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Summary: Efficient automated detection of sleep-disordered breathing (SOB) from routine polysomnography 
(PSG) data is made difficult by the availability of only indirect measurements of breathing. The approach we used 
to overcome this limitation was to incorporate pulse oximetry into the definitions of apnea and hypopnea. In our 
algorithm, 1) we begin with the detection of de saturation as a fall in oxyhemoglobin saturation level of 2% or 
greater once a rate of descent greater than 0.1 % per second (but less than 4% per second) has been achieved and 
then ask if an apnea or hypopnea was responsible; 2) an apnea is detected if there is a period of no breathing, as 
indicated by sum respiratory inductive plethysmography (RIP), lasting at least !O seconds and coincident with the 
desaturation event; and 3) if there is breathing, a hypopnea is defined as a minimum of three breaths showing at 
least 20% reduction in sum RIP magnitude from the immediately preceding breath followed by a return to at least 
90% of that "baseline" breath. Our evaluation of this algorithm using 10 PSG records containing 1,938 SOB events 
showed strong event-by-event agreement with manual scoring by an experienced polysomnographer. On the basis 
of manually verified computer desaturations, detection sensitivity and specificity percentages were, respectively, 
73.6 and 90.8% for apneas and 84.1 and 86.1 % for hypopneas. Overall, 93.1 % of the manually detected events 
were detected by the algorithm. We have designed an efficient algorithm for detecting and classifying SOB events 
that emulates manual scoring with high accuracy. Key Words: Sleep-disordered breathing-Polysomnography­
Computerized detection. 

Polysomnography (PSG) is the current standard 
method for the assessment of sleep-disordered breath­
ing (SDB). Manual scoring of apneas and hypopneas 
from an overnight PSG study can require several hours 
of tedious event identification and tabulation. Further­
more, this time-consuming analysis is naturally subject 
to errors and inconsistencies relating to human subjec­
tivity and fatigue, as demonstrated by the interscorer 
variability reported in the literature (1,2). 

Efforts to overcome some of the problems associ­
ated with manual scoring have led to the introduction 
of computerized and computer-assisted SDB scoring 
systems. The last few years have seen the advent of 
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many algorithms and computerized devices for the au­
tomated assessment of sleep (3). To date, there have 
been few extensive studies to validate the algorithms 
of these systems. Furthermore, most of the available 
validation studies are correlative and do not involve 
an event-by-event validation that matches actual com­
puter-detected events with manually detected ones. 

Although these advances have contributed greatly to 
the assessment and management of patients with SDB, 
they have left assessment of SDB in nonc1inical re­
search settings, where sleep apnea is less prevalent and 
hypopneas dominate, in need of comprehensive auto­
mated detection and reporting of SDB events. 

To improve the efficiency and accuracy of sleep as­
sessment using conventional PSG, we developed a 
computer algorithm for detecting and classifying ap­
neas and hypopneas. We reasoned that we needed to 
begin with one of the more reliable signals available 
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TABLE 1. Subject characteristics and apnea-hypopnea 
index (AHI) values 

Age Height Weight 
(year) (em) (kg) Sex AHI 

53 173 85 M 2 
52 160 91 F 14 
40 168 68 M 10 
57 185 103 M 19 
40 178 84 M 40 
55 198 125 M 7 
56 178 107 F 51 
48 198 113 M 26 
62 147 107 F 9 
55 174 66 F 4 

M, male; F, female. 
The AHI is based on the routine manual scoring definition of ap­

nea (at least 10 seconds of no airflow) and hypopnea (50% reduction 
in airflow associated with at least 4% desaturation). 

to us, namely oxyhemoglobin saturation, and then as­
sess the accuracy of computerized de saturation detec­
tion and determine if a sleep-disordered event was as­
sociated with it. The algorithm uses desaturations of 
2% or more as event markers of both apneas and hy­
popneas. It then analyzes the breathing pattern to de­
tect, classify, and tabulate the causing event. We eval­
uated the performance of the algorithm by comparing 
its results to manual scoring on an event-by-event ba­
sis. 

METHODS 

Subjects 

PSG records from 10 participants in the Wisconsin 
sleep cohort study-a community-based longitudinal 
study of the natural history of SDB (4 )-were selected 
to equally represent low [apnea-hypopnea index (ARI) 
0-10 per hour], medium (ARI 10-20), and high (ARI 
greater than 20) SDB severity levels. The technical 
quality of the signals in these selected studies was typ­
ical of those obtained in the entire cohort. Table 1 
shows the subject characteristics and the apnea-hy­
popnea index (AHI = number of apneas and hypop­
neas per hour of sleep) from conventional manual 
scoring. 

Data acquisition 

Conventional PSG consisted of continuous poly­
graphic recording from surface electrodes for central 
and occipital electroencephalography (EEG), right and 
left electrooculography (EOG) , chin and leg electro­
myography (EMG), and electrocardiography (ECG), 
and from noninvasive sensors for oro-nasal airflow 
(thermistors), nasal airflow (using an infrared CO2 de­
tector), tracheal sounds (microphone), respiratory in-
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ductance plethysmography (RIP), and oxyhemoglobin 
saturation level by pulse oximetry (Sp02) using a fin­
ger probe. The transducers and lead wires permitted 
normal positional changes during sleep. Bedtime and 
awakening time were at each subject's discretion. All 
signals were low-pass filtered and sampied at 64 Hz 
on-line using an IBM-compatible 386DX-25MHz 
computer equipped with a data acquisition board 
(LabMaster DMA, Scientific Solutions, Solon, MA). 
Sampled data were then transferred to CD-ROM for 
permanent storage. Figure 1 shows some of the above 
signals in a sleep record from a subject exhibiting 
SDB. 

The RIP signal was calibrated by first instructing 
the subject to perform an isovolume maneuver while 
adjusting the relative gains of the abdomen and rib 
cage component signals such that a net zero sum RIP 
was obtained. Following this adjustment the subject 
was instructed to breathe through a spirometer at in­
creasing tidal volumes. The sum RIP signal was then 
calibrated against the spirometer readings using a lin­
ear regression equation (5). 

PSG paper records were manually scored for sleep 
and movement in 30-second periods. Sleep data were 
staged [stages I, II, III, IV, and rapid eye movement 
(REM) sleep] according to the system of Rechtschaf­
fen and Kales (6). Only periods of sleep were analyzed 
for apnea and hypopnea detection. 

Operational definitions of detected events 

Breath detection 

A breath was defined from the digitized sum RIP 
signal as the period from the start of one inspiration 
to the start of the next inspiration. The detection was 
performed by smoothing the sum RIP signal (three­
sample average) and then differentiating it to obtain a 
pseudoflow signaL A flow rate tolerance of 25 ml per 
second was applied to the baseline to determine the 
zero flow crossings corresponding to the start and end 
of inspiration and expiration. For each detected breath, 
the following parameters were computed: inspiratory 
time (Tr), expiratory time (T E)' breathing frequency per 
minute (fb), tidal volume (V T = average of inspiratory 
and expiratory volumes), inspiratory duty cycle [T/(Tr 
+ TE)], and minute ventilation (VE = VT X fb). Breath 
detection was similarly performed on the rib cage and 
abdominal RIP signals. 

Desaturation 

Figure 2 shows a schematic diagram summarizing 
the rules for detecting a desaturation. The algorithm 
analyzes the digitized Sp02 signal, averaged every 0.5 
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FIG, 1. Examples of computer-detected apnea and hypopnea. Note the delay in oxygen saturation and the increased blood pressure and 
heart rate in response to the sleep-disordered breathing events. EEG, electroencephalogram; EMG, electromyogram; Spa"~ oxyhemoglobin 
saturation determined by pulse oximetry; VT, tidal volume from sum RIP; Peo" expired CO2 concentration; BP, blood pressure; ECG, 
electrocardiogram. 

second, and detects a desaturation when the levels 
marked a, b, and c in Fig, 2 are identified, These levels 
are defined to avoid false detection of artifactual fluc­
tuations in the Spoz signal. Level a is the point at 
which Spoz achieves a rate of fall greater than 0.1 % 
per second and less than 4% per second; at b, Spoz 
achieves a minimum at least 2% below a; and at c, 
Spoz returns to a level either 1 % below a or 3% above 
b, whichever occurs sooner. The total time from a to 
c must be between 10 and 60 seconds. 

Apnea 

An apnea is defined simply as a period of no inspi­
ration as indicated by the differentiated sum RIP signal 
(see above) lasting 10-60 seconds. 

a-b:2:2% 
a - C ,; 1 % OR c - b " 3% 
105'; T, - T"'; 60 5 

b 

FIG. 2. Schematic diagram illustrating the rules for detecting a 
desaturation. Point a indicates the point at which a rate of fall greater 
than 0.1 % per second is first achieved, b is the minimum signal 
level attained, and c is a level that is 3% or more above b or 1 % or 
less below a. Ta and Tc are the times of levels a and c, respectively. 

Hypopnea 

Figure 3 illustrates the rules for detecting a hypop­
nea. A hypopnea is identified by the algorithm when 
the following sequence of events is found: 1) a breath 
has a magnitude less than 80% of the immediately pre­
ceding breath (marked B in Fig. 3); 2) the next two 
breaths at least also have magnitudes below 80% of B; 
and 3) a breath has a magnitude at least 90% of B and 
starts less than 180 seconds after the start of breath B. 

We used event-by-event comparison of computer­
detected and manually detected hypopneas to arrive at 

:2: 3 breaths 
start end 

FIG. 3. Schematic diagram illustrating the computer definition of 
a hypopnea. Vertical arrows indicate tidal volumes computed as the 
averages of inspiratory and expiratory volumes of each detected 
breath. B indicates the tidal volume of the "baseline" breath. A 
hypopnea starts with a breath having a sum respiratory inductance 
plethysmography (RIP) magnitude below 80% of the previous breath 
(B), followed by at least two more consecutive breaths also having 
RIP magnitudes below 80%. The hypopnea is then terminated with 
the first breath achieving a RIP magnitude above 90% of B, provided 
it occurs within 3 minutes. 
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FIG. 4. Inclusion and exclusion errors at different tidal volume 
(V T) reduction thresholds for hypopnea detection. Inclusion error is 
the length of the period during a computer-detected hypopnea that 
is not part of the manually detected hypopnea, expressed as a frac­
tion of the computer-detected hypopnea duration. Exclusion error is 
the length of the period during the manually detected event that is 
not part of the computer-detected event, expressed as a fraction of 
the manually detected event duration. The filled circles are inclusion 
errors, and the open circles are exclusion errors. The point of inter­
section of the two curves offers the best performance compromise. 

the 80% V T reduction rule for hypopnea definition. 
The analysis consisted of computing two types of er­
rors per computer event. Inclusion error is the length 
of the period during a computer-detected hypopnea 
that is not part of the manually detected hypopnea, 
expressed as a fraction of the computer-detected hy­
popnea duration. Conversely, exclusion error is the 
length of the period during a manually detected event 
that is not part of the computer-detected event, ex­
pressed as a fraction of the manually detected event 
duration. An event that is totally missed by the com­
puter was assigned the maximum inclusion and exclu­
sion error value of 1.0, and an event that was exactly 
matched was assigned zero errors. Next, V T reduction 
threshold was varied from 30 to 90%, and each time, 
the average inclusion and exclusion errors were com­
puted for all events in all subjects. The resultant av­
eraged errors are shown in Fig. 4. As the reduction 
threshold became greater, inclusion error increased and 
exclusion error decreased. We chose the V T reduction 
threshold closest to the point of intersection of the two 
error curves (80%) as the point representing the best 
compromise. Figure 4 shows that computer-based hy­
popneas at 80% V T reduction have average inclusion 
and exclusion errors of 12%. 

Event classification 

Apneas were classified into central, mixed, or ob­
structive by determining if there were any abdominal 
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and rib cage breathing efforts during the apnea. If there 
were compartmental breathing movements throughout 
the apnea duration, then the apnea was classified as 
obstructive because the rib cage and abdominal motion 
would have had to be in complete paradox to result in 
a zero sum signal. If there were no detected rib cage 
or abdominal breaths for at least one-fourth of the ap­
nea duration, the apnea was classified as mixed. Fi­
nally, an apnea with no thoracic or abdominal breath­
ing efforts throughout its duration was classified as 
central. 

Manual event detection 

For the purpose of validating our algorithm, both 
the analog paper and digital PSG records were man­
ually scored. An expert polysomnographer scored the 
10 records according to the following protocol (see 
Fig. 1): 1) The manual scorer first examined the com­
puter-detected de saturation events (see above) to de­
termine if, in the scorer's judgment, they were actual 
physiological desaturation events or artifactual. 2) 
Once a physiological desaturation event was con­
firmed, apnea was defined as a period of no breathing 
lasting at least 10 seconds that was contiguous and 
consistent with the desaturation event's timing. The 
signals used to detect airflow were the oro-nasal 
thermistor, the nasal end-tidal CO2 monitor, and the 
sum RIP signals. Each apnea was classified by the 
polysomnographer as central, mixed, or obstructive ac­
cording to the same criteria employed by the computer 
algorithm (see above). 3) If a desaturation was detect­
ed and no apnea was detected, the sum RIP signal was 
examined. A hypopnea was identified when any dis­
cernible decrease in sum RIP magnitude occurred con­
tiguously with the observed desaturation. The amount 
of reduction judged sufficient was left to the scorer's 
experience to determine if the pattern of change in the 
RIP amplitude was physiological and relevant to the 
desaturation. 

The manual scorer had access to both digital and 
analog versions of all the recorded PSG signals during 
the scoring process and was able to manipulate the 
signal gain and temporal resolution of the digitized 
signals. The manual scoring was done prior to com­
puterized apnea and hypopnea detection for all rec­
ords. Manually detected events were entered into 30-
second epoch-segmented computer files in a format 
synchronized with the digitized signals to facilitate 
event-by-event comparison. 

Computer-based event detection 

The operation of the computer algorithm followed 
the same logic as the manual procedure. For every 
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FIG. S. Flow chart of detection algorithm. Signals in the decision 
boxes are typical representations of respiratory inductance plethys­
mography (RIP) apnea and hypopnea patterns. Y, yes; N, no. 

detected desaturation event, the program checked for 
the presence of an apnea first and a hypopnea second 
to account for desaturation. If neither was found, the 
desaturation event was flagged for subsequent manual 
review. Figure 5 shows a high-level flow chart of the 
algorithm's operation. The following rules were ap­
plied during the procedure: 1) Due to the variable de­
lay between the onset of an SDB event and the con­
sequent desaturation (7), apneas and hypopneas were 
restricted to occur within a window beginning 40 sec­
onds prior to the start of the desaturation and ending 
at the time of minimum saturation. This range spanned 
all delays from manually scored SDB events to their 
associated desaturations. 2) An apnea was allowed to 
start after the start of a desaturation event because it 
is possible (and common) to have a reduction in VT 

before complete cessation of breathing takes place. A 
hypopnea, however, had to start before the start of de­
saturation. 3) If multiple apneas were found within the 
search period, then the one closest to the desaturation 
start time was registered as the responsible event. If 
multiple hypopneas were found, the one with a start 
time closest to 16 seconds earlier than the desaturation 
start time was chosen. This time interval was chosen 
because it was the mean delay time from the beginning 
of a manually scored hypopnea to its associated de­
saturation. 

Validation 

We evaluated the performance of the detection al­
gorithm in three phases. First, we determined the de­
saturation detection performance by computing the 
positive predictive value (PV +). This value indicates 
the probability that a computer-detected event was a 
true event and is given by 

PV+ 
TP ---x 100 

TP + FP 

where TP (true positives) is the number of computer­
detected de saturation events confirmed by the manual 
scorer and FP (false positives) is the number of events 
determined by the manual scorer to be erroneously de­
tected by the computer. 

The second phase of evaluation dealt with the de­
tection accuracy of apneas and hypopneas. We applied 
sensitivity and specificity analyses to apnea detection, 
hypopnea detection, and overall apnea plus hypopnea 
detection. In addition to the parameters defined for de­
saturation above (TP and FP), we defined FN (false 
negatives) as manually scored breathing events that 
were missed by the computer and TN (true negatives) 
as cases of confirmed desaturation events not associ­
ated with SDB events by either manual or computer­
based scoring. This approach was justifiable because 
SDB events were considered only if desaturation 
events were detected. This definition permitted the cal­
culation of sensitivity and specificity as 

TP 
Se = x 100 

TP + FN 

TN 
Sp = TN + FP X 100 

and negative predictive value as 

TN 
PV- = X 100. 

TN + FN 

Finally, we evaluated the algorithm's performance 
for apnea classification by comparing the manual and 
algorithm results. 

RESULTS 

Desaturation detection 

There were 1,938 true positive (TP) and 58 false 
positive (FP) desaturation events, yielding a positive 
predictive value of 97.1 %. Sixteen of the desaturations 
identified as false positive were due to body movement 
artifacts in which the artifact rejection provisions of 
the algorithm failed. Movement was easily identifiable 
by the manual scorer as myogenic and electromechan­
ical artifact in other channels coincident with the de­
saturation event. In the remaining 42 FP desaturation 
events, the algorithm registered a fall in Sp02 of less 
than 2%. The manual scorer was able to attribute ev­
eryone of the TP desaturation events to either an apnea 
(258 events) or a hypopnea (1,680 events). 

The following sections describe the degree of agree­
ment between computerized and manual scoring of ap­
neas and hypopneas and explain the sources of dis­
agreement. 
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TABLE 2. Parameters of algorithm performance vs. man­
ual scoring 

TP FN FP TN 
% % 

Number of events % Se % Sp PV+ PV-

Apnea 190 68 161 1588 73.6 90.8 54.1 roc ro 
';fJ.7 

Hypopnea 1412 268 78 484 84.1 86.1 94.8 64.4 
SDB events" 1804 134 58 93.1 96.9 

SDB, sleep-disordered breathing; TP, true positive; FN, false neg­
ative; FP, false positive; TN, true negative; Se, sensitivity; Sp, spec­
ificity; PV +, positive predictive value; and PV -, negative predictive 
value. 

a TN for SDB analysis refers to the section of the sleep record that 
contained no SDB events (not a countable event). 

Apnea detection 

The first row of Table 2 shows the results of the 
event-by-event comparison of computerized versus 
manual scoring of apneas. The following detection pa­
rameters are shown: TP, apneas detected manually and 
by the algorithm; FN. apneas detected manually but 
not by the algorithm (including apneas detected as hy­
popneas by the algorithm); FP, apneas detected by the 
algorithm but not manually (including manually de­
tected hypopneas), and TN, desaturation events that 
were not attributed to apneas by both the algorithm 
and the manual scorer. 

The 68 FN apneic events included 42 computer-de­
tected hypopneas and 26 events for which the algo­
rithm did not identify either an apnea or a hypopnea. 
One of the 161 FP events was due to an FP desatu­
ration, and the remaining 160 were manually detected 
hypopneas (rather than apneas). We discuss the reasons 
for these disagreements below. 

Hypopnea detection 

The second row of Table 2 shows the same param­
eters for hypopnea detection as those described for ap­
nea. The 268 FN hypopneic events included 160 com­
puter-detected apneas and 108 events missed by the 
algorithm. Thirty-six of the 78 FP hypopneic events 
were due to FP de saturation events, and the remaining 
42 were manually scored apneas. Most of the reasons 
for apnea detection disagreements, discussed below, 
also explain the disagreements here. 

Overall SDB detection 

The last row of Table 2 shows the results of the 
comparison between manual and computerized scoring 
of SDB events, regardless of whether they were apneas 
or hypopneas. TP now refers to manually scored SDB 
events also detected by the computer (including apneas 
detected as hypopneas and vice versa). FN events are 
manually scored SDB events missed by the algorithm. 

Sleep. Vol. 20. No. 11. 1997 

TABLE 3. Summary of reasons for disagreement between 
manually detected and computer-detected SDB events 

Error 

Missed apnea 

Missed hypopnea 

Apnea detected as hy­
popnea 

Hypopnea detected as 
apnea 

% Total 
number of 

Reason for disagreement errors 

No inspiration for <10 sec- 7.7 
onds 

<80% reduction in VT over 
several breaths 

Movement artifact 

Algorithm detected breaths, 
manual scorer did not 

No breathing for less than 
10 seconds, but breathing 
pattern satisfies hypopnea 
detection criteria 

25.9 

6.3 

3.3 

9.2 

Manual scorer detected 32.1 
breaths, algorithm did not 

Algorithm detected sum 15.5 
RIP clipping artifact as 
apnea 

SDB, sleep-disordered breathing; VT, tidal volume; RIP, respira­
tory inductance plethysmography. 

Total number of disagreement errors was 336. 

All 58 FP SDB events are due to FP desaturation 
events. This is because the manual scorer was able to 
attribute every TP desaturation to an SDB event, and 
thus there were no desaturation events for which the 
algorithm detected an SDB event and the manual scor­
er did not. In the context of this analysis, TN refers to 
periods during which neither the manual scorer nor the 
computer found any SDB events, which is a noncount­
able feature by definition because it constitutes the 
segments of the sleep record containing no SDB 
events. 

Reasons for detection disagreement 

Completely missed events 

Table 3 shows a breakdown of the reasons for events 
missed by the algorithm. All 26 apneas completely 
missed by the algorithm had periods of no inspiration 
that were slightly shorter than 10 seconds and were 
therefore rejected by the algorithm's criteria for apnea 
duration. It is important to note, however, that these 
events were of sufficient duration to cause a detectable 
desaturation that was verified manually (8.3-9.7 sec­
onds long). 

Of the 108 hypopneas that the algorithm completely 
missed, 87 were manually scored hypopneas in which 
the reduction in RIP amplitude occurred slowly over 
several breaths, none of which was quite 20% less than 
the previous one, thus not meeting the algorithm de­
tection requirements. The other 21 events included 
movement artifacts in the RIP signal that violated the 
algorithm's criteria for hypopnea detection but that did 
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FIG. 6. Relationship of computer-detected sleep-disordered 
breathing (SDB) event duration to manually detected events. Open 
circles are manually scored hypopneas, and filled circles are manu­
ally scored apneas. The solid line is the line of identity, and the 
dashed line is the linear regression line. 

not prevent the manual scorer from still identifying the 
breathing reduction pattern. 

All of these missed events (108 + 26 = 134) were 
flagged by the algorithm for manual review by the 
algorithm as "unexplained" de saturation events (see 
Methods). 

Misclassijied SDB events 

The FP and FN apnea and hypopnea entries in Table 
2 include apneas detected as hypopneas and vice versa. 
As Table 3 shows, this misclassification was mostly 
due to disagreement between the computerized and the 
manual scoring on whether breathing was present (in 
35.4% of the erroneously detected SDB events). In 
these cases, small changes in the sum RIP signal were 
interpreted differently by the manual scorer and the 
algorithm, where one determined that there was ces­
sation of breathing and the other detected breathing. 

Two other situations occurred that contributed to the 
misclassification error. In 9.2% of the erroneously de­
tected SDB events, there was a period of breathing 
cessation (as seen on the sum RIP signal) that occurred 
within a hypopneic pattern and that was slightly short­
er than 10 seconds. These were scored manually as 
apneas, whereas the algorithm ruled the apnea out (be­
cause of the < lO-second duration) and consequently 
detected a hypopnea. Finally, 15.5% of the SDB events 
in error were due to the appearance of a signal-clipping 
artifact (due to digitization) that did not prevent the 
manual scorer from observing a hypopnea but caused 
the algorithm to falsely detect an apnea. 

TABLE 4. Computer classification of true positive apneas 

Computer 

Manual Obstructive Central Mixed 

Obstructive 97 0 45 
Central 2 31 8 
Mixed 0 0 7 

Manual versus computer event durations 

Figure 6 shows a scatter plot of the manual versus 
TP computer-detected SDB event durations. There is 
reasonable agreement between the two events (r = 

0.85). However, manual events were slightly but sig­
nificantly longer than computer-detected events (28.5 
+ 17 vs. 25.4 + 16.3 seconds, p < 0.05). 

Apnea classijication 

Of the 190 TP apneas, 142 were obstructive, 41 cen­
tral, and 7 mixed, as determined by manual scoring. 
As shown in Table 4, the computer classified these 
apneas into 99 obstructive, 31 central and 60 mixed 
events. The percentage of apneas correctly classified 
was 71.1 %. There was an overall tendency of the al­
gorithm to overestimate mixed apneas. This was due 
to more specific computer rules for determining mixed 
apneas compared with the largely subjective determi­
nation by visual inspection of the signals. 

DISCUSSION 

Algorithm design considerations 

We made several algorithm design decisions based 
on our understanding of SDB and guided by our SDB 
event characterization requirements. In this section, we 
discuss the rationale for our design decisions as well 
as the underlying limitations. 

Use of desaturation 

Our decision to use desaturation as the initial event 
in the detection and classification of apneas and hy­
popneas was guided by several factors. One primary 
reason stems from our confidence in the desaturation 
measurement and detection techniques we used. As 
our validation indicates, desaturation events can be de­
tected with high positive predictability. We believe that 
the excellent performance of the algorithm in detecting 
physiological de saturation is due to the measures taken 
to improve Sp02 signal quality and artifact rejection. 
First, the pulse oximeter was set to produce an average 
value every 3 seconds (fast mode) to maximize desa­
turation level tracking in time. Second, the digitized 
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signal (at 64 Hz) was averaged every 0.5 second to 
irnprove signal-to-noise ratio and provide data reduc­
tion. Finally, we added several checks into the algo­
rithm for artifact rejection, including maximum rate of 
fall and minimurn duration requirements. 

The second justification for using de saturation in­
formation lies in its physiological importance. Given 
the qualitative or, at best, semiquantitative nature of 
commonly used measurernents of breathing (thermis­
tors, expired COz monitors, and respiratory inductive 
plethysmography), most sleep centers further qualify 
the reduction of airflow (or breathing movement) by 
requiring a certain degree of de saturation (8). Further 
justification for this approach can be found in numer­
ous studies that report good correlation between de­
saturation and apnea-hypopnea frequencies (9-14). 
This good correlation was found even when assessing 
desaturation without any amplitude criteria dealing 
only with saturation cyclical changes (15). The manual 
scorer in this study was able to attribute all detected 
physiological desaturation events to apneas and hy­
popneas. Similarly, the algorithm was able to attribute 
93.1 % of the desaturation events to SDB events. 

The use of de saturation also has practical benefits. 
The feature of interest in the saturation signal (des a­
turation event) is relatively easy to extract because of 
its minimal features. It simply consists of a reduction 
and a subsequent rise in level. This ease of recognition 
has obvious implications for artifact rejection. Extract­
ing features responsible for the same respiratory event 
from another, more complex signal, such as RIP, would 
involve more complicated rules and result in a higher 
false-positive rate. In fact that was precisely our ex­
perience in early attempts to define hypopnea only on 
the basis of V T reduction patterns in the sum RIP sig­
nal. 

Use of the 2% level, as opposed to cornmonly used 
greater levels of desaturations, to qualify apneas and 
hypopneas was prompted by our desire not to overlook 
any potentially significant SDB events. This decision 
was made in light of our confidence that the detected 
de saturations, down to the 2% level, were all "real". 
Douglas et al. (16) reported that some patients with 
documented mild to moderate sleep apnea can have 
events associated with desaturations not exceeding 2%, 
with some even benefiting from continuous positive 
airway pressure (CPAP) treatment. Furthermore, there 
is evidence that episodes of high upper airway resis­
tance may not be associated with any measurable de­
saturation but lead to an arousal frorn sleep (17). 
George et al. (10) used computer detection of desatu­
rations of 3% or more to accurately predict the number 
of apneas and hypopneas. In addition, our intended 
application of the algorithm to a study of a working 
population made it essential to detect less severe 
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breathing events than would be required in a clinical 
setting. Note that the absolute value measurement error 
of ±2% reported for the pulse oximeter (18) does not 
impact our algorithm, which detects relative changes 
in Spoz level and uses strict criteria for acceptance. 

Although the successful use of de saturation alone as 
a predictor of the apnea-hypopnea index may be help­
ful in the clinical diagnosis of SDB (10,12,13), it is 
not an adequate index for many research studies. It 
offers no information about the SDB event itself, such 
as duration or type (i.e. apnea or hypopnea, central or 
obstructive apnea). This information is essential to the 
understanding of the causes and effects of these events. 

Apnea and hypopnea definitions 

Apnea definition is usually based on measurements 
of airflow, namely the oro-nasal thermistor or ther­
mocouple output and the nasal COz rnonitor. However, 
both of these signals offer only qualitative indications 
of airflow. The thermistor and thermocouple simply 
sense changes in temperature near the mouth and nose 
in response to inspiratory and expiratory airflow. Tern­
perature changes can also occur for reasons unrelated 
to breathing, such as head movement. The self-adhe­
sive band holding the thermistor in place often slips 
from the mouth and nose during prolonged sleep stud­
ies. In a recent study, Whyte et al. (2) demonstrated 
that measurements of oro-nasal airflow rnay have little 
added value in the presence of reliable RIP signals. 
Similarly, the COz monitor tubing often becomes ob­
structed by condensed expired water vapor and ceases 
to provide a useful signal. 

The RIP signals (rib cage, abdornen, and sum), on 
the other hand, are robust indices of respiratory effort. 
Although they do not directly measure airflow, re­
duced or no-airflow episodes are almost always rec­
ognizable in a well-calibrated and properly processed 
RIP sum signal. By definition, central apnea is asso­
ciated with zero effort and would therefore produce a 
flat (zero) sum RIP signal. In addition, an episode of 
upper airway obstruction sufficient to produce apnea 
is associated with phase-reversed thoracoabdominal 
motion, and addition of the two RIP components can­
cels out to yield a flat (zero) sum RIP. Another advan­
tage in using the RIP signals to indicate apneas is the 
ability to classify them as central or obstructive ac­
cording to the presence of any compartmental breath­
ing motion (see the Methods section). Most irnportant, 
we found the use of the RIP signal to be essential to 
achieving acceptable sensitivity for apnea detection. 
We compared RIP signal usefulness to that of the CO2 

and thermistor signals for apnea detection. The apnea 
detection sensitivity of 73.6% with the RIP signal re­
ported here (see Table 2) was reduced to 41 % when 
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the CO2 and thermistor signals were used. Other in­
vestigators have reported the use of the sum RIP signal 
to detect apneas (2,19). 

There are also problems with the RIP signal that 
limit its use. It has been shown that the calibration 
of the RIP signal against a spirometer is not usually 
maintained throughout the night and is drastically 
affected by postural changes (20). In addition, the 
rib cage and abdomen respiratory bands are subject 
to movement and slippage throughout the night, es­
pecially in obese subjects. Furthermore, as with all 
signals, the RIP is subject to movement artifacts and 
baseline drift. For these reasons, we did not attempt 
to use the RIP signal as an indicator of absolute tidal 
volume at any point in our algorithm. As described 
above, the algorithm analyzes the signal with atten­
tion only to relative magnitude changes to recognize 
hypopneas. 

Objective investigation of the amount of relative 
RIP magnitude reduction required to declare a 
hypopnea has been addressed by Gould et al. (14). 
In their study, the numbers of hypopneas detected 
per hour using several levels of sum RIP magnitude 
reduction (25, 50, and 75%) were compared with the 
number of EEG arousals per hour and the number 
of 4% desaturations per hour. Their analysis led 
them to choose 50% reduction in V T to indicate a 
hypopnea. Although such an analysis provides an 
objective assessment of hypopneas, it suffers, in our 
view, from a major drawback. It is a correlative 
method based on the number of events per hour for 
each subject with no provision to ensure event-to­
event correspondence. That is, there is no assurance 
that different physiological events are being com­
pared, although their totals per hour may be similar. 
We used event-by-event comparison of computer-de­
tected and manually scored hypopneas to determine 
the optimal V T reduction for hypopnea definition 
(see the Methods section). This procedure for deter­
mining the operating parameters of our algorithm 
overcomes the limitation of correlative methods. 
However, it remains for us to determine whether our 
hypopneas are indeed physiologically significant 
(see below). 

Finally, it should be noted that the use of the RIP 
analysis criteria described above to detect SDB 
events without reference to de saturation results in 
the extreme overestimation of their frequency (es­
pecially hypopneas). However, such criteria are 
needed to achieve the high overall sensitivity re­
ported here (93.1 %) once the desatuaration events 
have been detected. This approach to using the RIP 
signal (as a secondary qualification for SDB detec­
tion) overcomes the many limitations inherent in this 
measurement. 

Design limitations and implications 

Requirement of desaturation for SDB detection 

An obvious possibility resulting from the desatura­
tion requirement for SDB detection is to miss a true 
SDB that does not produce a desaturation. A low min­
imum desaturation, 2%, was chosen precisely to min­
imize this possibility. Given the many precautions we 
used to obtain a faithful and sensitive Sp02 signal (fast­
mode acquisition, high sampling rate, and artifact re­
jection), we believe that there will be few, if any, hy­
popneas of physiological significance that do not cause 
at least a 2% desaturation. In any case, for such events 
to be labeled physiologically significant there must be 
some physiological indications, such as arousals or 
cardiovascular responses, which currently either pre­
clude automated detection or are not part of conven­
tional PSG. The current algorithm uses only data avail­
able during conventional PSG studies and requires no 
manual intervention aside from routine sleep scoring. 
Within these parameters, it offers an attractive alter­
native to manual scoring in similar population studies, 
as evidenced by its good detection characteristics. 

Use of digitized data in manual scoring 

As described above in the Methods section, the 
manual scoring was performed on digitized data, and 
the manual scorer was able to manipulate signal gain 
and viewing length. This contrasts with the conven­
tional method for manual scoring using paper records. 
We opted to use digital data because we wanted to test 
the algorithm's performance against the best human 
"judgment" concerning the occurrence of an SDB 
event. We did not want to put the manual scorer at a 
disadvantage caused by the limited signal range avail­
able on paper records. Requiring the manual scorer to 
make a judgment based on less data than the algorithm 
had access to would have resulted in an underestima­
tion of the algorithm's ability to detect SDB events 
that would reflect not its performance but rather the 
less than optimal "gold standard" used. 

Application to research studies 

Research studies, usually those of populations, often 
have quite different aims than diagnostic clinical tests 
of patients with sleep-related complaints. Often the 
questions addressed in population studies are different 
from those pursued by systems developed for use in 
sleep clinics or for home monitoring. In a longitudinal 
popUlation study involving thousands of sleep records, 
such as the Wisconsin sleep cohort study (4), the need 
for efficient and consistent SDB detection cannot be 
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overemphasized. The detection algorithm developed 
and validated here is a good tool that we plan to use 
for this purpose. It offers consistency, objectivity, and 
efficiency not available with manual scoring. 

Implications and future direction 

Whether the hypopneas we detected are physiolog­
ically significant, and whether we missed any signifi­
cant events are questions that deserve further investi­
gation. However, it is important to note that the aim 
of this work was to automate a manual procedure for 
purposes of efficiency and consistency. We believe that 
we offer an algorithm that achieves very good agree­
ment with manual scoring in addition to sensitive de­
tection of mild to severe SDB events. Our overall de­
tection sensitivity (93.1 %) compares well with that re­
ported by George et al. (10). In their study, which to 
our knowledge is the only one that has performed an 
event-by-event analysis, they reported that automatic 
detection of de saturations levels of 3% or more 
achieved a 97.9% sensitivity in detecting apneas and 
hypopneas. However, they used a much more sensitive 
device for saturation measurement (Hewlett-Packard 
ear oximeter) that is not generally used in PSG because 
of its large probe size and high cost and because it is 
no longer in production. In addition, their algorithm 
detected only de saturation events and provided no in­
formation on the SDB events that caused them or their 
classification. 

The specific apnea and hypopnea detection sensitiv­
ities were reasonably good (73.6 and 84.1 %, respec­
tively). Most misclassification errors were due to sub­
tle deviations from the specific detection criteria of the 
algorithm, such as the lO-second apnea requirement or 
the minimum sum RIP change needed to indicate a 
breath (Table 3). Such deviations were very difficult 
to detect visually by the manual scorer. It is feasible 
and indeed likely that the manual scorer, given the 
precise computer measurement of timing, would revise 
the decision to rule in some of the apneas because the 
periods of breathing cessation were indeed shorter than 
10 s. Had we allowed such a revision in our analysis 
we would have increased the apnea detection sensitiv­
ity from 73.6 to 83.7%. 

Another source of disagreement between the manual 
scoring and the computer scoring can be attributed to 
the fact that there were more breathing indicators 
available to the manual scorer than to the algorithm. 
This gave the manual scorer more contextual clues to 
the nature of the SDB events. With that in mind, it can 
be argued that the algorithm accuracy can be improved 
by incorporating more signals (such as thermistor and 
CO2 monitor signals) into the definitions of apnea and 
hypopnea. However, it is not a trivial matter to incor-
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porate multiple signals into a single definition, es­
pecially if that is to be done in a manner that emulates 
the manual scoring practice of examining several trac­
es concurrently. We believe that the use of multiple 
signals to indicate SDB requires techniques that are 
more sophisticated than the simple sequential stringing 
of conditions. The principles of fuzzy logic have such 
a quality and may provide useful tools for the detec­
tion and analysis of SDB using multiple physiological 
indicators. It is worth noting, however, that one of the 
most attractive features of the algorithm presented in 
this study is its simplicity-the use of only two signals 
(Sp02 and sum RIP) to detect apneas and hypopneas 
very reliably. 

CONCLUSION 

We have developed a computer algorithm for the 
automated detection and classification of apneas and 
hypopneas from conventional PSG data. We have val­
idated the algorithm's performance on an event-by­
event basis and showed it to be accurate and efficient. 
Further investigation into the physiological signifi­
cance of computer-detected hypopneas is needed to as­
sess the clinical and diagnostic usefulness of this meth­
od of detection. 
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