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Abstract—A major step toward the use of hyperspectral sen-
sors to detect subpixel targets is the ability to detect constituent
absorption bands within a pixel’s hyperspectral curve. This paper
introduces the use of multiresolution analysis, specifically wavelet
transforms, for the automated detection of low amplitude and over-
lapping constituent bands in hyperspectral curves. The wavelet ap-
proach is evaluated by incorporating it into an automated statis-
tical classification system, where wavelet coefficients’ scalar en-
ergies are used as features, linear discriminant analysis is used
for feature reduction, and maximum likelihood (ML) decisions are
used for classification. The system is tested using the leave-one-out
procedure on a database of 1000 HYDICE signals where half con-
tain a subpixel target or additive Gaussian absorption band. Test
results show that the continuous and discrete wavelet transforms
are extremely powerful tools in the detection of constituent bands,
even when the amplitude of the band is only 1% of the amplitude
of the background signal.

I. INTRODUCTION

W ITH THE increasing availability of remotely sensed
hyperspectral imagery, the potential for accurate, auto-

mated scene analysis and target recognition systems is ever-
expanding. Hyperspectral reflectance curves can provide in-
sight into the on-ground (or near ground) constituent materials
in a single remotely sensed pixel. Assuming a nonhomoge-
neous mixture of subpixel materials, a fundamental goal would
be to decompose the single hyperspectral curve and extract
information about the presence and concentration of each
of the materials. This capability has many applications. One
example is the detection of weakly concentrated, near-ground
aerosols in hyperspectral imagery. This application is partic-
ularly challenging because aerosols can cause increased or
decreased absorption and, when weakly concentrated, can have
extremely low amplitudes relative to the background clutter’s
hyperspectral curve.

A. Linear Mixing and Gaussian Absorption Bands

Many approaches to resolving subpixel targets utilize linear
unmixing models, where the methods are based on the assump-
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tion that the hyperspectral curve for a given pixel is a linear com-
bination of the endmember spectral curves. The endmembers
correspond to hyperspectral curves that are unmixed spectra of
pure materials. Methods such as constrained least squares, are
then utilized to determine the fractional contribution of each
endmember to each pixel. Most automated methods for finding
endmember curves are essentially means of finding the purest
pixels in the image. However, it may be impossible to find com-
pletely pure pixels.

When linear unmixing approaches are not appropriate, one
may detect subpixel targets through feature extraction and
classification. High spectral resolution, as with hyperspectral
imagery, provides the opportunity to detect some materials by
the presence of their specific absorption bands. Many materials
have diffuse reflectance spectra where the absorption band
is actually a distribution function that contains contributions
from a large set of transmitted light orientations. Consequently
from the central limit theorem, the absorption band shape will
tend toward a Gaussian distribution, and the absorption band’s
center wavelength will be the mean of the band centers over all
transmitted light orientations [1].

B. Derivative Analysis

For target detection purposes, the amplitude, mean, and
variance of the Gaussian absorption band could be used as
quantitative features in an automated classification system.
However, this approach is complicated by factors such as
unresolved composite absorption bands and low SNRs in the
hyperspectral curve. Multiple high-order derivative analysis
has been utilized to help overcome this problem [1], [2].
Derivative-based methods typically use a preprocessing,
smoothing filter followed by a derivative operator, e.g., mean
filter smoothing followed by the finite approximation deriva-
tive algorithm. Another commonly used method is that of
Sovitzky-Golay, where the smoothing and derivative operations
are combined into one calculation [3]. The finite approximation
algorithm estimates derivatives as follows:

(1)

where is a digital hyperspectral curve. The separation be-
tween wavelengths is a variable parameter that
determines the resolution of the results. Generally, but
can be varied. The derivative will extract different information
for different band separations [1]–[7]. By increasing the band
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separation or the width of the smoothing filter, the effects of
high-frequency components in the signal are decreased. How-
ever, the challenge is to appropriately select the width of the
derivative window and/or the width of the smoothing prefilter.

In previous work, the appropriate width of the smoothing
prefilter has been determined experimentally, on a case-by-case
basis. Huguenin and Jones optimized the width of the smoothing
prefilter via a tradeoff between noise and signal attenuation,
requiring an estimate or prediction of the full-width-half-max-
imum of the constituent reflectance bands contained in the
hyperspectral curve [1]. In Demetriades–Shahet al.’s use
of the Savitsky–Golay method [4] to detect the “red edge”
and to decorrelate soil background from vegetation spectra,
they experimentally determined the width of the smoothing
operation by maximizing the SNR of the smoothed curve [4].
Tsai [2] examined the effects of changing the width of the
smoothing operation and the tradeoff between noise removal
and ability to resolve fine spectral details [2]. Their conclusion
was that the smoothing width should be as large as possible but
remain less than the width of the spectral feature of interest.

Piech and Piech [5], [6] have conducted investigations into
the use of scale-space images for systematically varying the
smoothing width in derivative analysis of hyperspectral curves
[5], [6]. Scale-space images are produced by convolving the
hyperspectral curve with Gaussian derivative filters which
have been scaled, or stretched, to have increasing widths. This
method is closely related to the wavelet transform.

C. Wavelet Approach

The wavelet transform is a relatively new signal analysis tool
that provides a systematic means for analyzing signals at var-
ious scales or resolutions. With continuous wavelet transforms
(CWT), one can analyze signals, including multidimensional
signals such as image cubes, across a continuum of scales. With
discrete wavelet transforms (DWT), signals are analyzed over
a discrete set of scales. Typically, the discrete scales are dyadic
(2, 4, 8, 16, …) and the transform can be implemented using
a variety of fast algorithms and customized hardware, e.g.,the
multiresolutional dyadic filter tree implementation.

The CWT and the DWT have been applied to various
areas of remotely sensed signal processing. To date in remote
sensing, wavelets have mainly been used for data compression
[8], [9]. Other remote sensing applications of wavelets include
image texture analysis [10], image edge detection [11], image
denoising [12], and data fusion [13]. Wavelets have proven
to be quite powerful in these applications. However, the use
of wavelet transforms for analyzing hyperspectral data has
been extremely limited. In this paper, the authors propose the
use of the CWT and the DWT for the automated detection of
constituent bands in hyperspectral curves. This approach offers
the ability to vary the widths of signal processing operators,
such as smoothing and derivative operators, in an automated
fashion. As a result, the hyperspectral curve is analyzed over
a range of resolutions, and the user need not select or assist in
the selection of a specific operator width.

The primary goal of this paper is to demonstrate the use of
wavelet-based methods for detection of weak subpixel targets in

hyperspectral imagery. An automated hyperspectral curve con-
stituent band-detection system is designed, and the performance
of the system is evaluated. The automated system consists of
three modules: feature extraction, feature reduction, and classi-
fication. The feature extraction module is based on the wavelet
transform, and the feature reduction and classification modules
are based on traditional statistical methods. The wavelet-based
methods are dependent on the type of wavelet transform and the
selection of the mother wavelet function. Thus, a secondary goal
of this study is to determine which type of wavelet transform
(CWT or DWT) and which standard mother wavelets perform
best in the automated detection system.

Section II of this paper provides an overview of the wavelet-
based system designed and tested for automated detection of
constituent bands in a hyperspectral curve. Section III briefly
overviews necessary background material on the CWT and the
DWT. Section IV provides details about the methodologies used
for the wavelet-based feature extraction and reduction, hyper-
spectral curve classification, and system performance evalua-
tion. The results from analyzing the performance of the system
on a database of HYDICE curves are discussed in Section V,
and final conclusions are provided in Section VI.

II. SYSTEM OVERVIEW

Fig. 1 provides an overview of the automated detection
system. For the first module of the automated detection system,
two feature extraction methods are implemented and tested,
and they are based on the CWT and the DWT of hyperspectral
curves. The features can be computed using information from
the entire or a particular range of the curve. If the entire curve
were used, it would represent a scenario where the automated
detection system had noa priori information concerning the
spectral location of the suspected target/anomaly. However, the
situation could occur where a specific target were suspected,
and hence the system would know a spectral range over which
the anomaly might exist. In this case, the automated detection
system would extract features using information from a partic-
ular range of the curve, or region of interest (ROI), as shown
in Fig. 2.

The second module of the automated detection system is fea-
ture reduction/selection. Linear discriminant analysis (LDA) is
used for the feature reduction process. With LDA, the features
are weighted according to their discriminating ability, and the
dimensionality of the feature space is reduced to one, thus en-
abling a simple graphical representation of class separation. The
third module of the automated detection system is classifica-
tion, and maximum likelihood (ML) classification is utilized.
The classification is either “target” or “ no target” depending on
whether or not the constituent absorption band is detected. The
classification method is supervised and thus requires training
prior to its use in the automated detection system. The classifier
is trained and tested on a database of HYDICE curves in a non-
biased manner, i.e.,the curves used for training and the curves
used for testing are randomly selected and are mutually exclu-
sive.

The performance of the system is evaluated in several ways.
First, the reduced features, resulting from LDA, are evaluated
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Fig. 1. Automated detection system overview.

Fig. 2. Region of interest (ROI) determination for feature extraction.

using receiver operating characteristics (ROC) curves. The area
under the ROC curve is used to evaluate how well the automated
detection system can be trained. This is useful since the eval-
uation is not dependent on the type of classifier being used;
it simply provides a means for evaluating the discriminating
ability of the wavelet-based features. The performance of the
entire automated system is also evaluated using ML classifica-
tion accuracies.

III. W AVELETS BACKGROUND

Wavelet analysis is based on the idea of projecting a signal
onto a set of basis functions. A set of wavelet basis functions,

, can be generated by shifting and scaling the basic
or mother wavelet, , according to the following:

(2)

where and are real numbers. The variableis the scaling
factor of a particular basis function andis the translation vari-
able along the function’s range. When , the functions are
dilated and when , the functions are contracted. The coef-
ficient is included to normalize the energy of the wavelets.

All of the wavelets generated by shifting and scaling
the mother wavelet have the same basic shape.

All wavelet functions must oscillate, have an average value
of zero, and have finite support. This “admissibility condition”
can be represented by

(3)

where denotes the Fourier transform (FT) andis the
Fourier domain variable. An important property of many
wavelet systems is the multiresolution analysis (MRA) prop-
erty, where the decomposition of a signal is in terms of the
resolution of detail signals [14]. If a wavelet basis satisfies the
MRA criteria, its associated DWT can be implemented with a
multiresolutional dyadic filter tree which is shown in Fig. 3.
This type of implementation is very useful because it allows
for fast algorithms (similar to the well-known fast Fourier
transform (FFT) to be utilized for the DWT. For this study,
Gaussian derivative wavelet functions are constructed for use
in feature extraction. However, these wavelet functions do not
possess the MRA property. Consequently, a dyadic filter tree
cannot be implemented, and the CWT is utilized instead.

There exist many different types of mother wavelets and
wavelet bases. The Haar wavelet is one of the simplest exam-
ples. The Haar wavelet is discontinuous, and it resembles a
step function

otherwise
(4)

Also, a well-known family of wavelets was developed by
I. Daubechies [15], and they are generally referred to as
Daubechies–, where is the “order” of the mother wavelet.
The order corresponds to the regularity of the mother wavelet,
and the Daubechies-1 wavelet is equivalent to the Haar wavelet.
For this study, the authors investigate the use of many different
mother wavelets, including the Gaussian derivative, Coiflet,
symlet, biorthogonal, and Daubechies family of wavelets for
automated detection of constituent absorption bands.

The CWT, denoted by , of a function, , with
respect to the wavelet basis function, , can be defined as

(5)

where the wavelet function is given by the previous
equation. For the CWT, the scale parameterand the shift pa-
rameter are specified as real numbers. Hence, the transform
coefficients are continuous with respect to the vari-
ables and [14]. For the DWT, the wavelet basis functions are
represented as

(6)
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Fig. 3. Dyadic filter tree implementation used for DWT coefficient scalar energy feature extraction.

and the wavelet coefficients are obtained by

(7)

Thus, the scales are .
The DWT has been extensively used in the development of

fast wavelet algorithms. The most common implementation of
the DWT, the well-known dyadic filter tree is shown in Fig. 3
[15]. The highpass and lowpass filters correspond to the selec-
tion of mother wavelet function. At each stage of the filter tree,
a set of approximation and detail coefficients are produced, cor-
responding to the input signal’s large and small scale behavior,
respectively. In theory, the decomposition can be extended to

levels, where is the length of the input signal.
In practice, however, the maximum number of decomposition
levels also depends on the choice of mother wavelet. For this
study, the number of levels is chosen such thatis maximized
for each mother wavelet investigated.

IV. M ETHODOLOGIES

The CWT and DWT are used to obtain features related to the
fine detail and large scale behavior of the hyperspectral curves.
The features are computed by taking the root mean square
(RMS) energy of the wavelet coefficients at each scale. A
region of interest determines which portion of the hyperspectral
curve is used for the wavelet decomposition and consequently,
which coefficients are used in the calculation of the RMS en-
ergy. The region of interest (ROI) is defined as the constituent
band’s center location , plus or minus an uncertainty value
as illustrated in Fig. 2. For this paper, several uncertainty values
are investigated, including , 5, 7, 10, 15, and 25 spectral
bands. For example, HYDICE spectral bands are approximately
10 nm wide, so an uncertainty value of corresponds to
a 90 nm-wide ROI. The RMS energy is also computed using
all coefficients. This case represents the scenario where the
system has no indication as to potential spectral location of the
target’s absorption band.

A. Continuous Wavelet Transform Feature Extraction

The 1 10 CWT feature vector is computed as

(8)

where is the CWT of the hyperspectral curve
are the scales. The CWT was implemented such that

the endpoints of the hyperspectral curve were mirrored and only
the center samples of the output were retained when the
length of the original hyperspectral curve wassamples.

The wavelet functions used for the CWT are derivative de-
scendants of a Gaussian function. This is done for several rea-
sons. First, convolution with a derivative of a Gaussian function
is equivalent to convolution with a Gaussian function followed
by the derivative operation. As a result, the Gaussian derivative
CWT is equivalent to Gaussian smoothing followed by a deriva-
tive algorithm as was used by Huguenin and Jones [1] and Tsai
and Philpot [2]. Second, the Gaussian functions are used since
they match the functions traditionally used to model absorption
and reflection anomalies of spectra materials. Wavelet coeffi-
cients are analogous to correlation coefficients in that large am-
plitude coefficients result when the shifted and dilated mother
wavelet is similar in shape to the signal being analyzed. By se-
lecting a Gaussian based mother wavelet, wavelet coefficients
may be used to detect the presence of a Gaussian shaped target.

The wavelet functions used in the CWT wereth derivatives
of a Gaussian function

(9)

For this study, seven different Gaussian-derivative mother
wavelets were investigated, i.e., All of these
functions fulfill the wavelet function admissibility criteria [14].
Note that the wavelet function named is equivalent to
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the well-knownMexican-hat wavelet. All seven are analyzed
for their ability to detect whether or not a target is present in
hyperspectral curves.

B. Discrete Wavelet Transform Feature Extraction

Fig. 3 shows a system overview of the DWT feature extraction
methodology. The DWT feature vector is
computed as

(10)

where is the number of coefficients at the decomposition level
, and is the maximum number of decomposition levels. The

feature vector is length ( ) due to the levels of detail
coefficients and one level of final approximation coefficients.
Therefore, ( ) energy features represent each hyperspectral
curve. The feature vector length varied depending on the choice
of mother wavelet. For example, when using a Haar wavelet the
feature vector is 1 8, and when using a Daubechies-10 wavelet
the feature vector is 1 3.

When the wavelet basis is orthogonal, as is the case with all
mother wavelets used for the DWT features in this study, the en-
ergy features represent a partitioning of the energy in the orig-
inal hyperspectral curve. Thus,

(11)

where is the number of wavelengths or spectral channels in
the hyperspectral curve [16]. That is, the DWT
feature vector provides information about how the energy of the
hyperspectral curve is partitioned according to scale.

Since the Gaussian derivative mother wavelets do not satisfy
the MRA criteria, they cannot be implemented with the DWT
dyadic filter tree. Therefore, other wavelet functions were inves-
tigated for the DWT features. These standard, commonly used
mother wavelets are listed in Table I. All 36 mother wavelets are
analyzed for their ability to detect whether or not a constituent
band is present in a hyperspectral curve.

C. Performance Evaluation

For this study, LDA is used to reduce the wavelet-based
feature vector to a feature scalar. The performance of these
features are evaluated using receiver operating characteristic
(ROC) curves [17]. The area under the ROC curve can
vary between 0.5 and 1.0, indicating, respectively, that the
system does not separate the two classes (i.e., the two classes’
features’ probability density functions (PDF) are equivalent,
which results in zero accuracy) and that the system perfectly
separates the two classes, i.e., the two PDFs do not overlap,
which results in 100% accuracy.

Further, the performance of the entire automated detection
system is evaluated using ML classification accuracies [18].
The classifier is trained on 500 hyperspectral curves (250 with
and 250 without targets) and tested on 500 hyperspectral curves
(250 with and 250 without targets). The training data and testing

TABLE I
AREA UNDER ROC CURVE A FOR THEDM WITH A 3% AMPLITUDE

CONSTITUENTBANDWITH VARYING WIDTH CENTERED AT 750NM

data are mutually exclusive. The ML classifier is a supervised
method. It should be noted, however, that the use of training
data does not require knowledge of the hyperspectral signal’s
noise or characteristics of the absorption band, such as ampli-
tude, width, or location. This is critical since in many applica-
tions one can obtain training data where the target is present but
does not have information about the target’s true effects on the
hyperspectral curve.

D. Study Data

In order to test the automated detection system, we need
a database of hyperspectral curves for which the “ground
truth” is known. For this reason, a database of hyperspectral
digital image collection experiment (HYDICE) curves was
collected and a known target was added to half of the curves.
The additive target is a Gaussian function used to model a
weak, subpixel target or constituent band. In order to test the
robustness of the automated detection system, several databases
were constructed. Some databases contain a positive amplitude
anomaly, which models a target with higher reflectivity than
surrounding materials in the scene, and some databases contain
a negative amplitude anomaly, which models a target with
lower reflectivity than surrounding materials in the scene.
Also, several databases are constructed where the amplitude
of the target constituent band is varied. Four amplitude cases
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are investigated where the anomaly is 10%, 5%, 3%, and 1%
of the amplitude of an average curve at that location. Thus, we
can test the ability of the automated system to detect relatively
strong versus weak targets.

The database used for this project was created from a
single HYDICE data cube. The HYDICE data cube contained
100 100 pixels in each spectral band. The HYDICE cube
contained 210 spectral bands that were about 10nm wide over
the solar reflective portion of the spectrum from 400 nm to
2400 nm [18]. Fig. 4 shows the urban scene contained in the
HYDICE data cube. The scene contained several man-made
objects such as roads, parking lots, cars, and buildings, and
some natural objects such as trees, grass, and soil.

The database developed for this project consisted of various
data matrices (DM). Each DM contains 1000 randomly selected
HYDICE curves where the pixel coordinates, ( ), are deter-
mined using a two-dimensional (2-D) uniform distribution. A
synthesized target (constituent band) is inserted into 500 curves
of each DM. The constituent band is an additive Gaussian func-
tion. For this study, the detection of aerosols was of particular
interest. Consequently, three center wavelengths were investi-
gated: , 788, and 874 nm. The amplitude of the con-
stituent band is a percentage of the mean value of all the DMs
curves at that particular wavelength

(12)

where is the amplitude of the th curve in the data ma-
trix, and the percentage is 0.10, 0.05, 0.03, or 0.01%. The four
varying amplitudes are used to provide a range of difficulty for
the automated system. To provide insight into the effects of the
constituent band’s width, the standard deviation () of the ad-
ditive Gaussian, some DMs have constituent bands with a con-
stant width, and some DMs have constituent bands with a width
that fluctuates proportionally with the target’s amplitude. For
example, a constituent band with maximum amplitude of 10%
has a width of HYDICE spectral bands (
) while one with maximum amplitude of 3% has a width of

spectral bands ( ).
The average SNR for each DM is computed by

(13)

where is the variance of the target signature, andis
the variance of the th curve in the data matrix. Table II shows
the SNRs for several DMs used in this study. The SNRs show
just how insignificant the target is compared to the HYDICE
curves. Note that while the target’s width has little impact on the
average SNR, the SNR is clearly proportional to the amplitude
of the target.

V. RESULTS

Table III shows the area under the ROC curve when using
various Gaussian derivative mother wavelets for the DM with

Fig. 4. Nonuniform scene in HYDICE data cube used to generate
hyperspectral curve database.

TABLE II
SNRS FOR ALL DATA MATRICESWITH THE FEATURE EXTRACTION ROI BEING

THE ENTIRE HYPERSPECTRALCURVE. DM1: POSITIVE AMPLITUDE TARGET

WITH � =
p
7 AND � = 750 nm. DM2: NEGATIVE AMPLITUDE TARGET

WITH � =
p
7 AND � = 750 nm. DM3: NEGATIVE AMPLITUDE TARGET

WITH VARYING WIDTH AND � = 750 nm. DM4: POSITIVE AMPLITUDE

TARGET WITH � =
p
7 AND � = 788 nm. DM5: POSITIVE AMPLITUDE

TARGET WITH � =
p
7 AND � = 874 nm

a negative 3% amplitude constituent band with and
nm. Note that the mother wavelet, i.e., the

seventh derivative of a Gaussian, typically outperformed the
other mother wavelets. The authors found this result to be gen-
erally consistent, regardless of the feature extraction ROI or the
target’s amplitude, variance, or center wavelength.

Fig. 5 shows the ML classification accuracies when using
the mother wavelet. The results are shown for three
sets of DMs: i) positive amplitude target with and

nm, ii) negative amplitude constituent band with
and nm, and iii) negative amplitude

constituent band with varying width and nm. Note
the trends in the results. The accuracies increase for increasing
target amplitude and typically increase when the feature
extraction ROI decreases from all of the hyperspectral curve to

spectral bands (210 nm wide ROI). Fig. 6 shows the
ML classification accuracies for the same three sets of DMs
when using the mother wavelet with . Note that
classification accuracies were greater than 90% for constituent
bands with amplitude of 3% or higher, and the classification
accuracies were greater than 70% when the amplitude was 1%.
These results are extremely impressive considering the average
SNR ranged from 19.5 to 30.5 dB for the 3% amplitude
DMs and ranged from 38.4 to 49.8 dB for the 1% amplitude
DMs.
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TABLE III
AREA UNDER ROC CURVEA WHEN USING CWT FEATURES FORTARGET WITH NEGATIVE AMPLITUDE OF 3% AND � =

p
3 LOCATED AT � = 750 nm

Fig. 5. ML classification accuracy using CWT features with the (�) mother wavelet. DMI: positive amplitude target with� =
p
7 and� = 750 nm. DM2:

negative amplitude target with� =
p
7 and� = 750 nm. DM3: negative amplitude target with varying width and� = 750 nm.

Fig. 6. ML classification accuracy using CWT features with the (�) mother wavelet and� = 10. DM1: positive amplitude target with� =
p
7 and� =

750 nm. DM2: negative amplitude target with� =
p
7 and� = 750 nm. DM3: negative amplitude target with varying width and� = 750 nm.

For the DWT method, 36 standard and commonly used
mother wavelets were investigated. Table I provides the ROC
results for all 36 mother wavelets for the DM with a negative
3% amplitude constituent band with varying width centered at
750 nm. Notice that certain mother wavelets outperformed the
others regardless of the feature extraction ROI. These results
were representative of all of the DMs investigated for this
paper. Typically, the best performing mother wavelets were
the Haar, Daubechies-2, Biorthogonal-1.3, Biorthogonal-3.1,
Coiflets-1, and Symlets-2, regardless of the feature extraction
ROI or the target’s amplitude, variance, or center wavelength.
These results may seem surprising since the mother wavelets
did not particularly match the shape of the Gaussian absorption
band. However, note that the individual wavelet coefficients
were not used as features. Instead, the scalar partitioning of the
signal’s energy was used as the feature. Another interesting

point is that the six best mother wavelets were those who had
the shortest impulse responses in the decomposition filters (see
Fig. 3). That is, the lower order filters actually outperformed
the higher order filters.

The six best mother wavelets were investigated more fully.
Fig. 7 shows the ML accuracies for the DWT method when
using the Haar mother wavelet. Note the trends in the results.
The accuracies tend to increase for increasing target amplitude
and tend to increase when the feature extraction ROI decreases
from all of the hyperspectral curve to . Fig. 8 shows
the ML classification accuracies for the DWT method when
using the Haar mother wavelet and a feature extraction ROI of

.
Fig. 9 shows a comparison between the CWT and the DWT

methods when the feature extraction ROI was the entire hyper-
spectral curve, which corresponded to the case where noa priori
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Fig. 7. ML classification accuracy using DWT features with the Haar mother wavelet. DM1: positive amplitude target with� =
p
7 and� = 750 nm. DM2:

negative amplitude target with� =
p
7 and� = 750 nm. DM3: negative amplitude target with varying width and� = 750 nm. DM4: positive amplitude target

with � =
p
7 and� = 788 nm. DM5: positive amplitude target with� =

p
7 and� = 874 nm.

Fig. 8. ML classification accuracy using DWT features with the Haar mother wavelet and� = 7. DM1: positive amplitude target with� =
p
7 and� =

750 nm. DM2: negative amplitude target with� =
p
7 and� = 750 nm. DM3: negative amplitude target with varying width and� = 750 nm.

Fig. 9. ML classification accuracies with the feature extraction region of interest being the entire hyperspectral curve,using Haar and (�) mother wavelet.
DM1: positive amplitude target with� =

p
7 and� = 750 nm. DM2: negative amplitude target with� =

p
7 and� = 750 nm. DM3: negative amplitude

target with varying width and� = 750 nm.

information was available about the possible location of the con-
stituent absorption band. This is the worst case scenario: hyper-
spectral curves are indiscriminately processed in order to detect
the subpixel target. Note the outstanding capability of the CWT

method. Even when the anomaly amplitude was decreased to
3%, the CWT accuracies remained around 80%, whereas the
DWT accuracies for the 3% amplitude target decline to around
60 to 70%.
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VI. CONCLUSIONS

Wavelet-based feature extraction methods were developed
and tested for detecting subpixel targets, specifically constituent
absorption bands, in hyperspectral curves. The CWT was used
to extract multiresolution features from the hyperspectral curve.
Since a choice exists for the mother wavelet, derivatives of
Gaussian functions were constructed and used for the wavelet
function. These mother wavelets were used based on two moti-
vating factors. The Gaussian-derivative wavelet decomposition
is equivalent to i) Gaussian smoothing followed by a derivative
operation at various window lengths and ii) correlating the
hyperspectral curve with a Gaussian-derivative function. At
each scale of the wavelet decomposition, the energy within a
region of interest was computed and used to form a feature
vector. The feature vector was then used in a statistical clas-
sification system to automatically determine whether or not a
target, a constituent absorption band, was present. In general,
the seventh derivative Gaussian mother wavelet performed
best, and the classification accuracies of the CWT system
increased with an increase in amplitude of the target and with
a decrease in the size of the region of interest. Even when
the amplitude of the target was only 3% as compared to the
background hyperspectral curve ( dB ) and the
feature extraction region of interest was 21 spectral bands wide
( or 210 nm), the classification accuracies were .

In order to utilize the dyadic filter tree implementation,
which is associated with commonly used fast algorithms, the
DWT was also investigated. Since the Gaussian-derivative
mother wavelets do not satisfy certain criteria for being used
with the dyadic filter tree, other mother wavelets were uti-
lized. Thirty-six standard, commonly used mother wavelets
were investigated, and six of those consistently outperformed
the others. The best six mother wavelets were the Haar,
Daubechies-2, Biorthogonal 1.3, Biorthogonal-3.1, Coiflets-1,
and Symlets-2. Of these six, it could not be determined that any
one mother wavelet produced superior classification accuracies
consistently. Thus, when considering these six, the Haar mother
wavelet is a suitable choice because of its simplicity. It is quite
surprising that the Haar mother wavelet performed so that it
is discontinuous, and the additive target is a smooth Gaussian
function. Also, it is interesting to note that the Haar wavelet
function can be viewed as a low order approximation of the
first derivative of a Gaussian function. Furthermore, the DWT
with Haar mother wavelet can be viewed as a nonsmoothed,
first-order derivative implemented as a finite approximation at
varying window lengths.

Like the CWT system, the classification accuracies of the
DWT system generally increased with an increase in amplitude
of the target and with a decrease in the size of the region of
interest. Typically, a significant increase in classification accu-
racies was obtained by decreasing the feature extraction region
of interest to 21 spectral bands. Even when the amplitude of the
target was only 5% as compared to the background hyperspec-
tral curve ( dB ) and the feature extraction region
of interest was 21 bands wide ( or 210 nm), the classi-
fication accuracies were typically 75% to 90%.

In general, the CWT system was found to provide superior
classification accuracies as compared to the DWT system. The

is due to the fact that the CWT method is tailored to match
the behavior of more conventional methods [1], [2]. However,
the DWT system has the advantage of lower computational
requirements. Also, the mother wavelets investigated for the
DWT system were not optimized. They were simply drawn
from a pool of commonly used mother wavelets. One cannot
say that the DWT results are optimum since there are infinitely
many mother wavelets from which to choose. Thus, for this
application, as well as many others, there is a great need for
DWT implementations where the mother wavelet is optimized
for the specific task at hand. However, even with the subop-
timum DWT implementation, the target detection accuracies
are very promising considering the relatively weak amplitude
of the subpixel target.
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