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Purpose: Driving fatigue has become one of the important causes of road accidents,

there are many researches to analyze driver fatigue. EEG is becoming increasingly useful

in the measuring fatigue state. Manual interpretation of EEG signals is impossible, so an

effective method for automatic detection of EEG signals is crucial needed.

Method: In order to evaluate the complex, unstable, and non-linear characteristics

of EEG signals, four feature sets were computed from EEG signals, in which fuzzy

entropy (FE), sample entropy (SE), approximate Entropy (AE), spectral entropy (PE), and

combined entropies (FE + SE + AE + PE) were included. All these feature sets were

used as the input vectors of AdaBoost classifier, a boosting method which is fast and

highly accurate. To assess our method, several experiments including parameter setting

and classifier comparison were conducted on 28 subjects. For comparison, Decision

Trees (DT), Support Vector Machine (SVM) and Naive Bayes (NB) classifiers are used.

Results: The proposed method (combination of FE and AdaBoost) yields superior

performance than other schemes. Using FE feature extractor, AdaBoost achieves

improved area (AUC) under the receiver operating curve of 0.994, error rate (ERR) of

0.024, Precision of 0.969, Recall of 0.984, F1 score of 0.976, and Matthews correlation

coefficient (MCC) of 0.952, compared to SVM (ERR at 0.035, Precision of 0.957, Recall

of 0.974, F1 score of 0.966, and MCC of 0.930 with AUC of 0.990), DT (ERR at 0.142,

Precision of 0.857, Recall of 0.859, F1 score of 0.966, and MCC of 0.716 with AUC of

0.916) and NB (ERR at 0.405, Precision of 0.646, Recall of 0.434, F1 score of 0.519,

and MCC of 0.203 with AUC of 0.606). It shows that the FE feature set and combined

feature set outperform other feature sets. AdaBoost seems to have better robustness

against changes of ratio of test samples for all samples and number of subjects, which

might therefore aid in the real-time detection of driver fatigue through the classification

of EEG signals.

Conclusion: By using combination of FE features and AdaBoost classifier to detect

EEG-based driver fatigue, this paper ensured confidence in exploring the inherent

physiological mechanisms and wearable application.

Keywords: driver fatigue, electroencephalogram (EEG), adaboost, fuzzy entropy, receiver operating

characteristic (ROC)
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INTRODUCTION

Electroencephalogram (EEG) is a very important monitoring
technique to reflect the instantaneous state of the brain.
Various computational ways based on EEG signals have been
successfully used to assist the diagnosis of seizure (Amal Feltane
et al., 2013), stroke, Alzheimer’s, schizophrenia (Boostani et al.,
2009), epilepsy (Guo et al., 2010), depression, Attention Deficit
Hyperactivity Disorder, and even fatigue. Driver fatigue is very
important factor to traffic safety and automated detection is
necessary urgently (Lal and Craig, 2001). Many EEG-based
studies have been performed to analyze and detect driving fatigue
(Kar et al., 2010; Mu et al., 2017a; Yin et al., 2017).

Correa et al. got 83.6% accuracy using a Neural Network
classifier (Correa et al., 2014). Mousa Kadhim et al. yielded
the highest accuracy of 85% using Discrete Wavelet Transforms
method (Mousa Kadhim et al., 2013). Li et al. achieved the highest
accuracy of 91.5% based on 12 types of energy parameters (Li
et al., 2012). Fu et al. reached a highest accuracy of 92.5% based
on Hidden Markov Model (HMM; Fu et al., 2016). Zhao et al.
hit a higher accuracy (98.7%) based on a KPCA-SVM classifier
(Zhao et al., 2010). Recently, entropy has been broadly applied
in the analysis of EEG signals, considering the fact that EEG is a
complex, unstable, and non-linear signal (Acharya et al., 2012; Hu
et al., 2015; Mu et al., 2016). A diverse varied collection of these
methods has been proposed in the last few decades, including
spectral entropy (PE), permutation entropy, distribution entropy,
fuzzy entropy (FE), Renyi entropy, approximate entropy (AE),
sample entropy (SE), and some others. Specially, in the field of
EEG processing, four of the most widely used and successful
entropy estimators are FE (Chen et al., 2009), SE (Richman and
Moorman, 2000), AE (Pincus, 1991), and PE (Reyes-Sanchez
et al., 2016). AE has demonstrated its capability to detect
complexity changes. SE is a similar statistic, which has not yet
been used as extensively as AE. AE and SE are very successful
entropy features, but they also have their weaknesses. AE is biased
because it includes self-matching in the count, while SE needs to
avoid the log(0) problem. They are also very sensitive to input
parameters. More recently, FE has been proposed to alleviate
these problems. FE is based on a continuous function to compute
the dissimilarity between two zero-mean subsequences, so it is
more stable in noise and parameter initialization.

Liu et al. got 84% accuracy with the combination of kernel
principal component analysis and HMM utilizing AE and
Kolmogorov complexity to detect the fatigue state (Liu et al.,
2010). Mu et al. yielded accuracy of 85% with FE and Support
Vector Machine (SVM) classifier (Mu et al., 2017a). Xiong et al.
proposed a feature combination of AE and SE with SVM classifier
to test driving fatigue, and achieved the best accuracy of 91.3%
(Xiong et al., 2016). Khushaba et al. exploited a feature extraction
by using fuzzy mutual-information method and achieved 92.8%
(Khushaba et al., 2011). Hu hit highest accuracy of 96.6% with FE
and Random Forest classifier (Hu, 2017).

Abbreviations: FE, Fuzzy entropy; SE, Sample entropy; AE, Approximate entropy;

PE, Spectral entropy; EEG, Electroencephalogram; AUC, Areas under ROC curves;

SVM, Support Vector Machine; DT, Decision Tree; NB, Naive Bayes; AdaBoost,

Adaptive Boosting; ERR, Error rate.

From the literature review, it has been observed that few
studies have been conducted for using ensemble classifier based
on EEG to study driver fatigue detection. Keeping this in mind,
the prime motivation of this work is to develop an automated
detection system for driver fatigue based on ensemble classifier.
The scheme employs four types of entropy for feature extraction
and AdaBoost (Freund and Schapire, 1997; Hastie et al., 2009)
for classification of EEG signals into normal and fatigue.
Several experiments on 28 subjects indicate that the proposed
scheme earns better detection performance and robustness in
comparison to other existing schemes.

The rest of this article is described as below. In Materials and
Methods, data acquisition, feature extraction, and classification
are illustrated. The results are discussed in Section Results
presents the evaluation of the method with the obtained results,
followed by a general discussion about classifier accuracy in
Section Discussion.

MATERIALS AND METHODS

Subjects
Twenty-eight university students (14 male, 19–24 years)
participated in this experiment, which all had a current driver’s
license. Before the experiment, they practiced driving for several
minutes to familiarize themselves with the process and purpose of
the experiment. The experiment was approved by the Academic
Ethics Committee of the Jiangxi University of Technology
according to the standards of the Declaration of Helsinki.
Written informed consent was obtained from each subject.

Experiment
In the static driving simulator (ZY-31D, ZhongYu CO., LTD,
China), the driver’s fatigue simulation test was performed on each
subject, as shown in Figure 1. The driving environment selected
for this work was a highway with low traffic density so as to
induce monotonous driving, which easily leads to driver fatigue
state.

Data Recording
Similar to former experiments (Chai et al., 2017; Hu, 2017; Mu
et al., 2017b), when the driving procedure started 20 min, the
last 5-min EEG recordings were marked as normal state. When

FIGURE 1 | Snapshot of the experimental setup.
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the continuous driving procedure lasted 60–120 min until the
questionnaire results (Lee’s subjective fatigue scale and Borg’s CR-
10 scale; Borg, 1990; Lee et al., 1991), participants’ responses
and electrooculogram (EOG) signals show the subject was in
driving fatigue state, the last 5-min recorded EEG recordings
were marked as fatigue state. EOG signals were used to determine
fatigue state using the blink rate and eye closure such as, the small
and slow blinks.

All channel data were referenced to two reference electrodes
A1 and A2, and digitized at 1 kHz from a 32-channel electrode
cap (including 2 reference electrodes) based on the international
10–20 system.

After the acquisition of EEG signals, the main procedures
of data preprocessing was implemented by Scan 4.3 software
of Neuroscan (Compumedics, Australia). The original signals
were first filtered and a 0.15–45 Hz band-pass filter was used.
Then 5-min EEG signals from 30 channels were sectioned into
1-s epochs, resulting in 300 epochs. With the 28 subjects and
30 channels, a total of 504,000 units were randomly formed for
dataset (each state having 252,000 units).

Feature Extraction
The EEG is assumed to be a non-stationary time series and
most feature extraction methods are only applicable to stationary
signal. To deal with this problem, the EEG time series were
divided into several short windows and its statistics is assumed to
be approximately stationary within each window. The following
feature extraction methods are applied to each 1-s windowed
signal. EEG signals are segmented without overlap, finally feature
sets are extracted from all channels in each 1 s window.

The ability to distinguish between normal state and fatigue
state depends mainly on the quality of the input vectors of the
classifier. In order to capture EEG features, four feature sets are
computed, including FE, SE, AE, and PE. In this section, the
computational methods of these feature sets in EEG recordings
are described in detail.

Spectral Entropy (PE)
PE is evaluated using the normalized Shannon entropy
(Kannathal et al., 2005), which quantifies the spectral complexity
of the time series. The power level of the frequency component is
indicated by Yi and yi is normalized as:

yi =
Yi

∑

Yi
(1)

The PE of the time series is calculated using the following
equation:

PE =
∑

iyi log(
1

yi
) (2)

Approximate Entropy (AE)
AE, as proposed by Pincus (1991), is a statistically quantified non-
linear dynamic parameter that measures the complexity of a time
series. The procedure for the AE-based algorithm is described as
follows:

(1) Considering a time series t(i), a set of m-dimensional vectors
are obtained according to the sequence order of t(i):

Tm
i = [t(i), t(i+ 1), . . . , t(i+m− 1)]; i≤L−m+ 1 (3)

d[Tm
i ,T

m
j ]is the distance between two vectors Tm

i andTm
j ,

defined as the maximum difference values between the
corresponding elements of two vectors:

d[Tm
i ,T

m
j ] = max{|t(i+ k)− t(j+ k)|},

(

i, j = 1 ∼ L−m
k∈(0,m−1)

+ 1, i 6= j
)

(4)

(2) Define Si is the number of vectors Tj that are similar toTi,
subject to the criterion of similarity d[Tm

i ,T
m
j ] ≤ s

Smi (s) =
1

L−m+ 1
Si (5)

(3) Define the function γm(s) as:

γm (s) =
1

L−m+ 1

L−m+1
∑

i= 1

ln Smi (s) (6)

(4) Set m = m + 1, and repeat steps (3) to (6) to obtain Sm+1
i (s)

andγm+1(s), then:

γm+1 (s) =
1

L−m

L−m
∑

i= 1

ln Sm+1
i (s) (7)

(5) The AE can be expressed as:

AE = γm (s) − γm+1 (s) (8)

Sample Entropy (SE)
SE’s algorithm is similar to that of AE (Yentes et al., 2013),
which is a new measure of time series complexity proposed by
Richman andMoorman (2000). The step (1) can be defined in the
same way as the AE-based algorithm; other steps in the SE-based
algorithm are described as follows:

(1) Define Ai is the number of vectors Tj that are similar to Ti

subject to the criterion of similarity d[Tm
i ,T

m
j ] ≤ s

Am
i (s) =

1

L−m− 1
Ai (9)

(2) Define the function γm(s) as:

γm(s) =
1

L−m

L−m
∑

i= 1

Am
i (s) (10)

(3) Setm=m+ 1, and repeat above steps to obtainAm+1
i (s) and

γm+1(s), then

γm+1(s) =
1

L−m− 1

L−m−1
∑

i=1

Am+1
i (s) (11)

(4) The SE can be expressed as:

SE = log(γm (s) /γm+1 (s)) (12)

Frontiers in Computational Neuroscience | www.frontiersin.org 3 August 2017 | Volume 11 | Article 72

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Hu Detection of Fatigue Based on AdaBoost

Fuzzy Entropy (FE)
To deal with some of the issues with SE, Xiang et al. proposed
the use of fuzzy membership function in computing the vector
similarity to replace the binary function in SE algorithm (Xiang
et al., 2015), so that the entropy value is continuous and smooth.
The procedure for the FE-based algorithm is described in detail
as follows:

(1) Set a L-point sample sequence: {v(i) : 1 ≤ i ≤ L};
(2) The phase-space reconstruction is performed on v(i)

according to the sequence order. The reconstructed vector
can be written as:

Tm
i = {v(i), v(i+ 1), ..., v(i+m− 1)} − v0(i) (13)

where i = 1, 2, ..., L − m + 1, and v0(i) is the average value
described as the following equation:

υ0 (i) =
1

m

m−1
∑

j= 0

υ(i+ j) (14)

(3) dmij , the distance between two vectors Tm
i andTm

j , is

defined as the maximum difference values between the
corresponding elements of two vectors:

dmij = d
[

Tm
i ,T

m
j

]

= maxk∈(0,m−1)

{

|υ
(

i+ k
)

− υ0 (i)

−(υ
(

j+ k
)

− υ0
(

j
)

)|
}

(i,j = 1∼ L−m, i 6= j) (15)

(4) According to the fuzzy membership function σ (dmij , n, s), the

similarity degree Dm
ij between two vectors Tm

i and Tm
j is

defined as:

Dm
ij = σ (dmij , n, s) = exp(−(dmij )

n
/s) (16)

where the fuzzy membership function σ (dmij , n, s) is an

exponential function, while n and s are the gradient and
width of the exponential function, respectively.

(5) Define the functionγm(n, s):

γm(n, s) =
1

L−m

L−m
∑

i= 1

1

L−m− 1

L−m
∑

j= 1,j 6=1

Dm
ij ] (17)

(6) Repeat the steps from (1) to (4) in the same manner. Define
the function:

γm+1(n, s) =
1

L−m

L−m
∑

i= 1

1

L−m− 1

L−m
∑

j= 1,j 6=1

Dm+1
ij ] (18)

(7) The FE can be expressed as:

FE (m, s, n) = lnγm (n, s) − lnγm+1(n, s) (19)

In these four entropies,m and s are the dimensions of phase space
and similarity tolerance, respectively. In the present study,m= 2,
n= 4 while s= 0.2 ∗ SD, where SD denotes the standard deviation
of the time series.

For optimizing the detection quality, the feature sets were
normalized for each subject and each channel by scaling between
−1 and 1.

Classification
To avoid over-fitting problem, the datasets were separated into
train sets and test sets in the following pattern. In the train phase,
10-fold cross validation applied on the features such that 10%
feature vectors are dedicated as test set and other 90% feature
vectors are considered as the train set. In the next iteration,
another 10% feature vectors consider as test set and the rest
for the train set, till all of feature vectors involved one time in
the test process. The final result was obtained by averaging the
results of corresponding turns. By this evaluation scheme, the
dependencies of the train and test sets were eliminated.

Since there is no uniform classification method suitable for
all subjects and all applications, usually it may be useful to test
multiple methods (Zhang et al., 2017). In this work, three types
of base classifiers namely Decision Trees (DT), Support Vector
Machine (SVM), and Naive Bayes (NB) were used. DT is a non-
parametric supervised learning method used for classification.
DT establishes several binary decision functions on the features.
DT1 and DT9 represent DT with the maximum depth of the
tree being 1 and 9 in this work, respectively. In the case of
non-linear classification, kernels, such as, radial basis functions
(RBF), are used to map the data into a higher dimensional feature
space in which a linear separating hyper-plane could be found.
Naive Bayes method is based on applying Bayes’ theorem with
the “naive” assumption. The likelihood in NB of the features is
assumed to be Gaussian. In this study, grid parameter search was
used to achieve better results.

AdaBoost is an eminent ensemble learning based classification
model (Amal Feltane et al., 2013; Yang et al., 2016), which
was first proposed by Freund and Schapire (1997). AdaBoost
produces the final output by weighting the decisions of all
these weak classifiers using majority vote method. The AdaBoost
algorithm is described as follow:

Algorithm AdaBoost
Definition train dataset (X, Y)= {(x1,y1), (x2,y2), (x3,y3), . . . . . . ,
(xN ,yN)}, yi ε {-1, 1}

iterator: M;

Initialize each weight W1, i = 1
N , i= 1, 2, . . . . . . , N,

Linear combination function of basic classifiers f0 (x) = 0
for m= 1 to M do

train a base learner: Dm(x)

calculate error rate: em =
∑N

i=1Wm,iI(Dm (xi) − yi)

αm = 1
2 ln(

1−em
em

)

update weight: Wm+1, i = Wm, i

Zm
exp

(

−αmyiDm (xi)
)

,

normalization factor Zm =
∑N

i=1Wm,i exp
(

−αmyiDm (xi)
)

fm (x) = fm−1 (x) + lr ∗ αmDm(x)
end for

Output sign
(

fM (x)
)

= sign(
∑M

m=1 αmDm(x))
In this work, the DT9 was used as base classifiers.

Performance Evaluation
To provide an easier-to-understand method to assess the
classification quality, the results of classification and the
performance of classifiers are expressed in terms of Error rate,
Precision, Recall, F1 score, MCC, and AUC which are defined as
follows:
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FIGURE 2 | ERR for AdaBoost based on different feature sets.

Error rate (ERR) calculates the total number of EEG segments
which are incorrectly classified

ERR =
(FP + FN)

(FP + TN + FP + FN)

The precision intuitively reflects the ability of the classifier to
determine the whole sample—which the positive is identified as
positive and the negative is identified as negative.

Precision =
TP

TP + FP

The recall intuitively reflects the proportion of positive samples
that are correctly identified.

Recall =
TP

TP + FN

The F1 score can be interpreted as a weighted average of precision
and recall, where an F1 score reaches the optimum value at 1 and
the worst score at 0.

F1 =
2 ∗ (Precision ∗ Recall)

(Precision + Recall)

The Matthews correlation coefficient (MCC) is used in machine
learning as a measure of the quality of two-class classifications.
The MCC is in essence a correlation coefficient value between -1
and+1.

MCC =
TP∗TN − FP∗FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Where
TP (True Positive)= correctly identified normal segments
TN (True Negative)= correctly identified fatigue segments
FN (False Negative)= incorrectly identified normal segments
FP (False Positive)= incorrectly identified fatigue segments

AUC illustrates the performance of a binary classifier system
as its discrimination threshold is varied. It is created by drawing
true positive rates from positive (true positive rate) and false
positive rates (false positive rates) in a variety of threshold
settings.

Statistical Analysis
In order to investigate differences of average accuracy among
various classifiers and feature sets, the paired sample t-test was
used to evaluate effectiveness on each comparison. The results
are averages over 10 independently turns of combination of train
set and test set in each experiment.

RESULTS

In order to verify the validity, effectiveness, and robust of
proposed method, some experiments were performed on 28
subjects.

Comparison with Different Feature Sets
and Different Classifiers
As shown in Figure 2. FE feature set performs slightly better
than the combined entropy (FE + SE + AE + PE) feature set
(0.020 against 0.029). A paired t-test across the 10 independent
comparisons indicates a significant difference with p-value
around 0.003. It can be seen that the FE feature set performs
about 0.098 and 0.075 better than the SE and AE feature set
at ERR index, respectively. A paired t-test over 10 independent
comparisons shows a significant difference with p-value lower
than 0.001. AE feature set performs slightly better than SE feature
set. It can also show that the PE feature set performs worst with
the lowest ERR being about 0.337.

The results of 10 independently rounds are used to drawmean
ROC curves. Different feature sets or classifiers were compared
by analyzing their ROC curves and areas under ROC curves
(AUC). In Figures 3A–E, their performance in ROC curves
produced was compared by different classifiers on combined
entropy feature set, FE feature set, SE feature set, AE feature set
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FIGURE 3 | ROC curves for different feature sets and different classifiers.

(A–E) Represents combined feature set, FE feature set, SE feature set, AE

feature set and PE feature set, respectively.

and PE feature set, respectively. It shows that the FE feature set
and combined feature set outperform other feature sets, which
similar to Figure 2. For example, the best ERR of FE feature set
and combined feature set are both 0.025, while the best ERR of
SE, AE, and PE are 0.115, 0.116, and 0.374, respectively. The
best AUC of FE feature set and combined feature set is are 0.993
and 0.994, respectively while the best ERR of SE, AE, and PE
are 0.961, 0.960, and 0.729, respectively. Consequently, adding
more featuresmakes nothing changes for driver fatigue detection.
Therefore, the FE feature set is selected for the next experiments.

As shown in Figure 4, it illustrate that AdaBoost outperform
other classifiers. For instance, the best ERR and AUC is 0.025
and 0.994 for AdaBoost based on FE feature set, while the
best ERR and AUC is 0.036 and 0.990 for SVM based on FE
feature set. The p-value is 0.0062 between AdaBoost and SVM.
AdaBoost classifier is significantly better than other classifiers.
The p-values are 0.0032 and 0.0001, by paired t-test between DT9
and AdaBoost, and between NB and AdaBoost, respectively. It’s
conjectured that AdaBoostmodels work best because theymay be
more robust than other models such as, DT and NBwhen dealing
with scalar data sets that are not too larger.

To evaluate the effectiveness of AdaBoost in the classification
of EEG signals, the classification indexes including ERR,
Precision, Recall, F1, score and MCC of the four classifiers were
compared based on FE feature set. As shown in Figure 4 and
Table 1, the overall performance of AdaBoost is the best of the
four classifiers in terms of ERR, Precision, Recall, MCC, and F1
score. The ERR of AdaBoost can reach 0.024 ± 0.002, which is
almost 0.011 lower than SVM (0.035 ± 0.005). The ERR of DT1,
DT9, and NB is 0.0369 ± 0.014, 0.0142 ± 0.008, and 0.405 ±
0.012, respectively.

Parameter Setting
The main parameters to be adjusted in AdaBoost method
are parameter max_depth of base classifier DT and lr. Best
performance of AdaBoost model can be yielded through carefully
choosing the optimal combination of these parameters. The
parametermax_depth is the most important one in the DT, which
controls the maximum depth of the tree. Figure 5A shows the
error rates under differentmax_depth and fixed iteration (=500)
based on FE feature set. It is showed that the average error rate
attains the minimal point 0.022 ± 0.004 when max_depth equals
to about 8. From Figure 5B, it can be seen that the average
error rate starts to even out at 0.022 ± 0.003 when the value of
lr smaller than about 1.5. According to these results, the final
AdaBoost classifier in next experiments is set with the parameters
max_depth= 9 (DT9) and lr = 1.0.

Comparison with Different Size of Test
Samples
The ratio of train samples for test samples is important for the
performance of classifier. To determine the robustness of the
classifier against size of test sample or train size, the ratio of test
samples for all samples is set varying from 0.03 to 0.97. The ERR
of AdaBoost against different ratio is shown in Figure 6.

It is observed that the average error rate begins to stabilize
at about 0.03 when the ratio being about 0.5. When the ratio
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FIGURE 4 | Performance of different classifiers based on FE feature set.

TABLE 1 | p-value between AdaBoost and other classifiers with paired t-test.

Classifiers

Index
ERR Precision Recall F1 score MCC

SVM 1.05e-5 4.81e-4 5.60e-4 1.31e-4 8.92e-5

DT1 2.12e-7 4.82e-7 4.10e-7 4.46e-7 4.41e-7

DT9 2.07e-7 1.32e-6 9.46e-7 6.61e-7 6.10e-7

NB 2.06e-7 5.33e-7 3.98e-7 4.27e-7 3.97e-7

becomes larger, the ERR also becomes larger, but when ratio
reaches close to 1.0, the ERR is close to 10% and becomes
worse, possibly because of the lack of training samples. On
the contrary, when the ratio becomes smaller, ERR is stable at
around 0.02, which indicating that ratio is more appropriate in
the 0.1.

P-value between AdaBoost and SVM, between AdaBoost and
DT9, are 3e-8 and 4e-16, respectively. Compared to SVM andDT,
AdaBoost seems to have better robustness against changes of ratio
of test samples for all samples.

Comparison with Different Number of
Subjects
The number of subjects is also an important parameter in the
driving fatigue detection system. More subjects can provide
more information that may improve or reduce detection
performance. Generally speaking, when average performance is
poor, any subject with higher accuracy can improve the overall
performance, and vice versa. Sometimes, the classifier model that
is suitable for small samples may lose performance when large
samples are used. However, when more subjects are involved,
the system costs, including hardware and computation time,
will also increase. Therefore, a tradeoff between the system
performance and system cost should be based on the specificity
of the application.

To answer the question of how many subjects are needed
to train for a satisfactory detection system, system performance

was evaluated with respect to the number of subjects. For each
number n (from 2 to 28), a random combination (n out of
28 subjects) was repeated 20 times for calculating classification
accuracy using 10-fold cross validation. Three classifiers
approaches were calculated for comparison. Furthermore, for
each condition (n from 2 to 28), the paired T-test was
used as a post-hoc test to evaluate if the performance of
AdaBoost was significantly better than that of other two
classifiers.

The ERR of AdaBoost against different number of subjects is
shown in Figure 7. It can be seen that, for AdaBoost classifier,
when the number of subjects is <13, ERR is <0.01, when the
number of subjects continue to increase, ERR also increases, and
is stable at about 0.02. ERR is not increasing monotonically with
the number of subjects but tending to reach equilibrium.

P-values between AdaBoost and SVM, between AdaBoost
and DT9, are 4.665e-8 and 1.409e-8, respectively. Compared to
SVM and DT, AdaBoost seems to have better robustness against
changes of number of subjects.

DISCUSSION

As see in Table 2, it is found that the classification performance
of proposed method was better than that in the others research
using entropy feature sets. Although, based on the existing EEG
data, the optimal performance of detection of driving fatigue by
using AdaBoost-based method showed well application on the
real-time detection of driving fatigue.

Among the state-of-art classifier schemes, four representive
algorithms, DT, NB, SVM, and AdaBoost were experimented for
classification tasks of some data sets. These classifiers have been
shown very effective in many pattern recognition applications.
These classifiers are applied on the extracted features and
their results are shown in Figures 3, 4 in which AdaBoost
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FIGURE 5 | AdaBoost method parameter tuning results based on FE feature set and DT base classifier. (A)The error rates for different max_depth with lr = 1.0.

(B) The error rates with default max_depth (value = 9) for different lr.

FIGURE 6 | Performance evaluation with respect to the ratio of test samples for all samples.

FIGURE 7 | Performance evaluation in terms of number of subjects.

TABLE 2 | Studies regarding driver fatigue detection using entropy feature sets.

Research group Feature method Highest accuracy (%)

Liu et al., 2010 AE and others 84

Mu et al., 2017a FE 85

Xiong et al., 2016 AE and SE 91.3

Khushaba et al., 2011 FE 92.8

Hu, 2017 FE 96.6

This paper FE 97.5

showed a better results in comparison with the three other
classifiers.

Also to evaluate robustness of the classifiers, different
combinations of train set and test sets were employed and the
classification results were brought in Figures 6, 7. A repeated
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progressive method with various sample sizes was applied to find
out if there is any relationship between data set size and the
performance. It can be seen that AdaBoost is also more robust
than the three other classifiers.

The experiment confirmed that, in comparison with the
AE, PE, and SE, the FE had a better consistency and
better discrimination ability. The results also showed that
the differences between the normal state and the fatigue
state were relative larger from the FE from the AE, SE, or
the PE, confirming that the FE had a better performance
in distinguishing fatigue state. The result achieved in this
study ensured confidence in probing the theoretical reason
for the different discrimination ability and, hence, leads to
new ideas for exploring the inherent physiological mechanisms
when using the entropy methods. This indicated that the
FE could be an effective method for the driver fatigue
detection.

However, there are several limitations in this study.
First, it is worth noting that the parameter settings for
the SE, AE, and PE method are the local similarity and
parameters may not be the optimal solution. Second, the
number of subject is relatively small. Although according
to the existing literature in the Introduction section, the 28
subjects are not too small, but the number still needs to be
increased. Third, only three commonly used classifiers and
the four feature sets were compared in this study. Last, the
different impacts of different channels haven’t been took into
account.

CONCLUSION

In this paper, a method to develop an ensemble classifier for
recognizing fatigue was proposed. A new EEG feature vector
based on FE, SE, AE, and PE was used as input into four different
classifiers: DT, NB, SVM, and AdaBoost. It was concluded that
the combination of these feature sets or FE feature set with
the AdaBoost provided the best performance on EEG dataset.
The proposed method had very high accuracy classifying driver
fatigue events. Further, it was showed how the method for
detecting fatigue segments was robust.
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