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ABSTRACT Myocardial infarction (MI) is a deadly disease that threatens human life worldwide, and it is

essential to save threatened lives with early detection ofMI. The electrocardiogram (ECG), which records the

electrical activity presented in the heart, is used for the prevention and treatment of heart disease such as MI.

However, it remains a challenge to visually interpret the ECG signals because of their small amplitude and

duration. Inspired by the development in computer vision, we try to explore a novel approach for automatic

detection of MI by imaging ECG signals without noise removal. In this paper, the ECG time series is first

transformed into images using the Gramian Angular Difference Field (GADF) method. Subsequently, the

processed images are subjected to the principal component analysis network (PCANet) to extract sparse

high-dimensional features, which are easy to perform well in linear classifiers. We carried out several sets

of experiments to test the effectiveness of our algorithm. The overall accuracy of 99.49%, the sensitivity of

99.78%, and the specificity of 98.08% are achieved in class-oriented experiments using original ECG beats.

The accuracy even rises over 1% compared with the denoising one; Moreover, we also achieved favorable

performance for the patient-specific experiment (accuracy of 93.17%, sensitivity of 93.91%, and specificity

of 89.20%). The results of the experiments indicate that our model is an effective way to detect MI using

raw ECG signals.

INDEX TERMS Electrocardiogram (ECG), myocardial infarction, Gramian angular difference field,

principal component analysis network, patient-specific.

I. INTRODUCTION

Myocardial infarction (MI), caused by the interruption of

blood flow in the myocardial segment [1], is one of the most

common cardiovascular diseases. According to the Ameri-

can Health Association, approximately 720,000 Americans

suffer from myocardial infarction each year [2]. Besides,

myocardial infarction is often regarded as a silent heart attack

because people do not realize that they have been suffering

from myocardial infarction before the heart attack. Hence,

it is crucial to accurately detect MI in the early stage of

The associate editor coordinating the review of this manuscript and

approving it for publication was Alicia Fornés .

the disease, which can be achieved by electrocardiogram

(ECG). An ECG is a noninvasive, economical, and primary

tool to record the heart’s electrical activity process, and it can

provide a valuable reference value for the basic function of

the heart and its pathological research. Generally, an ECG

is the best way to measure and diagnose abnormal heart

rhythms [3]. It consists of 12 leads (I, II, III, aVR, aVL,

aVF, V1–V6), corresponding to special regions of the heart.

The ECG lead V1, V2, V3, and V4 show the signatures

of anterior MI and the inferior MI is diagnosed by ECG

leads II, III, and aVF. The pathological characteristics of

left lateral MI are observed from ECG lead I, aVL, V5,

and V6 [5]. Besides, VCG has the advantage of recording
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electrical heart activities in three orthogonal planes (frontal,

sagittal, and transverse) [11]. In recent years, most

researchers used 12-lead ECG signals in their studies for

myocardial infarction detection or localization [4]–[10].

Besides, several methods [11], [12] were reported for detec-

tion on the basis of vector electrocardiogram (VCG) signals.

Almost certainly, different types of MI can be detected

and distinguished by evaluating the alterations in different

leads [13]. Most studies concentrate on traditional machine

learning frameworks [4], [5], [6], [14]–[19]. For example,

In [4], Arif et al. employed discrete wavelet transform (DWT)

to extract features from the 12-lead ECG, and achieved

the detection as well as the location of myocardial infarc-

tion using the k-nearest neighbor classifier. In [15], a new

approach based on principal component multivariate mul-

tiscale sample entropy (PMMSE) is proposed. This model

achieved an average accuracy of 90.34% using a least-square

support vector machine classifier for the detection of cardiac

diseases.

In general, all of the abovementioned methods have

obvious drawbacks although they obtain acceptable perfor-

mances. For one thing, there is room for further improvement

in the achievements of MI detection. For another, due to

external factors such as patient age and gender, the dominant

or recessive ‘‘features’’ of the ECG change dynamically.

Therefore, it is challenging to maintain generalization capa-

bilities when using fixed hand-design features. Furthermore,

several studies [6], [7], [20] listed in Table 9 have denoised

the original signal in the preprocessing stage, resulting in

additional time andmemory consumption. Therefore, to over-

come this limitation, deep learning frameworks have been

introduced. Deep learning architectures such as deep neural

networks [21], deep belief networks [22], recurrent neural

networks [23] and convolutional neural networks (CNN) [24]

have been applied to various fields. CNN is one of the most

popular frameworks. It is most commonly used to analyze

visual imagery and made remarkable achievements in the

field of recommender systems [25],image classification [26],

natural language processing [27], and medical image analy-

sis. Several ECG analysis algorithms based on deep learning

architectures have been developed recently [8], [28]–[34]. For

instance, In the literature [8], the authors proposed a novel

approach for MI detection using the Fourier-Bessel series

expansion-based empirical wavelet transform (FBSE-EWT)

and the deep layer least-square support vector machine

(DL-LSSVM). The model achieved excellent performance

(mean accuracy of 99.74%, the mean sensitivity of 99.87).

Feng et al. proposed a hybrid model based on 16-layer CNN

and long short-term memory networks (LSTM) for MI detec-

tion, and an accuracy of 95.4%, the sensitivity of 98.2%, the

specificity of 86.5% were achieved [34].

It can be observed that deep learning models often achieve

great performance because they have high-level structural

features that can acquire the spatial and temporal character-

istics of ECG signals [35]. However, the models mentioned

require a considerable diversity of data and memory space

due to the deep structures, which results in computation-

ally expensive-to-learn features. Thus, some researchers are

trying to use lightweight network models for ECG analy-

sis. Chan et al. [36] proposed a novel, simple deep learn-

ing network called PCANet for image classification. This

model can be efficiently designed to learn the features, and

it has achieved great performance in image classification.

Some researchers put forward their PCANet-based models

for ECG application. For instance, Lee et al. [37] proposed

a model based on PCANet to extract features for personal

identification from the ECG Signal. PCANet is designed for

multi-dimensional mode or image recognition applications.

However, most researchers use the original one-dimensional

ECG signal as the input to the PCANet, which doesn’t fully

utilize the time correlation of the original signal. We need

to find an appropriate time series transformation approach

to retain more ECG information. Some researchers also have

carried out work for visual inspection [38], [39]. For instance,

Silva et al. [38] extended the recurrence plot paradigm of time

series classification using compression distance. Although

these topological attributes improve classification perfor-

mance, it is still unclear how these topological attributes relate

to the original time series due to their inaccurate inverse

operations.

Traditional machine learning methods may not acquire

the generalized characteristics of ECG signals, while CNN

consumes considerable diversity of data and memory space.

To address the limitations above, we propose a novel and

lightweight model based on GAF and PCANet for MI detec-

tion. The GAF method has a clear physical meaning for

mapping from a time series to an image and can restore

the original time series through the image. By using the

lightweight framework, we can mine more useful compo-

nents from the transformed ECG images, and export sparse

high-dimensional features, which are easy to perform well

in linear classifiers. The experimental results indicate that

our proposed model can take into account performance and

computation time, and achieve good performances for both

class-oriented and patient-specific experiments.

A. GOALS

The main goals of the paper can be summarized as follows:

Goal 1:Develop an accurate and lightweight model for the

automatic recognition of MI, which is robustness to noise.

Goal 2: Obtain more discriminative information from the

original heartbeats by ECG time series transformation.

Goal 3: Design and realize the generalized algorithms for

discriminating inter-patient variability.

B. NOVELTY AND ARRANGEMENT

Based on literature review such as Refs. [4], [5], [34], [40]; it

can be summarized that the innovative elements of this study

are as follows:

N1:Combination of ECG imaging method and high-

level features extraction model: To take advantage of visu-

ally interpreting the ECG signals, a novel method (GADF) is
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FIGURE 1. System sketch of the proposed system.

employed to transform the 1-D ECG signal to a 2-D image

with significant information, and the lightweight CNN-like

model(PCANet) is developed to obtain the high-level features

from the processed image. The proposed model is proven to

be an effective way to detect MI.

N2: Robustness to noise: Comparison experiments

between denoising and original ECG signals are imple-

mented. The results indicate that our model develops robust-

ness of anti-noise.

N3: High accuracy: Compared with other literature,

we achieved an excellent and stable performance in class-

oriented experiments of MI detection.

N4: Generalization for patient-specific features: The

patient-specific framework is adopted, and the proposed

model can be adapted to learn the unique features from a

specific patient, limiting the impact of inter-patient variability

to an acceptable range.

The remainder of this paper is organized, as follows.

Section II briefly introduces the database used in this paper

and explains the basic theory of the proposed framework,

including pre-processing, feature extraction (GADF and

PCANet), and classification. The experimental results and

discussion are shown in Section III and IV. Finally, Section V

concludes the paper.

II. MATERIALS AND METHODOLOGY

A. MATERIALS

For this study, the ECG signals are obtained from the

Physikalisch-Technische Bundesanstalt (PTB) diagnostic

database [41]. The database contains 549 records from 290

subjects which include 209 men and 81 females, with ages

ranging from 17 to 87. Each subject is represented by

one to five records, and each record includes 15 simul-

taneously measured ECG signals. In this paper, we use

only lead II for MI classification and aim to discriminate

between healthy control and myocardial infarction. Specif-

ically, we use 368 ECG records with MI, 80 ECG records

with Healthy Control (HC). All the beats (10289 normal

ECG beats, and 50486 MI ECG beats) are segmented by the

TABLE 1. Heartbeat category as per three assessment schemes.

QRS-wave detection. In particular, each beat is composed

of 625 samples, including 249 samples before the R-peak

point and 400 samples after the R-peak point. Demographical

and statistical information on the dataset using the selection

criteria from above is compiled in Table 1.

B. METHODS

The system sketch of the proposed methodology is shown

in Figure 1. The system consists of four steps, which

are described in pre-processing, imaging ECG time series,

PCANet, and classification. The function of pre-processing

is to obtain the heartbeats with noise and without noise. Next,

we transform heartbeats into images using theGADFmethod.

Finally, these processed images are subjected to the PCANet

to extract sparse high-dimensional features, which are easy to

perform well in linear classifiers such as Linear SVM. Close

collaboration among these steps is desirable. The working of

each block is explained in detail in the following sections.

1) PRE-PROCESSING

The original ECG signals with noise obtained from the PTB

database. In this work, the orthogonal experiment has been

designed using two sets of ECG data to test our proposed idea.

Both datasets are composed of all original ECG signals and

marked as set O (original) and set D (denoising). The related

experiments are performed independently.

a: DENOISING

The noise of the ECG signals exists because of several factors,

such as the DC bias drift of the ECG amplifier and the

change in the resistance of the electrodes during recording
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FIGURE 2. Comparison of normal and MI ECG beat (a) Normal ECG with
noise; (b) Normal ECG without noise; (c) MI ECG with noise; (d) MI ECG
without noise.

ECG signals [42]. Several methodologies have been proposed

for ECG signal denoising, such as Spectro-temporal filter-

ing [43], Wavelet-based filtering [44], eigenvalue decompo-

sition of Hankel matrix [45], and so on. In this paper, we use

the Daubechies wavelet eight mother wavelet function [46]

to remove the baseline wander and high-frequency noises

from the ECG signal for set D, set O remain the noise.

Figure 2 shows details of a normal and MI heartbeat with and

without noise.

b: BEATS SEGMENTATION

Second, comes the heartbeats segmentation phase. The Pan

Tompkin algorithm [47] is used to carry out the R-peak point

for both datasets, and the ECG signals are segmented for each

heartbeat through the R-peak we detected, then the heartbeat

segmented shall be normalized by min-max normalization

method. In all, 60,775 heartbeats are acquired in each set.

2) IMAGING ECG TIME SERIES

The method called Gramian Angular Summation/Difference

Fields (GASF/GADF) is adapted to encode ECG time series

as images to take advantage of visually interpreting the ECG

signals, in which a 1-D signal can be represented as a form

of 2-D data [48], [49]. The step-by-step instructions are

shown in Figure 3. The first step is to represent time series

in a polar coordinate system by encoding the value of the

ECG time series as the angular cosine and the time stamp

as the radius. This procedure can preserve temporal depen-

dency, then calculate its GASF/GADF images according to

the defined GAF formula.

Specifically, the ECG time series X = {x1, x2, . . . , xn} is

scaled with a Min-Max scaler onto [−1,1] or [0,1]by:

x̃ i−1 =
(xi − max (X)) + (xi − min (X))

max (X) − min (X)
(1)

or x̃ i0 =
xi − min (X)

max (X) − min (X)
(2)

FIGURE 3. Illustration of the encoding map of Gramian Angular Fields.

FIGURE 4. The density histograms of the outputs of the GAF Matrix.
(a) ECG; (b) Classical Gaussian Noise.

Next, the rescaled time series X̃ in polar coordinates can

be shown by encoding the value as the angular cosine and the

time stamp as the radius by the equation below:







φi = arccos (x̃i) , −1 ≤ x̃i ≤ 1, x̃i ∈ X̃

ri =
ti

N
, ti ∈ N,

(3)

where ti is the time stamp and N constant factor to regularize

the span of the polar coordinate system. In simple terms,

we divide the interval [0, 1] into N equal parts and there-

fore obtain N + 1 delimiting points {0, . . . , 1}, then discard

0 and associate consecutively these points to the time series.

Finally, after converting the rescaled time series into the polar

coordinate system, we can use the angular perspective by

considering the trigonometric sum/difference between each

point to identify the temporal correlationwithin different time

intervals, and the GAFs are defined as follows:

GASF =
[

cos
(

φi + φj
)]

= X̃ ′ · X̃ −

√

I − X̃ ′2 ·

√

I − X̃2 (4)

GADF =
[

sin
(

φi − φj
)]

=

√

I − X̃ ′2 · X̃ − X̃ ′ ·

√

I − X̃2 (5)

where I is the unit row vector, X̃ ′ and X̃ represent different

row vectors. From the equations above, we notice that the

GAFs are the newly constructed operation that corresponds

to a penalized version of the conventional inner product.
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FIGURE 5. A detailed block diagram of the PCANet model.

GAF has several advantages. On the one hand, we plot

the density of the Gramian Angular Field ECG values

as shown in Figure 4. The density of GAF Matrix den-

sity of ECG is sparse, and its distribution is different

from Gaussian Noise. Hence, the outputs are easily dis-

tinguishable from Gaussian Noise. On the other hand,

we will approximately reconstruct the time series from

the high-dimensional features. Moreover, temporal corre-

lations are accounted for with the relative correlation by

superposition/difference of directions concerning the time

interval [48].

In this paper, our practical experience suggests that the

GADF is more suitable for the ECG time series.

3) FEATURE EXTRACTION (pcanET)

In this section, ECG images processed are subjected to Princi-

pal Component Analysis Network (PCANet) model to obtain

high-dimensional features. The PCANet framework can be

considered as a simplified version of CNN for image classi-

fication, and it does not need a complicated iterative process

for numerous parameters optimization. The training process

of PCANet is more straightforward and faster than CNN. Vast

experiments demonstrate the effectiveness of the PCANet in

learning robust invariant features for different image classi-

fication tasks. The detail of the PCANet model is illustrated

in Figure 5. PCANet is composed of three layers: the input

layer, the hidden layer, and the output layer, including cas-

caded principal component analysis (PCA), binary hashing,

and blockwise histograms. The most important part is the

PCA filters. We firstly carry out the covariance matrix of the

input training images. Then, we extract the first K eigen-

vectors with the highest energy using the PCA algorithm.

Next, we stack these eigenvectors into a matrix, defined as

PCA filters or convolution filters. The filters can capture

the main variation of the original input. This is followed

by simple binary hashing and block histograms for indexing

and pooling. We binarize these outputs and view them as a

decimal number. Eventually, we compute the histogram of

the decimal values as the outputs of the framework. In what

follows, we more precisely describe each component of the

block diagram.

a: INPUT LAYER

There are N input ECG images {Ii}
N
i=1 of size m×n obtained

in the previous step, and we suppose that the filter size is

k1 × k2 at all stages. Equation (6) shows that the matrix form

of the i− th image.

Ii =









i11, i12, · · · i1n
i21, i22, · · · i2n
. . . .

im1, im2, · · · imn









(6)

where m, n represents the width and height of the image,

respectively.

b: HIDDEN LAYER

This layer consists of two stages from Figure 5. In the first

stage filter extraction, we take the filter patch to slide with one

step to select local features of the image, and the boundary

of Ii is zero-padded before convolving with the k1 × k2
filter to collect m × n patches of the i − th image,i.e.,

xi,1, xi,2, . . . , xi,mn ∈ R
k1k2 . Next, we remove the patch

mean from each patch and combine these vectors to obtain

X̄i =
[

x̄i,1, x̄i,2 . . . , x̄i,mn
]

, where x̄i,j is a mean-removed

patch. All input ECG images are transformed into the same

matrix via the same way, and we obtain

X =
[

X̄1, X̄2, . . . , X̄N
]

∈ R
k1k2×Nmn (7)

We collect the PCA filters according to the PCA algorithm,

and the PCA filters can be formulated as

W 1
l = matk1,k2

(

ql

(

XXT
))

∈ R
k1×k2 , l = 1, 2, . . . ,L1

(8)

Here, Li represents the number of filters, and ql
(

XXT
)

extracts the l − th principal eigenvector of XXT , matk1,k2 (v)

is a function converting column vectors to matrices, soW 1
l is

the l − th PCA filter to extract high-dimensional features for

the first stage.
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We obtain the l − th filter output of the first stage by

convolving the l − th PCA filter with the input image Ii

I li
.
= Ii ∗W

1
l , i = 1, 2, . . . ,N (9)

where I li also have the same size as Ii because it is zero-

padded before convolving with W 1
l .

As in the first stage, we repeat the same process: collect

all patches of I li , subtract the patch mean from each patch,

and obtain Ȳ li =
[

ȳi,l,1, ȳi,l,2, . . . , ȳi,l,mn
]

∈ R
k1k2×mn, where

ȳi,l,j is the j− thmean-removed column vector of I li , then we

acquire Y l =
[

Ȳ l1, Ȳ
l
2, . . . , Ȳ

l
N

]

∈ R
k1k2×Nmn for the matrix

and combine all l − th filter output to achieve

Y =

[

Y 1,Y 2, . . . ,Y L1
]

∈ R
k1k2×L1Nmn (10)

The next step is to apply PCA algorithm to get the PCA filters

of the second stage,

W 2
ℓ = matk1,k2

(

qℓ

(

YY T
))

∈ R
k1×k2 , ℓ = 1, 2, . . . ,L2

(11)

Each input I li of the second stage will output L2 images of the

size of m× n according to the equation (12)

Ol
i

.
=

{

I li ∗W 2
ℓ

}L2

ℓ=1
, (12)

where Ol
i is the output of the i − th image, and the L1L2

represents the number of output images.

c: OUTPUT LAYER

In this layer, the outputs of the second stage
{

I li ∗W 2
ℓ

}L2
ℓ=1

will

be binarized, and then these binary matrices are converted to

decimal matrices as

Ŵl
i

.
=

L2
∑

ℓ=1

2ℓ−1H
(

I li ∗W 2
ℓ

)

(13)

where Ŵl
i is the l − th decimal matrix for the i − th image,

and H (·) is a Heaviside step function, in which value is

one for positive entries and zero otherwise. Each of the Ŵl
i ,

l = 1, . . . ,L1 is divided into B blocks, and we calculate the

histograms and concatenate all B histograms into one vector

as Bhist
(

Ŵ1
i

)

the input image Ii is then converted to the set of

block-wise histograms after this encoding process.We finally

obtain the feature vectors as

fi
.
=

[

Bhist
(

Ŵ1
i

)

, . . . ,Bhist
(

Ŵ
L1
i

)]T
∈ R

(

2L2
)

L1B (14)

4) Classification

In this paper, we implement several standard classifiers such

as Support Vector Machines [50], Linear Discriminant Anal-

ysis [51], back propagation neural network [52], k-nearest

neighbor classifier and Random Forests [53] to evaluate the

performance of our proposed model.

FIGURE 6. The impact of the image size(width=height).

5) K-FOLD CROSS-VALIDATION

In recent years, k-fold cross-validation is commonly used in

applied machine learning to compare and select a model for

a given predictive modeling problem. It is easy to understand

and implement, resulting in the skill estimates that generally

have a lower bias than other methods. In our experiment,

the data was partitioned into k(k=5) equal-sized parts. Unlike

the conventional one, one of the five parts was selected

for training and the remaining data for testing at each iter-

ation. Although only one-fold data was used for training,

we achieved good results. The final results recorded in all

five iterations are averaged and considered as the overall

performance of our proposed system. For all class-oriented

experiments, we used this cross-validation method.

6) EVALUATION CRITERIA

The equations for the calculated coefficients are as follows:

• Accuracy

ACC =
TP+ TN

TP+ FP+ TN + FN
(15)

• Sensitivity

SEN =
TP

TP+ FN
(16)

• Specificity

SPE =
TN

FP+ TN
(17)

• Positive Predictive Value

PPV =
TP

TP+ FP
(18)

where TP means detection correctly with the disease, TN is

being identified as correctly without the disease, FN means

detection incorrectly when the disease is present, and the

detector is not detected, FP means the disease is not present,

but detector detects disease.

III. EXPERIMENT RESULTS

A. MODEL STRUCTURE AND PARAMETERS

In this paper, a novel model, with feature extractions, includ-

ing imaging ECG time series and PCANet, is developed.
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First, we represent time series in a polar coordinate system to

preserve temporal dependency, and then calculate its GADF

images, which are subjected to PCANet framework to obtain

sparse high-dimensional features; eventually, the features are

fed to the linear SVM classifier to get the final label. For

optimizing the parameters of the structure, several experi-

ments were performed on the validation set to investigate

the impact of the size of images, the number of filters, and

different block sizes for the proposed model. According to

the analysis results above, we set a series of regular param-

eter values and then use a grid search algorithm to find the

optimal combination of parameters. We used 2000 instances

as the validation set and employed the 5-fold cross-validation

for each iteration. To demonstrate the advantages of our

model, we conducted several contrastive experiments. More-

over, we then compared the proposed model with state-of-

the-art methods on all test sets. All the experiments were

implemented in Matlab R2018a and Pycharm 2018 on a

Windows 7 with Intel Core i7 CPU(@2.60GHz) and 8GB

RAM.

1) IMPACT OF THE SIZE OF IMAGES

As mentioned above, each heartbeat consists of 625 samples,

which can be folded into a senseless image (25×25). Hence,

we varied the size of the output image from 25×25 to 60×60

for evaluating performance; then we fixed other parameters

(the filter size k1 = k2 = 5, the number of the filter

L1 = L2 = 5, and the block size b1 = b2 = 4). The results

are presented in Figure 6. One can observe that the accuracy

of the model approximately increases with the rise of the

image size, and the model achieves the best results when the

size of the image is close to 50 × 50. Moreover, the high

dimension of the feature space decreases the accuracy rate

and sacrifices performance when the size of the image

I > 50 × 50.

2) IMPACT OF NUMBER OF FILTERS

In this subsection, we designed two groups of experiments.

Firstly, we fixed the size of input images I = 25 × 25,

the filter size of the network k1 = k2 = 5, and the block

size b1 = b2 = 4. For one experiment, we controlled the

number of filters in the second stage L2 = 5, and changed

the number of filters in the first stage L1 from 2 to 16; For

another experiment, we fixed L1 = 5 and varied the number

of filters in the second level L2 from 2 to 16. Figure 7 shows

the accuracy for each epoch. The results suggest that the

accuracy increases for larger L1 or larger L2, and the effect

on the performance of L1 is more significant than the other.

It’s not difficult to see the model achieves the best accuracy

when L1 approaches 6 or L2 is close to 8.

3) IMPACT OF BLOCK SIZE

Similarly, we test the impact of block size on accuracy. The

results are presented in Figure 8. Note that the model achieves

the best accuracy when b1 approaches 5 or b2 is close to 5,

FIGURE 7. The impact of the number of filters. (a) The first stage;
(b) The second stage.

FIGURE 8. The impact of the number of the block size. (a) The width;
(b) The height.

TABLE 2. Alternative grid parameter list and the optimal combination of
parameters for our model.

and the accuracy starts to show a decreasing trend when

b1 > 5 or b2 > 5.

4) GRID SEARCH ALGORITHM

As shown in Table 2, we set the alternative grid parameters

based on the analysis above and find the best combination of

settings.

B. CLASS-ORIENTED EXPERIMENTS OF MI DETECTION

In this subsection, the original dataset (set O) with noise

was used for class-oriented experiments of MI detection.

Before the cross-validation was employed for performance

evaluation, the heartbeats from set O were randomly scram-

bled. All heartbeats were departed almost equally into five

segments. For each iteration, 1/5 heartbeats were selected for

training while the remainder(4/5) were used for testing. The

approach was repeated five times by shifting the testing part.

The confusion matrix of each fold for MI detection is shown

in Table 3.

We discover that our algorithm achieved significantly

competitive results on MI detection based on Table 3. The

overall accuracy, positive predictive value, and sensitivity

are 99.49%, 99.61%, and 99.78%, respectively. Furthermore,
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TABLE 3. The results of each fold for class-oriented experiments of MI detection.

TABLE 4. The overall classification results for MI detection classes using ECG beats with and without noise.

FIGURE 9. The ROC curves of the ECG with noise and without noise.

the variation of the three indicators is <0.2%, which demon-

strates our method is sufficiently stable and can accurately

perform class-based MI detection.

C. COMPARISON EXPERIMENTS OF DENOISING

AND ORIGINAL DATA

In this subsection, we conducted contrast experiments

using the denoising dataset (set D). The overall confu-

sion matrix for heartbeats with and without noise is shown

in Table 4, and the Receiver Operating Characteristic (ROC)

curves are depicted in Figure 9. As can be seen from

Table 4, an overall accuracy, positive predictive value, sen-

sitivity, and specificity of 98.44%, 98.93%, 99.19%, and

94.73% are achieved, respectively. It turns out that even the

experiments using heartbeat with noise show a significant

TABLE 5. The optimal parameter values of different classifiers.

rise on accuracy (98.44%∼99.49%), positive predictive

value (98.93%∼ 99.61%), sensitivity (99.19%∼99.78%) and

specificity (94.73%∼98.08%). The AUC of the model with

noise just achieved a slightly higher AUC than the denoising

one (0.9991>0.9955). In general, our proposed model is

robustness to noise.

D. COMPARISON EXPERIMENTS OF

DIFFERENT CLASSIFIERS

Several typical classifiers were involved in heartbeat classifi-

cation in this paper. The optimal parameters of all classifiers

were set to the values as in Table 5. The results of 5-fold

cross-validation are shown in Table 6, and the associated box
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TABLE 6. The accuracy of different classifiers across 5-fold.

FIGURE 10. The accuracy box plot of different classifiers.

plot is shown in Figure 10 to display the influences of differ-

ent classifiers on the accuracy of classification results. One

can conclude each classifier has high accuracy (approaching

99%) because of the distinguishable feature extracted in the

previous stage of work. As for the stability of the proposed

model, the difference in overall accuracy is minuscule (1%).

Obviously, the linear SVM classifier obtains the highest over-

all accuracy (99.49%). Also, it can be seen that the accuracy

of BP changes more slightly than the other classifiers. That’s

because the weights and thresholds are randomly given when

the BP nets start training.

To sum up, the proposed model with general applicability

has good performances on several classifiers. One explana-

tion could be that GADF represents the ECG signal in a

polar coordinate system to preserve temporal dependency

because time increases as the position moves from top-left

to bottom-right [48]. Temporal dependency played a major

role in extracting the multi-frequency dependencies through

the convolution of PCA filters [54]. The high-dimensional

features extracted from the GADF image are easy to perform

well in linear classifiers.

E. PATIENT-SPECIFIC EXPERIMENTS

As we know, inter-patient variability is the main challenge

of automatic analysis for ECG in real-world applications.

FIGURE 11. The patient-specific framework.

The models based on a fixed training set may fail to classify

heartbeats from a new patient because of the unique physio-

logical characteristics of each person’s heart or ages, genders,

and the patient’s past medical history [55]. We employed

the patient-specific framework aiming at the question. The

main idea of the framework is that the data used to train

the individual patient’s classifier consist of two parts: global

(common to all patients) and local (patient-specific) train-

ing datasets [56]. The model is first trained using a global

dataset to get a relatively small number of representative

heartbeats. Then, a patient-specific dataset from the new

patient is used to perform patient adaptation. This framework

has been proven to be feasible for identifying inter-patient

variability. The patient-specific framework is illustrated

in Figure 11.

In the patient-specific experiments, we employed tradi-

tional k-fold cross-validation to verify the reliability of the

proposedmethod further. For the dataset partition, we divided

all patients (not heartbeats) into five almost equal groups.

Some 4/5 patients were selected as the global training set,

while the remainder(1/5) of the patients were used as the

testing set for each iteration. Subsequently, we only extracted

the first 36 heartbeats from the testing of each patient as

the patient-specific training set. The parameters of the model

were the same as those in the class-oriented experiments.

The results ofMI detection from the patient-specific exper-

iments are shown in Table 7. Note that we achieved an

accuracy of 93.17%, sensitivity of 93.91%, and specificity

of 89.20%. The performance of the patient-specific model

is significantly lower than the class-oriented experiments,

which indicates that the inter-patient variability can reduce

the generalization capacity and stability of the proposed

model to a certain extent. Moreover, it can also be inferred

that we achieve a good performance on fold 1, 4, and 5, but

obtain a weak effect on fold 2 and 3. The reasons for this

are attributed to two aspects. Firstly, fold 2 and 3 have fewer

training samples (nearly 47000 heartbeats) than the other

fold (approaching 52000 heartbeats) because the number of

heartbeats for each patient is different in the PTB database.

Secondly, the waveform of MI patients on fold 3 contains
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FIGURE 12. The performance of different models for MI detection. (a). Class-oriented; (b). Patient-specific.

TABLE 7. The results of MI detection of the patient-specific experiments across 5-fold.

much more noise, and it is more challenging to extract unique

features from specific patients.

To summarize, although the performance of the patient-

specificmodel is less than ideal, the proposedmodel can limit

the impact of inter-patient variability to an acceptable range

with the usage of the patient-specific framework.

F. COMPARISON EXPERIMENTS OF GADF AND PCANET

Comparative experiments were carried out using the orig-

inal dataset to show the advantages of imaging ECG time

series and PCANet. Table 8 and Figure 12 show the results

of comparative experiments. By comparing the perfor-

mance of M1 and M2 for class-oriented scheme, it can

be observed that the approach shows better classification

performance when the ECG time series is transformed

into the images, which results in a significant rise

on accuracy (76.38%∼91.93%), positive productivity

(89.31%∼97.21%), sensitivity (81.29%∼92.95%), and

specificity (52.25%∼ 86.90%). Also, we can see the per-

formance improvement in each metric by comparing the

performance of M3 and M4.

The same trend exists for the patient-specific scheme.

Furthermore, the comparison between M1 and M3 shows

that our model provides an overall performance boost for

both the class-oriented and patient-specific scheme. Hence,

the proposed model can efficiently get more information

from the original heartbeats due to its good ability to feature

learning.

IV. DISCUSSION

Comparisons with denoising experiments verify that our

model is robustness to noise for MI detection. The reason

is that the original signal has an inevitable overlap in the

noise domain and the information domain. It may remove a

small number of informative features when we use wavelet

to denoise. Meanwhile, we can infer that the outputs of the

GADF are easily distinguishable from Gaussian noise, so the

PCA filters can remove useless noise from the original ECG

signal and retain more useful information.

From Table 8, we can see that the PCANet model per-

forms better than the GADF method. Moreover, we found an

increment in the accuracy of classification when the model

composed of PCANet and GADF is employed. PCANet is

a CNN-like lightweight framework designed for extracting

significant features from an image. To fully utilize the advan-

tage of visually interpreting the ECG signals, we transform

the ECG time-series into an image using the GADF method

before being fed to the PCANet. The combination of both

VOLUME 7, 2019 171579



G. Zhang et al.: Automated Detection of MI Using a Gramian Angular Field and PCANet

TABLE 8. The results of comparative experiments for MI detection across 5-fold.

TABLE 9. Performance comparison of the proposed method and other methods for MI detection using ECG signals obtained from the PTB database.

can offer more sufficient information and further improve

the prediction ability. Furthermore, the composed model can

limit the impact of inter-patient variability to an acceptable

range.

Table 9 summarizes the various techniques by which

researchers use the ECG signals obtained from the PTB

database to detect MI automatically. Note that lead II ECG

signals were not used in all studies. Most researchers used

12-lead ECG signals in their studies for MI detection or

localization. Although the multi-lead (12-lead or VCG-lead)

can provide more comprehensive information and achieve

good performance, the time complexity of the model also

increases. In this paper, we aim to detect MI without the

need for localization of MI. Hence, we only used lead II
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because it is a common clue for necessary cardiac monitor-

ing, and it could provide useful morphological information

of ECG. The results of the experiments prove that we can

achieve good performance by using only lead II. Moreover,

the implementation with a single lead indicates the possibil-

ity of applications in mobile systems such as wearable or

portable devices. It also can be noted from Table 9 that our

proposed system performed better using the original ECG

beats. In [40], the authors proposed a convolutional neural

network (CNN) algorithm using lead II only for automated

MI detection. Their model achieved acceptable performance

using original ECG. However, the calculation cost of the

11-layer deep CNN is computationally intensive to learn

the features. It can be seen that the deep learning method

can achieve great performance, but deep learning models

usually consume a lot of data and memory, leading to an

increase in computational complexity. Compared with the

deep learning framework, our proposed model has lower time

complexity since the extracted PCAfilters are directly used as

convolution kernels for PCANet. It does not need to calculate

convolution kernels like CNN through a complicated iterative

process. The time-consuming operation of our proposed sys-

tem mainly focuses on the convolution operation of PCANet

and the training process of the SVM classifier. In a single

CPU, the average time for one convolution operation of a

heartbeat is about 0.4µs. Considering a complete PCANet

run with 30 × 50 × 50 iterations(5 × 50 × 50 in the first

stage, 25 × 50 × 50 in the second stage) over a training

dataset with 48639 heartbeats (39506MI heartbeats, 9133HC

heartbeats), which means that the average time for PCANet

training would be 0.4×30×50×50×48639µs = 24.3 min.

The average time for SVM-Linear training is about 102s, and

the average extraction and classification of a test ECG beat

instance is about 19ms. In [7], the test time for a multi-lead

ECG beat instance is 208.5ms. Note that the speed of our

approach is acceptable.

The main advantage of the proposed approach is its robust-

ness of anti-noise.We can obtain excellent performance using

the original ECG signal without denoising. Then, the impact

of inter-patient variability can be limited to an accept-

able range due to the good generalization performance and

sparsity of our proposed model. Furthermore, our proposed

model has a lower time complexity compared with CNN. The

main limitation of our model is the slightly larger memory

requirement due to the sparse high-dimensional features of

PCANet output.

V. CONCLUSION

In this study, we put forward a novel model to detect

MI automatically on the PTB database. By using PCANet,

the high-dimensional and generalized features were extracted

from the images transformed by the GADF method.

We achieved great performances on both class-oriented and

patient-specific experiments. Specifically, by using the orig-

inal ECG signals, the model achieved an overall accuracy

of 99.49% for class-oriented experiments; the accuracy was

even over 1% higher than the denoising one. Moreover,

an overall accuracy of 93.17%, sensitivity of 93.91%, and

specificity of 89.20% were obtained in the patient-specific

experiments. The experimental results and analysis conclude

that the proposed model has competitive performance when

compared to the listed literature above. Hence, our proposed

model can accurately detect MI from the unknown ECG

signals even with noise. The proposed approach will be a use-

ful component of the cardiologist’s clinical decision support

system.

Future work will be devoted to exploring a better model to

improve the performance in the patient-specific experiments.

This approach is also intended to extend to other cardiovas-

cular diseases such as coronary artery disease, and congestive

heart failure. The ultimate goal of this work is to design

the cloud realization of the proposed method and apply it

in mobile devices to provide a more reliable and practical

diagnosis.
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