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Digital breast tomosynthesis �DBT� is a promising modality for breast imaging in which an aniso-
tropic volume image of the breast is obtained. We present an algorithm for computerized detection
of microcalcification clusters �MCCs� for DBT. This algorithm operates on the projection views
only. Therefore it does not depend on reconstruction, and is computationally efficient. The algo-
rithm was developed using a database of 30 image sets with microcalcifications, and a control group
of 30 image sets without visible findings. The patient data were acquired on the first DBT prototype
at Massachusetts General Hospital. Algorithm sensitivity was estimated to be 0.86 at 1.3 false
positive clusters, which is below that of current MCC detection algorithms for full-field digital
mammography. Because of the small number of patient cases, algorithm parameters were not
optimized and one linear classifier was used. An actual limitation of our approach may be that the
signal-to-noise ratio in the projection images is too low for microcalcification detection. Further-
more, the database consisted of predominantly small MCC. This may be related to the image
quality obtained with this first prototype. © 2008 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2885366�
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I. INTRODUCTION

Digital breast tomosynthesis �DBT� is a promising modality
for early breast cancer detection.1 DBT addresses the main
limitation of mass detection in conventional mammography,
the overlaying tissue problem: In projection mammography,
overlaying tissue structures can obscure masses or mimic the
appearance of a lesion. In DBT, the three-dimensional �3D�
breast structure is resolved, removing “visual clutter.”2 DBT
has the potential to improve lesion conspicuity, in particular
for mass lesions.3,4

DBT can be interpreted as limited-angle cone-beam com-
puted tomography. Currently, several DBT prototypes have
been built.5–9 Typically, 11–25 projections are taken over an
angular range of 15–60°. The total dose delivered to the
patient is equal or below that of a mammographic exam, i.e.,
two screen-film mammograms.

Microcalcification clusters �MCCs� are an important early
indicator for breast cancer.10 Microcalcification �MC� detec-
tion in conventional mammography is time consuming and
requires the careful search of the entire mammogram at high
resolution, often with the use of a magnifying device. In
DBT, this search would have to be extended over many
slices. A typical DBT image consists of 40–70 slices, de-
pending on breast thickness. For MCC search, a “slab-view”

11
has been suggested. In this view mode, maximum-intensity
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projections �MIPs�12 of 5–10 slices are presented, improving
MCC conspicuity by collecting the entire cluster into one
plane, rather than having individual MC spread over several
slices.

Computer-aided detection �CADe� for conventional mam-
mography has been approved for clinical use since 1998.
Freer and colleagues13 found that the CADe system’s ability
to detect MCC was largely responsible for the increase in
cancer detection performance observed in that study. Recent
work on MCC CADe for full-field digital mammography
reached a cluster-based sensitivity of 80% at 0.69 false posi-
tive clusters per image.14 In that work, two classification
stages �non-linear for individual MC features, linear for
MCC features� were used to reduce false positive detections.

In this work, we explore an algorithm to automatically
detect MC clusters in the DBT data using the projection
views only. Such an approach is independent of reconstruc-
tion algorithms, which are still being developed and opti-
mized. Further, this approach is computationally efficient,
since 11 projections need to be analyzed for each breast,
rather than 40 to 70 slices. We previously investigated such
an approach for computerized mass detection.15 Initial per-
formance estimates based on a small data set were compa-
rable to that of current mass CADe for conventional mam-

mography. This result may not apply to MC detection
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because the mechanisms that govern mass or MC detection
are fundamentally different: Burgess and co-workers16 dem-
onstrated that mass detection in conventional mammography
is limited by anatomic structure noise. In DBT, in-depth res-
olution is sufficient to considerably reduce structure noise
and is thereby expected to improve mass detectability. How-
ever, MC detectability in projection mammography is prima-
rily limited by signal-to-noise ratio �SNR�.17

There are several reasons for the SNR of MCC to be
reduced in DBT. In DBT, the exposure is typically distrib-
uted equally over all projections, increasing the quantum
noise in the individual projections. Further, at low exposures,
the electronic noise of the detector is a higher fraction of the
total noise, and it can be significant. In several DBT proto-
types, no scatter grid is used, increasing the exposure to the
detector but also decreasing SNR due to the scattered radia-
tion. Several systems operate the x-ray source in continuous
mode,6–8 which increases blur in the projections. Further-
more, for geometries with stationary detector,5,7 the MTF
decreases as the source angle increases.18,19 The effect of
these physical factors on MC detectability has not been in-
vestigated, either for human detection or for CADe.

Image quality has been explored in DBT in order to char-
acterize reconstruction algorithms.20 So far, quantitative ex-
periments exploring detection performance in DBT have fo-
cused on larger lesions21 or on lung nodule detection in chest
tomosynthesis,22 but not on MC detection. A qualitative
study to investigate MC detection in DBT has been con-
ducted by Smith and co-workers.23 It was observed that MC
detectability in DBT was not reduced compared to full-field
digital mammography �FFDM�. In their experiments, a phan-
tom containing MCC was imaged on top of cadaverous
breast tissue. The MCC clusters were not embedded in the
tissue and were therefore separated from breast tissue in the
DBT image. It is not clear whether the same result would be
obtained for MCC embedded within breast tissue, in particu-
lar for subtle MCC within glandular tissue.

In this work we have implemented an algorithm for auto-
mated MCC detection. In the following sections, the patient
database as well as the DBT prototype unit used to acquire
the projection data will be described. The three steps of the
CADe algorithm, namely MC detection in projection images,
point backprojection, feature analysis, and clustering will be
described. Algorithm performance results will be presented,
followed by a discussion of the limitations of the algorithm.

II. MATERIALS

II.A. Database

Patient images were acquired at the Massachusetts Gen-
eral Hospital under IRB protocol. Patients who participated
in this study were recalled from screening mammography
and received a tomosynthesis scan before undergoing biopsy.
All patient images from this study were provided by Massa-
chusetts General Hospital, along with pathology. The corre-
sponding screen-film mammograms were not available. Each
image data set consisted of both the projection views as well

as the reconstructed breast volume.

Medical Physics, Vol. 35, No. 4, April 2008
The DBT images in this pool were reviewed by either an
expert mammographer �D.B.K.�, or by a research technician
�A.V.E.� with 10+years of experience in mammography.
There was no double reading, the two readers simply shared
the work load. For all images, truth was established when a
lesion found in the DBT image corresponded to the pathol-
ogy findings. This was true for all images read by D.B.K.
Images in which no lesion corresponding to pathology find-
ings could be found by A.V.E. were reviewed by an experi-
enced mammographer �R.A.S.�. Cases for which MCCs were
not visible on DBT were not included in the database. By
this procedure, one potential MCC case was excluded: Pa-
thology indicated DCIS, but no MCC could be located in the
DBT image. All other malignant calcification clusters imaged
during the study were included in the database, except one
case with segmental calcifications. Benign MCC were kept if
more than three individual calcifications could be marked.
Five benign cases were excluded from the dataset because at
most three microcalcifications could be marked. Three mi-
crocalcification clusters were associated with masses.

All patient cases �see Table I� included in this study �n
=56� were selected from a cohort of women who underwent
tomosynthesis imaging after being recalled from screening
mammography. For each patient case, tomosynthesis images
of one or both breasts were available. Within this cohort, 30
tomosynthesis images �9 benign, 21 malignant� contained 44
microcalcification clusters. A control group of 30 tomosyn-
thesis images was selected from contralateral breasts without
visible findings �n=27�, as well as from normal unilateral
images �n=3�. Normal unilateral images were those where
an architectural distortion was seen in the mammogram,
which was then identified as overlaying tissue in the corre-
sponding tomosynthesis image.

Truth was marked in the 3D tomosynthesis breast volume,
which was reconstructed using iterative maximum likelihood
expectation maximization �ML-EM�. This was the only in-
stance at which the reconstructed images were used. The
detection algorithm used only the projection data as input.
Figure 1 shows a histogram of the number of marked MC per
cluster in our database.

DBT images were viewed at full resolution on
5 megapixel monochrome LCD monitors �Totoku

24

TABLE I. Breakdown of patient cases and image sets included in this study

Description Number

Total number of patients 56
Number of Unilateral cases 23
Number of Bilateral cases 33

Number of image sets 89
Number of images w/o visible findings 30

Number of selected image sets w/o visible findings 30
Number of image sets with findings 59

Number of image sets with MCC 30
Number of benign image sets 9
Number of malignant image sets 21
ME511L/C�. Display software was ImageJ.



1488 Reiser et al.: Automated detection of microcalcification clusters for breast tomosynthesis 1488
II.B. Tomosynthesis image acquisition system

The projection data were acquired at Massachusetts Gen-
eral Hospital on the first GE DBT prototype.20 The x-ray
source covered an arc of 50° while acquiring 11 images in
step-and-shoot mode. The source-to-detector distance was
66 cm, and the source pivoting point was located at 21.7 cm
above the breast support. The detector was an amorphous
silicon flat-panel detector with a pixel size of 100 �m. The
characteristics of this detector are described in Ref. 25. No
anti-scatter grid was used during DBT projection data acqui-
sition.

III. METHOD

A flow chart of the proposed MCC detection scheme is
shown in Fig. 2.

Within this detection scheme, each projection image is
treated as a separate mammogram and analyzed individually.
An binary image is created for each projection with sites
corresponding to microcalcification candidates set to one. All
binary images are backprojected into the breast volume. In
this volume, high intensity regions indicate an increased like-
lihood for the presence of a microcalcification.

III.A. Preprocessing

Each projection image undergoes two preprocessing steps
prior to microcalcification detection. First, projection images
are contrast enhanced using a logarithmic transform.14 Sec-
ond, morphologic denoising is applied to each image.

III.A.1. Morphologic denoising

The goal of the morphologic denoising is to remove
single and double pixel noise peaks and troughs from an
image I�x ,y�, while maintaining structures larger than three
pixels. This is achieved as follows. Let H be the set of all
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FIG. 1. Distribution of number of microcalcifications per cluster in the da-
tabase. The mean number of microcalcifications per cluster is 7.3.
structuring elements containing three eight-connected ele-
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ments. There are a total of 60 structuring elements in this set.
A maximum erosion image E�x ,y� and the minimum dilation
image D�x ,y� are created through

E�x,y� = max�I�x,y��H� , �1�

D�x,y� = min�I�x,y� � H� , �2�

where � and � are gray scale erosion and dilation, respec-
tively. The noise filtered image is then obtained through

G�x,y�

= �E�x,y� , if �I�x,y� − E�x,y�� � �I�x,y� − D�x,y��
D�x,y� , if �I�x,y� − E�x,y�� � �I�x,y� − D�x,y�� 	 .

�3�

In this denoised image G�x ,y�, single and double pixel peaks
or troughs are removed, leaving regions three pixels and
larger intact. An example MCC in the ML-EM reconstructed
slice, as well as in the denoised log-projection images, is

Logarithmic transform

Sequence of projections

Morphologic denoising

Calcification detection
through DoG filtering

Backprojection of
Calcification candidates

Calcification detection
in MIP image

Reprojection and
feature extraction

Feature merging
and clustering

Detected cluster

FIG. 2. Flow chart of the proposed MCC detection scheme.
shown in Fig. 3. The effect of denoising is shown in Fig. 4.
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III.B. Microcalcification detection and point
backprojection

Individual microcalcifications were detected by threshold-
ing a Mexican hat26 filtered image. This method has been
used for detecting MCC both in screen-film mammography
�SFM�27–29 as well as FFDM.14 A brief description of the
method is given here: A 9�9 pixel Mexican hat filter is used
to enhance individual microcalcifications. The effect of this
filter is to enhance small structures of the order of three
pixels in diameter, while suppressing larger scale variations.
A threshold tg is applied to the histogram of this difference
image, selecting the fraction tg of highest pixel values in
order to identify microcalcification candidates.

Subsequently, the neighborhood of each microcalcifica-
tion candidate is analyzed by computing the standard devia-
tion �n of all pixels within a 51�51 pixel neighborhood
centered on the candidate, excluding all pixels above thresh-
old. The microcalcification candidate is rejected if its pixel
value is below tl ·�n. The thresholds tg and tl used for detect-
ing microcalcifications in projection images are listed in
Table II. The minimum size of a valid detection was three
pixels. The thresholds tg and tl were chosen to allow for high

ML−EM 25o projection 14o projection

4o projection −6o projection −16o projection

FIG. 3. Microcalcification cluster in the ML-EM reconstructed slice �top
left�, and in the denoised log projections.

(a) (b)

FIG. 4. �a�: Log-projection image of a MCC. �b�: Denoised log-projection
image of the same cluster. This MCC is the same as the 25° projection in

Fig. 3.

Medical Physics, Vol. 35, No. 4, April 2008
sensitivity, i.e., tg was set higher than in our previous expe-
rience to allow for detection of subtle signals, while tl was
set relatively low to account for higher noise in the projec-
tions �which causes an increase in �n�. The threshold values
were varied and true positive fraction as well as false posi-
tive rates for individual MC detection was computed. The
values in Table II were selected because for a false positive
rate comparable to that observed in SFM, they resulted in the
highest sensitivity.

For each projection image, a binary image is created with
pixels in valid detected regions set to “1,” while all other
pixels are set to “0.” The sequence of binary images is then
backprojected into the breast volume, creating a 3D feature
volume. In this volume, microcalcification candidates that
were detected in several projections are enhanced, whereas
detections that resulted from noise tend to be suppressed.

Calcification candidates are identified in this feature vol-
ume by analyzing the maximum-intensity projection �MIP�.
An example of a MIP image for a clinical case is shown in
Fig. 5�b�. The MIP image is analyzed using Mexican hat
filtering and neighborhood processing as described above.
The thresholds tg and tl used at this stage are listed in Table
II. They were chosen to achieve high sensitivity. However, at
this stage, the microcalcification candidates are very con-
spicuous, allowing for a small tg threshold. On the other
hand, the noise relative to the MC candidates is low, there-
fore the high value of tl. Threshold values were varied and
true positive fraction for the detection of at least two indi-
vidual MCs was computed, as well as the false positive rate
for individual MC. The values in Table II represent the
thresholds that resulted in the highest true positive fraction.

The �x ,y ,z� coordinates of each microcalcification candi-
date in the feature volume are identified by finding the slice
with a pixel value equal to that in the MIP image.

III.C. Reprojection and feature extraction

For each detection, segmentation and feature analysis is
performed in the denoised, contrast-enhanced projection im-
ages. Each detection is identified by its �x ,y ,z� coordinate in
the breast volume. The corresponding locations �xp ,yp�, p
=1,2 ; . .11, in the sequence of projections are computed for
each x-ray source position p.

For segmentation of individual MC, a 1 cm2 region of
interest �ROI� centered on �xp ,yp� is extracted and a two-
dimensional second order polynomial background trend cor-
rection is applied. The MC region L is identified through

TABLE II. Parameter settings and algorithm performance for the two first
detection steps. The true positive rate is computed for individual microcal-
cification detection and does not include clustering. Performance was esti-
mated through self-consistency.

Image tg tl TPF FP

Projection 5.0 3.0 0.67 4700 �per projection image�
Point-back projection MIP 0.05 7.0 0.61 104 �per volume�
L�x ,y��0.5�max�ROI� and �xp ,yp��L, where L is a
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4-connected region. This is the first step in a segmentation
method used.30 Because DBT projection images are noisy,
we did not implement a more sophisticated MC segmenta-
tion. Furthermore, only intensity-based features were used,
which are less dependent on the actual segmentation.

From the segmented region, three features were com-
puted, namely the mean pixel value within the segmented
region L �x̄L�, contrast �c�, and attenuation ���. Features
were computed based on pixel values in the denoised log-
projection image. The advantage of using the log-projection
image is that the attenuation coefficient is independent on
scatter:

c = x̄L − x̄BG, �4�

� =
c


A
, �5�

where A is the pixel sum in L, x̄L is the mean pixel value
within L and x̄BG is the mean pixel value within the ROI

point backprojection

(a)

MIP

(b)

FIG. 5. Example of �a� a slice of the point backprojection volume containing
the MCC, and �b� the corresponding MIP image.
outside of L.
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III.D. Feature merging and clustering

Since feature extraction was performed in the projection
images, the feature data f is an �nfea�nproj� array where nfea

is the number of features, and nproj is the number of projec-
tion images �nproj=11 for this database�.

Two different approaches of merging features and com-
bining the information from all projection images were ex-
plored. In both cases, features were merged using linear-
discriminant analysis �LDA�, and round robin31 was used for
classifier training/testing.

The first approach was to compute the median of each
feature i over all projections, Fi=median��f i,1 , . . . , f i,11��. The
resulting features Fi were then merged using LDA. In the
second approach, features f i were merged for each projection
image individually, resulting in a 1�11 vector of linear dis-
criminant distances, dLD. To be counted as a computer-
detected microcalcification, a number of elements of dLD

were required to exceed a threshold; Results for requiring
8�11� and 10�11� linear discriminant distances above thresh-
old will be shown. Following feature merging, each testing
case in the round-robin scheme underwent clustering. Clus-
tering was done in 3D. First, individual detections that were
within a distance of dw=30 mm were assembled into clus-
ters, with a cluster containing at least two detections. When-
ever cluster borders were within a distance db=70 mm, the
two clusters were merged. In order to be scored a true clus-
ter, a detected cluster centroid was required to be located
within 1 cm of a true cluster centroid. True microcalcifica-
tions were clustered based on the rules above, using the same
parameters dw and db. All distances were measured in 3D.

IV. RESULTS

The detection rate for individual microcalcification detec-
tion is listed in Table II, along with the global and local
threshold settings �tg , tl�. Those parameters were set such that
detection rate for individual MC was maximized, regardless
of false positive rate. The false positive rate for MC detec-
tion in the projection images was 4700 FP/image, which is
comparable to what was observed for screen-film mammog-
raphy �SFM�. On the other hand, the true positive fraction
�TPF� for individual MC detection was 0.67, which is higher
than that observed in SFM �typically 0.4 in our previous
research�.

The false positive rate was reduced to 104 individual MC
per volume through point backprojection. The TPF for indi-
vidual MC detection dropped slightly to 0.61. At this stage, it
is also useful to inspect the true cluster detection fraction.
The free-response operating characteristic �FROC� curve
shown in Fig. 6 was generated by varying the local threshold
tl. Further analysis was carried out for tg=0.05 and tl=5,
which corresponds to a TPF of 0.91 at 11.1 FP clusters.

Algorithms performance after feature analysis and cluster-
ing is shown in Fig. 7. The FROC curve was obtained by
varying the linear discriminant distance threshold. Perfor-
mance was estimated using a round-robin training and test-
ing scheme. Three features �x̄L ,c ,�� were combined. This

feature set was selected manually based on performance for
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the entire database. This procedure introduces a positive bias
in the selected feature set.32 On the other hand, it fixes the
feature set, so that the performance we report here is for one
particular CADe scheme, not for an aggregate of schemes all
with potentially different feature sets. The graphs show that
the two schemes of combining features and projections, de-
scribed in Sec. III D, achieve similar performance if outliers
are tolerated. In the first scheme, the value of a given feature
is approximated through the median of the values in the in-
dividual projections. The median value was chosen because
it is less sensitive to outliers. Likewise, in the second
scheme, 8 �out of 11� linear discriminant distances were re-
quired to exceed a threshold in order to be counted as a
detection. The more stringent requirement of 10 out of 11
reduces TPF from 0.81 to 0.75, at about 1 FP cluster per
volume.

V. DISCUSSION

The FROC curves shown in Fig. 7 present a subset of
methods to combine and merge the feature set obtained when
extracting features in the projection image. There are other
ways of combining features, such as mean, standard devia-
tion, max, or min. Including those would effectively increase
the size of the feature set. Optimization of the feature set is
currently not possible because of the small number of patient
cases available. We point out that the median feature value in
all projection images represents an approximation to the
voxel value in the breast volume �as obtained through back-
projection�. Further, these parameters were not optimized
and therefore results are not definitive.

We did not have access to the corresponding screen-film
mammograms. This limits our ability to compare CADe per-
formance on DBT and screen-film mammography. Because
of the lack of screen-film mammograms, it may be possible
that there were clustered calcifications visible in the film
mammogram, but invisible, even in retrospect, in the DBT
images. Selecting lesions visually is consistent with the way
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FIG. 6. FROC curve after point backprojection: True-positive-cluster frac-
tion as a function of the average number of false-positive clusters per vol-
ume. Performance was estimated through self-consistency.
we select cases when developing computer-aided detection
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�CADe� for other modalities—we do not include occult le-
sions. The goal of CADe is to alert radiologists to lesions
that they have overlooked. Therefore, only lesions visible in
the image need to be detected. However, it is possible that
there were very subtle calcifications present in the DBT im-
ages that we were unable to identify. If this occurred, then
our dataset would be biased by the omission of these very
subtle calcifications.

Lesion detectability in DBT, compared to lesion detect-
ability in projection mammography, has not yet been fully
investigated, in particular not for MC. Ultimately, a compari-
son of MC detection performance between DBT and FFDM
needs to be performed in a clinical study. However, at this
stage, DBT is at a disadvantage since image quality has not
been optimized yet. In addition, the data used in this study
were acquired on the first tomosynthesis prototype based on
the GE Senographe 2000D.33 The current GE DBT prototype
is based on the GE Essential digital mammography unit, with
improved detector performance.34 Also, several other manu-
facturers have built prototypes using different detector tech-
nologies as well as different acquisition configurations,
which may affect microcalcification detectability.3

This algorithm may be a useful approach to MCC detec-
tion in DBT, despite the low performance. Current work on
MCC CADe for FFDM14,35 reaches higher performance.
Some of the earlier work on CADe for SFM showed compa-
rable performance.36

We did verify whether algorithm sensitivity could be im-
proved by analyzing the point-backprojection volume, rather
than its maximum-intensity projection. Upon inspection of
missed clusters, we found that clusters that were missed in
the MIP were also not visible or not conspicuous in the vol-
ume. Therefore we concluded that the information relevant
to MC detection was retained in the MIP image. This also
underscores that in the point backprojection, the conspicuity
of MC is dramatically increased, to the point that MC be-
comes visible in the MIP. In contrast, in our experience, most
MC is not visible in a MIP of the reconstructed breast
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FIG. 7. Algorithm performance including feature analysis and clustering
stages, estimated using round-robin analysis.
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We are investigating several possible causes for this low
algorithm performance: First, from an algorithm point of
view, the proposed algorithm is not fully optimized: Only
intensity-based features were extracted from the projection
images, no texture or shape features. A linear discriminant
analysis was used to merge features, rather than a non-linear
classifier as in Ref. 14. Furthermore, no cluster features were
extracted. The optimization of feature and classifier selection
requires more patient cases than what is currently available.
In the clustering stage of our algorithm, the minimum cluster
size was set to “two,” i.e., a pair of two MC within dw was
counted as a valid cluster. In other works, clusters are re-
quired to consist of three28 or four14 individual MC, which
reduces false positive clusters that occur through the detec-
tion of radiologically insignificant scattered MC.

Second, the projection data used in this study were ac-
quired on the first DBT prototype. The x-ray source on this
prototype was operated in step-and-shoot mode, which could
have introduced mechanical vibrations37 and thereby caused
motion artifacts in the DBT projections. As a result, the spa-
tial correlation is destroyed, which affects point backprojec-
tion as well as the actual reconstruction. Also, there may
have been patient motion. Last, the DQE of the detector
being used in the current GE prototype is substantially in-
creased, which should improve MC detection.

This issue of image quality relates to another observation.
The database on which this algorithm was developed con-
sisted primarily of small clusters, i.e., small number of MC
per cluster. Those may indeed be subtle microcalcification
clusters. On the other hand, the clusters were marked in the
DBT images, where MC may have been undetectable be-
cause of DBT system limitations. This impacts algorithm
performance at the clustering stage: Despite relatively high
detection rates for individual MC �above 50%, see Table II�,
which are higher than the 40% that we have observed in
SFM, only 2 MC per cluster are detected for a large fraction
of clusters in the database. Note that we also had to set the
minimum cluster size to “two” when clustering the true clus-
ters in order to be able to obtain actual clusters for all ma-
lignant cases. Increasing the minimum cluster size to 3 or 4,
which is more typical for projection mammography, would
reduce algorithm sensitivity. If minimum cluster size were
increased to 3, another 11% of the 44 MCC would be missed.

Third, MC signal-to-noise ratio in the projection images
may be too low for the detection of subtle MC. If this is the
case, then there may be an advantage in analyzing the recon-
structed DBT volume, rather than the projection images, as a
subtle MC signal may be recovered during reconstruction.
We would like to point out, that in our algorithm, a MC does
not need to be detected in each projection image in order to
be detected in the point backprojection. In our experience, a
MC that was detected in eight projection images �amounting
to about 75%� becomes conspicuous in the point-
backprojected image.

We anticipate that this proposed algorithm will depend on
the DBT configuration, in particular, on the number of pro-
jection views acquired. For a fixed overall exposure, the ab-

solute amount of quantum noise in the projections decreases
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with number of projections, although the SNR decreases.
However, the electronic noise component is independent of
x-ray exposure and therefore electronic noise can become the
dominant noise source. When increasing the number of pro-
jections, it has to be ensured that quantum noise is the domi-
nant noise source in the projection image.

VI. CONCLUSION

We presented a method for automated detection of clus-
tered microcalcifications. The CADe algorithm uses the pro-
jection data as input. Initial MC detection is performed in the
projection data. False positive detections are reduced effec-
tively through point backprojection, where binary images of
lesion candidate regions are backprojected into the breast
volume. Overall the algorithm suffers from low cluster-based
sensitivity. Detection efficiency for individual microcalcifi-
cations is higher than what was observed in screen-film
mammography. The database predominantly contained clus-
ters consisting of few MC, which made it difficult to reduce
false positive clusters during the clustering stage.

This work raises several questions that can only be an-
swered through a more detailed and quantitative investiga-
tion of MC detectability in DBT.
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