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In this paper a Computer Aided Detection (CAD) system is presented to automatically detect Cerebral

Microbleeds (CMBs) in patients with Traumatic Brain Injury (TBI). It is believed that the presence of CMBs has

clinical prognostic value in TBI patients. To study the contribution of CMBs in patient outcome, accurate detection

of CMBs is required. Manual detection of CMBs in TBI patients is a time consuming task that is prone to errors,

because CMBs are easily overlooked and are difficult to distinguish from blood vessels.

This study included 33 TBI patients. Because of the laborious nature of manually annotating CMBs, only one

trained expert manually annotated the CMBs in all 33 patients. A subset of ten TBI patients was annotated by

six experts. Our CAD systemmakes use of both SusceptibilityWeighted Imaging (SWI) and T1weightedmagnet-

ic resonance images to detect CMBs. After pre-processing these images, a two-step approach was used for auto-

mated detection of CMBs. In the first step, each voxelwas characterized by twelve features based on the dark and

spherical nature of CMBs and a random forest classifier was used to identify CMB candidate locations. In the sec-

ond step, segmentations weremade from each identified candidate location. Subsequently an object-based clas-

sifier was used to remove false positive detections of the voxel classifier, by considering seven object-based

features that discriminate between spherical objects (CMBs) and elongated objects (blood vessels). A guided

user interface was designed for fast evaluation of the CAD system result. During this process, an expert checked

each CMB detected by the CAD system.

A Fleiss' kappa value of only 0.24 showed that the inter-observer variability for the TBI patients in this study was

very large. An expert using the guided user interface reached an average sensitivity of 93%,whichwas significant-

ly higher (p = 0.03) than the average sensitivity of 77% (sd 12.4%) that the six experts manually detected. Fur-

thermore, with the use of this CAD system the reading time was substantially reduced from one hour to

13 minutes per patient, because the CAD system only detects on average 25.9 false positives per TBI patient,

resulting in 0.29 false positives per definite CMB finding.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

To determine the severity of Traumatic Brain Injury (TBI) and pa-

tient prognosis, the Glasgow Coma Scale (GCS) together with the as-

sessment of large hemorrhages and fractures seen on Computed

Tomography (CT) are widely used. The GCS is a neurological scale to

determine the level of consciousness of a patient. Using threemeasures;

motor response, verbal performance, and eye opening, a scale between

3 and 15 is determined, where 3 indicates deep unconsciousness of a

patient (Teasdale and Jennett, 1974). The prognostic precision of these

two assessments is low, most likely because less acute damage such as

diffuse axonal injury is not evaluated. Therefore research is focusing

on Magnetic Resonance (MR) imaging to identify prognostic markers

which are less or not visible on CT scans, such as Cerebral Microbleeds

(CMBs). CMBs are thought to be related to Diffuse Axonal Injury (DAI)

and to clinical prognosis (Werring, 2011). Studies evaluating the clinical
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and prognostic value of the individual location and size of CMBs in TBI

do not exist, mainly due to the amount of time required to exhaustively

annotate every CMB in a TBI scan.

CMBs are hemosiderin deposits in the brain caused by leakage of

small blood vessels. CMBs can be detected on both T2* GRE and Suscep-

tibility Weighted Imaging (SWI) scans, where it has been shown that

the sensitivity of SWI outperforms the sensitivity of T2* GRE imaging

in finding CMBs (Geurts et al., 2012; Nandigam et al., 2009; Tong et

al., 2003; Cheng et al., 2013; Liu et al., 2014). On an SWI scan CMBs ap-

pear as spherical hypointense lesions and are considered to have a di-

ameter smaller than ten millimeters (Greenberg et al., 2009). Fig. 1

shows an example of a single CMBon an SWI scan, Fig. 2 shows a TBI pa-

tient with many CMBs.

The observer variability for the detection of CMBs is large (Geurts et

al., 2012; Kuijf et al., 2012). Additionally, manual detection of CMBs is a

time consuming task, which can take more than one hour per TBI pa-

tient. A Computer Aided Detection (CAD) system can alleviate these

drawbacks. Several CAD systems have been developed for the detection

of CMBs in other patient populations (stroke patients Seghier et al.,

2011; Dou et al., 2016), Alzheimer patients Barnes et al., 2011;

Fazlollahi et al., 2014, patients with arterial disease Kuijf et al., 2012, pa-

tients with radiation damage Bian et al., 2013, and the elderly

Ghafaryasl et al., 2012), but to the authors knowledge this is the first

CAD system designed for TBI patients. These existing CAD systems

report several false positive (FP) detections per CMB. Since the number

of CMBs in our TBI patient population is a factor larger thanwhat is com-

monly seen in the population for which these systems were designed,

these CAD systemswould result in large amounts of false positive detec-

tions. This would reduce the possible time gain that could be achieved

with the use of a CAD system compared to manual annotation, as it

would require extensive manual false positive reduction.

In this paper we present a CAD system that automatically detects

CMBs in TBI patients.

2. Material and methods

A schematic overview of our work is given in Fig. 3. In short, a pre-

processing step was performed to identify the brain, the different mo-

dalities were registered, the bias field was corrected and the images

were normalized. Next, a voxel classifier identified CMB candidates.

Subsequently false positive detections were removed by a second, ob-

ject-based, classifier taking the shape of the detected CMBs.

candidates into account. Next, four experiments were performed.

First, the observer variability was measured. Second the CAD system

was optimized. Third, the optimized CAD systemwasmanually evaluat-

ed by a neuroradiologist. Last, the performance of the CAD system was

compared to the annotations of six independent experts.

Fig. 1. Example of a CMB on an SWI scan. From left to right: axial, sagittal and coronal view.

Fig. 2. Example of a TBI patient with many CMBs encircled in red and two large hemorrhages located bifrontal. From left to right: axial, sagittal and coronal view.
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2.1. Data

2.1.1. Patient data

This study includes 33 patients with moderate (GCS 9–12) to severe

(GCS 3–8) Traumatic Brain Injury (mean age 33 years, sd 14 years, 21

male, 12 female) and 18 healthy subjects (mean age 37 years, sd

16 years, 12 male, 6 female). For every TBI patient and healthy subject

an SWI scan (TR: 27 ms, TE: 20 ms, flip angle: 15°, BW: 120 Hz/pixel,

voxel size: 0.98 × 0.98 × 1 mm3) and a T1 MP-RAGE scan (TR:

2300 ms, TE: 2.98 ms, flip angle: 9°, BW: 240 Hz/pixel, voxel size:

1 mm isotropic) have been made on a 3 T MRI scanner (Siemens

Magnetom Trio). The average time between the trauma and the acqui-

sition of the scan was 28 weeks with a standard deviation of 3 weeks.

The local ethics committee waived the need for review board approval

and written informed consent, considering the retrospective character

of this study.

2.1.2. Annotations

Manually annotating CMBs in TBI patients is a very time consuming

task. Therefore, only one trained expert manually annotated the CMBs

in all 33 patients. A subset of ten TBI patients was later annotated by

six experts for evaluationof theCAD systemand tomeasure user perfor-

mance characteristics. The annotations were made following the

Microbleed Anatomic Rating Scale (MARS) guidelines (Gregoire et al.,

2009). TheMARS guidelines identify CMBs as either definite or possible.

Definite CMBs are defined as small, rounded or circular, well-defined

hypointense lesions with clear margins within the brain parenchyma.

Possible CMBs are defined as not strictly rounded or circular, less well-

defined, and less hypointense lesions.

2.2. Preprocessing

2.2.1. Brain mask

Since CMBs only occur in brain tissue, a brain mask was made for

both the T1 and the SWI scan. A brainmask defineswhich voxels belong

to the brain and which voxels belong to the skull and air surrounding

the brain. The brainmaskwasmade in three steps. Firstly, the graymat-

ter, white matter, and spinal fluid were segmented into three probabil-

ity maps using SPM12b (Ashburner and Friston, 2005). Secondly, these

three probabilitymapswere summed and thresholded to create amask.

The segmentation algorithmof SPMhas not been developed for the seg-

mentation of SWI scans. Therefore, the susceptibility effects were erro-

neously segmented as air, which resulted in small cavities in the mask.

These cavities were removed by applying region growing from the

edge of the scan. All dark areas connected to the edge of the brain

mask are not CMBs, since per definition CMBs are not connected to

the meninges. The inverse of the region growing algorithm result was

used as the final SWI brain mask.

2.2.2. Registration

The T1 and SWI scans were made during the same scanning session,

but minor patient movements between the scans can occur. To correct

for this movement the T1 scan was registered to the SWI scan using

the rigid body registration of FSL FLIRT (Jenkinson and Smith, 2001;

Jenkinson et al., 2002).

2.2.3. Bias field correction

The performance of the automated detection system is degraded by

inhomogeneities caused by the bias field. For this reason the T1 scan

was bias field corrected, using FSL FAST (Zhang et al., 2001). Since FSL

FAST is not designed to correct the inhomogeneities in SWI scans the

N3 algorithm was used to correct the bias field in these scans (Sled et

al., 1998).

2.2.4. Normalization

Similar to intra-patient inhomogeneities, inter-patient intensity var-

iation negatively impacts the performance of a classification system.

Therefore, the SWI and T1 data was normalized by dividing the data

by the median intensity of the voxels inside the brain mask.

2.3. Voxel classifier

A set of features characterizing each voxel, was specifically chosen

for the task of CMB recognition. Bymeans of supervised machine learn-

ing CMB candidate locations were identified.

2.3.1. Initial candidate detection

Not all the voxels in the brain mask were used to train the classifier.

CMBs appear as hypointense spherical structures.We utilized these two

characteristics to identify candidates for training.

Only local minima of the SWI scan (in a 3 × 3 × 3 voxel neighbor-

hood), that have an intensity below themean intensity of the voxels in-

side the brain are selected for training.

Positive sampleswere defined as the initial candidates located inside

annotated CMBs, marked as “definite”. Negative samples were defined

as initial candidates in the healthy subjects. This important step was

taken, because CMBs in the TBI patients could have been missed by

the expert, leading to false negatives in the training data. By taking

local minima from the SWI data of healthy controls as negative samples,

this risk is negated. The number of negative samples in the healthy sub-

jects was much higher than the number of positive samples in the TBI

patients. The number of negative samples was randomly downsampled

to obtain a one to ten ratio between the positive and negative samples.

This downsampling was necessary to train a reliably classifier, further

reduction of the amount of negative samples resulted in a worse

performance.

2.3.2. Feature extraction

The voxel-based features can be divided into two groups: intensity

features and local shape features. Table 1 gives an overview of all fea-

tures that are used for voxel classification.

The first group consisted of three intensity-based features that

were calculated on both the SWI and the T1 scan. The combination

of the intensity features captures the relation between the darker

voxel and its brighter surroundings. The intensity of the T1 scan is

included, because this sequence contains extra information about

structures in the brain that are not visible on the SWI scan (e.g. the

gray-white matter boundary). The scales of the kernel-based features

are reported in voxels, where one voxel in our data corresponds to

0.98 × 0.98 × 1 mm.

Fig. 3. Schematic overview of our work.
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The second group consists of six local shape features which are only

calculated on the SWI scan, as this modality best depicts the CMBs. The

first feature is the response of a convolution of the image with a spher-

ical kernel. The inside of this spherical kernel is negative and the edge of

the kernel is positive. These negative and positive areas are normalized,

so the convolution will give no response if the total intensity inside the

kernel is equal to the total intensity at the edge of the kernel. The other

five shape features are based on the Hessianmatrix. The Hessianmatrix

is shown in formula (1).
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Where Lnn is computed by a convolution of the image with a second

order Gaussian derivative. The scale of the Hessian matrix is therefore

determined by σ of the Gaussian filter kernel G that is applied as:

G xð Þ ¼ e
− x2

2σ2 ð2Þ

The Laplacian feature is defined by the sum of the diagonal of the 3D

Hessian matrix (the trace). The determinant and the three eigenvalues

of theHessianmatrix are used as features that describe the spherical na-

ture of CMBs. The vesselness feature vf is defined by Eq. (3), where λ1,

λ2, and λ3 represent the eigenvalues of the 3D Hessian matrix with a

σ of 1 mm (Sato et al., 1998).
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As suggested by Sato et al. (1997) we define α1 = 0.5 and α2 = 2.

The last feature is the so-called deviation from sphericalness (ter

Haar Romeny, 2011). This feature captures the spherical appearance of

a neighborhood by considering the local curvature of the SWI scan.

The two principal curvatures (k1 and k2) are given by the eigenvalues

of the 2D Hessian matrix:

k1 ¼
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The two principal curvatures are equal when 4Lxy
2 +(Lxx−Lyy)

2 is

zero. This happens in so-called umbilical points. In umbilical points

the curvature direction is undefined and the surface is locally spherical.

The term 4Lxy
2 +(Lxx−Lyy)

2 can be interpreted as ‘deviation from

sphericalness’ in 2D. This feature is computed in all orthogonal direc-

tions with a σ of 1.5 mm.

The scales of the features were determined by approximation of the

volumes of the manually annotated CMBs, marked as “definite”. To be

able to approximate the diameter of the annotations, the shape of a

CMB was assumed to be a sphere. Resulting in a distribution of diame-

ters as shown in Fig. 4. The median diameter of the definite annotated

CMBs is 4.7 mm (sd 0.72 mm). A few annotations include multiple

CMBs, causing the positive skewness (0.96) of this distribution. For

the kernel-based features a kernel size of 7 × 7 × 7 voxels is used,

which is slightly bigger than the average CMB and thus also captures

the surroundings of the CMB. Asmentioned the scale of theHessianma-

trix is determined by σ of the Gaussian filter kernel G as shown in

formula (2). The scales (σ) of the features were defined by the observa-

tion that aσ of 1.5mmgives the highest response for CMBswith a diam-

eter between 3.8 and 5.4 mm. A σ of 1 mm was used to detect the

smaller CMBs present in the data and a σ of 2 mm was used to detect

the larger CMBs present in the data.

2.3.3. Training and classification

For classification an OpenCV implementation of the Random Forest

Classifier (RFC) (Breiman, 2001) with 100 trees was used. The initial

candidates (Section 2.3.1) together with the above mentioned features

(Section 2.3.2) were used to train the classifier.

For testing, all voxels inside the brainmaskbelow themean intensity

of the SWI voxels were classified. The test set was not limited to local

minima of the SWI, because CMBs with an attached darker structure

might not contain a local minimum and would therefore be missed.

The final result of the voxel classifier was a likelihood map, where

every voxel inside the brain mask gets a likelihood of that voxel being

a CMB.

2.4. Object classifier

Despite the use of the vesselness feature, the result of the voxel clas-

sifier still contains numerous false positives inside blood vessels. Blood

vessels also appear dark on SWI scans. The local variation in a blood

vessel's diameter and orientation can cause hypointense spherical

structures to appear in the SWI scan at these positions. Fig. 5 shows an

example of such a structure inside a blood vessel. These structures

look similar to CMBs at voxel level, but can be distinguished from

CMBs by looking at its surroundings. To remove these false positives

an object-based approach was used to distinguish between spherical

shaped CMBs and elongated shaped blood vessels.

2.4.1. Segmentation

For segmentation a region growing-based algorithm was used. The

results of the voxel classifierwere used as seed points for this algorithm.

A subvolume around each seed point was taken to improve computa-

tional speed. The size of this subvolume can contain two CMBs with a

Table 1

Overview of the voxel-based features.

Based on Feature Modality Scale

Intensity Intensity value SWI and T1 Single voxel

Mean intensity SWI and T1 Kernel size of 7 × 7 × 7 voxels

Standard deviation SWI and T1 Kernel size of 7 × 7 × 7 voxels

Local shape Spherical kernel SWI Kernel size of 7 × 7 × 7 voxels

Laplacian SWI Max response of σ is 1, 1.5 and 2 mm

Determinant of Hessian matrix SWI Max response of σ is 1, 1.5 and 2 mm

Eigenvalues of Hessian matrix SWI σ is 2 mm

Vesselness SWI σ is 1 mm

Deviation from sphericalness SWI σ is 1.5 mm
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diameter of tenmillimeters. The intensity threshold of the region grow-

ing algorithm is iteratively increased until the volume of the segmenta-

tion exceeds the volume of a sphere with a diameter of ten millimeters.

During each iteration only voxels attached to the segmentation, that

have a gray value between the intensity values of the previous and cur-

rent iteration, are added to the segmentation. The iteration prior to the

largest volume increase is taken as the final threshold for the

segmentation.

2.4.2. Feature extraction

Prior to feature extraction all segmentations with a volume smaller

than four voxels were marked as false positives of the voxel detector,

because these segmentations were considered too small to be a CMB.

From the segmentations with a minimum size of four voxels seven fea-

tures were considered. See Table 2 for an overview of the object-based

features.

The first feature is the probability of our voxel classifier in the seed

point. The second feature is the final intensity threshold of the region

growing algorithm. The third feature is the volume of the segmentation.

The fourth feature is the number of voxels that intersect with the

boundary of the subvolume around the seed point. If a segmentation in-

tersects with the boundary of the subvolume it will probably not be a

CMB. The fifth feature is an elongation measure em defined by:

em ¼ λ1=λ2 ð6Þ

where λ1 and λ2 are eigenvalues of the segmented object. The sixth and

seventh feature describe the percentage of voxels of the segmented ob-

ject that overlapwith a sphere with the same volume as the segmented

object. The sixth feature describes the overlap of the sphere centered at

the seed point of the segmentation and the seventh feature locates the

center of the sphere at the center of gravity of the segmented object.

2.4.3. Training and classification

The object classifierwas trained on the localmaxima of the probabil-

ity map (in the 3 × 3 × 3 voxel neighborhood), that have a voxel classi-

fier likelihood above a certain threshold. This threshold is chosen such

that the sensitivity of the voxel classifier would be as high as possible,

but the number of FP detections would not exceed 100 FP per healthy

subject. In this way the object classifiermaintains an acceptable compu-

tation time, because the segmentation algorithm needs to be computed

for each voxel classifier result above this likelihood. As positive samples,

local maxima within the definite annotated CMBs were used. Negative

samples were local maxima in healthy subjects. For each sample the

seven features, described in Section 2.4.2, were computed for training

and classification. For classification an RFC with 100 trees is used. The

result of the object classifier defines a likelihood for every local maxi-

mum within the voxel classifier probability map.

2.5. Experiments

Four different experiments were performed during this study. First,

the inter-observer variability was measured with the Fleiss' kappa sta-

tistics. Second, optimization of the CAD system was performed using

the data of all 33 TBI patients and 18 healthy subjects. Third, one trained

expert manually evaluated the CAD system output with a newly

Fig. 5. An example of a spherical like structure inside a blood vessel.

Table 2

Overview of the object-based features.

Object feature

Probability of the voxel classifier

Intensity threshold of the region growing algorithm

Volume of the segmentation

Number of voxels intersecting the boundary of the subvolume

Elongation measure

Overlapping voxels with sphere centered at seed point

Overlapping voxels with sphere centered at center of gravity of the segmented object

Fig. 4. Histogram with the approximated diameters of the definite annotations.
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designed guided user interface. Last, the CAD system performance was

evaluated using the subset of ten TBI patients that was manually anno-

tated by six trained experts.

2.5.1. Observer variability

This study included 33 TBI patients, but because of the laborious na-

ture of manually annotating CMBs only a subset of ten TBI patients was

annotated by six experts.Within this subset of ten TBI patients the inter-

observer variability was computed using Fleiss' kappa statistics.

2.5.2. CAD system optimization

Optimization of the CAD systemwas performed based on FROC anal-

ysis. In an FROC analysis the sensitivity is plotted against the average

number of false positive detections. The curvewas computed by varying

the likelihood threshold of the classifier result. In the voxel- and object

classifier, an annotated CMB, marked as “definite”, as described in

Section 2.1, is considered a true positive if a local maxima (in a

3 × 3 × 3 voxel neighborhood) of the probability map is present within

1 mm of the annotation. Since the annotations in all 33 TBI patients

were made by a single expert, it is likely that not all CMBs were detect-

ed, which could potentially lead to an over estimation of the amount of

false positives in the TBI patient dataset. For this reason, the number of

false positives for each classifier was computed on the data of the

healthy subjects. All results present within 1 mm of an annotated

CMB, marked as “possible” (Section 2.1), were ignored and thus not

counted as true positives nor as false positives. Only the definite CMB

were taken into account during evaluation, because the possible CMBs

lower the agreement between raters and therefore it is recommended

to only report definite CMBs for research studies (Werring, 2011).

Both the voxel classifier and the object classifier were evaluated

using a leave-one-out cross validation. To avoid bias in the training

data of the object classifier, the voxel classifier was tested using a

leave-two-out cross validation, which is schematically presented in

Fig. 6. In this example patient 1 is used for testing the object classifier

(shown in red). Patients 2 through 33 and healthy subjects H1 through

H18 are used testing the voxel classifier and for training the object clas-

sifier (shown in orange). To test the voxel classifier on patient 2, the

voxel classifier is trained on patients 3 through 33 and healthy subjects

H1 through H18 (shown in green).

2.5.3. CAD system evaluation

One operating point in the FROC curve was chosen for manual eval-

uation of the CAD system output. This manual evaluation was per-

formed by one neuroradiologist, using a guided user interface shown

in Fig. 7. The manual evaluation consisted of two steps. First, the brain

mask was checked for mistakes. Second, every detected location was

manually checked and divided into three categories; definite CMB, pos-

sible CMB, and no CMB. The evaluation expert was blind to the annota-

tions made by the other experts.

The guided user interface was constructed for fast evaluation of the

detected locations. For every detected location an overview of the entire

brain in axial directionwas shown to determine its location in the brain.

A zoomed-in version of the location was visible in axial, coronal, and

sagittal direction, to be able to analyze the shape of the detected object

in 3D. The amount of zoom could be manually adjusted and the expert

could scroll through the surroundings of the location in all three direc-

tions. Also a Minimal Intensity Projection (MinIP) over a user definable

number of slices in axial direction was presented, to be able to quickly

detect blood vessels. Per location a comment was made if the category

of a detection was equivocal to the expert. These detections were

discussed with a second neuroradiologist.

During the evaluation of the CAD system the neuroradiologist de-

tected some obviously missed CMBs. After the evaluation of the CAD

system theneuroradiologistwent through all the SWI scans tomanually

add these CMBs that weremissed by the CAD system. These CMBs were

manually added to the final result.

2.5.4. CAD system performance

The CAD system performancewas evaluated on the subset of ten TBI

patients which were manually annotated by six independent experts.

The CAD system performance was compared to the performance of

each individual expert using FROC analysis. The ground truth was

made by combining the annotations of the other five experts using ma-

jority voting. A location was considered as a definite CMBwhen at least

three out of the five experts annotated the location as a definite CMB. A

location was considered as a possible CMBwhen it was not marked as a

definite CMB by the above mentioned criteria, and at least three of the

five experts annotated the location as either a possible or definite

CMB. For the CAD systeman FROC curvewasmade,where an annotated

CMB, marked as “definite”, is considered a true positive if a local maxi-

ma (in a 3× 3× 3 voxel neighborhood) of the probabilitymap is present

within 1 mm of the annotation in the ground truth. All results present

within 1 mm of an annotated CMB, marked as “possible”, were ignored

and thus not counted as true positives nor as false positives.

For each expert the sensitivity and number of FPs was computed. An

annotated CMB, marked as “definite”, was considered a true positive if

the annotation in the ground truth overlapped with an annotation of

the expert. All results that overlapped with an annotated CMB, marked

as “possible”, in both the ground truth and the evaluated expert annota-

tions, were ignored and thus not counted as true positives nor as false

positives.

3. Results

3.1. Observer variability

The annotations of the single expert in all 33 TBI patients resulted

in a total of 523 (sd) definite CMBs and 104 (sd) possible CMBs. No

CMBs were identified in the healthy subjects. In the subset of ten

TBI patients each expert detected on average a total of 136.0 (sd

27.9) definite CMBs and 44.8 (sd 43.2) possible CMBs, with a Fleiss'

kappa value of 0.24.

3.2. CAD system optimization

In all 33 TBI patients on average 15.8 definite CMBs (sd 22) were an-

notated per TBI patient by one expert. The performance of our CAD sys-

tem considering these definite annotated CMBs as a reference standard

is visualized in Fig. 8. It can be seen that including the object classifier

after the voxel classifier improved the result of the CAD system at

every point in the FROC curve. At a sensitivity of 90.8% compared to

the expert annotations, the CAD system detects 13.9 FPs per healthy

subject (that is 0.88 FPs per CMB). Other operating points of the object

classifier FROC curve are presented in Table 3.

3.3. CAD system evaluation

The operating point for manual evaluation of the CAD system was

chosen at a sensitivity of 90.8%. This operating point was chosen in

agreement with the expert who performed the manual evaluation. At

this operation point the CAD system detected on average 13.9 locations

Fig. 6. A schematic representation of the leave-two-out cross validation. Green is the

dataset that is used for training the voxel classifier. Orange is the dataset that is used for

testing the voxel classifier and for training the object classifier. Red is the dataset that is

used for testing the object classifier.
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Fig. 7. The guided user interface that is used for manual evaluation of the CAD system result.
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per healthy subject and 79.8 locations per TBI patient. Detections of the

CAD system in both the TBI patient and the healthy subjects were man-

ually evaluated as explained in Section 2.5.3. The results of the manual

evaluation are shown in Table 4.

The manual evaluation for the 79.8 locations per TBI patient into the

three categories took on average 13 minutes per TBI patient. This also

includes the time needed for discussion of equivocal cases.

The computation time of the CAD system per patient was approxi-

mately 17minutes, fromwhich the preprocessing took 14minutes (lap-

top with 64-bit Intel Core i7 2.4 GHz CPU and 12 GB RAM). The

computation of the CAD system can be performed offline, without any

manual interaction, so the expert does not need to spend time on the

CAD system during this period.

After the evaluation of the CAD system the second expert went

through all the SWI scans to manually add CMBs marked as “definite”

that were obviously missed by the CAD system. During this process on

average 4.8 CMBs per TBI patient were added to the final result, leading

to an average of 62.4 definite CMBs per TBI patient.

3.4. CAD system performance

In the subset of ten TBI patients each expert detected on average a

total of 136.0 (sd 27.9) definite CMBs. The FROC curves are shown in

Fig. 9 and the corresponding operating points are presented in Table 5.

4. Discussion

In this work we have developed a CAD system for automated detec-

tion of CMBs in TBI patients. Experiments shown that the CAD system

has significantly higher sensitivity than an expert observer in detecting

CMBs and with the use of this CAD system the reading time is substan-

tially reduced.

4.1. Observer variability

The Fleiss' kappa value of 0.24 shows that the inter-observer vari-

ability is very large. During manual detection a lot of CMBs are

overlooked. This also emphasizes the need of a CAD system that not

only decreases reading time, but also aids the detection of CMBs.

4.2. CAD system optimization

The FROC curves in Fig. 8 show that the CAD system performance

improves when the object classifier is included. This means that the ob-

ject classifier removed FPs (mostly caused by blood vessels). Table 3

shows that our CAD system achieves a sensitivity of 90.8% based on

one expert in all 33 TBI patients and detects 13.9 FPs per healthy subject.

Table 4 shows that after manual evaluation 12.5 FPs per TBI patient are

detected. A two-sampled t-test shows that there is no significant differ-

ence (p = 0.79) between the number of FPs in the TBI patients and

healthy subjects, which confirms that taking negative samples from

healthy subjects is a valid approach for theCADoptimizationwhen lack-

ing a ground truth of multiple expert annotations. The FPs that remain

after object classification are mainly parts of blood vessels that appear

as spherical like structures due to the partial volume effect or a strong

curvature and are therefore detected as CMBs.

4.3. CAD system evaluation

The CAD system detected on average 79.8 locations per TBI patient,

of which 57.5 detections were evaluated as definite CMB by the second

expert. After manual evaluation of the CAD system's detections the ex-

pert added on average another 4.8 CMBs marked as “definite” that

were obviously missed by the CAD system, bringing the total number

of detected CMBs marked as “definite” to 62.4 CMBs.

During manual evaluation, no false positives were detected around

skull injuries and subdural and epidural hematomas. This shows that

the CAD system is very robust for trauma often seen in this patient

group.

4.4. CAD system performance

The sensitivity of the experts in the subset of ten TBI patients was

on average 76.7% (sd 12.4%) with on average 4.1 FPs (sd 2.8) per TBI

patient. This large inter-observer variability underlines the difficult

task of manually detecting CMBs in TBI patients. The sensitivity of

the CAD system for the chosen operating point within the subset of

ten TBI patients was on average 89.1% (sd 0.8%) with on average

25.9 FPs (sd 0.8) per TBI patient. After manual evaluation of this

CAD system result the average sensitivity remained almost the

same at 87.8% (sd 1.1%), but the average number of FPs drastically

decreased to 10.6 FPs (sd 0.5) per TBI patient. So when the CAD

system presents a location, the expert is able to distinguish the

CMBs from the FPs. When the expert manually added the obviously

missed CMBs the average sensitivity increases to 93.2% (sd 1.0%)

with on average 12.9 FPs (sd 0.8). A paired t-test shows that the

Table 4

Result after manual evaluation of the CAD system.

Category Mean per TBI patient (sd) Mean per Healthy subject (sd)

Definite CMB 57.5 (99.1) 0 (0)

Possible CMB 9.8 (20.6) 0.78 (1.4)

No CMB 12.5 (9.2) 13.2 (9.1)

Total 79.8 (124.9) 13.9 (10.0)

Fig. 8. FROC curve of the CAD system result. The average number of false positives per

healthy subject is plotted on the x-axis. The sensitivity compared to the expert

annotation is plotted on the y-axis. In blue, the result after voxel classification. In green,

the result after voxel- and object classification.

Table 3

FROC curve operation points after object classification.

Sensitivity Nr of FPs per CMB Nr of FPs per healthy subject

86.5% 0.64 10.1

90% 0.82 13.1

90.8% 0.88 13.9
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sensitivity of 93.2% per TBI patient is significantly higher (p = 0.03)

than the average sensitivity of 77% per TBI patients that the six ex-

perts manually detected. It can be concluded that a single expert

using this CAD system can reach a high sensitivity with a low num-

ber of FPs and can reduce reading time from one hour to 13 minutes

per patient.

Fig. 9. Comparison of the six experts to the CAD systemusing FROC analysis. In blue, the result of the excluded expert. In green the result of the CAD system. In red, the evaluated operating

point, the result of the manual CAD evaluation and the manually added obvious missed CMBs.
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4.5. Comparison to other CAD systems

It is not possible tomake a fair comparison between our CAD system

and other (semi-) automated methods simply by comparing reported

results, since major differences exist in the patient population, MR ac-

quisition protocols, MR system field strengths and datasets. Nonethe-

less, we give a short overview of the results from two other

contributions in the field.

At a sensitivity of 89% our CAD system detects 25.9 FPs per 88.5 def-

inite CMBs, resulting in 0.29 FPs per CMB. At a sensitivity of 86.5% Bian et

al. (2013) reported 1.5 FPs per CMB in patients with radiation damage,

which resulted in 44.9 FPs per patient. Our CAD systemoutperforms this

in terms of sensitivity, number of false positives per CMB and per pa-

tient. The paper of Ghafaryasl et al. (2012) reported 1.8 FPs per CMB

in elderly patients at a sensitivity of 90%. While 1.8 FPs per CMB is a

lot higher than our CAD system, the elderly patient population that

Ghafaryasl used for evaluation only contained 2.3 CMBs per patient,

resulting in only 4 FPs per patient.

A fair comparison between our CAD system and these existing CAD

systems can only be made by applying these different CAD systems to

the same patient population. However, because these systemswere de-

signed for different patient populations we assume that their perfor-

mance for the detection of CMBs in TBI patients would be suboptimal.

4.6. Study limitations

During this research a number of limitations of the study were en-

countered. First, due to the time-consuming nature of manually anno-

tating CMBs in TBI patients only ten of the 33 TBI patients were

annotated by all six experts, while only one expert manually annotated

CMBs all TBI patients, which led to CMBs being overlooked. For the op-

timization of the CAD systemwe therefore computed false positives on

the data of healthy subjects, who did not present CMBs. To avoid con-

tamination of the negative samples used for classifier training, we also

obtained negative samples from the data of healthy subjects. Retraining

the classifier with additional “definite” CMBs could further improve the

performance.

Second, the proposedmethod is developed to detect hypointensities

caused by CMBs on our specific SWI images, this implies that when the

parameters of the acquisition change, also the parameters (such as ker-

nel sizes, scales of derivatives and thresholds in the object classifier)

likely need to be changed. The overall framework however, and the

types of features can remain the same.

Lastly, during this research it was not needed nor possible to test

complicated normalization algorithms, because the data used in this re-

search was acquired from the same MRI scanner using the same se-

quence. The influence of different normalization algorithms on the

CAD system have to be tested when data from other scanners is

available.

4.7. Improvements and future work

Improvements of the CAD system can be accomplished by using an

MRI sequence thatwill give information about bloodflow (e.g.magnetic

resonance angiography). In this way the CAD system would be able to

discriminate more easily between flowing blood in the blood vessels

and non-flowing blood deposits in CMBs. Unfortunately, this kind of

data was not acquired for the patient population in this research.

Other classifiers such as support vector machine, Gentleboost and

Adaboostmight improve the classification result of the voxel and object

classifier. This can be evaluated in future work.

This system is deemed valuable for further research to investigate

the relationship between CMBs and clinical outcome of TBI patients,

the relationship between CMBs and the Glasgow Coma Scale and the re-

lationship between CMBs and diffuse axonal injury. All this further re-

search would be more, if not too time-consuming to perform without

the use of a well performing CAD system.

5. Conclusions

In this paperwe presented a CAD system for thedetection of CMBs in

TBI patients.With the use of this CAD system the sensitivity of an expert

was on average 93% which was significantly higher (p = 0.03) than a

fully manual annotation performed by a single expert which had an av-

erage sensitivity of 77%. The CAD systemonly detects 25.9 false positives

per TBI patient and with the newly developed user interface reading

time is drastically decreased. In future research the relations between

the number, size, and location of CAD detected CMBs and diffuse axonal

injury, Glasgow Coma Scale and patient outcome, should be

investigated.
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