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Abstract: Early detection of the dysfunction of the cardiac autonomic regulation (CAR) may help in
reducing cannabis-related cardiovascular morbidities. The current study examined the occurrence
of changes in the CAR activity that is associated with the consumption of bhang, a cannabis-based
product. For this purpose, the heart rate variability (HRV) signals of 200 Indian male volunteers,
who were categorized into cannabis consumers and non-consumers, were decomposed by Empirical
Mode Decomposition (EMD), Discrete Wavelet transform (DWT), and Wavelet Packet Decomposition
(WPD) at different levels. The entropy-based parameters were computed from all the decomposed
signals. The statistical significance of the parameters was examined using the Mann–Whitney test and
t-test. The results revealed a significant variation in the HRV signals among the two groups. Herein,
we proposed the development of machine learning (ML) models for the automatic classification
of cannabis consumers and non-consumers. The selection of suitable input parameters for the ML
models was performed by employing weight-based parameter ranking and dimension reduction
methods. The performance indices of the ML models were compared. The results recommended the
Naïve Bayes (NB) model developed from WPD processing (level 8, db02 mother wavelet) of the HRV
signals as the most suitable ML model for automatic identification of cannabis users.

Keywords: cannabis; cardiac autonomic regulation; HRV signal; signal decomposition; machine learning

1. Introduction

Cannabis is a dioecious annual plant, which is used to develop various therapeutic
agents for the treatment of pain, nausea, and insomnia in cancer patients and anorexia in
acquired immune deficiency syndrome (AIDS) patients [1]. However, the cannabis plant is
also used to derive various recreational products like bhang, ganja, and charas. Cannabis-
based recreational products are believed to have low toxicity, and their consumption is
increasing day by day [2]. As per the reported literature, cannabis has become the most
highly used psychotropic recreational compound across the globe, following alcohol and
tobacco [1]. Many states of the USA have legalized the non-medical use of cannabis and
have allowed companies to sell cannabis to adults who are older than 21 years old [3].
However, many recent reports have revealed the occurrence of a variety of unfavorable
health effects of cannabis, including cardiovascular diseases [4]. Hence, it is important to
identify the effect of cannabis intake on the cardiovascular activities of cannabis users. It is
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a well-known fact that the modulation in cardiac autonomic regulation (CAR) provides
prognostic information about cardiovascular diseases [5]. This is attributed to the innerva-
tions of the sympathetic and vagal nerves of the ANS to the heart [6]. The functioning of the
ANS can be understood non-invasively by analyzing the RR interval/HRV signals, derived
from the electrocardiogram (ECG) signals [7]. Researchers have proposed both linear and
nonlinear techniques for the processing of the HRV signals [8]. However, decomposition-
based methods (e.g., EMD, DWT, and WPD) are getting more attention from researchers
nowadays because of the nonlinear and non-stationary behavior of the HRV signals [8–10].

The EMD technique is a popular nonlinear signal decomposition technique, which was
first proposed by Huang et al. (1998) [11]. It divides the input signal into mono-component
functions called intrinsic mode functions (IMFs) and simplifies the further processing of
the signals [8]. Several researchers have proposed that subtle variations within the HRV
signals can be identified easily using EMD [8]. Pachori et al. (2015) performed the EMD
analysis of the HRV signals for the automated detection of diabetes [12]. The EMD-based
decomposition of the HRV signals produced six IMFs. The IMFs were used to extract
two time-domain parameters and three frequency-domain parameters [12]. The clinically
significant variations were obtained between the diabetic and control groups, suggesting
the applicability of the EMD method in the automated identification of diabetic patients.
Djelaila et al. (2016) used EMD analysis of HRV signals and calculated the power spectral
density (PSD) of the IMFs for the detection of cardiac arrhythmia [13]. Acharya et al. (2017)
reported EMD-based processing of HRV signals to facilitate the automated detection of
congestive heart failure (CHF) disease [8]. Each of the HRV signals was decomposed into
six IMFs, and 13 types of entropies were extracted from them. The extracted parameters
were ranked using five ranking methods, and the highly-rated variables were classified
using probabilistic neural networks and support vector machines. The normal and the CHF
classes could be classified with the accuracy, sensitivity, and specificity of 97.64%, 97.01%,
and 98.24%, respectively. Thus, the authors recommended that the proposed automated
method could be employed to recognize the persons suffering from CHF, which will help
the clinicians to plan their treatment.

In the last few decades, studies have also been carried out on wavelet (DWT and
WPD)-based decomposition of the HRV signals [14,15]. The DWT represents a widely used
wavelet-based decomposition method that simultaneously enables the time and frequency
domain analyses of the signals [16]. Acharya et al. (2015) employed DWT-based processing
of HRV signals for automated diagnosis of diabetes [10]. The HRV signals were extracted
from 30 volunteers (15 controls and 15 diabetics). The decomposition of the HRV signals
was performed using DWT (level 5, db08 mother wavelet). The parameters, namely, energy,
sample entropy, approximation entropy, kurtosis, and skewness, were extracted from the
wavelet coefficients, and the ranking of the parameters was carried out. The classification
of diabetic and control groups could be performed with a maximum accuracy of 92.02%
using the decision tree (DT) algorithm. Thus, the authors recommended that DWT can
be considered as a potential candidate for the processing of the HRV signals. The WPD
technique represents an extension of the DWT technique. It decomposes a signal like
that of DWT. However, the difference lies in the fact that both the approximation and
the detail coefficients of WPD participate in decomposition, unlike DWT, where only the
approximate coefficient is decomposed at each level. Suparerk Janjarasjitt (2017) proposed
WPD (level 3, db02 mother wavelet)-based processing of HRV data for detecting congestive
heart failure (CHF) [15]. The spectral exponent of the HRV data was computed and the
author could correctly discriminate the CHF patients from the people who were having a
normal sinus rhythm. Therefore, WPD has been suggested as a potential method for the
processing of the HRV signals. Recently, Geng et al. (2020) used WPD for the parameter
extraction of HRV signals along with the Hilbert Huang Transform (HHT) and the Singular
Value Decomposition (SVD) techniques for the development of an automatic sleep-staging
decision support system [9]. The parameters extracted using WPD exhibited the highest
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classification accuracy for the random forest (RF) classifier suggesting the superiority of
WPD compared to HHT and SVD methods of parameter extraction for HRV signals.

Although the above-mentioned nonlinear signal decomposition methods have been
used by many researchers in the processing of HRV signals to carry out the detection of
various diseases, no studies could be found that have implemented them for the detection
of any alteration in the CAR due to cannabis consumption. Taking motivation from the
above-mentioned facts, the current article proposes the decomposition of the HRV signals
using the EMD, DWT, and WPD methods to identify variations in the CAR activity in a
habitual bhang (a cannabis product)-consuming population. Furthermore, an ML-based
model for automatic detection of cannabis users has also been designed. In this manuscript,
bhang has been represented as cannabis unless otherwise mentioned.

2. Results
2.1. EMD-Based Analysis of the HRV Signals

EMD has been reported to be an efficient method for the processing of nonlinear and
non-stationary data [8]. This may be attributed to its adaptive nature [11]. The HRV signals
were subjected to EMD-based decomposition. The decomposition resulted in the generation
of at least seven IMFs for each of the HRV signals. Hence, seven IMFs were considered
for further analysis [12]. The typical IMFs for HRV signals belonging to Category-C and
Category-B have been shown in Figure 1.
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The extraction of 11 entropy-based parameters (described in Section 4.3) was carried
out from each of the IMFs. The extracted parameters were named XY, where X represents
the IMF name and Y indicates the base name of the parameter. Out of the 77 parameters
extracted from 7 IMFs, 49 parameters were found to have non-normal distribution, and the
remaining 28 parameters exhibited normal distribution as per the Shapiro–Wilk Test. The
Mann–Whitney U test (with a critical p-value of 0.05) was used to analyze the statistical
importance of the IMF parameters having non-Gaussian distribution. It revealed that the
IMF7SpE parameter was significantly different (p-value ≤ 0.05) among Category-C and
Category-B. The statistical importance testing using the t-test for the parameters having
Gaussian distribution suggested four significantly different parameters among Category-
C and Category-B. The statistically different parameters include IMF5SVDE, IMF5SpE,
IMF5FI, and IMF5HjC. The median (MD) ± standard deviation (SD), and the25th and 75th
percentile values of these parameters, have been tabulated in Table 1.

Table 1. Characteristics of statistically important IMF-derived parameters.

Parameters Statistical Test Name
Category-C Category-B

p-Value
MD ± SD 25th 75th MD ± SD 25th 75th

IMF5SVDE t-test 0.329 ± 0.064 0.288 0.377 0.355 ± 0.054 0.318 0.385 0.010
IMF5SpE t-test 4.088 ± 0.450 3.756 4.380 4.245 ± 0.523 3.825 4.555 0.049
IMF5FI t-test 0.884 ± 0.029 0.862 0.902 0.872 ± 0.025 0.858 0.889 0.011

IMF5HjC t-test 0.076 ± 0.021 0.063 0.092 0.085 ± 0.018 0.071 0.096 0.012
IMF7SpE Mann-Whitney U 2.420 ± 0.774 2.065 2.847 2.680 ± 0.604 2.359 3.163 0.004

Among all the extracted entropy-based parameters, the parameters that ranked within
the top 10 by the weight-based parameter ranking methods and the parameters suggested
by the dimensionality reduction methods were used as input for developing nine ML
models as discussed in Section 4.5.2. As a result, 135 ML (9 ML models × 15 weight-
based selection methods) models were developed from 15 weight-based parameter ranking
methods, and 45 ML (9 ML models × 5 dimensionality reduction methods) models were
obtained from 5 dimensionality reduction methods. The most accurate ML models (out
of the nine ML models) along with their performance measures generated from each
parameter selection method are shown in Table 2 [17].

Table 2. Performance matrix of the machine learning models.

Input
Selection
Methods

Feature
Selection
Methods

Classifier Accuracy (%) AUC Precision (%) F-Measure (%) Sensitivity (%) Specificity (%)

Weight-
based (Top

10 important
parameters)

CSS FLM 61.00 ± 10.49% 0.641 ± 0.122 60.82 ± 9.93% 62.00 ± 10.81% 65.00 ± 16.50% 57.00 ± 17.67%

CM PCA GLM 61.00 ± 11.01% 0.618 ± 0.119 61.51 ± 12.96% 61.28 ± 11.86% 63.00 ± 16.36% 59.00 ± 15.95%

CM ICA GBT 61.00 ± 12.65% 0.620 ± 0.120 62.80 ± 12.95% 61.03 ± 12.38% 62.00 ± 15.49% 60.00 ± 22.11%

CM SVD GBT 60.00 ± 10.27% 0.657 ± 0.104 60.34 ± 11.56% 59.77 ± 11.17% 60.00 ± 13.33% 60.00 ± 14.14%

Correlation RF 62.50 ± 9.50% 0.651 ± 0.133 67.60 ± 13.48% 57.26 ± 11.19% 51.00 ± 12.87% 74.00 ± 15.06%

Deviation GBT 67.00 ± 10.06% 0.680 ± 0.123 70.79 ± 12.86% 65.57 ± 9.48% 63.00 ± 11.60% 71.00 ± 18.53%

GI LR 61.00 ± 4.59% 0.622 ± 0.079 62.28 ± 8.07% 60.49 ± 6.14% 61.00 ± 12.87% 61.00 ± 13.70%

IG GBT 67.00 ± 9.78% 0.694 ± 0.104 71.45 ± 15.07% 64.83 ± 12.18% 64.00 ± 20.66% 70.00 ± 21.08%

IGR LR 58.00 ± 9.78% 0.628 ± 0.133 59.22 ± 10.93% 57.33 ± 12.12% 59.00 ± 18.53% 57.00 ± 19.47%

PCA FLM 64.00 ± 9.37% 0.672 ± 0.132 63.42 ± 9.97% 66.25 ± 8.68% 71.00 ± 12.87% 57.00 ± 18.89%

Relief GBT 65.00 ± 11.30% 0.698 ± 0.117 68.56 ± 14.11% 62.92 ± 11.60% 60.00 ± 14.14% 70.00 ± 17.64%

Rule GBT 62.50 ± 11.61% 0.661 ± 0.153 62.70 ± 11.32% 61.79 ± 12.92% 62.00 ± 16.19% 63.00 ± 14.18%

SVM FLM 59.50 ± 13.43% 0.614 ± 0.154 59.25 ± 11.98% 57.66 ± 15.18% 57.00 ± 18.89% 62.00 ± 12.29%

TI DL 60.50 ± 12.12% 0.631 ± 0.144 57.90 ± 10.34% 64.21 ± 14.10% 74.00 ± 21.19% 47.00 ± 17.67%

Uncertainty SVM 61.00 ± 9.66% 0.618 ± 0.144 59.98 ± 8.02% 63.09 ± 9.85% 68.00 ± 15.49% 54.00 ± 15.06%
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Table 2. Cont.

Input
Selection
Methods

Feature
Selection
Methods

Classifier Accuracy (%) AUC Precision (%) F-Measure (%) Sensitivity (%) Specificity (%)

Dimension
Reduction

PCA GBT 58.00 ± 11.11% 0.609 ± 0.117 60.30 ± 17.06% 58.06 ± 10.35% 58.00 ± 12.29% 58.00 ± 18.74%

ICA SVM 60.50 ± 9.85% 0.613 ± 0.139 60.99 ± 11.44% 62.08 ± 9.50% 66.00 ± 17.13% 55.00 ± 19.58%

Kernel PCA GBT 64.00 ± 14.68% 0.656 ± 0.156 66.38 ± 17.96% 60.12 ± 17.62% 56.00 ± 19.55% 72.00 ± 14.76%

SVD RF 58.00 ± 9.49% 0.551 ± 0.142 67.58 ± 23.68% 38.56 ± 18.28% 28.00 ± 15.49% 28.00 ± 15.49%

SOM RF 62.00 ± 7.89% 0.647 ± 0.102 61.32 ± 9.76% 60.77 ± 13.44% 62.00 ± 18.74% 62.00 ± 12.29%

The GBT models generated using the ten important parameters obtained from the
“Deviation” and “IG” parameter ranking methods exhibited an accuracy of 67.00 ± 10.06%
and 67.00 ± 9.78%, respectively. Although the mean value of the accuracy was the same in
both the models, the standard deviation (SD) of the IG-based GBT model was relatively
lower than that of the Deviation-based GBT model. Hence, the IG-based GBT model was
selected as the most suitable model for automatic identification of cannabis consumers
using EMD-based processing of the HRV signals. The GBT model is an ensemble of either
classification or regression trees, which uses boosting to provide the results with progres-
sively improved estimations [18]. The proposed GBT model generated 20 classification
trees to provide the final classification result. A typical classification tree among them has
been shown in Figure 2.
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2.2. DWT-Based Analysis of the HRV Signals

DWT is a popular joint time-frequency analysis method that helps to detect subtle
variations in the signals [10]. The DWT-based decomposition of the HRV signals was
performed from level 2 up to level 8 using Daubechies (db02, db04, db06, and db08) mother
wavelets [10]. Hence, 28 different sets of DWT wavelet coefficients were generated in our
study. The representative DWT coefficients generated for level 6 decomposition (using db02
mother wavelet) of HRV signals that belonged to Category-C and Category-B, respectively,
have been shown in Figure 3.

A total of 11 entropy-based parameters were extracted from each wavelet coefficient.
The extracted parameters were named as PQ, where P corresponded to the base name
of the parameter and Q indicated the index of the wavelet coefficients. The index of the
wavelet coefficients started from 0, i.e., the 1st wavelet coefficient was assigned with the
index number 0. For each of the parameters extracted from the 28 different sets of DWT
wavelet coefficients, the nature of distribution was found using the Shapiro–Wilk test.
The results suggest that the majority of the parameters have non-Gaussian distribution,
and the Mann–Whitney U test was performed to test their statistical significance. The
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parameters having Gaussian distribution were subjected to the t-test to examine their
statistical importance. The MD ± SD, and the 25th and 75th percentile values of the
statistically important parameters that were extracted from only db02 mother wavelet-
based level 2 decomposition, have been provided in Table 3 as a typical representation.
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Table 3. Characteristics of statistically important parameters extracted from db02 mother wavelet-
based level 2 decomposition of the HRV signals using DWT.

Parameters Statistical Test Name
Category-C Category-B

p-Value
MD ± SD 25th 75th MD ± SD 25th 75th

SVDE1 t-test 1.399 ± 0.084 1.326 1.459 1.369 ± 0.070 1.317 1.412 0.016
SpE1 t-test 6.808 ± 0.323 6.556 7.061 6.728 ± 0.292 6.512 6.839 0.039
FI1 t-test 0.200 ± 0.073 0.143 0.258 0.221 ± 0.060 0.185 0.266 0.013

HjC1 Mann-Whitney U 1.843 ± 0.074 1.78 1.885 1.856 ± 0.495 1.817 1.886 0.019
HjM1 Mann-Whitney U 1.024 ± 0.017 1.015 1.035 1.019 ± 0.010 1.013 1.025 0.014
PFD1 t-test 1.022 ± 0.001 1.021 1.023 1.023 ± 0.001 1.022 1.023 0.003
PFD2 t-test 1.018 ± 0.001 1.018 1.020 1.019 ± 0.001 1.018 1.02 0.023

The parameters were examined for their relevance in the development of ML models
using weight-based ranking and dimensionality reduction methods. In the case of the
ranking methods, the parameters which ranked within the top 10 were considered relevant.
The relevant parameters were used as inputs for the development of the ML models. The
accuracies and AUCs of the most efficient ML models developed from the various levels
of decomposition of the HRV signals have been provided in Table 4, [17]. The GBT model
generated during level 8 decomposition (using db08 as the mother wavelet) exhibited the
highest accuracy of 73.00 ± 5.87. The top 10 important parameters suggested by the “GI”
parameter ranking method were used as the input parameters for the development of this
GBT model.
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Table 4. Classification and AUC accuracies of the best ML models generated from DWT-based processing of HRV signals at different decomposition levels.

Classification accuracies of the best ML models generated from DWT-based processing of HRV signals
at different decomposition levels

Mother Wavelet Model Details
Decomposition Level

Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

db02
Parameter selection method Uncertainty Relief Uncertainty SOM SVM IG SVM

ML Model GBT GBT GBT RF GLM NB SVM
Accuracy 62.00 ± 9.49% 64.50 ± 6.85% 65.00 ± 11.30% 64.50 ± 6.85% 61.50 ± 11.07% 64.50 ± 9.26% 66.00 ± 12.65%

db04
Parameter selection method CSS Kernel PCA CSS CSS CSS CSS CSS

ML Model GBT RF GBT GBT GBT GBT GBT
Accuracy 62.00 ± 9.49% 64.50 ± 6.85% 65.00 ± 11.30% 64.50 ± 6.85% 61.50 ± 11.07% 64.50 ± 9.26% 66.00 ± 12.65%

db06
Parameter selection method TI GI CSS CSS CSS Kernel PCA CSS

ML Model GBT GBT GBT GBT RF GBT GBT
Accuracy 65.50 ± 13.01% 67.00 ± 8.88% 67.00 ± 6.32% 66.50 ± 5.30% 68.50 ± 8.51% 67.00 ± 12.95% 65.50 ± 8.32%

db08
Parameter selection method GI Rule CSS Rule GI Uncertainty GI

ML Model GBT GBT NB GBT GBT GBT GBT
Accuracy 71.00 ± 8.43% 65.50 ± 8.64% 67.00 ± 10.59% 69.50 ± 14.03% 68.00 ± 9.19% 67.50 ± 11.84% 73.00 ± 5.87%

AUC of the best ML models generated from DWT-based processing of HRV signals at different decomposition levels

Mother Wavelet Model Details
Decomposition Level

Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

db02
Parameter selection method Uncertainty Relief Uncertainty SOM SVM IG SVM

ML Model GBT GBT GBT RF GLM NB SVM
AUC 0.683 ± 0.141 0.661 ± 0.119 0.687 ± 0.141 0.643 ± 0.104 0.661 ± 0.128 0.665 ± 0.084 0.676 ± 0.064

db04
Parameter selection method CSS Kernel PCA CSS CSS CSS CSS CSS

ML Model GBT RF GBT GBT GBT GBT GBT
AUC 0.617 ± 0.149 0.681 ± 0.097 0.651 ± 0.135 0.691 ± 0.066 0.652 ± 0.095 0.708 ± 0.125 0.719 ± 0.119

db06
Parameter selection method TI GI CSS CSS CSS Kernel PCA CSS

ML Model GBT GBT GBT GBT RF GBT GBT
AUC 0.692 ± 0.135 0.705± 0.092 0.712 ± 0.091 0.701 ± 0.106 0.742 ± 0.097 0.698 ± 0.126 0.674 ± 0.107

db08
Parameter selection method GI Rule CSS Rule GI Uncertainty GI

ML Model GBT GBT NB GBT GBT GBT GBT
AUC 0.726 ± 0.098 0.685± 0.141 0.657 ± 0.135 0.724 ± 0.140 0.723 ± 0.096 0.710 ± 0.115 0.797 ± 0.102
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2.3. WPD-Based Analysis of the HRV Signals

The WPD method is a generalization of the DWT technique, where both the approxi-
mation and the detail coefficients participate in the decomposition process [19]. The HRV
signals were subjected to WPD-based decomposition up to level 8 using Daubechies (db02,
db04, db06, and db08) mother wavelets [10]. The typical WPD coefficients generated from
level 2 decomposition of the HRV signals (using db02 mother wavelet) that belonged to
Category-C and Category-B have been shown in Figure 4.
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The extraction and naming of 11 entropy-based parameters were carried out from
each of the WPD coefficients, which was similar to that of the DWT-based processing of
HRV signals. The Shapiro-Wilk test revealed that majority of the parameters exhibited a
non-normal behavior. Hence, their statistical importance was analyzed using the Mann–
Whitney U test. The parameters that suggested normal behavior were analyzed for their
statistical importance using the t-test. The results of the statistical test suggested several
parameters varied significantly among Category-C and Category-B (p-value ≤ 0.05). The
MD ± SD, and the 25th and 75th percentile values of the statistically important parameters
extracted from db02 mother wavelet-based level 2 decomposition using WPD, have been
provided in Table 5 as a typical representation.

The judgment of the relevance of the parameters using ranking and dimensionality
reduction methods as well as the development of the ML models was carried out similarly
to that of DWT-based processing of the HRV signals. The accuracies and AUCs of the most
efficient ML models developed from each decomposition level in WPD-based processing
of the HRV signals have been provided in Table 6. The NB model generated during level
8 decomposition (db02 mother wavelet) exhibited the highest accuracy of 75.00 ± 13.94%
among all the ML models that were developed using WPD-based processing of the HRV
signals. This model used the top 10 important parameters ranked by the “SVM” method as
the input parameters.
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Table 5. Characteristics of statistically important parameters extracted from db02 mother wavelet-based level 2 decomposition of the HRV signals using WPD.

Parameters
Category-C Category-B

p-Value
MD ± SD 25th 75th MD ± SD 25th 75th

PFD0 1.040 ± 0.003 1.039 1.043 1.042 ± 0.003 1.04 1.044 0.015
SVDE1 1.344 ± 0.084 1.28 1.397 1.305 ± 0.075 0.103 0.168 0.023
SpE1 5.839 ± 0.334 5.585 6.078 5.743 ± 0.306 5.543 5.869 0.023
FI1 0.243 ± 0.070 0.1988 0.2963 0.276 ± 0.062 0.219 0.31 0.025

HjC1 1.822 ± 0.855 1.749 1.875 1.847 ± 0.057 1.803 1.873 0.021
PFD1 1.048 ± 0.002 1.046 1.049 1.050 ± 0.003 1.047 1.051 0.004

SVDE2 1.362 ± 0.061 1.318 1.409 1.341 ± 0.068 1.292 1.388 0.002
SpE2 6.218 ± 0.388 5.936 6.541 6.060 ± 0.374 5.8 6.356 0.008
FI2 0.226 ± 0.050 0.188 0.266 0.246 ± 0.056 0.207 0.286 0.007

HjC2 1.720 ± 0.144 1.633 1.803 1.782 ± 0.107 1.683 1.836 0.003
HjM2 1.045 ± 0.046 1.031 1.089 1.039 ± 0.041 1.027 1.078 0.024
PFD2 1.048 ± 0.002 1.046 1.05 1.050 ± 0.003 1.047 1.052 0.018
HjC3 1.756 ± 0.143 1.628 1.835 1.805 ± 0.109 1.718 1.86 0.003
HjM3 1.037 ± 0.038 1.018 1.076 1.023 ± 0.028 1.017 1.042 0.008

Table 6. Classification and AUC accuracies of the best ML models generated from WPD-based processing of HRV signals at different decomposition levels.

Classification accuracies of the best ML models generated from WPD-based processing of HRV signals at different decomposition levels

Mother Wavelet Model Details
Decomposition Level

Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

db02
Parameter selection method CSS Kernel PCA GI CSS IG SVM SVM

ML Model RF SVM GBT NB FLM SVM NB
Accuracy 64.50 ± 7.98% 66.00 ± 9.37% 73.00 ± 5.87% 67.00 ± 10.85% 71.50 ± 10.01% 74.00 ± 9.66% 75.00 ± 13.94%

db04
Parameter selection method CM PCA IG IG IG GI IG SVM

ML Model RF RF RF GBT GBT GBT SVM
Accuracy 67.00 ± 5.87% 70.00 ± 9.43% 67.00 ± 12.52% 70.00 ± 9.43% 68.50 ± 9.73% 69.50 ± 9.85% 72.00 ± 7.15%

db06
Parameter selection method CM PCA CSS IGR IG Correlation SVM SOM

ML Model GBT GBT GBT GBT GBT NB RF
Accuracy 66.00 ± 11.01% 68.00 ± 13.58% 64.00 ± 11.01% 70.50 ± 9.85% 46.00 ± 8.43% 67.00 ± 12.95% 68.00 ± 12.52%

db08
Parameter selection method TI SVM SVM GI IG CSS GI

ML Model GBT GBT GBT GBT LR GBT GBT
Accuracy 66.00 ± 8.43% 68.00 ± 11.35% 68.50 ± 12.92% 64.00 ± 11.25% 67.50 ± 8.25% 70.50 ± 8.32% 73.00 ± 5.87%
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Table 6. Cont.

AUC accuracies of the best ML models generated from WPD-based processing of HRV signals at different decomposition levels

Mother Wavelet Model Details
Decomposition Level

Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

db02
Parameter selection method CSS Kernel PCA GI CSS IG SVM SVM

ML Model RF SVM GBT NB FLM SVM NB
AUC 0.690 ± 0.131 0.681 ± 0.135 0.797 ± 0.102 0.669 ± 0.161 0.726 ± 0.112 0.731 ± 0.064 0.797 ± 0.130

db04
Parameter selection method CM PCA IG IG IG GI IG SVM

ML Model RF RF RF GBT GBT GBT SVM
AUC 0.694 ± 0.091 0.708 ± 0.071 0.706 ± 0.138 68.00 ± 7.89% 0.711 ± 0.097 0.734 ± 0.128 0.780 ± 0.087

db06
Parameter selection method CM PCA CSS IGR IG Correlation SVM SOM

ML Model GBT GBT GBT GBT GBT NB RF
AUC 0.669 ± 0.124 0.732 ± 0.123 0.687 ± 0.153 0.727 ± 0.124 0.408 ± 0.102 0.693 ± 0.160 0.698 ± 0.136

db08
Parameter selection method TI SVM SVM GI IG CSS GI

ML Model GBT GBT GBT GBT LR GBT GBT
AUC 0.719 ± 0.113 0.651 ± 0.124 0.722 ± 0.138 0.681 ± 0.156 0.706 ± 0.069 0.711 ± 0.103 0.797 ± 0.102
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3. Discussion

Cannabis refers to one of the ancient annual plants that are found mainly in Central
Asia. It has been reported that cannabis plants were cultivated in China as much as
10,000 years ago for food and medical applications [20]. The ancient use of cannabis is
also evident from the mythological scriptures. In Hindu mythology, cannabis (bhang)
has been designated as the favorite food of Lord Shiva, and it is used as a beverage
in many ceremonies like Shivaratri, Holi, etc. However, cannabis-based products are
also consumed as popular illicit drugs due to their psychoactive behavior. In the last
50 years, the recreational intake of cannabis by adolescents and young adults has increased
exponentially. As per Hall et al. (2009), the recreational cannabis intake by college students
was first observed in 1979 in the USA, and it has gradually spread to the entire globe [21].
Cohen et al. (2019) have reported that ~4% of the entire population of the globe consume
cannabis. Consumption is more in the USA compared to other rich countries in Europe [22].
The authors have revealed that ~11% of the US population have taken cannabis at least
once in their lifetime. This might be because of the legalization of recreational cannabis use
by adults in various states of the USA since 2012 [23]. However, various adverse health
effects of recreational cannabis intake have been found in regular cannabis users [22]. This
has been evident from the increased emergency department visits and hospitalizations by
regular cannabis users. Among the various adverse health effects of cannabis consumption,
the risk of addiction remains the primary concern [24]. It has both short-term as well as
long-term influences on the functioning of the brain. The short-term effect depends on
the way that cannabis is consumed. When a person smokes cannabis, the psychoactive
compound (i.e., tetrahydrocannabinol (THC)) reaches the lungs directly, from where it
quickly partitions into the bloodstream. The compound is then easily transported to the
brain and other organs. On the other hand, THC is passed to the brain at a slower rate of up
to 30 min to 1 h when it is consumed as a food or drink. The psychoactive compound acts
on the brain cell receptors, thereby inducing short-term effects like altered sense, delusion,
psychosis, and hallucination. The long-term effects of cannabis consumption on the brain
include the decline in intelligence quocient (IQ) level and verbal ability, and the risk of
anxiety and depression. The physical effects of cannabis on breathing, pregnancy, and
vomiting, etc., have also been reported in addition to the mental effects.

The adverse effects of cannabis consumption on cardiovascular activities were also
acknowledged more than four decades ago [25]. Some of the common and acute effects
include an increment in heart rate and blood pressure that causes an enhancement in the
workload of cardiac muscles. Kalla et al. analyzed the National Inpatient Sample (NIS)
database of patients to understand the prevalence of cardiovascular diseases in people
who regularly consumed cannabis [26]. They found that diseases like a cardiac failure
and coronary artery disease were more in cannabis users than in the general population.
Van Keer reported a case of complete heart block in a 19 year-old boy after the intake of
cannabis [27]. The treatment of the patient was started using IV isoprenaline, and the
occurrence of bradycardia was resolved within 24 h. Based on the outcomes, the boy was
advised to stop consuming cannabis and the author recommended that the doctors in the
emergency department should be aware of the potential cardiovascular effects of cannabis
intake. Although many such cardiovascular complications have been reported in cannabis
takers [4,28], the underlying mechanisms causing such effects are still very little known [25].
Hence, it is the need of the hour to understand the modulation in cardiovascular activity
that is caused by cannabis consumption.

An understanding of the CAR provides valuable diagnostic information about the
cardiovascular activity. This is because the rhythmic contraction of the heart is primarily
regulated by the ANS through its nerve innervations (both vagal and sympathetic) into
the heart. The ANS activity results in the alteration of the time duration between the
consecutive RR intervals (also regarded as the HRV signals) [29]. Hence, the HRV signals
have been widely used in the last few decades for diagnosing any imbalance in the CAR
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activity due to any external stimuli or diseases [8]. Usually, the processing of the HRV
signals is performed using the time domain (statistical, geometric), frequency domain
(e.g., FFT, AR), or the nonlinear methods (e.g., Poincare plot, recurrence quantification
analysis (RQA), correlation dimension, and detrended fluctuation analysis (DFA)) [30].
However, several recent studies have proposed the use of signal decomposition-based
techniques like EMD, DWT, and WPD for the analysis of the HRV signals [8–10]. This may
be attributed to their ability to evaluate the original signatures that are present within the
nonlinear and non-stationary HRV signals [8,31]. Hence, EMD, DWT, and WPD-based
processing of the HRV signals were performed in the current study to examine the existence
of any alteration in the CAR activity due to cannabis consumption. The EMD method
resulted in the generation of at least seven IMFs from each HRV signal. Hence, only the first
seven IMFs of each HRV signal were chosen as the input signals for the feature extraction
process [12]. The selection of the appropriate mother wavelet plays a vital role in the
wavelet analysis of the signals. Singh et al. (2006) have advocated the use of the Daubechies
series of the mother wavelet for the processing of the HRV signals due to its ability to
clearly reveal the properties of the transient and other components of the HRV signals [32].
Hence, Daubechies (db) wavelet was used as the mother wavelet for the processing of the
HRV signals using DWT and WPD. The level of decomposition of the HRV signals was
varied from 2 to 8 for identifying the most suitable level of decomposition.

The entropy-based parameters were extracted from the IMFs and the wavelet coeffi-
cients to obtain useful information related to the corresponding HRV signals. The reason
behind the extraction of the entropy-based parameters may be attributed to the fact that
entropy reveals the rate of generation of the information in a dynamical system and is
extensively used as a complexity measure in the biomedical signal analysis [8,33]. Apart
from this, the entropy-based parameters also help to quantify the degree of regularity in
the signal by examining the repetitive patterns [34].

It is customary to use hypothesis testing as a tool for establishing whether there is a
significant difference between the data of two populations using samples of a relatively
lower size [35]. The t-test method was used for hypothesis testing when the parameter
followed the normal distribution. However, most of the IMF and wavelet coefficient-
derived entropy parameters did not exhibit the normal distribution (evident from the
Shapiro—Wilk test). Hence, the Mann–Whitney U test (with a critical p-value = 0.05)
was used to identify the significantly varying parameters for such parameters, which is a
nonparametric statistical method. This method does not require the normal distribution
of the parameters [36]. The results of the t-test and Mann–Whitney U test revealed many
statistically significant parameters. This corresponds to the existence of variation in the
characteristics of the HRV signals obtained from Category-C and Category-B. The variation
in the HRV signal behavior might be due to the alteration in the CAR activity induced by
cannabis intake. This is because HRV signals are regarded as a non-invasive indicator of
CAR [37]. The analysis of these HRV signals using time and frequency methods by our
group [38] has revealed an increase in sympathetic activity and a corresponding reduction
in parasympathetic activity due to the regular intake of cannabis. This information further
supported the hypothesis regarding the alteration of CAR activity due to the regular
consumption of cannabis.

The ML models are currently extensively studied for the development of automated
decision support systems for biomedical applications [39]. Many youths across the globe
are getting addicted to cannabis products and may suffer from various health issues in the
future. The development of automated cannabis user detection can help the healthcare
givers to detect the changes in cardiac electrophysiology at an early stage. Accordingly,
healthcare givers can counsel cannabis users to refrain from its consumption. Hence, the
current study is an attempt to develop an ML model that can be used for the automated
detection of the bhang-consuming population from their HRV signals. Although the
efficiency of our developed ML models based on signal decomposition techniques may not
be high, it will help researchers to do further research in this direction to develop robust
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automated cannabis-user detection systems that will contribute to the computer-aided
prognosis of cannabis-induced ailments.

A small and efficient set of signal parameters is important for the development of an
ML model [40]. This is because the optimal number of parameters reduces the complexity
of the feature space that helps the model to achieve better performance. It also reduces
the noise of the target signal [40]. Therefore, 15 weight-based parameter ranking methods
and 5 dimensionality reduction methods were applied for the identification of the reduced
set of the appropriate parameters to develop the ML models. The important parameters
revealed by each method were used to train and validate nine ML models. The most
accurate models developed from the EMD, DWT, and WPD decomposition methods have
been summarized in Tables 2, 4 and 6, respectively. The accuracy (75.00 ± 13.94%) of the
NB model generated from the WPD-based processing of the HRV signals outperformed
the highest accuracies of the best GBT models, i.e., 73.00 ± 5.87% and 67.00 ± 9.78%,
generated by the DWT and EMD-based processing of the HRV signals, respectively. The
other performance measures for this model were the AUC of 0.797 ± 0.130, precision (%) of
76.66 ± 15.22%, the F-measure (%) of 73.90 ± 15.22%, sensitivity (%) of 72.00 ± 16.87%, and
specificity (%) of 78.00 ± 13.98%. Most of these measures were also superior to the other
models. Hence, the NB model generated from WPD-based decomposition (db02 mother
wavelet) of HRV signals at level 8 has been proposed for the automated identification of
the bhang consuming population.

An in-depth review of the recent literature on the effects of cannabis on cardiovascular
health was conducted. A comparative analysis of the studies has been summarized below
in Table 7.

Table 7. Recent studies on the effects of cannabis on cardiovascular health.

Author, Year Signals Used Processing Methods or
Parameters Extracted

Statistical
Methods Used Classifiers Used Inference

DeAngelis et al.
(2020) [41]

Blood pressure, heart
rate, mean
arterial pressure

Systolic blood pressure;
diastolic blood pressure,
heart rate and mean
arterial pressure

Independent-sample
t-test and
chi-square test

-

Reduced positive (euphoria) and
negative (stress, anxiety) affective
reactions to acute stress have
been linked to chronic cannabis
use, suggesting dysregulation
of emotions.

Rompala et al.
(2021) [42]

HRV signal at rest and
during auditory startle,
hair hormone levels and
neurobehavioral traits

HF power components
of HRV and
gene expressions

Generalized
linear model -

Cannabis intake causes increased
cortisol, anxiety, aggression, and
hyperactivity in young children.

Lee et al.
(2021) [43]

Echocardiogram, Heart
rate and
body temperature

Estimation of stroke
volume, ejection
fraction, fractional
shortening, and
cardiac output.

Student’s t-test -

Maternal intake of cannabis
during pregnancy harms fetal
growth, causing cardiac
dysfunction in the offspring

Majhi et al.
(2022) [44] ECG Signals Statistical and

Entropy features Mann–Whitney U test
ML Models (NB, GLM,
LR, FLM, DL, DT, RF,
GBT, and SVM)

Statistical and entropy features
extracted from ECG segments
effectively separate women who
use cannabis from those
who don’t.

Razanouski et al.
(2022) [45]

Heart rate, blood
pressure and
HRV signal

Time-domain parameters - -
Increase in parasympatheitic
activity due to increased dosage
of cannabis

Our Study HRV Signals

Signal Decomposition
methods (EMD, DWT
and WPD) and
Entropy computation

Shapiro–Wilk test,
Mann–Whitney U test
and t-test

ML Models (NB, GLM,
LR, FLM, DL, DT, RF,
GBT, and SVM)

Detected significant variation in
the HRV signals among the
regular cannabis users and
non-users. Further, ML models
for automatic classification of the
cannabis-induced changes in
HRV signals have been proposed.

4. Materials and Methods
4.1. Acquisition of the ECG Signals and Extraction of the HRV Signals

The present study involved the analysis of the HRV signals of 200 paddy-field workers
who had given consent to volunteer in this study. All of them were residents of the
Sambalpur district in Odisha, India [38]. Written consent from the volunteers was taken as



Appl. Sci. 2022, 12, 10371 14 of 26

per the World Health Organization (WHO) guidelines. Initially, there were 218 paddy-field
workers, out of which 207 paddy-field workers gave written permission for their voluntary
participation in the study after detailed information about the study was provided to
them. Out of the 207 interested volunteers, 200 volunteers were chosen for this study
based on our inclusion criteria of 18–60 years of age and no occurrence of cardiovascular
diseases [38]. Prior ethical approval was received from the Institute Ethical Committee (IEC)
of NIT Rourkela, India (Ref.# NIRTKL/IEC/FORM-2/002; dated 16/8/2017) to acquire
the ECG signals. The ECG signals were acquired using an ECG machine (VESTA 121i ECG
machine, RMS Pvt. Ltd., India) for 5 min in the lead-I configuration. The sampling rate of
the ECG machine was 500.6 Hz. The acquired signals were divided into two categories,
i.e., Category-C (control group) and Category-B (bhang consuming group) [38]. Each of the
categories comprised 100 signals. The ECG signals were processed through the Biomedical
Workbench toolkit of LabVIEW (V2017, National Instruments, USA) and were further
analyzed using the Pan–Tompkins algorithm to extract the RR interval signals (also known
as HRV Signals). The ECG Feature Extractor tool of the Biomedical Workbench toolkit
initially performs the signal enhancement through bandpass filtering (10–25 Hz). The
employment of the bandpass filter allows for the extraction of the QRS complexes from
the ECG signals. After the filtering process, the processed signal is rectified by squaring
the signal. The combined processing technique allows the ECG Feature Extractor tool to
extract the R waves accurately [46]. The use of default settings has also been suggested
in numerous studies like Zaidi et al. (2017) [47] and Khong et al. (2019) [48]. The tool
subsequently uses a threshold adjustment factor for the identification of the R peaks. In
other words, a threshold value is used to detect the peak of the R-wave. The default
threshold adjustment factor of 0.1 was used in our study. Furthermore, the “remove noise
from raw signal” box was ticked to obtain a noise-free measurement, as recommended by
Khong et al. (2019) [48]. The HRV signals were resampled at 4 Hz before subjecting them
to decomposition using the EMD, DWT, and WPD methods [49].

4.2. Decomposition of the HRV Signals
4.2.1. EMD

The decomposition of the signals using EMD is a relatively new nonlinear signal
processing method. It is employed for the processing of nonlinear and non-stationary
signals [11]. Herein, the basis functions for decomposition are derived from the signal
itself, unlike the Fourier or wavelet transforms where the basis signal is pre-fixed. The
EMD method decomposes a given signal into several intrinsic mode functions (IMFs) and
a residue (Equation (1)) using the process regarded as sifting [50]. The IMFs are a set
of amplitude and frequency (AM–FM) modulated signal components. They satisfy two
criteria: (i) the number of maxima and minima should be either the same or vary only by
one to the number of zero crossings, and (ii) the average value of the envelopes formed
by connecting local maxima and minima of the signal is zero [8]. As the HRV signals are
nonlinear and non-stationary [38], the decomposition of the HRV signals was carried out
by EMD. The implementation of the decomposition process was carried out in MATLAB
software (2015a, MathWorks Inc., Natick, MA, USA).

x(t) =
M

∑
k=1

fk(t) + rM(t) (1)

where M represents the number of IMFs, fk(t) indicates the kth IMF, and rM corresponds to
the residue.

4.2.2. DWT

The DWT is a widely used joint time-frequency analysis method [16]. Herein, the term
wavelet refers to irregular, non-symmetric, and short-duration waveforms having finite
energy, zero mean, and a real value of Fourier transform [19]. Wavelets have been used
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to analyze typical events that are embedded within a signal. Researchers have used DWT
as an efficient tool for the processing of non-stationary signals. In DWT, the signals are
decomposed into the detail and the approximation coefficients at each level by passing
them through a high-pass and a low-pass filter, respectively. The detail coefficient is kept
undivided, but the approximation coefficient is subjected to decomposition again in the next
step, which results in the formation of a new set of detail and approximation coefficients.
The decomposition process continues till the desired level of decomposition has arrived.
Hence, a signal x(t) can be expressed as the sum of its approximation coefficient at a specific
scale m0 (i.e., xm0(t)) and the detail coefficients with scales ranging from−∞ to m0 as shown
in Equation (2) [51]. The decomposition of the HRV signals using DWT was carried out in
this study with the help of MATLAB software (2015a, MathWorks Inc., Natick, MA, USA).

x(t) = xm0(t) +
m0

∑
m=−∞

dm(t) (2)

where, xm0(t) = approximation coefficient at scale m0 and dm(t) = detail coefficient at scale m.

4.2.3. WPD

The WPD method is an extension of the DWT method with the advantage of providing
a more precise decomposition of the high-frequency components of the given signal [52]. It
differs from the DWT method in the sense that the decomposition of both the approximation
and the detail coefficients takes place at each level of WPD, which contrasts with the DWT
method where only the approximation coefficient is decomposed. The decomposition
process in WPD segregates the time-frequency plane into rectangles having a constant
aspect ratio [19]. In other words, as the level of decomposition is increased, the side of
the rectangle representing the time axis becomes broader, and the side representing the
frequency axis becomes narrower. In this study, the decomposition of the HRV signals
using WPD was performed with the help of MATLAB software (2015a, MathWorks Inc.,
Natick, MA, USA).

4.3. Parameter Extraction

In this study, 11 entropy-based parameters were extracted from each of the decom-
posed (EMD, DWT, and WPD) signals using Python (Version 3.7, Python Software Foun-
dation, Wilmington, DE, USA). The extracted parameters include: Approximate entropy
(ApE), Sample Entropy (SaE), Shannon Entropy (ShE), Spectral Entropy (SpE), SVD Entropy
(SVDE), Permutation Entropy (PE), Fisher Information (FI), Signal Activity (SiA), Hjorth
Mobility (HjM), Hjorth Complexity (HjC), and Petrosian Fractal Dimension (PFD). A brief
description of these parameters has been given below.

4.3.1. Approximate Entropy (ApE)

The ApE parameter can be regarded as the entropy that estimates the variation and
instability in a signal [8]. It is calculated as given in Equation (3) [53]. The value of ApE
quantifies the regularity in the signal.

ApE = ln
(

Sl(k)
Cl+1(k)

)
(3)

where k represents the coefficient of similarity and Sl(k) and Cl+1(k) represent patterns with
a mean length of l and l + 1, respectively. The parameter l was set to 2 for the calculation of
ApE in our study.

4.3.2. Sample Entropy (SaE)

The SaE parameter represents a type of entropy that tries to determine the regularity
inherent in a signal irrespective of the signal length. Its value can be computed as given in
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Equation (4) [54]. A high value of SaE corresponds to a significantly unpredictable signal
and vice versa.

SaE = − log
(

M
N

)
(4)

where M and N indicate the vector pair having lengths of a + 1 and a, respectively. The
vector length a was set to 2 during the calculation of SaE in our study.

4.3.3. Shannon Entropy (ShE)

The ShE parameter divulges information regarding the extent to which the probability
of a signal is spread out over all the possible magnitudes of the signal. It is often considered
a measure of uncertainty. ShE is calculated from the signal amplitude using Equation (5).

ShE = −
n

∑
t=1

p(xt) · ln (p(xt)) (5)

where xt represents the possible amplitude values of the signal.

4.3.4. Spectral Entropy (SpE)

The SpE parameter is a special case of ShE wherein the calculation of the entropy is
done using the distribution of the normalized power spectrum of the signal. Mathematically,
it is represented by Equation (6).

SpE = −
n

∑
t=1

p(Yt) · ln (p(Yt)) (6)

where Yt represents the possible amplitude values in each frequency band.

4.3.5. Singular Value Decomposition Entropy (SVDE)

The SVDE is a complexity measure based on the singular value decomposition of the
data matrix (signal). The value of SVDE corresponds to the orderliness or disorderliness
of a signal, which is elucidated by a single eigenvector. Mathematically, SVDE is defined
using Equation (7) [55]. The complexity of a signal is a function of its attributes. A higher
value of the SVDE of a signal suggests that there is more complexity and the involvement
of more attributes [56].

SVDE = −
M

∑
i=1

σi · log2 (σi) (7)

where M represents the number of values and σi represents the normalized singular value.

4.3.6. Permutation Entropy (PeE)

The PeE is a measure of complexity for time series similar to Lyapunov exponents [57].
However, it provides meaningful results even in the presence of noise. Its value is calculated
using Equation (8) [58]. A high value of PeE is indicative of the asymmetry in the given
signal [8]. For the calculation of PeE in our study, the decomposed signals were converted
into a time series of time delay = 1 and an embedding dimension = 3 for representation in
the state space.

PeE = −∑ p(π) log2 (p(π)) (8)

where p(π) represents the probability of occurrence of each permutation π of order n.

4.3.7. Fisher Information (FI)

The FI parameter represents the amount of information conveyed by a random variable
X for a parameter of interest θ (Equation (9)) [59]. This concept has a relation with the law
of entropy because both of them offer ways to measure the disorderliness in a system [60].
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Similar to the PE calculation, the decomposed signals were converted into a time series of
time delay = 1 and an embedding dimension = 3 for the calculation of PeE in our study.

IX(θ) =

{
∑x∈X ( d

dθ log f (x|θ))2
pθ(x) i f X is discrete∫

X ( d
dθ log f (x|θ))2

pθ(x)dx i f X is continuous
(9)

where the derivative d
dθ log f (x|θ) is called the score function and describes the sensitivity

of the model (i.e., the function f ) for the changes in θ.

4.3.8. Hjorth Descriptors

A Hjorth descriptor represents a digital signal processing method that offers the
statistical parameter values in the time domain [61].

Signal Activity (SiA)

The SiA is the first Hjorth descriptor and can be defined as a measure of the squared
standard deviation of the amplitude or the variance of a signal (Equation (10)) [62].

SiA =
N

∑
i=1

xi − µ

N
(10)

where xi and µ represent the amplitude value of the signal and the mean of the signal,
respectively. N represents the number of samples of the signal.

Hjorth Mobility (HjM)

The HjM represents the second Hjorth descriptor that provides information about the
mean frequency of the signal. It can be expressed using Equation (11) [63].

HjC =
σ′x
σx

(11)

where σx represents the variance of the signal and σ′x represents the 1st derivative of the
variance, respectively.

Hjorth Complexity (HjC)

The HjC is the third Hjorth descriptor, which provides an estimation of the bandwidth
of a signal. Here, the bandwidth is represented by the ratio of peak value to the harmonic
content of the signal. Mathematically, it is given by Equation (12) [62].

HjC =

σ
′′
x

σ′x
σ′x
σx

(12)

where σx represents the variance of the signal, and σ′x and σ
′′
x represent the 1st and the 2nd

derivative of the variance, respectively.

4.3.9. Petrosian Fractal Dimension (PFD)

The fractal dimension of a signal calculated using Petrosian’s algorithm is regarded
as PFD. The fractal dimension helps to detect the occurrence of transients in the signal.
The calculation of the PFD takes place very fast because the computation is carried out
directly in the time domain. If a signal is an analog, then Petrosian’s algorithm derives a
digital sequence from it by subtracting the consecutive samples of the signal and assigning
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either a + 1 or a − 1 to the subtraction result based on whether it is positive or negative.
Mathematically, PFD is given by Equation (13).

PFD =
log10 n

log10 n + log10 (
n

n+0.4N4 )
(13)

where n represents the length of the sequence and N4 refers to the number of sign changes
in the sequence.

4.4. Statistical Analysis

The Shapiro–Wilk test was used to determine the nature of the distribution of the
parameters extracted using all the decomposition methods, namely, EMD, DWT, and
WPD. The parameters having a p-value of ≤0.05 were confirmed to have non-Gaussian
distribution. On the other hand, the parameters having a p-value of ≥0.05 were considered
to follow the Gaussian distribution. The parameters having non-Gaussian distribution were
tested for their significance using the Mann–Whitney U test, also regarded as the Wilcoxon
rank-sum test, using IBM SPSS Statistics software (ver. 24, IBM Corporation, Armonk, NY,
USA) [64]. This test does not require the normal distribution of the parameters due to its
nonparametric nature [65]. For parameters with Gaussian distribution, the t-test was used
for statistical analysis. The Mann–Whitney U test/t-test was performed on the parameters
of the different groups in the population under investigation, namely Category-B and
Category-C. Here, Category-B refers to the bhang-consuming population and Category-C
indicates the control group. There were 100 samples in each of the groups; therefore, each
of the groups had 100 samples in the Mann–Whitney U test/t-test.

4.5. Development of Machine Learning-Based Models

In recent years, many studies have reported the use of machine-learning model-based
automated diagnosis/identification of stimulants or diseases [66]. This helps the clinicians
to accelerate the treatment process [39,67]. Hence, machine learning models have been
developed in our study (using RapidMiner software, Educational Version 9.3, RapidMiner
Inc., Troy, MI, USA), which can automatically recognize the cannabis-consuming population
using the extracted entropy-based parameters of the decomposed HRV signals [68].

4.5.1. Selection of Input Parameters

The selection of suitable input parameters is important for the proper performance of
the machine learning models [69]. In this study, the choice of the parameters was performed
using the parameter ranking methods of (Information Gain (IG), Information Gain Ratio
(IGR), Uncertainty, Gini Index (GI), Chi-Squared Statistic (CSS), Correlation, Deviation,
Relief, Rule, Tree Importance (TI), Support Vector Machine (SVM), and Component Model
(CM)), and the dimensionality reduction methods of (Principal Component Analysis (PCA),
Kernel PCA, Independent Component Analysis (ICA), Singular Value Decomposition
(SVD), and Self-Organizing Map (SOM)) [40]. A short description of the parameter selection
methods and their Rapidminer implementation details are provided in Table 8.

Table 8. Description of the parameter selection methods.

Method Description Rapidminer Implementation Ref.

IG

IG is a weight-based parameter selection method that
describes the dependency between a parameter X
with a class variable Y by divulging information
about the reduction in entropy. IG is defined by
Equation (14) [70].

The IG method is implemented using the “Weight by Information Gain”
operator. It finds out the relevance of the parameters through
information gain and allocates weights to them. It has three critical
attributes, namely, normalize weights, sort weights, and sort direction.
In our study, the following values of the attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending

[70]

IG = H(Y)− H(Y\X) = H(X)− H(X\Y) (14)
where H(Y) represents the entropy of Y and H(Y|X)
corresponds to the entropy of Y given X.
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Table 8. Cont.

Method Description Rapidminer Implementation Ref.

IGR

IGR is a parameter selection method that is derived
from IG by dividing it with the entropy of the
parameter (Equation (15)). IGR helps to expiate the
bias introduced by the IG method.

The IGR method is implemented using the “Weight by Information Gain
Ratio” operator. It detects the relevance of the parameters through the
information gain ratio and allocates weights to them. It has three critical
attributes, namely, normalize weights, sort weights, and sort direction.
In our study, the following values of the attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending

[71]
IGR = IG

H(X) (15)

where H(X) represents the entropy of parameter X.

Uncertainty

Uncertainty is another parameter selection method
that focuses on eliminating the inherent bias
introduced by the IG method. It is computed as the
ratio of twice the IG to the sum of the entropies of the
parameter X and the class variable Y (Equation (16)).

The uncertainty method is implemented using the “Weight by
Uncertainty” operator. The uncertainty method measures the
symmetrical uncertainty to identify the importance of the parameters. It
has four critical attributes, namely, normalize weights, sort weights, sort
direction, and number of bins. In our study, the following values of the
attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending
4. number of bins = 10

[71]

U = 2 × IG
H(X) + H(Y) (16)

where U indicates the uncertainty of Y.

GI

GI is an impurity-based parameter selection method.
It describes the likelihood of the wrong classification
of a randomly selected variable. For a given data set
S (i.e., s1, s2, s3 . . . sn) and a class variable Ci (1 ≤ i ≤
k), GI is computed using Equation (17). The value of
GI lies between 0 and 1, where 0 means the variable
is most useful for classification and vice-versa.

The GI method is implemented using the “Weight by Gini Index”
operator. It computes the relevance of the parameters through the
impurity index. It has three critical attributes, namely, normalize
weights, sort weights, and sort direction. In our study, the following
values of the attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending

[72]

GI(S) = 1−
k
∑

i=1
P2

i
(17)

where Pi refers to the probability of any sample of Ci

CSS

CSS is a popular nonparametric method of parameter
selection. It determines the importance of a
parameter using the value of the chi-squared statistic
(χ2) that is calculated using a class as the reference
(Equation (18)). A higher value of χ2 refers to the
higher importance of the parameter.

The CSS method is implemented using the “Weight by Chi-Squared
Statistic” operator. It quantifies the relevance of the parameters through
the computation of CSS. It has four critical attributes, namely, normalize
weights, sort weights, sort direction, and the number of bins. In our
study, the following values of the attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending
4. number of bins = 10

[73]

χ2 =
r
∑

i=1

c
∑

j=1

(Oij−Eij )
2

Eij
(18)

where Oij refers to the perceived frequency, and Eij
refers to the expected frequency.

Correlation

Correlation can be regarded as a parameter selection
method that is based on the extent of similarity
among the parameters. The degree of similarity
between any two parameters X and Y is represented
with the help of correlation coefficient r
(Equation (19)). The value of the correlation
coefficient ranges from −1 to 1, where the sign
represents the kind of association, i.e., negative or
positive, respectively. Its value becomes 0 when the
parameters are uncorrelated.

The “Weight by Correlation” operator is used for the implementation of
the Correlation method. It quantifies the relevance of the parameters
through the computation of the absolute or squared value of correlation.
It has four critical attributes, namely, normalize weights, sort weights,
sort direction, and squared correlation. In our study, the following
values of the attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending
4. squared correlation = false

[74,75]

r =

n
∑

i=1
(Xi− X ).(Yi− Y )

(n−1).

√√√√√ n
∑

i=1
(Xi− X )2

n−1 .

√√√√√ n
∑

i=1
(Yi− Y )2

n−1

(19)

where i indicates the increment variable and n refers
to the number of samples of the parameters X and Y.

Deviation

Deviation refers to the normalized standard
deviation of the parameters. For a parameter X, the
standard deviation is calculated using Equation (20)
and its normalization can be carried out using the
maximum or minimum value of the parameter.

The “Weight by Deviation” operator is used for the implementation of
the Deviation method. It has four critical attributes, namely, normalize
weights, sort weights, sort direction, and normalize. In our study, the
following values of the attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending
4. normalize = none

[75]

SD =

√
n
∑

i=1
(Xi− X )2

n−1

(20)

where i indicates the increment variable and n refers
to the number of samples of the parameters X and Y.
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Table 8. Cont.

Method Description Rapidminer Implementation Ref.

Relief

Relief is a supervised parameter selection method
generally used in classification problems. In this
method, the samples are chosen arbitrarily from the
given data set. Then, their nearest samples belonging
to the same class (i.e., near-Hit) and their nearest
samples belonging to the other class (i.e., near-Miss)
is determined. A score (St) is assigned to the
parameter under consideration using Equation (21).
The S scores of all the parameters are compared, and
the top K parameters are finally considered as the
relevant parameters.

The relief method is implemented using the “Weight by Relief” operator.
It has six critical attributes, namely, normalize weights, sort weights,
sort direction, and the number of bins. In our study, the following
values of the attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending
4. number of neighbors = 10
5. sample ratio = 1.0
6. use local random seed = false

[76]

St(i) = St−1(i)− d(xt−nearHitt )
n

+
d(xt−nearMisst )

n

(21)

where xt indicates the arbitrarily chosen sample of
the given data set at iteration number t, n represents
the total number of samples of the given data set, and
d(.) corresponds to Euclidean distance.

Rule

The Rule represents a parameter selection method that creates a
rule for each of the parameters and calculates the error for them.
Each parameter is assigned with a weight based on the error
associated with it. The relevance of the parameters is decided
based on the value of the weights assigned to them.

The rule method is implemented using the “Weight by Rule” operator.
It has three critical attributes, namely, normalize weights, sort weights,
and sort direction. In our study, the following values of the attributes
were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending

[75]

TI

TI represents the parameter selection method that uses a
random forest for determining the importance of the
parameters. The random forest is an ensemble learning method
containing many decision trees. These decision trees are
produced using the parameters extracted from the given
dataset. The reduction in impurity caused by each node of all
the decision trees is computed. The average value of impurity
reduction caused by a parameter over all the trees determines
the importance of that parameter.

The TI method is implemented using the “Weight by Tree Importance”
operator. It has three critical attributes, namely criterion gain_ratio and
normalize weights. In our study, the following values of the attributes
were chosen:

1. criterion = gain_ratio
2. normalize weight = false

[77]

SVM

SVM is a widely used machine learning method that employs
hyperplanes (i.e., normal vectors) for classifying the samples of
a signal into several classes. The coefficients associated with the
hyperplanes are used to assign weights to the parameters and to
rank them. Nevertheless, SVM can act as a parameter selection
method only when the parameters have numeric values.

The SVM method is implemented using the “Weight by SVM” operator.
It has four critical attributes, namely, normalize weights, sort weights,
sort direction, and complexity weighting factor (C). In our study, the
following values of the attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending
4. C = 0.0

[78]

CM

The CM method is also a weight-based parameter selection
method. However, the peculiarity of this method lies in the fact
that it assigns weights to the parameters based on a component
generated using the techniques like PCA, ICA, etc. The weights
are usually normalized to retain them in the span of 0 to 1.

The CM method is implemented using the “Weight by Component
Model” operator. It has four critical attributes, namely, normalize
weights, sort weights, sort direction, and component number. In our
study, the following values of the attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending
4. component number = 1

[75]

PCA

PCA is a popular statistical method that uses an
orthogonal transformation to convert a number of
correlated parameters to a set of uncorrelated
parameters known as principal components. The
orthogonal transformation is carried out using the
eigenvalue analysis of the covariance matrix (S),
generated from the parameters of the given signal.
The elements of the covariance matrix are defined
using Equation (22). The well-defined patterns that
are stronger than the noise can be detected in the
signal using PCA. Therefore PCA-based dimension
reduction also finds application in noise removal.
The importance of PCA in parameter selection lies in
the fact that it employs the variance of the signal and
transforms the signal to new dimensions having
fewer parameters, but still preserving
maximum variance.

The PCA method is implemented using the “Weight by PCA” operator.
It has four critical attributes, namely, normalize weights, sort weights,
sort direction, and component number. In our study, the following
values of the attributes were chosen:

1. normalize weight = false
2. sort weight = true
3. sort direction = ascending
4. component number = 1

[79,80]

sij = covariance(d∗i , d∗j) (22)
where sij indicates the covariance of the ith and jth
parameters of the given signal.



Appl. Sci. 2022, 12, 10371 21 of 26

Table 8. Cont.

Method Description Rapidminer Implementation Ref.

Kernel
PCA

Kernel PCA refers to the generalization of the PCA method
using kernels (such as linear, polynomial, or Gaussian) for
application to nonlinear data. In this method, the input signal is
transformed into a new parameter space using a nonlinear
transformation. A kernel matrix K is formed through the dot
product of the newly generated parameters in the transformed
space, which act as the covariance matrix. In the end, PCA is
performed on the kernel matrix K and is called the kernel
PCA method.

The Kernel PCA method is implemented using the “Weight by PCA
(Kernel)” operator. It has two critical attributes, namely kernel type and
kernel gamma. In our study, the following values of the attributes were
chosen:

1. kernel type = false
2. kernel gamma = 1.0

[81]

ICA

ICA can be regarded as a statistical method that decomposes a
complex signal into independent components. ICA is a
generalization of the PCA method. Nevertheless, ICA optimizes
the higher-order statistics (e.g., kurtosis), unlike PCA, which
optimizes the 2nd order statistics of the given signal. Therefore
ICA produces independent components, whereas PCA
generates uncorrelated components.

The ICA method is implemented using an “Independent Component
Analysis” operator. The critical attributes of this operator and their
values in our implementation are listed below:

1. dimensionality reduction = none
2. algorithm type = deflation
3. function = logcosh
4. alpha = 1.0
5. row norm = false
6. max iteration = 200
7. tolerance = 10−4

8. use local random seed = false

[82,83]

SVD

SVD is also an extension of the PCA method where the highly
correlated parameters are eliminated to reduce redundancy. It
results in fewer components as compared to PCA, but retains
most of the variance of the extracted signal parameters.

The SVD method is implemented using the “Singular Value
Decomposition” operator. It has two critical attributes, namely,
dimension reduction and dimensions. In our study, the following values
of the attributes were chosen:

1. dimension reduction = fixed number
2. dimensions = 1

[84]

SOM

SOM corresponds to a neural network that helps in dimension
reduction-based parameter selection. It is also called the
Kohonen map, where the map denotes the low-dimensional
representation of the parameters of the given signal. It is
distinct from the other artificial neural networks in terms of the
implementation of the neighborhood function. This further
facilitates the preservation of the topological characteristics of
the input parameters and the low-dimensional representation of
the high-dimensional signals.

The SOM method is implemented using “Self-Organizing Map”
operator. The critical attributes of this operator and their values in our
implementation are listed below:

1. return preprocessing model = false
2. number of dimensions = 2
3. net size = 10
4. training rounds = 30
5. learning rate start = 0.8
6. learning rate end = 0.01
7. adaption radius start = 10.0
8. adaption radius end = 1.0

[85]

4.5.2. Machine Learning Techniques

The ML methods, namely, Naïve Bayes (NB), Generalized Linear Model (GLM), Linear
Regression (LR), First Large Margin (FLM), Deep Learning (DL), Decision Tree (DT), Ran-
dom Forest (RF), Gradient Boosted Tree (GBT), and Support Vector Machine (SVM) were
implemented in our study using the Rapidminer software [68]. The selection of the nine ML
models was made as per the recommendation of the Auto Model feature of the Rapidminer
software [86]. Evaluation of the performance of the developed models using validation
techniques plays an important role in establishing their generalizability. Cross-validation
provides an efficient way of evaluating the performance of ML models with a limited data
set. The efficacy of the developed models was examined through a 10-fold cross-validation
technique. The partition of the data set into ten equal subsets was performed using a
stratified sampling method to implement the 10-fold cross-validation method [75]. In this
process, the total data set was divided into training and validation data sub-sets in a 9:1
ratio, randomly 10 times. Finally, the performance of the 10-fold cross-validated ML models
was highlighted using the following metrics: accuracy, area under the receiver operating
characteristics curve (AUC), precision, sensitivity, F-Measure, and specificity (Table 9).
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Table 9. Performance measures of classification models.

Performance Measures Description Ref.

Accuracy

Accuracy represents one of the most popular performance evaluation tools. It
can be obtained by dividing the number of accurately classified observations by
the total number of observations done by the classification model.
Mathematically, accuracy is given by Equation (23).

[87]
Accuracy = TP+TN

TP+FP+TN+FN (23)
where TP, TN, FP, and FN refer to the true positive value, the true negative
value, the false positive value, and the false-negative value, respectively. A true
positive is an outcome when the model accurately predicts the positive class. A
true negative is a result for which the model provides an accurate prediction of
the negative class. If the model mistakenly predicts a positive class, this is called
a false positive. When the model erroneously forecasts the negative class, this is
known as a false negative.

AUC

AUC refers to the total area under the receiver operating characteristics (ROC) curve. The
ROC curve represents a probability curve that indicates the performance of an ML model in
differentiating between the classes at all classification thresholds. The value of AUC
describes the degree of separability of the classification model.

[38]

Precision

Precision represents the ratio of accurately classified positive observations to the
number of observations classified as positive (Equation (24)). It is also regarded
as the positive predictive value.

[87]Precision = TP
TP+FP (24)

where TP and FP refer to the true positive value and the false positive
value, respectively.

Sensitivity

Sensitivity refers to the ratio of accurately classified positive observations to the
total number of positive observations (Equation (25)). It is also called true
positive rate (TPR) and recall.

[87]Sensitivity = TP
TP+FN (25)

where TP and FN refer to the true positive value and the false negative
value, respectively.

F-measure

F-measure represents the harmonic mean of precision and sensitivity (Equation
(26)). Its value can vary from 0 to 1 and is nearly the same as accuracy (in %).

[17]F−measure = 2 × Precision × Sensitivity
Precision+Sensitivity = 2 × TP

2 × TP+FP+FN (26)

where TP, FP, and FN refer to the true positive value, the false positive value,
and the false-negative value, respectively.

Specificity

Specificity corresponds to the ratio of accurately classified negative observations
to the total number of negative observations (Equation (27)).

[17]Specificity = TN
TN+FP (27)

where TN and FP refer to the true negative value and the false positive
value, respectively.

4.5.3. Final Model Generation

The performance of all the models was examined from their performance metrics
mentioned above. Based on the result of the performance comparison of all the devel-
oped ML models, the best model was selected to automatically recognize the cannabis-
consuming population.

5. Conclusions

The occurrence of cardiovascular diseases in cannabis users is increasing day by day.
This demands that the alteration in the physiology of the CAR (the primary regulator
of heart activity) is recognized and that automated cannabis user identification tools are
developed. The current study attempted to detect the alteration in the CAR activity due
to regular cannabis intake. The HRV signals obtained from 200 Indian male paddy-field
workers were subjected to three popular decomposition methods, namely, EMD, DWT,
and WPD. The extraction of entropy-based parameters was carried out from the IMFs
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and the wavelet coefficients. The statistical analysis of the entropy parameters using the
Mann–Whitney test suggested a significant variation of the entropy parameters between
the control and the bhang-consuming group. This fact suggested a change in CAR activity
caused by cannabis intake. The present study also attempted to propose an ML model
for the automated recognition of the bhang consuming population. The suitable input
parameter set for the ML models was chosen using a weight-based parameter ranking and
dimension reduction methods. For each set of input parameters, nine ML models were
developed. The performance indices of the ML models developed from EMD, DWT, and
WPD-based processing of the HRV signals were scrutinized to select the best model. The
results suggest that an NB model developed from WPD-based decomposition (level 8, db02
mother wavelet) of the HRV signal is the most efficient model for automated identification
of cannabis users. The model used the top 10 parameters suggested by the weight-based
parameter ranking method, i.e., SVM, as the input parameters. The weight-based feature
ranking methods are used to identify the most relevant features in a data set. This helps to
improve the speed of computation and enhances the accuracy of classifiers. Many recent
studies like Chang et al. (2017) [88], Wang et al. (2018) [89], and Maguire et al. (2022) [90]
have recommended the use of the top-10 features obtained in feature ranking methods for
the development of machine learning (ML) models. Hence, the top-10 features were used
for classification purposes in our study. In summary, a variation in the CAR activity was
detected due to regular cannabis intake, and the WPD method was found to be a superior
parameter extraction method as compared to the other decomposition methods, namely
EMD and DWT. However, one limitation of the current research lies in the fact that the
increase in the family-wise error rate in the statistical analyses performed in our study was
not controlled [91]. As multiple statistical tests were used in our study, it was planned to
apply the multiple testing correction method called the sequential Bonferroni correction
technique. This technique keeps the p-values at a constant value of 0.05. However, several
researchers have argued against its use for testing correction, due to its mathematical and
logical flaws. Hence, it was not performed [91]. Overall, we consider this research relatively
preliminary and encourage future replication of this study.
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