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Automated Detection of Uninformative Frames in
Pulmonary Optical Endomicroscopy

Antonios Perperidis∗, Ahsan Akram, Yoann Altmann, Paul McCool, Jody Westerfeld,
David Wilson, Kevin Dhaliwal, and Stephen McLaughlin

Abstract—Significance: Optical endomicroscopy (OEM)
is a novel real-time imaging technology that provides endo-
scopic images at a microscopic level. The nature of OEM
data, as acquired in clinical use, gives rise to the pres-
ence of uninformative frames (i.e., pure-noise and motion-
artefacts). Uninformative frames can comprise a consider-
able proportion (up to >25%) of a dataset, increasing the
resources required for analyzing the data (both manually
and automatically), as well as diluting the results of any au-
tomated quantification analysis. Objective: There is, there-
fore, a need to automatically detect and remove as many
of these uninformative frames as possible while keeping
frames with structural information intact. Methods: This pa-
per employs Gray Level Cooccurrence Matrix texture mea-
sures and detection theory to identify and remove such
frames. The detection of pure-noise and motion-artefacts
frames is treated as two independent problems. Results:
Pulmonary OEM frame sequences of the distal lung are
employed for the development and assessment of the ap-
proach. The proposed approach identifies and removes un-
informative frames with a sensitivity of 93% and a specificity
of 92.6%. Conclusion: The detection algorithm is accurate
and robust in pulmonary OEM frame sequences. Condi-
tional to appropriate model refinement, the algorithms can
become applicable in other organs.

Index Terms—Distal lung imaging, fibered confocal fluo-
rescent microscopy (FCFM), frames detection, image anal-
ysis, optical endomicroscopy (OEM), texture analysis.

I. INTRODUCTION

O
PTICAL endomicroscopy (OEM) is an emerging imag-

ing tool used both clinically and preclinically [1]. Fibered

confocal fluorescent microscopy (FCFM), also referred to
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as probe-based confocal laser endomicroscopy, is the most

widely used platform and the only fiber-based endomicroscopic

methodology approved for clinical use. The technology employs

a proximal laser scanning unit linked to an interface with a flex-

ible multicore fiber. This fiber is passed through the working

channel of endoscopes enabling microscopic imaging at the dis-

tal end of the fiber. In pulmonary OEM, the abundance of elastin

and collagen enables structural imaging through the generation

of autofluorescence with a 488-nm laser excitation. The lateral

diameter of the fiber used in lung applications is 1.4 mm. This

miniaturization enables the exploration of the distal pulmonary

tract [2] as well as the assessment of the respiratory bronchi-

oles and alveolar gas exchanging units of the distal lung [3].

OEM has been used clinically in the lung for the detection of

lung cancer [4], [5] and has been used to assess the distal lung

[6], [7] including the imaging of parenchymal lung diseases

[8]. Furthermore, OEM has been used in other organs such as

the urological tract [9]. The largest OEM application remains

in imaging of possible cancerous lesions in the gastrointestinal

tract [10], [11]. The commercially available FCFM platform

images at 12 frames/s and clinical and preclinical OEM proce-

dures often last minutes, generating thousands of frames; hence,

making their manual (postvivo) analysis a very labor intensive

process.

The nature of OEM data acquisition results in image se-

quences that form a long continuous scene. Within these se-

quences, there are frames that contain only pure-noise [see

Fig. 1(a)], mostly due to the lack of contact of the fiber with a

fluorescent target or due to bio fouling of the tip of the fiber. Sim-

ilarly, there are frame sequences where the spatial movement is

very large when compared to the temporal rate of acquisition.

This results in motion artefacts, expressed as either deformed

anatomical structures [see Fig. 2(a)–(c)], or spatial discontinuity

for temporally adjacent frames [see Fig. 2(d)–(f)]. Such frames

contain a little information of value and are, therefore, referred to

as “uninformative frames.” Indeed, uninformative frames com-

prise a substantial proportion of the dataset, depending on the

motion of the imaging target as well as also the operator ma-

nipulating the fiber. In pulmonary OEM, significant movement

artefacts occur due to the movement of the fiber in the distal

lung from both the respiratory effort of the patient and also of

the fiber traversing bronchopulmonary segments of the lung. In

our experience with lung OEM data, uninformative frames may

comprise in excess of 25% of the acquired frames. The pres-

ence of uninformative frames: 1) prolongs the offline manual

assessment of the data, 2) increases computational resources,

and 3) dilutes the results of any postprocessing algorithm in-

tended to analyze and quantify the images. There is, therefore,
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Fig. 1. Representative examples of frames containing (a) pure noise, (b) low contrast and mostly linear bronchus strands, (c), (d) normal elastin
strands, pathological and healthy, respectively, (e) larger elastin strands, and (f) blood vessels.

a need for an automated approach to accurately and robustly

detect and remove such uninformative frames as the first line of

any automated or manual image analysis step.

There has been considerable research in the suppression of the

noise [12] as well as for the detection of motion artefacts for a

range of imaging modalities, including, but not limited to, aerial

images [13], microscopy [14], medical images [15], as well

as other digital photography images [16]–[18]. However, most

such studies focus on the detection of motion-blurred regions

within a frame with the intention to compensate for it through

some image enhancement algorithm. Such techniques, while

potentially very effective for their specific application, cannot

be easily employed to detect uninformative frames in OEM data.

Analyzing the spatiotemporal characteristics of the sequences

is required. A large number of studies performing such analysis

of the spatiotemporal characteristics of video sequences con-

centrate on detecting shot transitions and grouping frames into

scenes [19]–[22]. Once again, this is not applicable in OEM

data due to the continuous acquisition resulting in a continuous

imaging sequence with uninformative frames embedded within

it. Other endoscopic imaging techniques can generate analogous

frame sequences to OEM when navigating along the bronchus,

or the gastrointestinal tract. There is, therefore, considerable

interest in the spatiotemporal analysis of endoscopic data, in-

cluding, but not limited to, laparoscopy [23], colonoscopy [24],

wireless capsule endoscopy [25]–[28], and larynx endoscopy

[29]. The main focus of all these studies was the identification

of one or more key frames within the main frame sequence

to aid the diagnostic process or some further postprocessing

technique. A recent study [30] has developed a fully automated

approach for the selection of a representative frame from a short

endomicroscopy frame sequence, enabling a real-time quantita-

tive image analysis at the point-of-care. The approach generated

very promising results for short oral and esophageal image se-

quences. However, none of the aforementioned studies address

the problem of identifying and uninformative frames from OEM

frame sequences.

This paper presents a novel approach for detecting and “re-

moving” uninformative frames from OEM frames sequences.

The algorithm was developed and assessed on frame sequences

from the distal lung of patients with suspected lung cancer.

However, with the appropriate adjustments, the algorithm can

potentially be effective in removing uninformative frames from

sequences acquired on 1) other organ systems, such as the gas-

trointestinal tract and the urinary tract, as well as 2) any other

fiber-based imaging platform. The rest of this paper is organized

as follows. Section II describes the material (data) utilized in this

study. Section III describes the detection algorithms for pure-

noise and motion-artefacts independently. Section IV describes

the data analysis used to train and test the detection algorithm,

and Section V displays the relevant results. Finally, the proposed

methods and corresponding results are discussed in Section VI.

II. DATA

Eighty-three OEM image sequences of the distal lung were

used during the development and testing of the proposed al-

gorithm. All data were obtained as part of a database (of 126

subjects) during the routine care of patients undergoing inves-

tigation for an indeterminate pulmonary nodule (< 30 mm)

at the Columbus Lung Institute, Indiana, USA. The study

was approved by the Western Institutional Review Board. All

procedures were undertaken by a single expert operator us-

ing standard bronchoscopy, with the aid of a superDimension

Navigation System (Covidien Inc., MN, USA) and imaging

with 488-nm Cellvizio using a 1.4-mm lateral diameter Alve-

oflex fiber (Mauna Kea Technologies, Paris, France). All image
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Fig. 2. Representative examples of frames sequences containing (a)–(c) motion artefacts (deformed structures), (d)—(f) motion artefacts (spatial
discontinuity in temporally adjacent frames), (g)—(i) large movements, and (j)–(l) normal/modest movements. The circular regions highlight structures
that demonstrate the scale of the movement.

sequences were stored in the proprietary .mkt format and read

as 16-bit binary files for processing in MATLAB (MathWorks,

Inc., MA, USA). Some subjects (n = 43) were rejected due

to 1) short duration of sequences (i.e., video < 10 frames),

2) corrupted data (i.e., file not readable, misaligned fiber, or out

of focus images), or 3) lack of distal lung images (i.e., solely

imaging the bronchus). No other subjective criteria (such as im-

age quality) that could potentially bias the proposed algorithm

were used during the video selection process.

III. METHODOLOGY

This section describes the methodology used to detect pure-

noise and motion-artefacts frames. These were handled as

two independent problems, both utilizing image-derived texture

metrics.

Let I(x, y, t) be a gray scale image sequence, with x ∈ [1, N ],
y ∈ [1,M ], and t ∈ [1,K] indicating the pixel location (x—

column and y—row) and the frame number, respectively. The

Gray-Level Cooccurrence Matrix (GLCM) [31] Gt for frame

It = I(x, y, t)(x,y )∈[1,N ]×[1,N ] was defined as an L × L matrix

G∆ x ,∆ y
t (i, j)

=
N

∑

p=1

M
∑

q=1

{

1, if I (p, q, t) = i and I (p + ∆x, q + ∆y, t) = j

0, otherwise

(1)
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where L was the number of gray levels within the image (16 bit),

i and j were intensity levels, p and q were the spatial positions

in the image It , and ∆x and ∆y were the spatial offsets (in

number of pixels) utilized to estimate the GLCM Gt . In order to

achieve rotational invariance of the relevant texture measures,

Gt was estimated as the mean GLCM for four different offset

pairs {(1, 0), (1, 1), (0, 1), (−1, 1)}, corresponding to a single

pixel offset at directions (0◦, 45◦, 90◦, and 135◦). Gt was then

normalized to denote the probability of each pixel pair being

present in frame It

Gnorm
t =

1

n
Gt (2)

where n was the sum of all the elements of the matrix Gt .
Related texture metrics were derived as [31]:

Contrast (t) = V1(t) =

L
∑

i=1

L
∑

j=1

(i − j)2 pij (3)

Energy (t) = V2 (t) = 1 −
L

∑

i=1

L
∑

j=1

p2
ij (4)

Homogeneity (t) = V3 (t) = 1 −
L

∑

i=1

L
∑

j=1

pij

1 − |i − j| (5)

Entropy(t) = V4(t) = −
L

∑

i=1

L
∑

j=1

pijlog2(pij) (6)

Maximum Probability (t) = V5 (t) = 1 − max
i,j

(pij) (7)

where t was the frame number and pij = Gnorm
t (i, j). In ad-

dition to the aforementioned GLCM properties, global image

characteristics, such as frame intensity mean (V6(t)), and stan-

dard deviation (V7(t)), were also employed. All texture metrics

were estimated in a way such that frames containing noise (or

very faint features) demonstrated low (nearly zero) values [see

Fig. 1(a) and (b)], while more pronounced features, such as

elastin strands and blood vessels [see Fig. 1(c)–(f)] within the

alveoli space, demonstrated higher (closer to 1) values. Since

the GLCMs need to be estimated in rectangular regions only,

the largest square region within the circular field of view (FOV)

of the OEM frame sequences was used as I(x, y, t) through-

out this study. The remaining four segments (each 9% of the

overall circular FOV) were not included in I(x, y, t), and, con-

sequently, in the GLCM estimation and the subsequent frame

detection. This decision was based in the assumption that, if the

central square region of a frame was identified as pure-noise

or a motion-artefact, a small structure in any of the four ex-

cluded subsections is not enough to reinstate the frame as an

informative frame.

Each texture vector was normalized to the [0, 1] range using

V ′
i (t) =

Vi(t) − min(Vi)

max(Vi) − min(Vi)
(8)

where i ∈ [1, 7] and t ∈ [1,K] represented the frame number.

Finally, a 7-D feature space was, therefore, defined as

X = [V ′
i ] . (9)

A. Detection of Pure-Noise Frames

1) Reducing Dimensionality: Principal component

analysis (PCA) was employed to reduce the dimension-

ality of the 7-D feature space. The K × 7 matrix Y =
(PC1,PC2, . . . ,PC7) was defined as

Y = A(X − (λ ∗ mX )) (10)

incorporating the projection of the seven feature vectors (X)

in the relevant principal component space. The vector mX =
1
K

∑K
t=1 X(t, i), i ∈ [1, 7] contained the mean value of each of

the seven parameters and the vector λ was an 1 × K unit vector,

while the rows of A were the eigenvectors (i.e., the direction of

the principal components) of CX , the 7×7 sample covariance

matrix of X (normalized to unit length)

CX =
1

K − 1

K
∑

t=1

(X (t) − mX )(X (t) − mX )T . (11)

Although the whole matrix Y could be used for the detec-

tion of pure-noise frames, the first principal component (PC1)

was found to contain sufficient information for the detection of

pure-noise frames. As a consequence, only PC1 (i.e., a single

parameter per frame) has been considered for pure-noise frame

detection.

2) Gaussian Mixture (GM) Model: An experienced in-

vestigator performed a thorough visual inspection on a subset

of the available OEM data, aiming to identify any image texture

subgroups that can justly represent the underlying anatomical

information. The inspection of the OEM data highlighted four

different texture categories (see Fig. 1): 1) pure-noise frames

[see Fig. 1(a)], mostly containing no anatomical information,

2) subtle feature frames [see Fig. 1(b)], mostly containing

linear bronchus strands or very low contrast elastin strands,

3) normal frames [see Fig. 1(c)-(d)], containing both pathologi-

cal [see Fig. 1(c)] and healthy [see Fig. 1(d)] elastin strands, and

4) vibrant frames [see Fig. 1(e) and (f)], containing very well

defined features, such as larger elastin strands and blood vessels.

The boundaries of these four categories were not distinct.

Fig. 3(a) provides a representative histogram example H1
derived from the PC1 of a lung OEM image sequence. A GM

model was employed to represent the underlying texture infor-

mation contained in PC1. More precisely, following the four

texture categories identified through the aforementioned man-

ual visual inspection of the OEM data, the following GM model

composed of 4 Gaussian distributions was considered

GM =

4
∑

i=1

PiNi (12)

where parameters Pi provided the weight (also referred to as

proportion or probability
∑4

i=1 Pi = 1) of the ith Gaussian
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Fig. 3. (a) Histogram corresponding to the PC1 from 72 frame sequences concatenated as a single dataset along with the corresponding 4-GM
model. (b) Refined histogram along with the corresponding 2-GM model. The P-values of the relevant KS goodness-of-fit tests were: 0.88 for
4-Gaussian and 0.83 for 2-Gaussian.

distribution

Ni(x;µi , σi) =
1

√

2πσ2
i

e
− (x −µ i )

2

2 σ 2
i (13)

with mean µi (µ1 < µ2 < µ3 < µ4) and standard deviation σi .

The GM model likelihood (log likely hood) was optimized us-

ing the iterative expectation-maximization algorithm [32], as

performed by MATLAB’s fitgmdist command. Fig. 3(a) over-

lays the mixture of 4 Gaussian distributions to the underlying

histogram, with N1 corresponding to pure noise and N2 to N4

corresponding to frames including anatomical features, from

subtle to vibrant.

3) Model Simplification Using Metropolis–
Hastings (MH) Method: It is difficult to derive the

distribution of classical test statistics (and thus predict the

detection performance) in the general case of mixtures of more

than two distributions. This section presents a statistical method

to split a set of random variables, identically distributed (i.i.d.)

according to a known mixture of Gaussians (N1 to N4), into

two subsets, each containing variables distributed according to

a mixture of a subset of the original Gaussians (e.g., N1 and

N2). Such a split reduces the detection problem to a classical

binary hypothesis test to decide between N1 and N2 (as will be

shown in Section III-A4). The proposed approach can be seen

as a MH algorithm [33], which is a Markov chain Monte–Carlo

method typically used to generate random variables according

to an arbitrary target distribution, i.e., distributions not handled

by classical random number generators. The MH consists

of generating random candidates according to a “proposal

distribution” and accepting each candidate with a particular

probability (the rejected candidates are either discarded or set

apart). In our case, this accept/reject process ensured that the

accepted samples were distributed according to the “target

distribution” defined as the following mixture of N1 and N2 :

GM t =

2
∑

i=1

(Pi/ (P1 + P2))Ni (14)

as the intention was to discriminate (N1 , N2) from (N3 , N4).

Let u ∈ PC1, the projection of an image feature vector (X)

onto the first principal component, being distributed accord-

ing to (12). By considering (12) as proposal distribution, the

variables in PC1 as independent candidates and (14) as target

distribution, the probability of accepting u was estimated by the

ratio

R (u) = P [u ∈ PC1sub ] =

∑2
i=1 (Pi/ (P1 + P2))Ni(u)

∑4
i=1 PiNi(u)

(15)

where

PC1sub =
{

u ∈ PC1
∣

∣

∣
u ∼

∑2

i=1
(Pi/ (P1 + P2))Ni(u)

}

.

(16)

Note that if the variables u ∈ PC1 were actually independent,

i.i.d. variables following (12), the selected variables in PC1sub

would be distributed according to (14). However, since the GM

(12) was an approximation of the actual distribution of u ∈ PC1,

the distribution (14) was, therefore, also an approximation

of the distribution of u ∈ PC1sub . Nevertheless, as suggested

by the results in Section V, in practice, this approximation was

accurate enough, leading to satisfactory results in terms of un-

informative frame detection. Fig. 3 depicts a representative ex-

ample of histograms of the variables in PC1, before and after

the model simplification, along with the associated mixtures of

4 and 2 Gaussian distributions.

4) Detection: The null and alternative hypotheses were

defined as

H0 : W ∼ N1(x;µ1 , σ1)

H1 : W ∼ N2(x;µ2 , σ2) (17)

with N1 corresponding to the pure-noise frames and µ1 < µ2 .

The receiver operating characteristic (ROC) curve of the two-

Gaussian model was estimated as the false positive rate (FPR)

against the true positive rate (TPR)

FPR(v) =

∫ ν

−∞ N2 (x) dx
∫ ∞
−∞ N2 (x) dx

(18)

TPR(v) =

∫ ν

−∞ N1 (x) dx
∫ ∞
−∞ N1 (x) dx

(19)

with ν ∈ PC1. A weighted version of Youden’s Index [34], [35]

J was employed to derive the cut point on the ROC that pro-
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vides optimal tradeoff between TPR and FPR. Youden’s index

is often used in conjunction with ROC analysis as a measure

of overall diagnostic effectiveness. Youden’s index represents

the point along the ROC curve with maximum vertical distance

from the first bisector [34]. Unlike the area under the curve

(AUC), Youden’s index can be used as an optimal cut-off point

(threshold), being the point in the ROC curve furthest away

from the chance line. In order to avoid threshold bias toward

the largest population (negative frames in this case), a weighted

Youden’s index J was defined as [35]:

J = max
ν

(TPR (ν) + (r × TNR(ν) − 1) (20)

with true negative rate (specificity) TNR = 1 − FPR and

weighting factor r = (1 − π)/απ. Moreover, α denoted the rel-

ative loss (cost) of a false negative classification, while π repre-

sented the proportion of positive (pure-noise) frames within the

frame sequence. For the proposed application, since no critical

decision was being made by the proposed detection algorithm,

relative cost α was set to 1.

The optimal cut-point νJ was then employed to derive the

desired (optimal) false positive rate FPRJ = FPR(νJ ). Finally,

the quantile function Φ−1(p) was used to estimate the threshold

Tf = µ2 − Φ−1(p)σ2 differentiating noise to normal frames.

More precisely

Φ−1(p) =
√

2erf−1 (2p − 1) (21)

where erf−1 was the inverse error function and p representing

TNRJ = 1 − FPRJ . Hence, the set of pure-noise frames was

I ′t = {It : t ∈ [1, . . . , K] ,PC1 (t) < µ2 − Φ−1(p)σ2}. (22)

B. Detection of Motion Artefacts

Instead of the direct texture values, the frame-by-frame tex-

ture variability, X ′ = X(t) − X(t − 1), t ∈ [1,K] indicating

the frame number, was used to detect motion artefacts. PCA, as

described in (10), was then employed to reduce the dimension-

ality of the feature space. The first two principal components,

PC1′ and PC2′, were found to contain the information relevant

for the distinction of motion artefacts.

Visual inspection of the data highlighted four different types

of frame-by-frame motions (see Fig. 2), namely 1) motion arte-

fact frames, where a large movement resulted in tissue deforma-

tion and spatially discontinuous frame sequences [see Fig. 2(a)–

(c) and (d)–(f)], 2) large movement frames, in which while

movements were large, they still resulted in spatially contin-

uous frame sequences [see Fig. 2(g)–(i)], 3) normal frames

with moderate movement [see Fig. 2(j)–(l)], and 4) nearly

static frames, with negligible movements. In a fashion simi-

lar to that adopted for the pure-noise frames, the boundaries

of these cases were not well-defined. To represent this un-

derlying texture-difference information contained in PC1′and

PC2′, and taking into consideration the four frame-by-

frame motions identified through the aforementioned man-

ual visual inspection of the OEM data, two 4-GM mod-

els (GM′ =
∑4

i=1 P ′
iN ′

i (µ
′
i , σ

′
i)) were employed. In both

cases (PC1′and PC2′), the Gaussian distributions demon-

strated zero mean and decreasing standard deviation

(σ1 > σ2 > σ3 > σ4). Fig. 4 provides representative his-

togram examples derived from the PC1′ and PC2′ of a

lung OEM image sequence along with the corresponding

4-Gaussians models, with N ′
1 corresponding to motion artefacts

and N ′
2 to N ′

4 corresponding to frames with large to negligible

movements. In a similar fashion to the noise case, the detection

problem was simplified (see Fig. 4) by removing the two dis-

tributions with smallest standard deviations (normal and nearly

static frames) as described in (14) to (16).

1) Detection: The null and alternative hypotheses were

defined as

H ′
0 : W ∼ N ′

1(x;µ, σ1)

H ′
1 : W ∼ N ′

2(x;µ, σ2) (23)

with N1′ corresponding to the motion artefact frames and

σ1 > σ2 . According to the Neyman–Pearson Lemma [36], the

likelihood ratio test rejecting H ′
0 in favor of H ′

1when

Λ (x) =
P (x |H ′

1)

P (x |H ′
0)

>
< k (24)

where P (Λ(x) ≥ k|H ′
0) = α, provides the most powerful test

at significance level α for a threshold k. By employing Bayes’

theorem and taking the logarithm of the likelihood ration, Λ(x)
became

n

2
log

(

σ2
1

σ2
2

)

+

(

1

2σ2
1

+
1

2σ2
2

)

(x − µ)2 >
< log(k). (25)

This was further simplified to

(x − µ)2

σ2
1

>
< γ (26)

where

γ = 2

(

σ2
1σ2

2

σ2
1 + σ2

2

) (

log(k) − nlog

(

σ1

σ2

))

/σ2
1

and

(x − µ)2

σ2
1

∼ χ2 ,

where χ2 denotes the chi-squared distribution with one degree

of freedom. As a result, for a given FPR

γ = F−1 (FPR, β) = {γ : F (γ, β) = FPR} (27)

where F was the chi-squared probability density function,

and β = 1 were the degrees of freedom of the chi-squared

distribution.

The upper and lower thresholds denoting motion artefacts

were, therefore, estimated by

θ = µ2 ±
√

γσ2
2 (28)

and the set of motion blur frames was

I ′t = {It : t ∈ [1,K] , |PC1′ (t)| > θ}. (29)

Similar to the noise case, the optimal false positive (alarm)

rate (FPRJ ) was estimated using the ROC curve and the relevant

Youden’s index, as described in (18) to (20).
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Fig. 4. Original and refined histogram along with their corresponding 4- and 2-GM models for (a) PC1′ and (b) PC2′ of the motion artefact
data. A zoomed-in version of the original histogram is also provided to best illustrate the mixing of the 4-Gaussians and the effect of removing
the 2-Gaussians from the overall distribution. The P-values of the relevant KS goodness-of-fit tests were for PC1′: 0.77 for 4-Gaussian, 0.92 for
2-Gaussian, and PC2′: 1.0 for 4-Gaussian and 1.0 for 2-Gaussian.

TABLE I
DATASETS AND RELATIVE DIAGNOSIS FOR TRAINING AND TESTING SETS

Training Testing

Benign 40 5

Granuloma 8 3

Malignant 24 3

Total 72 11

IV. DATA ANALYSIS

Of the available 83 OEM frames sequences, 11 datasets were

selected as a testing set. Selection criteria included type of di-

agnosis, video duration, and quality of acquired images (i.e.,

noise, contrast, and artefacts levels). The remaining datasets

were used as training set. In order to minimize a potential se-

lection bias, it was ensured that representative frame sequences

were included in both training and testing sets. Tables I and

II summarize the key characteristics of the training and testing

sets. The training set was employed 1) to create a statistical

TABLE II
DURATION RANGE (IN NUMBER OF FRAMES) AND TOTAL

DURATION FOR TRAINING AND TESTING SETS

Num. of frames Training Testing

Mean 676 617

Min 304 375

Max 1520 944

Total 48 656 6790

model (i.e., GM model) that describes well the underlying tex-

ture information, and 2) to extract a detection threshold that

achieves an optimal tradeoff between TPR and FPR (employing

Youden’s index). The relevant noise and motion artefact thresh-

olds were, therefore, estimated using the training set employing

no prior knowledge about the testing set. The testing set was

then projected in the training set’s principal component space

and the threshold was employed on the relevant projection. If the

assumptions used to make the statistical model were correct and

the resulting GM model is representative of the underlying data,
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TABLE III
TOTAL NUMBER OF FRAMES ANNOTATED AS MOTION ARTEFACTS BY EACH

OPERATOR INDEPENDENTLY, THE UNION AND INTERSECTION OF THE TWO

SETS AS WELL AS THE CORRESPONDING JACCARD INDEX (AGREEMENT

BETWEEN TWO OPERATORS)

Op.1 Op.2 Op.1 ∪ Op.2 Op.1 ∩ Op.2 Jaccard Index

Overall 425 415 533 307 0.58

TABLE IV
RANGE (IN PERCENTAGE OF FRAMES) OF THE UNINFORMATIVE

FRAMES IN THE TESTING SET

Noise Motion Total Uninformative

Mean 7.00% 4.53% 10.8%

Min 0.14% 2.04% 2.67%

Max 25.4% 15.2% 26.9%

when the threshold is applied on the previously unseen testing

set, it will produce results (sensitivity and specificity) that match

the expected theoretical values (TPR and FPR derived from the

training set).

A. Manual Data Analysis

One investigator, with substantial prior experience in OEM

image sequences of the distal lung, annotated each individual

frame in the testing set as normal or pure noise. Furthermore,

due to the more subjective nature of what is considered as mo-

tion artefact, two investigators independently annotated each

individual frame in the testing set as normal or motion artefact.

The instructions on which the annotation was based stated that,

a frame was considered a noise frame, if no anatomical infor-

mation was present within the frame. A frame was considered a

motion artefact if there was 1) spatial deformation of the imaged

structures due to the high motion levels compared to the acqui-

sition speed, and/or 2) no spatial continuity between temporally

adjacent frames. Characteristic examples of normal, noise, and

motion-artefact frames are provided in Figs. 1 and 2.

Table III lists the number of frames annotated by each oper-

ator as motion artefacts, the Union and Intersection of the two

sets, as well as the corresponding Jaccard index [37]. Jaccard

index provides a statistic for comparing the agreement between

the two finite sample sets, and is defined as the size of the in-

tersection divided by the size of the union of the compared sets
(

|Op.1 ∩O p .2|
|Op.1 ∪O p .2|

)

. In order to reduce the interobserver variability

(bias of the manual data annotation), a frame was assigned the

uninformative label if both investigators had annotated it as such.

Otherwise, if one of the investigators considered that there was

valuable information within the frame in question and labeled

it as normal, the frame was considered normal. The resulting

binary annotations (summarized in Table IV) were utilized as

the gold standard for the subsequent evaluation of the proposed

detection algorithms.

B. Assessing Proposed Model Fit

A Kolmogorov–Smirnov (KS) test [38], [39] was employed

to assess the goodness-of-fit of the actual data on the proposed

GM model. More precisely, the KS statistic was estimated

D∗
K,K ′ = max

ψ
|F1,K (ψ) − F2,K ′ (ψ)| (30)

where F1,K (ψ) and F2,K ′(ψ) were the empirical distribution

functions (EDFs) of the actual data and mixture model, respec-

tively (i.e., F1,K (ψ), was the proportion of actual data ≤ ψ and

F2,K ′(ψ) was the proportion of the mixture model ≤ ψ). Fur-

thermore, K and K ′ were their respective sizes (in number of

frames). Under null hypotheses, both the actual data and the

relevant mixture model came from the same distribution. For

a given significance level α = 0.05, the null hypotheses was

rejected if

D∗
K,K ′ > c(α)

√

K + K ′

KK ′ (31)

where c (α) = 1.36 for significance level α = 0.05 as provided

in the relevant critical value table in [39].

C. Training-Set Size Selection

The overall training set S consisted of 72 datasets

and >48 000 frames containing a representative selection of

frames. An optimal training set size would provide robust de-

tection thresholds for uninformative frames, while keeping com-

putational requirements (relative to the size) to a minimum. A

line plot of set size against thresholdrobustness was employed

to identify such a sufficient training set size. More precisely

set size(δ) = δ × step. (32)

where δε{1, 2, . . . , 8} and step = 6000, testing set sizes of up

to 48 000 frames. Furthermore

threshold robustness(δ) = (mean (Aδ ) , rsd (Aδ )) (33)

where rsd (Aδ ) estimated the relative standard deviation of the

set Aδ , and Aδ = {Thr1(S(Jδ )), . . . ,Thr10(S(Jδ ))} was a set

of ten replicated estimates of the required threshold (Thri) for

a given subset S(Jδ ) of the training set S. Jδ ∼ U [1, L]δ×step

provided the uniformly distributed random indices of the subset

of S (length of S = L).

D. Assessing the Performance of Detection

The effectiveness of the proposed approaches in detecting

uninformative frames was assessed quantitatively by estimating

their relevant sensitivity and specificity against the manual de-

tection results (gold standard). The sensitivity and specificity

levels were also compared against the relevant model-based

ROC curves, assessing how representative the employed model

and the associated assumptions were in detecting pure-noise and

motion-artefacts frames within previously unseen OEM frame

sequences.
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TABLE V
RESULTS OF KS TEST ASSESSING THE GOODNESS-OF-FIT

BETWEEN ORIGINAL AND MODEL EDFS

Noise PC1 Motion PC1 Motion PC2

H0 Reject P-value H0 Reject P-value H0 Reject P-value

2 Gaussian 1 0.0007 1 0.0000 1 0.0000

3 Gaussian 0 0.085 1 0.036 0 0.1792

4 Gaussian 0 0.88 0 0.77 0 1.000

5 Gaussian 0 0.80 0 1.000 0 1.000

TABLE VI
EFFECT OF SIMPLIFYING THE MODEL FROM 4- TO 2-GAUSSIANS (BY

REMOVING CORRESPONDING FRAMES) ON THE KS GOODNESS-OF-FIT

Noise PC1 Motion PC1 Motion PC2

Original 4

Gaussian

Refined 2

Gaussian

Original 4

Gaussian

Refined 2

Gaussian

Original 4

Gaussian

Refined 2

Gaussian

H0

Reject

0 0 0 0 0 0

P-value 0.88 0.83 0.77 0.92 1.00 1.00

V. RESULTS

A. Assessing Proposed Model Fit

Numerous mixture models with increasing number of Gaus-

sian distributions were fitted to the original EDFs in order to

verify that the proposed model provided an optimal representa-

tion of the underlying data. Table V summarizes the correspond-

ing KS goodness-of-fit results. Table VI also compares the KS

goodness-of-fit of the selected 4-Gaussian model to the corre-

sponding 2-Gaussian model refinement (as described in Section

III-A3 and Section III-B), while Fig. 5 illustrates the closeness

of these models to the original EDFs (for both pure-noise and

motion-artefact detection).

B. Training-Set Size Selection

Line plots were derived (as described in Section IV-C) illus-

trating the effect of increasing the size of the training set on the

robustness (expressed as RSD) of the relevant threshold esti-

mation. The process was repeated for PC1 in the detection of

pure-noise frames, as well as PC1 and PC2 in the detection of

motion artefacts. Fig. 6 contains the relevant plots.

C. Sensitivity Versus Specificity

ROC curves were derived from the proposed GM models

for pure-noise and motion-artefact detections. Fig. 7 illustrates

the relevant plots with their corresponding AUC provided in the

title. If the models provided an accurate representation of the

underlying data, the estimated specificity and sensitivity results

from the previously unseen testing set should match the corre-

sponding values at the optimal ROC cut-off point as calculated

using the Youden’s index (Section III-A4). Table VII lists the

sensitivity and specificity in pure-noise detection for each indi-

vidual dataset as well as for the whole testing set as a whole.

Similarly, Table VIII lists the sensitivity and specificity in mo-

tion artefact detection using PC1 and PC2 individually. The

model-based sensitivity and specificity estimates are provided

in the relevant table titles. Due to the independent modeling and

analysis of PC1 and PC2, no model-based estimates of sensitiv-

ity and specificity are provided for PC1∪PC 2. Finally, Table IX

summarizes the sensitivity and specificity of the detection of un-

informative frames (both pure-noise and motion-artefacts) col-

lectively. To emulate the decision process of a manual detection,

sporadic (one consecutive) good frames amongst a sequence of

uninformative frames were removed.

VI. DISCUSSION

Thorough visual inspection of the available OEM data by

an experienced investigator highlighted four different texture

categories (see Figs. 1 and 3) and an equal number of frame-by-

frame movement types (see Figs. 2 and 4) to be used for the de-

tection of pure-noise and motion-artefacts frames, respectively.

As illustrated by Figs. 3–5 and verified by the corresponding KS

goodness-of-fit results in Table V, in both cases, the 4-Gaussian

models provide an optimal representation to the underlying in-

formation. Reducing the number of Gaussian distributions in the

proposed model has a direct and substantial detrimental effect in

the corresponding goodness-of-fit to the underlying data. On the

other hand, increasing the number of Gaussians in the model to

5 (or more) does not necessarily improve the relevant goodness-

of-fit. Further visual inspection of the available data indicates

that, in the case of pure-noise frames, the challenge lies in the ac-

curate and robust distinction between pure-noise [see Fig. 1(a)]

and subtle feature frames [see Fig. 1(b)]. Similarly, in the case

of motion artefacts, the challenge lies in the distinction between

them [see Fig. 2(d)–(f)] and large (but continuous) movements

[see Fig. 2(g)–(i)]. The relevant distribution overlaps in Figs. 2

and 4 verify this observation (largest overlaps between N1 and

N2). By refining the GM model as described in Section III-A3,

the detection problem is reduced to a classical binary hypothesis

test deciding between N1 and N2 . The close proximity of the

refined model to the corresponding histograms (see Fig. 5 and

Table VI) along with the subsequent promising detection results

suggest that the refined models provided a fair approximation

of the distribution of the relevant PCA coefficients.

A large and diverse set of OEM images was employed to

train the proposed algorithms for the detection of uninforma-

tive frames. As illustrated by Fig. 6, a training set of >30 000

frames is sufficiently large for a robust threshold estimation

(RSD < 6%—small drop for larger training sets) in both the

pure-noise and motion-artefact cases. Section III-A4 employed

a simple approach based on the model-based ROC curve and

the corresponding weighted Youden’s index to detect pure-noise

frames. The ROC curve in Fig. 7(a) along with the correspond-

ing AUC and predicted detection sensitivity of 98.8% and speci-

ficity of 97.7% support the decision of employing such a simple

model. The decision is further backed by the encouraging de-

tection results on the previously unseen testing set, yielding an

overall sensitivity of 93% and specificity of 98.8%. Not taking

into consideration the outlying dataset, “benign 1” can further
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Fig. 5. EDF of original and simplified data (4-Gaussians and 2-Gaussians) along with the proposed model EDF for (a), (b) PC1 in pure-noise
detection, (c), (d) PC1 in motion artefact detection, and (e), (f) PC2 in motion artefact detection.

Fig. 6. Line plots of detection threshold variability (robustness expressed as relative standard deviation) for increasing size of training set for (a)
PC1 in pure-noise detection and (b), (c) PC1 and PC2 in motion artefact detection. In all cases, a set size of 30 000 enables a robust (<6% RSD)
threshold estimation.

increase the overall sensitivity to 96.5% and specificity to

98.6%. The very promising detection results, along with their

close agreement to the results predicted by the proposed GM

model, highlight the reliability of the proposed detection ap-

proach and the limited scope for a more mathematically ad-

vanced solution.

The detection of motion artefacts was a more challenging and

subjective task; hence, the decision to manually annotate the

relevant frames by two operators. The very modest agreement

(Jaccard index: 0.58—Table III) was mostly due to interobserver

variation in the start and end frames of an uninformative frame

sequence. Rarely there was a disagreement over a full motion-

blur artefact. Nevertheless, the limited agreement between the

two manual annotations confirms the more challenging and sub-

jective nature of the problem. The observation is further sup-

ported by the corresponding ROC curves [see Fig. 7(b) and

(c)] with the optimal cut-off points (Youden’s Indices) yielding

sensitivity of less than 76%. Due to the more challenging and

subjective nature of the problem, the Neyman–Pearson lemma

was employed for the estimation of the detection threshold pro-

viding the most powerful test at significance level α for a thresh-

old k. PC1 yields better detection results achieving a sensitivity
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Fig. 7. Model-based ROC curves for (a) PC1 in pure-noise detection and (b), (c) PC1 and PC2 in motion artefact detection.

TABLE VII
SENSITIVITY AND SPECIFICITY FOR THE AUTOMATIC DETECTION OF

PURE-NOISE FRAMES

Sensitivity Specificity

Benign 1 64.4% 99.9%

Benign 2 100.0% 99.5%

Benign 3 100.0% 100.0%

Benign 4 75.0% 99.6%

Benign 5 100.0% 99.2%

Granuloma 1 100.0% 99.8%

Granuloma 2 100.0% 99.2%

Granuloma 3 90.9% 100.0%

Malignant 1 95.5% 99.4%

Malignant 2 94.4% 98.9%

Malignant 3 100.0% 94.6%

Overall 93.0% (96.5%) 98.8% (98.6%)

Model Estimates: 98.8% sensitivity and 97.7% speci-

ficity. In brackets: Overall results excluding outlying

case—Benign 1.

TABLE VIII
SENSITIVITY AND SPECIFICITY OF THE AUTOMATIC DETECTION OF MOTION

FRAMES FOR ALL OF THE TESTING DATASETS COMBINED TOGETHER

PC1 PC2 PC1 ∪ PC2

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

74.9% 94.3% 65.8% 93.8% 83.2% 91.8%

The first two principal components are treated separately. Model estimates for 1) PC1:

75.9% sensitivity and 96.4% specificity and (ii) PC2: 69.3% sensitivity and 96.1%

specificity.

TABLE IX
OVERALL RANGE OF SENSITIVITY AND SPECIFICITY OF THE AUTOMATIC

UNINFORMATIVE FRAME DETECTION, COMBINING PURE-NOISE AND MOTION

ARTEFACT (PC1 ∪ PC2) FRAMES

Sensitivity Specificity

93.0% 92.6%

of 74.9% and specificity of 94.3%, as opposed to PC2’s sen-

sitivity of 65.8% and specificity 93.8%. As illustrated in Ta-

ble VIII, the detection results for both PC1 and PC2 were in

close agreement with the ones estimated by the proposed GM

models. Combining the binary masks, derived from each prin-

cipal component, can substantially increase the detection sensi-

tivity to a promising 83.3% (from 74.9%), with a minimal effect

in corresponding detection specificity (dropping from 94.3%

to 91.8%). When combined with the pure-noise detection, the

proposed approaches reliably detect uninformative frames with

sensitivity of 93.0% and specificity of 92.6% (see Table IX).

Part of the disagreement (good frames identified as uninforma-

tive) between manual and automatic detection can potentially

be attributed in the restricted region used in the estimation of

the GLCMs and the assumption that no additional information,

enough to effect the decision process, is imaged in the excluded

regions.

Having developed a reliable method for detecting and re-

moving uninformative frames from OEM imaging sequences of

the distal lung, the next step is to further classify the remain-

ing, useful, frames into subcategories based on the underlying

image textures. This further classification would differentiate

between frames imaging the bronchus and ones imaging the

alveolar space. Subsequently, alveolar space frames can poten-

tially be further classified amongst, healthy elastin, pathological

elastin, and cell-flooded frames. Such classification would en-

able pulmonologists to target analysis to regions of interest,

reducing the subjectivity and time efforts of the analysis. With

the advent and development of optical molecular imaging and

exogenous contrast agents [1], [3], such frame classification will

be an essential requirement to expedite quantifiable optical data

analysis.

VII. CONCLUSION

Uninformative frames comprise a considerable proportion (up

to >25%) of clinical pulmonary OEM frame sequences. Texture

descriptors derived from the GLCM, such as contrast, energy,

homogeneity, etc., provide valuable information for the detec-

tion of frames containing either pure-noise or motion-artefacts.

PCA (as a mean of dimensionality reduction) combined with the

proposed GM models provide a fair representation of the un-

derlying texture information, enabling an accurate (sensitivity:

93.0%) and robust (specificity: 92.6%) detection of uninforma-

tive frames in human lung OEM frame sequences. A similar

approach can be employed to further classify any informative

frames based on their underlying texture assisting any manual

and automatic postanalysis. Finally, conditional to appropriate
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model refinement, the proposed algorithms can become widely

applicable in OEM frame sequences acquired on 1) other or-

gan systems (e.g., the gastrointestinal tract), and 2) other OEM

imaging platforms.
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