Given that images in our dataset have been annotated by

several clinicians, the focus was to combine these multiple

annotations into a single annotation which we referred to as

a composite annotation. A composite annotation could still

TABLE 2. Referral decisions and corresponding disease types. NOS = not
otherwise specified.

list separate bounding boxes (e.g. for separate lesions in an

image), but no longer contained individual inputs for each

clinician. Composite annotations were used for both training

and evaluation purposes.

The task of annotating lesions has a degree of subjectivity

leading to disagreement amongst the clinicians. As such,

using a combination of their annotations would be more reli-

able and stable. The combination of conventional annotations

could be achieved with a variety of schemes [35], among

which the ‘‘voting policy’’ was the most common and sim-

plest, and had been demonstrated to be as effective as more

complicated strategies [36]. The majority vote would need to

be adapted to this task (detailed below). As all our clinicians

were of senior level, we opted not to take a weighted voting

approach (e.g. based on the number of years of experience)

and instead we simply used majority voting which assumed

all clinicians were equally valued.

Although the majority vote was a simple approach, the

nature of this task was not trivial, as the data took on the

structure of that used for object detection frameworks (bound-

ing boxes and class labels). Hence, the majority agreement

had to be performed with respect to not only the bounding

box class labels, but also the bounding box location. Using

non-maximum suppression (NMS) was not viable, as we had

no scores involved and it defeated the purpose of finding an

agreement among the clinicians. Finding all bounding boxes

that had an intersection over union (IoU) greater than 0.5

and then combining them by averaging their bounding box

coordinates would be one approach to take to find agreement

on location and would work for well-defined objects. For

our task this would not be sufficient, given that some of the
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FIGURE 2. Strategy to combine annotations from multiple clinicians into
a composite annotation. Bbox = bounding box.

lesions were not distinct in terms of what constitutes their

boundary (image quality and composition were also issues).

This led to the following inconsistencies among clinicians for

some lesions: (I) considerable disagreement on the bounding

box size, (II) clinicians annotating a lesion with a single

bounding box versus clinicians that used multiple smaller

bounding boxes.

FIGURE 3. Group bounding boxes according to a criteria based on IoU.
Then combine grouped bounding boxes and accumulate referral decision
labels. This is an expansion of stage 2 of the strategy detailed in Fig. 2.
Bbox = bounding box.

We propose a strategy to combine annotations from multi-

ple clinicians into a composite annotation, focusing on loca-

tion and the referral decision label of the bounding boxes.

This strategy was applied to each image and handled the

inconsistencies discussed so far for our dataset. Initially

focusing on grouping and then combining bounding boxes

that were deemed similar according to a criteria based on

IoU, followed by a second opportunity that brought bound-

ing boxes together according to a criteria based on simple

overlap. A detailed breakdown is provided in Fig. 2, 3 and 4,

with the latter two figures expanding on specifics of Fig. 2.

It must be understood before proceeding that this task was

unlike conventional object detection tasks [24] where objects

regularly lie within another object (e.g. a person and their

handbag) or where objects significantly overlap, these scenar-

ios are less likely for oral lesions and there were no such cases

in our current dataset. Several examples of the application of

this strategy are provided in Fig. 5.

Following completion of the strategy above, the dataset

of 2155 images was split into 1744 training images,

VOLUME 8, 2020 132681



R. A. Welikala et al.: Automated Detection and Classification of Oral Lesions Using Deep Learning

FIGURE 4. Remove bounding boxes where necessary according to a criteria based on overlap whilst further
accumulating referral decision labels. This is an expansion of stage 3 of the strategy detailed in Fig. 2. Bbox =

bounding box.

207 validation images and 204 testing images, images with

no annotated lesions were not removed from the dataset.

The split was random aside from the constraint that images

from the same individual were confined to the same set.

The total dataset amounted to 1433 annotated lesions whose

breakdown is shown in Table 3. This equated to 1341 images

which contained annotated lesions and 814 images without

(808 images did not progress beyond step 1 and 6 images

did not progress beyond step 5). The annotated data was

geared towards object detection (Section III.C), the annotated

data was simplified to make it applicable to image classifica-

tion (Section III.B). In which the annotated lesion’s referral

decision label was used as a single image label and if an

image contained multiple annotated lesions then that with the

highest referral decision severity was used. If no annotated

lesions exist, then the image was labelled as ‘no lesion’.

A breakdown of the data on this image basis is shown in

Table 4.

B. IMAGE CLASSIFICATION

Image classification refers to a process in computer vision

that can classify an image into a certain class according

to its visual content. We made use of deep learning based

image classification, which used deep neural networks (deep
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FIGURE 5. Combination of annotations from multiple clinicians to produce composite annotations. Left column: original bounding boxes, each clinician is
represented by a colour. Middle column: bounding boxes after step 2. Right column: final bounding boxes with the following derived referral decisions
from the top to the bottom row, ‘refer - low risk OPMD’, ‘refer - cancer/high risk OPMD’, ‘refer for other reasons’, ‘refer for other reasons’ (for both
bounding boxes).

referring to the number of layers in the network). Specifi-

cally, CNNs whose architecture made the explicit assumption

that the inputs were images, to exploit the strong spatially

local correlation present in natural images. Automatically

learning features at multiple levels of abstraction allowed

a deep network to learn complex functions mapping the
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TABLE 3. Annotated lesions numbers according to referral decisions and
dataset type.

input to the output directly from data, without depending

completely on hand-crafted features. The levels of features

could be enriched by the number of stacked layers (depth).

ResNet-101 [33] was a CNN with a depth of 101 layers (used

residual blocks to combat training issues associated with very

deep networks). We made use of this architecture due to its

widespread use and high reported performances.

Transfer learning is a machine learning technique where

a model trained on one task is re-purposed on a second

related task. Transfer learning is popular in deep learning

given the enormous resources required to train deep learning

models, and we used transfer learning to address the fact

that we currently have a limited amount of data. ResNet-101

was pre-trained on ImageNet dataset [21], which contained

1.2 million images with 1,000 classes (e.g. leopard, mush-

room, go-kart). Our dataset was small and different to Ima-

geNet, in this scenario the consensus to train a model was to

freeze the initial layers and fine-tune the rest. To be thorough,

we explored fine-tuning different extents of the network, from

just the heads to all layers. The best model was achievedwhen

freezing the layers prior to conv4_1 of ResNet-101 and then

fine-tuning the rest of the system with our oral lesion dataset.

Hence, this kept the low-level features and mid-level features

unchanged.

Three separate image classification models were built to

explore the task at varying levels of difficultly (detailed

below). For eachmodel, the number of neurons in the softmax

classification layer of ResNet-101 was selected based on

the number of classes, outputting class confidence scores.

An outline of the multi-class model is provided in Fig. 6.

• Binary image classification of ‘lesion’ vs. ‘no lesion’.

i.e. ‘no lesion’ vs. the remaining four classes in

Table 4 combined to produce the ‘lesion’ class.

• Binary image classification of ‘referral’ vs. ‘non-

referral’. i.e. ‘no lesion’ and ‘no referral needed’

combined to produce the ‘non-referral’ class vs. the

remaining three classes of Table 4 combined to produce

the ‘referral’ class.

• Multi-class image classification with five classes as

detailed in Table 4.

1) IMPLEMENTATION DETAILS

Training: We used backpropagation and stochastic gradient

descent (SGD) with momentum. A single scale was used

for the images of 224 × 224 pixels. Horizontal and vertical

TABLE 4. Image numbers according to referral decisions and dataset type.

flipping, scaling (80% to 120% both axes), translation (-20%

to +20% per axis) and rotation were used to augment the

training data.

Each SGD mini-batch had 128 images. Due to their class

imbalance (see Table 4), the loss contributed from each class

was weighted. The model was initialized with pre-trained

weights and the model was fine-tuned from conv4_1 and up

as explained earlier in this section. We used a learning rate

of 0.001 for 100 epochs, learning rate decay presented no

improvements. We used a momentum of 0.9 and a weight

decay of 0.005. The model was built on the training set

and hyperparameters were derived from performance on the

validation set. The hyperparameters stated here were those

for the multi-class model; the three models were explored

separately.

A Nvidia GeForce RTX 2080 Ti graphics card with 11GB

memory was used for training. This implementation used

Keras and TensorFlow.

Inference: The same image resizing from training was

used.

C. OBJECT DETECTION

Object detection refers to a process in computer vision that

determines where objects are located in a given image (nor-

mally with a bounding box) and which class each object

belongs to [37]. We made use of deep learning based object

detection, which combined classification and bounding box

regression into a multi-task manner, specifically the Faster

R-CNN [27].

The Faster R-CNN was a two-stage approach. The first

stage was the region proposal network (RPN) which gen-

erated a sparse set of object/region proposals each with an

objectness score. The second stage is known as the detection

network which classified the region proposals into object

classes and background. Both networks shared a common

set of convolution layers. These common layers form the

backbone/base of the framework which was a CNN (can be

referred to as the base CNN), whose output from an interme-

diate convolutional layer provided rich hierarchical features

for the input image.

To elaborate further, the RPN can be effectively considered

as passing an image through the base CNN to produce a

feature map. Followed by sliding a small network over every

location of the feature map taking in an input of spatial

size 3 × 3. This same process was applied at every location

132684 VOLUME 8, 2020
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FIGURE 6. Outline of ResNet-101 applied to multi-class image classification of oral images. Full details of the ResNet-101 architecture
can be found in the original article [33].

for a set of different anchors, which were fixed bounding

boxes of various scales and aspect ratios (which made ref-

erence to the original image). For each anchor the small net-

work would output refined bounding box coordinates using a

regression layer and an objectness score using a classification

layer that performed binary classification on whether it’s

an object or not an object. The RPN implemented this all

efficiently in a fully convolutional manner. This resulted in

large number of region proposals across a regular grid of the

image. NMS suppression followed and further to this only

the top ranked region proposals were sent through to the

detection network. For each of the remaining region proposals

the corresponding region on the feature map from the base

CNN was converted to small fixed size using a pooling layer

known as RoIPool [26]. This was followed by the detection

network providing for each region proposal an output of

further refined bounding box coordinates using a regression

layer and the object class with a confidence score using a

softmax classification layer. Class based NMS provided the

final detections. Further details can be found in the original

article [27].

Following on from updates from the original Faster

R-CNN [27] paper, our model used ResNet-101 [33] with

the feature pyramid network [38] as the base CNN. Also,

RoIPool layer was replaced with the more effective RoIAlign

layer introduced by the Mask R-CNN [28]. Transfer learning

was applied, the Faster R-CNN model was pre-trained on

the COCO dataset [24], which contained 328,000 images

with 80 classes. Prior to this the base CNN (ResNet-101) was

pre-trained on ImageNet dataset [21]. The best model was

achievedwhen freezing the layers prior to conv5_1 of the base

CNN and then fine-tuning the rest of the system with our oral

lesion dataset.

Three separate object detection models were built to

explore the task at varying levels of difficultly (detailed

below). Our models output the bounding boxes and the class

with confidence score for each detection. For each model,

the number of neurons in the softmax classification layer of

the detection network was selected based on the number of

classes. An outline of the multi-class model is provided in

Fig. 7.

• One object class representing all lesions.

• Two object classes for the lesions of ‘referral’ vs.

‘no referral needed’. i.e. ‘no referral needed’ class as

detailed in Table 3 vs. the remaining three classes com-

bined to produce the ‘referral’ class.

• Four object classes with the four referral decision classes

for lesions as detailed in Table 3.

1) IMPLEMENTATION DETAILS

Training: As the RPN and detection network shared

convolutional layers of the base CNN, end-to-end joint train-

ing was used [39]. We used backpropagation and stochas-

tic gradient descent (SGD) with momentum. A single-scale

was used for the images [26], such that the shorter side

was 800 pixels but ensuring that the scaling did not make the

longer side > 1024 pixels, followed by zero padding to make

them 1024 x 1024 pixels. Horizontal and vertical flipping,

scaling (80% to 120% both axes) and translation (-20% to

+20% per axis) were used to augment the training data.
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FIGURE 7. Outline of the faster R-CNN object detection framework applied to four-class oral lesion detection. Bbox = bounding box.

Each SGD mini-batch had 2 images. Each image

had 64 anchors sampled to minimize the loss associated with

the RPN. Sampled positive and negative anchors had a ratio

of 1:1, defined as positives having an IoU≥ 0.5 and negatives

having an IoU< 0.3 with the composite annotation bounding

boxes. NMS with an IoU threshold of 0.7 was applied to

the output of RPN to leave 2000 region proposals per image

and each image had 128 region proposals randomly sampled

to minimize the loss associated with the detection network.

Sampled negative and positive region proposals had a ratio of

3:1, defined as positives having an IoU ≥ 0.5 and negatives

having an IoU in the range of 0.1 to 0.5 with the composite

annotation bounding boxes (hard negative mining). The posi-

tive region proposal samples were made up from the 4 referral

decision classes from Table 2. Due to their class imbalance

(see Table 3), the loss contributed from each class in the

classification head of the detection network was weighted

(did not apply to the negative/background class).

The model was initialized with pre-trained weights and

the model was fine-tuned from conv5_1 and up as explained

earlier in this section. We used a learning rate of 0.001 for

100 epochs, learning rate decay presented no improvements.

We used a momentum of 0.9 and a weight decay of 0.005.

The model was built on the training set and hyperparameters

were derived from performance on the validation set. The

hyperparameters stated here were those for the four-class

model; the three models were explored separately.

A Nvidia GeForce RTX 2080 Ti graphics card with 11GB

memory was used for training. We used an open-source

implementation of the Mask R-CNN by Matterport [40] and

detached the mask head to derive the Faster R-CNN. This

implementation used Keras and TensorFlow.

Inference: The same image resizing from training was

used. Following on from the NMS applied to the output of

RPN to leave 2000 region proposals (mentioned above), only

the top 300 ranked of these were used for inference/detection.

NMS with an IoU threshold of 0.3 and a specified class

confidence score threshold was applied to the output of the

detection network to produce the final detections.

IV. EXPERIMENTAL EVALUATION

The performance measures are detailed in Section IV.A, fol-

lowed by the results of image classification in Section IV.B

and the results of object detection in Section IV.C.

A. PERFORMANCE MEASURES

For image classification, the predicted class was compared

to the expected class derived from composite annotation.

Binary image classification had the outcomes of true pos-

itive (TP), false positive (FP), true negative (TN) and false

negative (FN) as detailed in Table 5. Precision, recall and the

F1 score (harmonic mean of precision and recall) could then

be calculated as defined in Table 6, preferred to sensitivity,

specificity and accuracy which could be misleading when

the class distribution was imbalanced. These outcomes were

based on selecting a confidence score threshold that produced

the best operating point defined by the F1 score.

For multi-class image classification, the outcomes were

calculated per class (one vs. all approach), along with pre-

cision, recall and the F1 score. With respect to the confidence

score threshold, images with a score below the threshold were

given the ‘no lesion’ class and the best operating point was

defined by the macro-average F1 score. This could be calcu-

lated using the definition of F1 score in Table 6, but instead
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TABLE 5. Outcomes of binary image classification.

TABLE 6. Performance measures.

TABLE 7. Outcomes of object detection, calculated per class (inspect only
the predictions and composite annotations of the specified class).

using the macro-average precision and macro-average recall,

which were simply the precision and recall calculated for

each class and then averaged. We prefer the macro-average

over the micro-average for this multi-class tasks as the latter

could be misleading when the class distribution was imbal-

anced.

For object detection, a detection was considered correct if

the predicted bounding box’s IoU ≥ 0.5 with the compos-

ite annotation bounding box and if the class was predicted

correctly. The definition of the outcomes for object detection

are detailed in Table 7. True negatives (TN) were not prac-

tical to define in object detection tasks (also they were not

required). Outcomes along with precision, recall and the F1
score were calculated per class. Based on a confidence score

threshold that produced the best operating point defined by

the macro-average F1 score (or simply the F1 score for the

one object class model).

B. IMAGE CLASSIFICATION RESULTS

Evaluation was performed on the test set and the results of the

three image classifications models is reported in Tables 8-10.

The identification of images that contained lesions achieved

a precision of 84.77%, a recall of 89.51% and an F1 score of

87.07% as detailed in Table 8. The identification of images

that required referral achieved a precision of 67.15%, a recall

of 93.88% and an F1 score of 78.30% as detailed in Table 9.

Multi-class classification, which provided the type of referral

decision, achieved a macro-average precision of 52.13%,

a macro-average recall of 49.11% and a macro-average F1
score of 50.57% as detailed in Table 10. Examples of outputs

from the multi-class image classification model are provided

in Fig. 8.

C. OBJECT DETECTION RESULTS

The three object detection models were evaluated on the test

set and the results are reported in Tables 11-13. The detection

of lesions achieved a precision of 46.61%, a recall of 37.16%

and an F1 score 41.35% as detailed in Table 11. The detec-

tion of lesions that required referral achieved a precision of

32.94%, a recall of 54.90% and an F1 score of 41.18% as

detailed in Table 12. The detection of lesions according to the

type of referral decision achieved a macro-average precision

of 17.71%, a macro-average recall of 39.74% and a macro-

average F1 score of 24.50% as detailed in Table 13. Examples

of outputs from the four-class object detection model are

provided in Fig. 9.

V. DISCUSSION

In this paper, we combined annotations from multiple clini-

cians using data provided from the first phase of collection.

We then demonstrated the performances of deep learning

based image classification and deep learning based object

detection frameworks for the use on oral lesion detection

and classification for the early detection of oral cancer. The

use of deep learning means that complex patterns could be

derived for tacking this difficult task. For image classifi-

cation, ResNet-101 was used to classify the entire image.

It achieved an F1 score of 87.07% for identification of images

that contained lesions, an F1 score of 78.30% for the identifi-

cation of images that required referral and amacro-average F1
of score 50.57% for classifying images according to the type

of referral decision. For object detection, the faster R-CNN

(with ResNet-101 as the base CNN) was used to locate and

classify oral lesions. Object detection achieved an F1 of score

41.35% for the detection of lesions, an F1 score of 41.18% for

the detection of lesions that required referral and a macro-

average F1 of 24.50% for the detection of lesions according

to the type of referral decision.

As part of the MeMoSA R© project, the MeMoSA R© Anno-

tate tool is currently being used by our clinical collabora-

tors to develop a library of well-annotated images of oral

lesions. With time, this has the potential to become a very

large and powerful resource, helping to better understand the

disease and being crucial in providing a solution for the early

detection of oral cancer. For this we have proposed a novel

strategy to combine bounding box annotations from multiple

clinicians to produce composite annotations, applicable to

oral lesions in images as well as potentially to other similar

medical tasks.
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TABLE 8. Binary image classification results. ‘lesion’ vs. ‘no lesion’, the former was the positive class and the latter was the negative class.

TABLE 9. Binary image classification results. ‘referral’ vs. ‘non-referral’, the former was the positive class and the latter was the negative class.

TABLE 10. Multi-class image classification results. Five classes, each separately evaluated using the one vs. all approach.

FIGURE 8. Results of multi-class image classification. (a)-(e) Correct classifications, (f) incorrect classification. Expected class derived from composite
annotation. (a) Expected and predicted class = ‘No lesion’. (b) Expected and predicted class = ‘no referral needed’. (c) Expected and predicted
class = ‘refer for other reasons’. (d) Expected and predicted class = ‘refer - low risk OPMD’. (e) Expected and predicted class = ‘refer - cancer/high risk
OPMD’. (f) Expected class = ‘refer - low risk OPMD’ and predicted class = ‘refer - cancer/high risk OPMD.’

Another contribution of this paper is the novel application

of deep learning based object detection to tackle oral lesion

detection and classification for the early detection of oral

cancer. Whilst a similar framework has been applied to detect

cold sores and canker sores [20], we attempt the much more

challenging task of detecting OPMDs and oral cancer. Object
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FIGURE 9. Results of four-class object detection. (a)-(d) Correction detections, (e)-(f) wrong and missed detections. The composite annotation bounding
boxes are green and the predicted bounding boxes are red. (a) Green and red = ‘refer - low risk OPMD’, IoU = 0.52. (b) Green and red = ‘refer - low risk
OPMD’, IoU = 0.71. (c) Green and red = ‘refer - cancer/high risk OPMD’, IoU = 0.72. (d) Green and red = ‘refer - cancer/high risk OPMD’, IoU = 0.83.
(e) Green = ‘refer for other reasons’, red = ‘refer - cancer/high risk OPMD’, IoU = 0.70. (f) Green and red = ‘no referral needed’, IoU = 0.27.

TABLE 11. One-class object detection results.

TABLE 12. Two-class object detection results.

TABLE 13. Four-class object detection results.

detection is considered a much more challenging task than

image classification, as locations of multiple objects have to

be accurately attained. Failing to do so can heavily penalize

performance scores, as is evident in Fig. 9(f). Our motivation

for using object detection was that identifying the location

allows the classification to be much more targeted to a spe-

cific region (just the lesion) and hence avoids redundancies

that may be present in the image as a whole. Hence, this

equates to a type of attention mechanism (terminology made

popular in [41]), with the RPN telling the detection network
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where to look. Although, we should not rule out the fact

that global information provided from the whole image could

be important to consider. Also, the final bounding boxes

provides an insight into the model’s decision making process,

as opposed to just having an image based label from image

classification.

Uthoff et al. [16] used a VGG CNN [42] and reports a

sensitivity of 85.00% and a specificity of 88.75% for clas-

sifying pairs of autofluorescence and white light images as

suspicious and not suspicious. Aubreville et al. [10] classified

laserendomicroscopy images as clinically normal and car-

cinogenic, achieving a sensitivity of 86.6% and a specificity

of 90.0%. Anantharaman et al. [20] used the dice coefficient

to report performance of image segmentation of canker and

cold scores and achieved a score of 0.744. These studies

report good performances; however, they cannot be directly

compared to the performance stated of this paper. Predom-

inantly because different datasets present vastly different

challenges. Our particular dataset was built by clinicians to

represent the challenge in its true nature, demonstrating the

variation of the oral disease presentations. The results of

this paper do not currently offer a solution, but they are

encouraging when we consider the scale of the problem.

Image classification, which achieved F1 scores of 87.07%

and 78.30%, offers a more viable approach than object detec-

tion. The requirement from object detection to attain the

accurate localization of lesions currently presents difficulties.

Although both approaches warrant further exploration using

a larger dataset.

With this study being performed using the first phase of

data collection, we acknowledge that there were a number

of limitations. The size of the dataset may be larger than

the majority of cases presented in Table 1; however, it was

still relatively small in the context of deep learning. Whilst

transfer learning can quite successfully be applied to small

datasets. Our dataset is currently problematic as it’s extremely

varied, not just because of the varied disease types, but also

the varied presentation of each disease type. Further exem-

plified by the train, validation and test sets almost appearing

to present different distributions despite being from the same

distribution of data. This was clearly not practical when

building a system. Large datasets are key to deep learning,

somore data will improve results significantly, allowing com-

plex patterns to be found whilst being generalizable. Another

limitation relates to the approach we took to boost the size

of the dataset. In addition to the 800 images annotated by

multiple clinicians, a further 1355 images were annotated

by a single clinician. Thus, this part of the data had not

benefited from composite annotation and also may differ in

its characteristics to the rest. This had the impact of making

the data more unstable for training and also making the test

data more difficult to perform well on. A final limitation to

state was that the dataset contained some images with poor

resolution. As the dataset grows, we will put constraints on

what is acceptable in terms of image resolution; therefore,

promoting high quality data.

In addition to working with a larger dataset, the future plan

is to make use of the metadata to be used as input alongside

the images. We also intend our models to output several of

the other labels that the clinicians assigned, to gain the poten-

tial benefits in performance provided by multi-task learning.

With the baseline models now in place, we will adapt the

model architecture to better suit our task.Wewill also explore

image classification with attention [43], [44]. The developed

algorithm once incorporated into the MeMoSA R© app will

either use phone based or cloud based deployment. We intend

to explore light-weight models to enable the former case,

although real-time analysis is not necessary.

VI. CONCLUSION

This paper has discussed the collection and annotation of

images from the oral cavity and demonstrated results for

automating the early detection of oral cancer. The contribu-

tion of this paper is a novel strategy to combine bounding

box annotations from multiple clinicians; followed by the

assessment of two different deep learning based approaches

to provide a solution to automation. Our promising initial

results demonstrate the effectiveness of deep learning and

suggest it has the potential to tackle this challenging task.

Performances are set to increase as the dataset grows and

this will have a significant impact in low- and middle-income

countries where health resources are limited.
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