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Abstract

Biologists often have to investigate large amounts of video in behavioral studies of animals. These videos are usually

not sufficiently indexed which makes the finding of objects of interest a time-consuming task. We propose a fully

automated method for the detection and tracking of elephants in wildlife video which has been collected by

biologists in the field. The method dynamically learns a color model of elephants from a few training images. Based on

the color model, we localize elephants in video sequences with different backgrounds and lighting conditions. We

exploit temporal clues from the video to improve the robustness of the approach and to obtain spatial and temporal

consistent detections. The proposed method detects elephants (and groups of elephants) of different sizes and poses

performing different activities. The method is robust to occlusions (e.g., by vegetation) and correctly handles camera

motion and different lighting conditions. Experiments show that both near- and far-distant elephants can be detected

and tracked reliably. The proposed method enables biologists efficient and direct access to their video collections

which facilitates further behavioral and ecological studies. The method does not make hard constraints on the species

of elephants themselves and is thus easily adaptable to other animal species.

Keywords: Automated video indexing; Color-based object detection; Automatic animal detection; Elephant

detection; Object tracking

1 Introduction
Many biologists study the behavior of free-ranging ani-

mals in the field. For this purpose they collect large

video corpora which include monitoring video, videos

from field trips, and personally recorded wildlife video

footage [1]. The result of this data collection is the large

amounts of video which sometimes span several hun-

dreds of hours. Unfortunately, the access to the videos

is limited because objects (e.g., the presence of a par-

ticular animal) and events of interest (e.g., particular

animal behaviors) are not indexed. In many cases only

(handwritten) field notes exist from the recording ses-

sions. For manual indexing biologists have to browse lin-

early through the videos to find and describe objects and

events of interest. This is a time-consuming and tedious

task for large amounts of videos [2]. Since indexing should

preferably be performed by domain experts, it quickly

becomes an expensive task. Visual analysis methods have

Correspondence: zeppelzauer@ims.tuwien.ac.at

Interactive Media Systems Group, Institute for Software Technology and

Interactive Systems, Vienna University of Technology, Favoritenstrasse 9-11,

Vienna 1040, Austria

the ability to significantly accelerate the process of video

indexing and enable novel ways to efficiently access and

search large video collections.

Wildlife recordings captured in the field represent a

challenging real-life scenario for automated visual anal-

ysis. While a lot of research has been performed on

the visual analysis of human beings and human-related

events, the automated analysis of animals has been widely

neglected in the past. Existing approaches on animal anal-

ysis frequently operate in highly controlled environments,

for example, with a fixed camera, in a well-defined loca-

tion, with static background, and without interfering envi-

ronmental factors, such as occlusions, different lighting

conditions, and interfering objects [3,4]. A typical exam-

ple for a controlled setting is the monitoring applications

where the camera is usually fixed and the background is

mostly static [5]. In such a scenario we can easily learn

a background model and identify objects of interest by

detecting changes to the background. The video mate-

rial we investigate in this work does not provide such a

well-defined setting.
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We are provided with a large collection of wildlife videos

captured by biologists in the field. The videos have been

captured during different field trips and serve as a basis

for the investigation of the behavior and communication

of African elephants. The videos show a large number

of different locations, elephants and elephant groups of

different sizes, poses, and distances to the camera. In

many sequences elephants are partly or completely absent.

Assumptions and constraints of specialized approaches

(derived from controlled environments) do not hold for

such unconstrained video footage. The question arises as

to which degree visual analysis methods can facilitate the

access to such video collections.

Animals are among the most difficult objects for clas-

sification and recognition [6]. The detection of elephants

is especially hard because their skin does not exhibit a

salient texture pattern (like for example, the skin of zebras)

and thus lacks in distinctive visual features [7]. Figure 1

shows some images from our video collection that illus-

trate the typical factors that impede automated detection.

Elephants are often occluded by plants and trees, and thus

only the body parts are visible. Additionally, elephants are

visible in different poses and sizes and in groups or as

individuals. The contrast is partly low due to bad lighting

conditions, and the elephant skin covers a broad spectrum

of colors and shades and is often difficult to separate from

the background (e.g., sandy and earthy ground).

We develop a method for the automated detection and

tracking of elephants in wildlife video. The method does

not make any assumptions about the environment and

the recording setting. In a first step we learn a color

model of the elephants from a small set of annotated

training images. Learning the model does not include

domain knowledge and explicitly specified constraints

about elephants and their environment. The trained

model is applied to individual frames of wildlife video

sequences to identify candidate detections. Next, we track

the candidate detections over time and join temporally

coherent detections in consecutive frames. As a result

we obtain spatiotemporally consistent detections which

provide additional (stronger) clues for the detection of

elephants. At the same time we obtain all information

necessary to track the elephants in space and time.

Experiments show that the proposedmethod yields high

performance on wildlife video. We are able to detect and

track elephants of different sizes, poses, and distances to

the camera. The method is robust to occlusions, camera

motion, different backgrounds, and lighting conditions.

Most elephants can be detected and tracked successfully

(above 90%), while the number of false detections is small

(below 5%).

The paper is organized as follows. In Section 2 we sur-

vey the related work on the automated visual analysis of

animals. Section 3 describes the proposed method for

(a) (b)

(c) (d)

Figure 1 Challenges of detecting elephants in their natural habitat. (a) Two highly occluded elephants. This example shows that shape is not a

good indicator for elephant detection. (b) A group of elephants. Due to bad lighting conditions, the elephant labeled with an arrow has a very low

contrast and is thus difficult to detect, especially in front of the background (plants) which is dark as well. (c) Elephants at a water hole. The encircled

areas show regions on the ground and on the elephant’s skin which have similar color and are thus difficult to distinguish. (d) Elephants on a wet

trail. The elephant’s skin is partly covered by mud from the ground.
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elephant detection, and Section 4 presents the employed

wildlife video collection and the experimental setup for

our evaluation. We show qualitative and quantitative

results of elephant detection in Section 5. Finally, we

draw conclusions and summarize our main findings in

Section 6.

2 Related work
The analysis of animals and animal behavior that is a com-

plex task for computer vision has been rarely addressed

so far [6]. Recently, methods related to the analysis of

animals have been introduced for different tasks such as

species classification [8], gait recognition [9], individual

animal recognition [10], and the detection of animal-

related events [11]. The basis for most tasks is the detec-

tion of animals in an image or video stream. In the

following discussion, we provide an overview of the dif-

ferent approaches for the detection of animals whereby

we follow a path from highly restricted approaches (e.g.,

semiautomatic approaches) to less-constrained methods

(e.g., methods building upon unsupervised learning).

Many approaches on automated animal analysis require

human interaction for the detection of animals. For exam-

ple in [12] the authors present a method for the identifica-

tion of salamanders by dorsal skin patterns. The method

requires that key points along the skeleton of the ani-

mal are labeled manually by the user. Similar user input

is required in [10] for the identification of elephants from

their ear profile. Authors in [13,14] rely on user-defined

regions of interest as a basis for the identification of

animals.

Other approaches restrict the recording setting or the

video material to reduce the complexity of animal detec-

tion. Authors in [3] classifies animals using a highly con-

strained setup with a static camera mounted at one side

of a corridor. This setup makes the detection of animals

passing the corridor trivial. Alternatively, some methods

require that animals take a specific pose towards the cam-

era and then apply, for example, face detection [15] or the

detection of other characteristic body parts [16].

A popular clue for the detection of animals is motion.

Methods that exploit motion often set hard constraints

on the recording setting and the environment. In [5] the

underlying assumption is that the background is static

and can easily be subtracted. All blobs that remain after

background subtraction are treated as candidate detec-

tions. While this works well in restricted domains, e.g.,

for underwater video [5], such assumptions do not hold

in more general settings. A method applicable to mov-

ing backgrounds (e.g., due to camera motion) is pre-

sented in [9] and [17]. The authors track sparse feature

points over time and apply RANSAC to separate fore-

ground and backgroundmotion. Thereby, the background

motion is assumed to be the dominant motion in the

scene. The remaining motion is assumed to belong to

a single object which is the animal of interest. Other

moving objects would disturb the approach and may

be falsely detected as animals. Authors in [4] propose

a method for animal species detection and make simi-

lar constraints concerning the foreground objects in the

video: While the camera is static in the investigated set-

ting, the detector requires that the foreground objects

are in motion. If several moving foreground objects are

detected, the one with the largest motion component

is considered to be the animal of interest and all other

objects are rejected. This assumption is highly specific

to the particular setting and not valid in the context of

wildlife video where several animals may be present at the

same time.

In real-life settings with unconstrained video material,

the detection of animals by specialized detectors becomes

unsuitable and does not work reliably due to the large

number of unpredictable environmental influences, like

occlusions, lighting variations, and background motion.

Only a limited number of approaches has been introduced

that faces the challenges of unconstrained wildlife video.

A method for the detection and tracking of animals in

wildlife video is proposed by Burghardt and Ćalić [15].

The authors apply the face detector by Viola and Jones

[18] trained for a particular animal species. Once an ani-

mal face is detected, the authors try to track it over time.

Similar to our work, a tracking scheme is proposed that

allows gaps in tracking. Gaps in the context of [15] occur,

for example, when an animal turns its head away from the

camera. The approach can be applied to different animal

species by using adequately trained detectors. However,

the face detector of Viola and Jones requires a large train-

ing set to learn the dominant face characteristics of a given

species. For the detection of lion faces in [15], a training

set of 680 positive and 1,000 negative images is employed.

Our approach requires only a minimal training set of

10 to 20 images. This significantly reduces the efforts of

building a training set, makes the approach more conve-

nient for the actual users (e.g., biologists), and increases

the applicability of our approach to new video footage.

An advantage of using a well-trained face detector is that

the confidence of the resulting detections is relatively

high since faces represent particularly distinctive patterns.

However, face detection requires the animals to look into

the direction of the camera which is, in general, not

given in wildlife video.

The authors of [11] present a method for the detection

of hunt scenes in wildlife footage. Since hunt scenes are

characterized by a significant amount of motion, detec-

tion relies on the classification of moving regions. First,

color and texture features are extracted for each pixel.

Next, each pixel is classified by an artificial neural net-

work to either belong to the animal class or not. A moving
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region is classified as an animal if the majority of pixels

in the region are assigned to the animal class. Oper-

ating on individual pixels is computationally expensive

and introduces noise. We apply image segmentation as

a preprocessing step and perform detection at the seg-

ment level. The segmentation improves the robustness of

detection and obviates the need for a postprocessing of

noisy pixel-based detections. Furthermore, our approach

does not rely on motion clues, which additionally enables

the detection of animals which are resting or moving

slowly.

An interesting approach for the detection and tracking

of animals is proposed in [7]. The authors build mod-

els of animals in an unsupervised manner from candidate

segments detected consistently over successive frames.

The candidate segments are obtained from a rectangle

detector which uses Haar-like templates at different scales

and orientations. For each segment a feature vector is

constructed which consists of a color histogram and the

rectangle’s width and height. The authors cluster the seg-

ments and identify temporally consistent and visually

similar rectangles within each cluster. For the detection

of animals, the authors extract a texture descriptor from

the temporally consistent segments based on SIFT and

match it against a precomputed library of animal textures.

The authors of [7] report satisfactory results for animals

with textured skin, such as zebras, tigers, and giraffes.

The authors state that the detection of animals such as

elephants and rhinoceroses is hard because their hides

are homogeneous and they do not exhibit a distinct tex-

ture. The authors further state that their approach is only

applicable to videos with single animals and with little

background clutter. Both conditions are notmet in wildlife

video.

We observe an explicit trend towards highly textured

animals from computer vision literature which focuses

on animals. The ‘favorite’ species are apparently zebras,

giraffes, and tigers; see for example [7,9,13,14]. One rea-

son for this bias is that animals with a distinct texture are

easier to discriminate from the background. The visual

detection of animals without a distinctive texture is hard

because only weak visual clues, such as color, exist that

can be exploited for detection (a more detailed discussion

of visual clues is provided in the following section).

There is rarely work on the visual analysis of species

with poorly textured skin such as elephants. The species

of elephants is addressed only marginally, e.g., for image

classification in [8]. To our knowledge no work on the

automated visual detection of elephants in wildlife video

has been performed so far. In this article we present a

novel approach for the detection of elephants in their nat-

ural habitat. The approach enables a more efficient access

to wildlife video collections and thus bears the potential to

support biologists in behavioral studies.

3 Methodology
Knowledge about the environment and the recording

setup is an important factor for designing automated

visual detectors because it enables the derivation of con-

straints and visual clues that facilitate detection. In an

uncontrolled environment like wildlife video, as investi-

gated in this work, the identification of robust constraints

and clues is difficult. The video material we investigate

has been captured by different people with a hand camera.

Recordings were partly made in an ad hoc fashion. This

means that we cannot make assumptions about the envi-

ronment and the camera operation. As a consequence, we

have to rely on the very basic visual cues such as shape,

texture, motion, and color for the detection of elephants.

Prior to the design of our method, we have investigated

the suitability of the different visual cues.

A straightforward clue for the detection of elephants is

their shape. Elephants have a characteristic shape, espe-

cially due to their trunk. In practice however shape is

not applicable for the detection of elephants in the field

because elephants in different poses and viewed from

different directions may have diverse shapes. Addition-

ally in most cases, parts of the animals are occluded and

only certain body parts are visible which results in arbi-

trary shapes, as shown in the introductory examples in

Figure 1. Similar conclusions are also drawn in [11] for

animal detection.

Texture may be another useful clue, since elephant skin

has numerous fine wrinkles. However, the resulting tex-

ture has such a fine granularity that it is not detectable in

practice from a reasonable distance to the camera. While

texture is not directly applicable to the detection of ele-

phants, we show in Section 3.5 how texture information

can be exploited to make the detection of elephants more

robust.

Motion is another important visual clue for automated

detectors [11]. Even if we compensate for camera motion,

the remaining object motion of elephants provides only

weak clues since elephants move slowly and often remain

stationary for a long time. This is especially a problem

when the animals are far away from the camera. In such

cases motion can hardly be exploited.

A more promising visual clue is color. The skin color

of elephants covers different shades of brown and gray.

Additionally, the skin color is highly influenced by lighting

(highlights and backlight) resulting in shades of very light

and dark gray, respectively. However, color represents only

a weak and ambiguous clue since many objects in the

environment (e.g., different grounds and rocks) have sim-

ilar colors to elephants and easily provoke false-positive

detections. In our investigations we observe that color is

well-suited as an initial visual clue for the detection of ele-

phants. However, additional clues are necessary to make

the detection more robust.
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Since we work with video, temporal clues are another

important source of information. Elephants do not appear

and vanish abruptly in the course of time. We exploit

temporal relationships between detections in subsequent

frames to improve the robustness of detection.

An outline of the proposed approach is shown in

Figure 2. In a preprocessing step we perform color seg-

mentation of the input images to reduce the amount

of data to process and to obtain a higher abstraction

level for the following analyses. From manually labeled

ground-truth images, we first learn a color model of the

elephants. The color model is applied to an input image

sequence and detects segments which potentially rep-

resent elephants. Next, we track the positively detected

segments (candidates) across the image sequence and join

them into independent sets of spatiotemporally coherent

candidates. From these candidates we extract spatiotem-

poral features to validate the detections. Detections that

pass validation are input to postprocessing where tracking

errors are corrected.

3.1 Preprocessing

The goal of preprocessing is to reduce the amount of data

for processing and to obtain a more abstract representa-

tion of the input image sequence. We first downscale the

input images (full HD resolution) by a factor of 0.25 to

speed up subsequent operations. Next, we perform color

segmentation of the images by mean-shift clustering [19].

Prior to segmentation we transform the images to the

LUV color space. The LUV color space is a perceptu-

ally uniform space. It better approximates color similarity

perception than the RGB space and allows similarity judg-

ments using Euclidean distance [20]. After segmentation

for each segment, the mean color of all covered pixels is

computed and stored as a representative color for each

segment.

Color segmentation yields a more abstract representa-

tion of the input images in terms of coherent color seg-

ments. Additionally, segments usually represent adjacent

pixels that belong to the same object. Thus, the represen-

tation at the segment level is more expressive than the

original representation at the pixel level. Figure 3 shows

results of color segmentation for two example images.

All subsequent processing steps are performed on the

extracted color segments rather than on individual pixels.

3.2 Model generation

We learn a discriminative color model of elephant skin

from a small set of labeled training images. The model

represents foreground colors representing elephants as

well as background colors from the surrounding environ-

ment. The training images represent different environ-

ments and differently shaded elephants in varying lighting

situations.

We first manually label all elephants in the training

images (see Figure 4a,b for an example image and the

corresponding labeling). Next we split the images into

foreground and background based on the manual label-

ing (see Figure 4c,d). Both the foreground image and the

background image are preprocessed and segmented as

described in Section 3.1 (see Figure 4e,f ). For each fore-

ground and background segment, we take the mean color

and transform it to the LUV color space. Figure 4g,h shows

the respective colors before conversion to the LUV space.

The resulting lists of foreground and background colors

of all training images form the input to classifier training.

Figure 5 shows the extracted foreground and background

colors (in RGB for better visualization) over the entire

training set. The list of background colors is larger than

the list of foreground colors because the background con-

sists of more segments. From Figure 5 we observe that

color segmentation

image sequence ground truth images

color segmentation

model generation

color model

color classification

spatial candidates

temporal tracking

spatio-temp. candidates

spatio-temporal
feature extraction

validation

consistency

postprocessing

shape

texture

final detections

Figure 2 Overview of automated elephant detection. First, a color

model is generated from labeled ground truth images. Next, image

segments are classified by the color model. Positively detected

segments (candidates) are tracked through the sequence resulting in

spatiotemporally coherent candidates. The final detections are

obtained by validating the spatiotemporal candidates by shape,

texture, and consistency constraints. Finally, postprocessing fills gaps

in tracking for each detection.
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Figure 3 Results of image segmentation for two example images. Top: original images, bottom: color segmentation. The color segmentation

abstracts from fine details in the images while it preserves object boundaries well.

the colors of the foreground are frequently contained also

in the background (but more seldom vice versa) result-

ing in an asymmetry between both classes. The reason is

that the background frequently contains colors similar to

that of the elephants due to its large diversity (e.g., rocks,

sandy grounds). From this observation it follows that color

is a necessary but not a sufficient indicator for elephant

detection.

We generate a discriminative color model by training a

support vector machine (SVM) with a radial basis func-

tion (RBF) kernel from the foreground and background

colors. Due to the asymmetry between the two sets of

color, we assign the foreground class higher misclassifica-

tion costs than the background class. This reduces the risk

that the SVM misses a true elephant detection and at the

same time, it increases the chance of false detections. The

preferential treatment of the foreground class is intended

at this stage of processing to keep the detection rate high.

We handle false detections at a later stage of processing

(see Section 3.6).

We observe that the RBF kernel separates both classes

well. We set parameter gamma of the RBF kernel in a

way that the number of support vectors is minimized.

This assures a low complex decision boundary which

increases the generalization ability of the classifier. The

training error (estimated by fivefold cross-validation) is

92.83%. Experiments on test images show that the classi-

fier detects segments that correspond to elephants with

high accuracy. At the same time the number of false-

positive detections is moderate. More results on the test

data are presented in Section 5.1.

From the two sets of colors (see Figure 5), we observe

that both sets occasionally contain very dark (near-black)

and very bright (near-white) colors. For such colors a

reasonable decision cannot be made by the classifier

resulting in unreliable predictions. We apply a lumi-

nance filter to avoid these cases. Colors with near-black

and near-white luminance are removed from the list of

foreground colors. This assures that segments with col-

ors near white or near black are rejected in elephant

detection. We investigate the effect of luminance filtering

in Section 5.4.

The color model presented in this section is completely

adaptive to the provided training images. It does not make

any assumptions about the underlying video material and

is generally applicable to different objects of interest.

3.3 Color classification

The goal of color classification is to detect segments in the

images of a sequence that are likely to belong to an ele-

phant according to the trained color model. The emphasis

of the color detector (as mentioned in Section 3.2) is pri-

marily to maintain a high detection rate (no elephants

should be missed), while a few false-positive detections

are tolerated.

Each input image sequence is first preprocessed (resized

and segmented) as described in Section 3.1. Next, we take

the color (in LUV space) of each segment and classify

the segments with the color model (without luminance

filtering). We reject all segments that are predicted to

belong to the background class and keep only segments

predicted to be members of the foreground class. We

refer to this approach as one-stage classification since

classification is performed in one step.

Results of color classification are shown in Figures 6b,c

and 7b,c. From the detection results, we observe that
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(a) (b)

(c) (d)

(e) (f)

2 4 6 8 10 12 14 16

(g)
50 100 150 200

(h)

Figure 4 Color model generation from labeled training images. (a) The input image. (b) The manually created labels. (c) The foreground

image. (d) The background image. (e,f) The color segmentations of foreground and background image. (g,h) The colors of the foreground and

background segments.

the elephants are detected with high accuracy. At the

same time many false-positive detections are generated,

e.g., the ground in Figure 6c and the bushes in the

background in Figure 7c. A closer look at the falsely

detected segments reveals that their representative col-

ors (mean color over the entire segment) resemble

colors of elephants while the individual pixel colors

have different characteristics. The mean color seems

to be a suboptimal representation that removes too

much information about the color distribution in the

segments.

To compensate for this limitation, we propose a more

fine-grained two-stage classification that operates on the

individual pixels of a segment. First, we classify each pixel

by the classifier used in one-stage classification. In a sec-

ond step we apply a voting to the individual predictions. If

the percentage of positively classified pixels is above two

thirds, we classify the segment as positively detected; oth-

erwise, we reject the entire segment. Results show that the

two-stage classification is more robust in false detections

while it detects elephants equally well. See Figures 6d,e

and 7d,e for an illustration.
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Figure 5 Foreground and background colors in the color model. (a) Foreground colors representing elephant skin. (b) Background colors. Since

the background has a larger diversity, the foreground colors are partly included in the set of background colors (arrowsmark examples of such colors).

The result of color classification is a set of segments

(candidate detections) that are likely to represent ele-

phants in the scene. At this processing stage temporal

relationships between the individual detections are not

available. Another important clue for detection is tem-

poral continuity. In the next step, we track the detected

segments over time in order to temporally connect corre-

sponding detections in different frames.

3.4 Tracking

The goal of tracking is to robustly detect elephants

over longer time spans in a video sequence. For this

purpose we have to establish temporal relationships

between corresponding candidate detections in successive

frames. The basis for tracking are the positively detected

segments from Section 3.3. Tracking the segments

is challenging since the frame-wise segmentation per-

formed in preprocessing is temporally not always con-

sistent. Reasons for temporal inconsistencies in the

segmentations are differences in lighting, variations in

the exposure of the camera, and object motions. Due

to inconsistencies, a segment in one frame may be split

into several segments in a following frame and vice versa

(several segments in one frame may be merged in a

following frame). Figure 8 shows inconsistencies in the

segmentation of two successive frames. We propose a

tracking scheme that handles these inconsistencies in a

unified way. The proposed tracking scheme consists of

four stages: (a) segment tracing, (b) trace intersection,

(c) connectivity graph construction, and (d) subgraph

extraction.

3.4.1 Segment tracing

The first processing step consists of tracing a given input

segment through the image sequence. Therefore, we solely

rely on motion information and neglect the segmenta-

tions of the neighboring frames. The traced position and

extent of a given segment in the next (or previous) frame

is obtained by the optical flow of the segment’s pixels

in the current frame [21]. We define a temporal analy-

sis window of size w to limit the trace in time. Tracing

is performed +w frames in forward direction and −w

frames in backward direction. Tracing is iteratively per-

formed from frame to frame. From tracing we obtain

estimates of a segment’s position and extent in the sur-

rounding frames. We call the set of all estimates the trace

of the segment. Figure 9 illustrates the process of tracing.

Tracing considers camera motion as well as deformations

of the segments due to object motion. We apply tracing

for all segments that are positively detected during color

classification.

3.4.2 Trace intersection

The traces are the basis for the establishment of tem-

poral relationships between segments. For each frame in

the temporal window of size w, we intersect the cor-

responding traced segment with the positively detected

segments in the frame. For each segment we compute

the area of intersection with the traced segment. The

amount of intersection serves as a confidence measure

for the establishment of temporal relationships. The con-

fidence is computed as c = |T ∩ S| / |T ∪ S|, where T is

the set containing all pixels covered by the traced seg-
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(a)

(b) (c)

(d) (e)

Figure 6 Color classification of an input image using two different classification schemes. (a) Input image. (b,c) Results of one-stage

classification. (d,e) Results of two-stage classification. Positively detected regions are highlighted by red contours in (b) and (d). Panels (c) and (e)

show the remaining segments in the image. The two-stage classification detects segments of elephants equally good as the one-stage approach

but generates less false-positive detections.

ment and S is the set containing all pixels covered by

the segment. The confidence corresponds to the por-

tion of overlap between the trace and the segment. If the

confidence between a segment and the trace is above a

threshold C, we establish a temporal relationship (a link)

between the intersecting segment and the source segment

of the trace.

Tracking segments by the intersections of their traces

has several advantages: (a) it implicitly handles cases

where segments split and merge; (b) when temporal win-

dow sizes of w > 1 are used, temporal relationships over

several frames (maximum w) can be established (in each

direction). This enables the tracking of a segment even

when it is missed for a few frames and then reappears;

(c) from the temporal relationships established by trace

intersection, we can derive spatial relationships between

segments in the same frame (see Section 3.4.4).

Figure 10 illustrates the process of trace intersection.

First, a segment s is traced through the temporal window

(w = 2 in this example) resulting in a trace consisting

of traced segments s−2, s−1, s+1, and s+2. For each frame

of the temporal window, we intersect the traced segment

with the positively detected segments in that frame. In

frame t + 1, for example, the traced segment s+1 is inter-

sected by two segments u and v. For both segments the

confidence c of intersection is computed. Since the condi-

tion c > C is fulfilled for segment u, a link is established.

For segment v the intersection is too small (c < C) and

consequently no link is established. In frame t+2 the seg-

ments u and v are merged into one segment w. Since the

confidence of intersection is high, we establish a link from

segment s to w. Links are also established in backward

direction. For frame t−1 no segment exists that intersects

with the trace of segment s so no link can be established.
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(a)

(b) (c)

(d) (e)

Figure 7 Color classification of an input image using two different classification schemes. (a) Input image. (b,c) Results of one-stage

classification. (d,e) Results of two-stage classification. Positively detected regions are highlighted by red contours in (b) and (d). Panels (c) and (e)

show the remaining segments in the image. Again two-stage classification is more robust than one-stage classification.

However, in frame t−2 segment k intersects with the trace

and a link is established between s and k. The link between

s and k extends over the gap in frame t− 1. In this way the

gap in frame t − 1 can be detected and handled correctly.

We handle such gaps in tracking in a postprocessing step

(see Section 3.7).

3.4.3 Connectivity graph construction

Trace intersection is performed for all segments detected

by color classification. The temporal relationships gener-

ated by trace intersection can be considered as a graph.

Nodes in the graph are segments which are associated

with a particular frame, and the edges in the graph

(a) (b)

Figure 8 Segmentations of two consecutive frames (a,b). The segmentation in both frames is not consistent. Segments split and merge which

can be observed from the highlighted contours.
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Figure 9 The process of region tracing. A segment s is traced through a temporal window of ±w = 2 frames by optical flow (orange arrows). The

resulting trace (shaded violet area) of segment s contains the traced segments s−2 , s−1 , s+1 , and s+2 .

are temporal relationships (links) between segments. The

graph is directed since tracing generates forward- and

backward-directed links. However, for the subsequent

processing the direction of the edges is not important

and thus we neglect their orientation. Due to splitting

and merging of segments the graph may contain cycles.

The density of the graph is dependent on the thresh-

old C used in trace intersection (see Section 3.4.2).

A higher (more stricter) threshold C impedes the cre-

ation of links and increases the sparsity of the graph,

while a lower value of C facilitates the establishment of

temporal relationships and increases the density of the

graph.

An example graph for a sequence of frames is illustrated

in Figure 11. The graph can be arranged along the time

axis since each node resides in a particular frame. The

graph has edges that span one or more frames. Cycles

indicate cases of splitting and merging. Two nodes in the

graph have no connected edges. In practice such nodes

correspond to unsteady segments with a short lifetime

which are usually false detections from color classifica-

tion.

3.4.4 Subgraph extraction

The graph constructed in the previous section is sparse

and consists of a number of disjoint subgraphs. The graph

shown, for example, in Figure 11 consists of four disjoint

subgraphs. Each subgraph represents the spatiotempo-

ral track of a group of segments which are assumed to

represent the same object.

We extract all subgraphs from the graph by a recursive

procedure. For a given starting node (this can be an arbi-

trary node of the graph), we recursively traverse the entire

graph and search for all nodes which are connected to this

node. The resulting subgraph is removed from the original

graph and the recursive search for the next subgraph in the

remaining graph is performed. The procedure terminates

when the remaining graph becomes empty.

time

current frame

+w

-w

u

v w

k

c>C c>C

c>C

c<C

gap

s

s
+1

s
+2

s
-1

s
-2

t

t+1

t+2

t-1

t-2

Figure 10 The process of trace intersection. The trace of segment s is intersected with the segments k, u, v, and w in the neighboring frames.

Gray regions represent the area of intersection with the trace. A temporal relationship (link) is established if the confidence c is higher than a

threshold C. The trace intersection handles cases of splitting and merging as well as gaps in the temporal succession of segments.
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DD

Figure 11 A connectivity graph constructed from temporal relationships. Time progresses along the horizontal axis. Vertical lines represent

frames and black dots are nodes of the graph (segments). Label A shows an edge that spans two frames, label B marks a case where segments are

split. At the location of label C the segments merge again. Label D marks nodes that have no connected edges.

Figure 12 shows an example of a subgraph from one

of our test sequences. The subgraph represents an indi-

vidual elephant which is split into several segments. The

segments are unsteady over time and frequently split and

merge. The proposed tracking method (segment trac-

ing and trace intersection) is able to compensate for the

unsteady segmentation and correctly connects temporally

coherent segments into one subgraph.

The subgraph provides useful information for detection

and tracking. From the temporal relationships provided

by the subgraph, we can infer spatial coherences between

segments in the same frame. If for two segments from the

same frame a connection exists somewhere in the sub-

graph (e.g., because the two segments are merged in a

neighboring frame), this is a strong indicator that these

two segments belong together and describe the same

object.

We exploit the implicit spatial coherences in the sub-

graphs to refine the segmentation to obtain more robust

detections. We spatially merge all segments in a frame

which are connected by the same subgraph. The result

is larger and more expressive segments representing the

detected objects (see Figure 13). After merging, the sub-

graph represents a sequence of coherent segments. We

regard such sequences in the following as spatiotemporal

segments.

3.5 Spatiotemporal feature extraction

In Section 3.3 we point out that color is only a

weak clue for the detection of elephants and that

many false-positive detections are generated during color

classification. The spatiotemporal segments obtained

from tracking are spatially more meaningful than

the original segments and additionally contain tem-

poral information. They provide spatiotemporal clues

which were not available during color classification

and thus bear the potential to improve the quality of

detection.

Each spatiotemporal segment represents a separate

detection in the video sequence. The task is to decide

whether a spatiotemporal segment is a false-positive

detection or a true-positive detection. We extract spa-

tiotemporal features from the segments to support this

decision. We extract three different types of features:

consistency, shape, and texture.

3.5.1 Consistency features

Consistency features measure how long and how reliable a

detection can be tracked. We extract two features: (a) the

temporal duration (lifetime) of a spatiotemporal segment

(the number of frames the segment can be tracked) and

(b) the instability which is the portion of frames where

a detection cannot be tracked during its lifetime (the

portion of gaps that occur during tracking). The consis-

tency features help to remove unreliable detections (with

numerous gaps and short lifetimes) which often represent

false positives.

3.5.2 Shape features

The shape of elephants does usually not change abruptly.

Slow changes in shape indicate correctly detected ele-

phants while abrupt and fast changes rather suggest a

false-positive detection. We design a feature that repre-

sents the variation of shape over time (shape change).

First, we compute the area of a spatiotemporal seg-

ment at each frame which results in a series of areas

a = a1, a2, a3, ..., an, where n is the number of frames

spanned by a spatiotemporal segment. Next, we compute

the difference between the maximum and the minimum

of the areas and normalize this value by the maximum

area: fsc = (max(a) − min(a))/max(a). The result is

a value between 0 and 1, where 0 means that the area

remains constant over time and higher values indicate

strong temporal variations of the area.

3.5.3 Texture features

The skin of elephants is poorly textured. Regions with

strong texture and quickly changing texture are more

likely to represent objects from the environment rather

than elephant skin. We first compute the MPEG-7 edge

histogram at each frame of a spatiotemporal segment. The

edge histogram represents the distribution of differently
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time

Figure 12 A subgraph extracted from a connectivity graph. Individual segments have red contours. The green lines represent the edges

(temporal relationships) in the subgraph. Temporal relationships that span several frames exist as well but are not shown to improve readability.

oriented edges in a segment. It contains five bins: four bins

for different orientations (horizontal, vertical, and two

diagonal orientations) and an additional bin for nondirec-

tional edges. For a spatiotemporal segment we obtain a

series of edge histograms: e = e1, e2, e3, ...en where each

histogram has five components, written as ei,1, ei,2, . . . , ei,5
for a histogram ei with 1 ≤ i ≤ n. Next, we derive two

texture features from the edge histograms: (a) a measure

for the edgeness [22] of a texture (edge density) and (b)

a measure for the variation of texture over time (texture

variation). The edge density fed is themean of the summed

histograms:

fed =
1

n

n
∑

i=1

5
∑

j=1

ei,j. (1)

The sum over an individual edge histogram corresponds

to the portion of pixels in a segment that represent edges.

Edge density represents the mean portion of pixels that

represent edges over the entire spatiotemporal segment.

The higher the edge density, the more textured is the

corresponding spatiotemporal segment.

Texture variation ftv is the mean over the value ranges of

each individual histogram bin over time:

ftv =
1

5

5
∑

j=1

(

n
max
i=1

(ei,j) −
n

min
i=1

(ei,j)

)

. (2)

First, the value range for each single bin of the his-

tograms is computed. The mean over all bins provides

an aggregated estimate of the temporal variation which is

representative for the entire spatiotemporal segment.

3.6 Candidate validation

The goal of candidate validation is the improvement of

detector robustness by the confirmation of correct detec-

tions and the rejection of false detections. This decision

is based on the spatiotemporal features which allow for a

temporal consistency analysis of the candidate detections.

Note, that this consistency analysis does not require that

the elephants actually move. The consistency analysis is

applied to both, moving and static objects.

Each spatiotemporal segment represents one candidate

detection. A spatiotemporal segment is either confirmed

in its entirety or rejected in its entirety. Deciding over

entire spatiotemporal segments exploits temporal infor-

mation and thus is more robust than validating sin-

gle (temporally disconnected) detections in a frame-wise

manner. Candidate validation is based on the spatiotem-

poral features introduced in the previous section. First,

time

Figure 13 Spatial merging of a subgraph. The resulting segments are more robust and more expressive than the original segments. All

unnecessary edges in the graph are pruned. The result is a coherent spatiotemporal segment. The green lines represent the remaining edges

(temporal relationships) in the subgraph.
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individual decisions are made by thresholding each fea-

ture. Next, the individual decisions are combined into an

overall decision for a candidate detection.

The determination of thresholds for automated analy-

sis methods is a problematic issue for two reasons: First,

thresholds increase the dependency on the input data and

thus increase the risk of overfitting. Second, thresholds

often depend on each other, e.g., when the decision by one

threshold is the basis for a decision by a second threshold.

Robust values for dependent thresholds cannot be deter-

mined separately from each other which in turn impedes

model fitting and the evaluation of the method.

The proposed validation scheme takes both issues into

account. The thresholds for the features are determined

independently from each other in a way that reduces the

dependency on the data. Each threshold is set to a safe

value that minimizes the risk of rejecting correct detec-

tions. This ‘safe’ value can be determined in a straightfor-

ward way: The threshold is initialized with the minimum

value of the corresponding feature (lower limit of value

range). Next, the threshold is increased subsequently by

a constant step size. The threshold splits the value range

of the feature into two subsets. The threshold value is

fixed at the value which assures that (a) all true elephant

detections remain in the same subset and (b) the size of

this subset becomes minimal. Figure 14a illustrates the

process of threshold estimation for a single feature. Each

threshold value can easily be estimated in this way inde-

pendently from the other thresholds using a few labeled

ground-truth sequences.

For a given candidate detection, each feature is com-

pared to its threshold. The resulting decisions are then

combined using logical AND. This means that a spa-

tiotemporal segment is confirmed as a positive detection

if it passes all validations; otherwise, it is rejected. The

logical AND combination assures that thresholds remain

independent from each other and we do not have to

investigate any interdependencies. The features capture

different visual aspects (e.g., texture and shape) and thus

complement each other for the rejection of false positives.

The principle is illustrated in Figure 14. In Figure 14a

three false detections (circles) pass the validation using f1
and threshold t1. Adding a second feature f2, as shown in

Figure 14b, enables the correct rejection of an additional

false detection due to the synergy of the two features.

The proposed validation scheme has several advan-

tages: (a) each threshold value can be estimated separately,

(b) the estimation of the thresholds using safe values is

straightforward and reduces the dependency from the

data, and (c) the logical AND combination of the sin-

gle decisions exploits the complementary nature of the

features.

In addition to the proposed validation scheme, we apply

an SVM to the spatiotemporal features to reject false

f
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Figure 14 Threshold estimation and validation. (a) The estimation of safe threshold value for a feature f1 . True positives are represented as green

diamonds, false positives are represented as red circles. The threshold t1 is increased (starting with 0) until all true positives are on one side (left) of

the threshold. (b) The extension of (a) into two dimensions using an additional feature f2 with a corresponding threshold t2 . Detections which are

located in the rectangle bounded by both thresholds pass the validation (corresponding to a logical AND); all other detections are rejected.
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detections. The SVM is trained on a subset of video

sequences using a cross-validation protocol. The trained

classifier is then applied in the validation step instead of

the proposed scheme. Since the required complexity of the

decision boundary is not known during the design phase,

we evaluate different kernels.

3.7 Postprocessing

The detections that remain after candidate validation are

considered to be positive detections of elephants. Due

to noise, partial occlusions, and tracking failures, some

detections cannot be tracked continuously over time and

contain gaps (see Figure 15a). However, tracking pro-

posed in Section 3.4 supports the establishment of tem-

poral relationships over several frames. We exploit these

long-time relationships to interpolate missing detections

(see Figure 15b). For interpolation we employ the already

available optical flow from segment tracing. New tem-

poral relationships between the interpolated segments

replace the original long-time relationships. Closing the

gaps enables detection and tracking even if elephants are

occluded for some time.

4 Experimental setup
In this section we introduce the video collection for

the evaluation, the employed performance measures for

quantitative evaluation, and the setup of the experiments.

4.1 Data

The analyzed data set is a corpus of videos captured by

biologists during different field trips. The videos have

been recorded during numerous field sessions in the

Addo Elephant National Park (South Africa) in 2011

and 2012. During the recording sessions only handwrit-

ten field notes have been made which provide notes on

selected events of interest and important observations.

The generation of additional (more complete and sys-

tematic) descriptions during field sessions is out of scope

due to temporal constraints. Consequently, the video data

which are inputs to our method is temporally and spatially

not indexed. It is unknown if and where elephants can be

observed.

The videos are captured in high-definition format

(1, 920 × 1, 080 pixels) at a rate of 25 frames per second.

The entire data set contains about 150 GB of video files

which corresponds to approximately 22 h of video and

2 million frames. For the evaluation of the approach we

select a subset of the video collection. The main reason

not to evaluate on the entire data set is that no ground

truth is available for the data and the manual ground truth

generation is extremely time-consuming.

We manually select a heterogeneous data set for eval-

uation that consists of 26 video sequences. The selected

subset is representative for the data collection which in

turn enables an objective evaluation of the approach. Dur-

ing selection we reject sequences which are too similar

to the already selected ones to increase the heterogene-

ity in the data set. Figure 1 in Section 1 shows frames

from selected sequences in the data set. The sequences

contain elephants (groups and individual elephants) of dif-

ferent sizes (from far distance and intermediate distance

to near distance). Elephants are visible in arbitrary poses

and ages performing different activities, such as eating,

drinking, running, and different bonding behaviors. The

sequences show different locations, such as elephants at a

water hole, elephants passing a trail, and highly occluded

elephants in bushes. Sequences have been captured at dif-

ferent times of the day, in different lighting and weather

conditions. Recording settings vary across the sequences

from almost static camera (mounted on a tripod) to shak-

ing handheld camera with pans and zooms. Additionally,

there are sequences which contain no elephants at all and

sequences where elephants enter and leave the scene.

For the quantitative evaluation of our approach, a

ground truth of the data set is required. For elephant

detection, a purely temporal ground truth, which pro-

vides only begin and end frame numbers of relevant

time spans, would be sufficient in general. However, with

time

(a)

time

(b)

Figure 15 Closing gaps in tracking and interpolated segments. Closing gaps in tracking for two frames where tracking was not successful (a).

Since tracking establishes temporal relationships over several frames, the gaps can be closed (b). The segments (red contour) are interpolated using

optical flow. The original link (dashed, gray) is replaced by new temporal links (solid, red). Green lines represent temporal relationships obtained by

region tracking.
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Figure 16 Ground truth for different sequences. Left: original image, middle: labeled image, and right: ground truth mask.

a temporal ground truth, we are not able to evaluate

whether or not a detection does actually spatially match

an elephant. This impedes the objective computation of

the false-positive detection rate. In order to compensate

for this weakness, we create a spatiotemporal ground

truth for each sequence in the data set. Each frame in a

sequence is manually labeled and a ground truth mask

is generated. Figure 16 shows ground truth masks for

different sequences. The entire ground truth covers 715

frames and 1,751 manually labeled segments covering

elephants. The ground truth contains moving elephants

as well as resting elephants. Elephants whose image

regions overlap are regarded as one ground truth segment.

The accurate spatiotemporal ground truth enables the

comprehensive evaluation of the detection performance

of the approach.

The ground truth data are not only used for eval-

uation but also for training the color model intro-

duced in Section 3.2. We exclude 16 randomly chosen

images from the data set (this corresponds to 2% of

the entire data set) and use them to train the color

model. From the training images only individual pixel

colors are used for training. Higher-level information

such as spatial information is not used. This mini-

mizes the dependency of the evaluation from the train-

ing data. Naturally, the training images for the color

model are not used in the evaluation of the proposed

method.

4.2 Evaluation measures

We evaluate the performance of the proposed approach

for the detection of elephants. Note that this is differ-

ent from evaluating the performance for the segmentation

of elephants which is not the focus of our investigation.

For elephant detection an elephant does not necessar-

ily have to be segmented correctly to be successfully

detected. We evaluate the detection performance spa-

tially and temporally using the ground truth labels. We

declare a detection to be successful if it coincides with

a labeled ground truth region and thus with an image

region covered by one or several (spatially overlapping)

elephants. For performance estimation we compute the

detection rate and the false-positive rate over the entire

data set.

The detection rate is computed as the number of labeled

ground truth (GT) regions hit by a detection divided by

the total number of ground truth regions.

detection rate =

∣

∣

{

GT regions hit
}
∣

∣

∣

∣

{

GT regions
}
∣

∣

. (3)

Ground truth regions which are detected several times

are counted only once. False detections are detections that

contain background segments. The false-positive rate is

the number of false detections divided by the total number

of detections:

false positive rate =
|{false detections}|

|{detections}|
. (4)

4.3 Experiments

We systematically investigate the different components of

the proposed approach. While we have presented inter-

mediate qualitative results already in Section 3, a quan-

titative investigation of the components’ performance is

necessary for an objective and comprehensive evaluation.

First, we investigate the performance of the approach

using color classification only in Section 5.1. For this pur-

pose we neglect temporal analysis and detect elephants
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using the colormodel introduced in Section 3.2.We inves-

tigate the discriminatory capabilities of the color model

and compare the robustness of one-stage and two-stage

classifications (see Section 3.3). For two-stage classifi-

cation we further investigate the influence of different

decision thresholds. The comparison of both classification

schemes allows us to evaluate whether or not the addi-

tional processing costs of the two-stage classification are

justified.

Second, we investigate how the robustness of the detec-

tor can be improved by temporal analysis in Section 5.2.

We apply motion tracking and candidate validation by

spatiotemporal features. We evaluate different combina-

tions of spatiotemporal features to demonstrate the ben-

eficial effect of their complementary nature. Additionally,

we apply an SVM for candidate validation. The SVM

is trained on the spatiotemporal features by using dif-

ferent kernels to discriminate positive and false-positive

candidate detections. We perform cross-validation to

evaluate the performance independently from the selec-

tion of the training data. Finally, we report the mean

detection rate and mean false-positive rate over all

cross-validation sets.

Third, we investigate the overall performance of the

approach using different classifiers in Section 5.3. For this

purpose, we apply SVMs with different kernels and com-

pare the SVMs with nearest neighbor (NN), k-nearest

neighbor (KNN), and linear discriminant analysis (LDA).

We show that the ability of the classifiers to build robust

color models varies significantly.

Fourth, the influence of different luminance filters (see

Section 3.2) on the overall performance is evaluated in

Section 5.4. We expect that luminance filtering improves

the robustness of the approach, since it removes colors

with particularly low and high luminance components

which are often unreliably classified.

After systematic evaluation we present results for two

different use cases which are provided by biologists. In

both use cases automated elephant detection forms the

basis for further investigations by the biologists. The first

use case addresses the detection of elephants to assist biol-

ogists in detailed behavioral studies. Objects of interest in

this use case are elephants at intermediate and near dis-

tance to the camera. Elephants far apart from the camera

are not of interest since the individuals are too small for a

detailed investigation of their behavior.

The second use case focuses on the detection of distant

elephants in wide open areas. Biologists are interested in

the presence of (groups of) elephants over wide surveyed

areas. The detection of far-distant elephants should sup-

port biologists in the investigation of elephant groups,

their sizes, and their migration routes. The objects of

interest in this use case are significantly smaller than in

the first use case which makes this task especially hard.

5 Results
We present evaluation results for different components

of the proposed approach. Performance is measured in

terms of detection rate (D) and false-positive rate (FP).We

first present results for pure color classification. Next, we

add temporal information and demonstrate the influence

on performance. Additionally, we provide the overall per-

formance using different classifiers and luminance filters.

Finally, we present results for the investigated use cases

(case 1 and case 2) presented in Section 4.3.

5.1 Pure color classification

Color classification is performed frame-by-frame and

does not exploit temporal relationships between the

segments. We compare the performance of one-stage

classification and two-stage classification using the same

classifier (an SVM with RBF kernel, trained as described

in Section 3.2). Table 1 shows the results of color clas-

sification. For all evaluated configurations the detection

rate is very high (between 94% and 97%). The SVM with

RBF kernel is able to model the class of elephants well,

although the positive training samples partly overlap with

the samples of the background class (see Section 3.2).

The false-positive rate shows larger variation across the

different configurations than the detection rate. While

one-stage classification yields a false-positive rate of 42%,

in two-stage classification the false-positive rate drops by

10% to 32% at nearly the same detection rate. Two-stage

classification clearly outperforms one-stage classification.

This confirms our observations from Figures 6 and 7 in

Section 3.3. We conclude that the additional computa-

tional effort of two-stage classification is justified.

In the two-stage classification, a segment is positively

classified if more than two thirds of its area supports this

decision. In the following, we investigate the robustness of

this decision rule. We compute results for different deci-

sion thresholds (0.5, 0.6, 0.7, and 0.8) and estimate the

robustness of detection. We plot the decision rate versus

the false-positive rate (similar to a receiver operating char-

acteristic curve) for all evaluated decision thresholds in

Table 1 Performance of different color classification

schemes (one-stage classification vs. two-stage

classification with different decision rules)

Scheme Rule D(%) FP(%)

One-stage - 96.9 42.0

Two-stage 2/3 96.4 32.0

Two-stage 0.5 96.9 42.2

Two-stage 0.6 96.4 36.1

Two-stage 0.7 96.0 30.1

Two-stage 0.8 94.3 24.7
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Figure 17 Performance of two-stage color classification for different decision thresholds. The gray curve shows the relationship between

false-positive rate and detection rate similar to a ROC curve. The graph shows that a decision threshold of two thirds (highlighted by a diamond)

yields a robust trade-off between false-positive rate and detection rate compared to other thresholds (highlighted by circles).

Figure 17. The dashed line illustrates the (inverse) rela-

tionship between detection rate and false-positive rate.

Good results in this graph are expected to be located in

the upper left quarter of the graph. This is the case for

the decision threshold of two thirds which yields a good

trade-off between false-positive rate and detection rate.

From the results in Table 1, we observe that the false-

positive rate is generally high. For the proposed two-stage

classification, approximately each third detection is a false

detection. This shows that color alone is a weak clue for

elephant detection. Similar to [7] we observe that it is

hard to build robust detectors from low-level information.

An additional clue for detection is temporal continuity. In

the following discussion, we investigate the potential of

temporal analysis for automated detection.

Table 2 The effect of temporal information on the overall

performance

Spatiotemporal features D (%) FP (%)

None 96.4 32.0

Consistency 94.7 29.3

Consistency + shape 93.0 21.4

Consistency + shape + texture 93.0 6.6

The combination of different spatiotemporal features improves results

significantly which shows that the features complement each other.

5.2 Incorporation of temporal information

Temporal information is integrated into the detection

process by the spatiotemporal features presented in

Section 3.5. Table 2 shows results for different selections

of spatiotemporal features. The first row shows the base-

line without spatiotemporal features which is equivalent

to two-stage color classification (see Table 1). First, we

add the consistency features and observe a slight decrease

of the false-positive rate by 2.7%. The consistency fea-

tures remove unstable detections (noise) which cannot be

tracked over larger time spans. Next, the shape feature

(shape change) is added which reduces the false-positive

rate significantly (by 7.9%). The shape feature removes

detections in image regions where the underlying segmen-

tation strongly varies over time which is, for example, the

case in regions with smooth lighting transitions, such as

sandy ground and trails. Finally, we add the texture fea-

tures (texture variation and edge density) and observe a

significant reduction of the false-positive rate by 14.8% to

only 6.6% in total. The texture features remove false detec-

tions in highly textured background regions covered by

bushes, trees, and plants.

The results in Table 2 show that the spatiotemporal

features significantly increase the robustness of the detec-

tor. The false-positive rate is reduced in total by 25.4%

to only 6.6%, while the detection rate remains relatively

stable (96.4% versus 93.0%). Especially, the texture fea-

tures are remarkable since they keep the detection rate
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constant and at the same time significantly reduce the

false-positive rate. From Table 2 we further observe that

the combination of different spatiotemporal features is

highly beneficial for detector performance. The features

are sensitive to different types of false detections since

they represent complementary information.

We compare the proposed validation scheme with an

alternative method based on an SVM as described in

Section 4.3. We evaluate different kernels (linear, RBF, and

polynomial) and optimize the respective hyperparameters

using model selection. Additionally, we evaluate different

subsets of the spatiotemporal features.

Results show that a linear SVM clearly outperforms the

other kernels. The linear SVM yields a detection rate of

93% at a false-positive rate of 23%. The best result for the

RBF kernel is obtained with a gamma of 1. The detec-

tion rate is 58% and the false-positive rate is 22%. The

SVM with polynomial kernel performs suboptimal as well

and yields a detection rate of 85% at a false-positive rate

of 36%. In sum, the SVM-based method produces similar

detection rates as the proposed validation scheme, how-

ever, the false-positive rate is significantly higher (22%

versus 6.6%). Additionally, we evaluate different selections

of spatiotemporal features. We observe that removing one

or more features from the selection leads to a decreased

performance. Optimal results are only obtained when all

features are employed.

5.3 Robustness of classifiers

For color classification so far we have employed an SVM

with RBF kernel. The RBF is able to model the com-

plex decision boundary between the two input classes

well and generates robust color models. The complex

boundary is a result of the overlap between the two color

classes mentioned in Section 3.2. We compare the per-

formance to five alternative classifiers, namely, an SVM

with a linear kernel, NN, KNN, LDA with a linear bound-

ary, and LDA with a quadratic decision boundary. Table 3

provides the results for all classifiers. The overall per-

formance of the linear SVM is below that of the SVM

Table 3 The effect of different classifiers on detection

performance

Classifier D(%) FP (%)

SVM RBF 93.0 6.6

Linear SVM 82.7 5.5

NN 93.4 10.4

KNN 84.9 5.6

LDA (linear) 91.2 10.6

LDA (quadratic) 88.9 13.9

The SVM with RBF kernel outperforms all other evaluated classifiers.

with RBF kernel. The linear SVM is not able to sepa-

rate the overlapping distributions of the two classes. We

observe less sparsity for the linear SVM, which means

that more support vectors are required than for the RBF

kernel. This indicates that the linear SVM is not able to

model the decision boundary well and is prone to under-

fitting. The RBF kernel provides more flexibility which

allows for better modeling the boundary between the

two classes.

The nearest neighbor classifier obtains a comparable

detection rate as the SVMwith RBF kernel. Unfortunately,

the false-positive rate is higher (by 3.8%). Nevertheless,

the result is impressive regarding the fact that the nearest

neighbor classifier (in contrast to SVM) actually does not

abstract from the training data. The KNN (with K = 5)

performs similar to the linear SVM. The two versions of

LDA perform suboptimally compared to SVM with RBF

kernel. Similar to the linear SVM, the linear and quadratic

boundaries of LDA are not able to model the complex

boundary between the classes.

5.4 Filtering luminance

In Section 3.2 we point out that reasonable decisions can-

not be made by the classifier for very dark and very bright

colors.We propose to filter near-black and near-white col-

ors during model generation to obtain more robust pre-

dictions. Table 4 provides detection results for different

luminance filters. The first row shows the performance

of the approach without luminance filtering (baseline). A

medium luminance filter which removes samples below

10% of the minimum luminance and above 90% of the

maximum luminance improves the false-positive rate by

1.4% (compared to the baseline) and keeps the detec-

tion rate constant. With an even stronger luminance filter

we are able to halve the false-positive rate (from 5.2% to

2.5%) and still obtain a satisfactory detection rate of 91.7%.

The luminance filter improves the robustness of the color

model and thus positively influences the entire detection

process.

5.5 Case 1: detection of elephants at intermediate and

near distances

The first investigated use case focuses on the detec-

tion of elephants at intermediate and near distances. For

quantitative results, we refer the reader to the previous

Table 4 The potential of luminance filtering

Luminance filter Lower limit(%) Upper limit(%) D(%) FP(%)

Off 0 100 93.0 6.6

Medium 10 90 93.0 5.2

Strong 20 80 91.7 2.5

Luminance filtering reduces the number of false detections and thus improves

the robustness of detection.
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Figure 18 Results of elephant detection at intermediate and near distances to the camera. True positive detections are labeled in orange and

false-positive detections in yellow. (a) Group of elephants near a road. (b) Two elephants walking on a sandy trail. (c,d) Frames from sequences

showing highly occluded individuals. (e) A group of elephants which is correctly detected several times. (f) A sequence with a false-detection

(yellow) in the background that originates from a region that has a similar color to elephant skin.

sections. In the following we present qualitative results

and point out strengths and weaknesses of the approach.

Figure 18a shows a group of elephants near a road. The

sequence is hard for detection because the color of the

road resembles the skin color of elephants in our color

model. Additionally, the windshield of a microphone is

visible in the top right corner. Both, the road and the

windshield are predicted positively by color classification.

However, we are able to remove these false detections

during candidate validation since they have a significantly

coarser texture than the elephants. Four out of five ele-

phants can be detected successfully. One distant elephant

is missed. While this elephant could be detected in some

frames, the temporal coherence is too weak for a reliable

detection.

Figure 18b shows two elephants walking on a sandy trail.

The elephants do not set themselves apart from the back-

ground well (especially from the trail). While the color

model produces false-positive detections on the trail, we

are able to reject the entire trail during the candidate vali-

dation. The two elephants can be tracked reliably through

the sequence. Note that we consider both elephants as

one object to detect since they cover overlapping image

regions.

Figure 18c,d shows frames from sequences where the

elephants are relatively near to the camera. The pro-

posed method robustly detects and tracks the animals

over time. Figure 18c shows that the approach is able to

detect elephants even if they are partly occluded: The

calf in the lower left quarter of the image is widely

occluded by grass and vegetation but can be detected and

tracked successfully. Figure 18d shows a backlight scene

where the elephant skin exhibits particularly low con-

trast. While the elephants are detected remarkably well,

no false detections are made in similar dark background

regions (labeled by arrows). The grass in the foreground of
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Figure 18d is likely to produce false detections because the

color resembles that of sunlit elephant skin. This becomes

evident when we compare the colors surrounding label

‘A’ in Figure 18c,d. False detections in such areas can-

not be distinguished by color. However, additional texture

and shape clues enable the rejection of false positives

in this area.

Figure 18e shows a group of elephants which has pre-

viously been shown in Figure 7 in Section 3.3. From

Figure 7d,e we observe numerous false detections of color

classification in the background. Figure 18e shows the

result after temporal analysis. The false detections in the

background are temporally not stable and are removed

by consistency constraints, while the detection of the

elephant group remains stable.

Figure 18f shows an image with a false detection in the

background (yellow). The false detection originates from

the earthy area around the detection (labeled with arrows)

and cannot be removed during candidate validation. The

three elephants in the sequence are tracked consistently

through the sequence.

From motion analysis we obtain all information

necessary to track elephants over time. For most

sequences tracking is successful. Potential tracking fail-

ures are eliminated by interpolation during postprocess-

ing (Section 3.7). Figure 19 shows tracking results for a

sequence showing a group of elephants at a water hole

which has been shot by a handheld camera. While the

camera slowly pans to the left, the elephants are tracked

consistently.

5.6 Case 2: detection of elephants at far distances

The detection of far-distant elephants is challenging for

two reasons. First, due to the small size of the ele-

phants, the image must be segmented at a finer scale

during preprocessing to assure that each elephant is rep-

resented by at least one segment. However, due to this

fine-grained segmentation, the number of segments grows

significantly. At the same time the portion of segments

related to elephants decreases drastically due to the small

size of the elephants. Thus, detecting elephants becomes

significantly harder and the probability of false detec-

tions increases. Second, small image segments are less

expressive and exhibit less distinctive features then larger

segments which impedes the automated detection.

For the detection of distant elephants, we decrease the

minimum size of an image segment to 20 pixels during

segmentation. Note that for experiments on intermediate

and near-distant elephants, a minimum size of 150 pixels

is adequate (at the employed video resolution). In quan-

titative experiments we obtain a detection rate of 88% at

a false-positive rate of 39%. While the detection rate is

satisfactory, the false-positive rate is high compared to

previous experiments. This is a result of the finer segmen-

tation which significantly increases the complexity of the

task.

Figure 19 Tracking elephants through an image sequence. The orange lines connect the matched detections across two frames. Note the

camera pan to the left which is best recognized from the horizontal shift of the background. We skip intermediate frames for better visibility.
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(a) (b)

(c) (d)

Figure 20 Results for the detection of elephants which are far apart from the camera. True positive detections are labeled in orange and

false-positive detections in yellow. (a) A group of seven far-distant elephants. (b) Small group of partly occluded elephants in the field. (c) Highly

occluded elephants. (d) False detections in an image region which has a high similarity to elephant skin color.

Results for different sequences contained in the quanti-

tative evaluation are shown in Figure 20. Figure 20a shows

a group of seven elephants. Five of the elephants can be

detected and tracked successfully. Two elephants at the

left side of the group are too small for detection (at least

at the employed video resolution).

Figure 20b shows a small group of elephants in the

field. All regions covered by elephants are detected cor-

rectly. Note that no false positives are generated in regions

(labeled with arrows) which have nearly the same color as

the elephants.

In Figure 20c, a scene with large occlusions is shown.

The depicted scene demonstrates well that shape is not

a valid cue for the detection of elephants. Although the

elephants are mostly occluded (especially the right one,

labeled with an arrow), we are able to robustly detect and

track them through the sequence.

An example where the detector generates inaccurate

results is provided in Figure 20d. Additionally, to correct

elephant detections, a number of false-positive detections

are returned. One false-positive detection is located in a

darker area in the grassland. The other false positives are

located in the upper right corner which is covered by the

windshield of a microphone that extends into the view of

the camera. In the detection process the fine-grained seg-

mentation splits the area covered by the windshield into

numerous small segments. The small segments exhibit

only weak texture clues. As a consequence, they are not

rejected during candidate validation.

The presented results demonstrate both the capabili-

ties and the limitations of the proposed approach. We

are able to robustly detect elephants with high accu-

racy, which shows that the approach is well-suited to

support biologists in their investigations. We yield a

low false-positive rate for the detection of elephants at

intermediate and near distances. The detection of far-

distant elephants demonstrates the limitations of the

approach. Due to the fine granularity of the analy-

sis, the number of false positives increases. However,

most false positives are reasonable and occur in areas

where they would be expected. Aside from false pos-

itives, we are able to detect and track most elephants

even if they are occluded or represented only by a small

image area.

6 Conclusions
The contribution of this work is a reliable method for

the detection and tracking of elephants applicable to

unconstrained wildlife video. Unlike related approaches,

we do not make strong assumptions about the video

material and the environment, such as the number of ani-

mals present, their poses to the camera, the amount of

background clutter, and the camera operation. As a conse-

quence, we are able to detect and track elephants of differ-

ent sizes and poses in their natural habitat. The approach

robustly handles occlusions and detects elephants even if

most of their bodies are hidden, e.g., behind vegetation.

Experiments show that robust and accurate detection is
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possible in heterogeneous scenarios at a remarkable small

false-positive rate of only 2.5%. We reach the limits of the

approach by the detection of far-distant elephants. While

the detection rate in this case is still high, the sensitivity

to false positives grows. We conclude that this use case

requires the integration of additional constraints related

to the shape and size of far-distant elephants.

The major benefit of this work is a novel approach that

enables the automated indexing of unconstrained wildlife

video. As an additional information, our approach pro-

vides the spatial location and complete tracking informa-

tion for each detection. This makes the approach a sound

basis for higher-level analysis tasks, from the automated

estimation of group sizes, to the identification of animals,

and to the automated recognition of different activities

and behaviors.
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