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Automated Detection of Vessel 

Abnormalities on Fluorescein 

Angiogram in Malarial Retinopathy
Yitian Zhao1,2, Ian J. C. MacCormick2,3, David G. Parry4, Nicholas A. V. Beare2,4, 

Simon P. Harding2,4 & Yalin Zheng2,4

The detection and assessment of intravascular filling defects is important, because they may 
represent a process central to cerebral malaria pathogenesis: neurovascular sequestration. We have 

developed and validated a framework that can automatically detect intravascular filling defects in 
fluorescein angiogram images. It first employs a state-of-the-art segmentation approach to extract 
the vessels from images and then divide them into individual segments by geometrical analysis. 

A feature vector based on the intensity and shape of saliency maps is generated to represent the 

level of abnormality of each vessel segment. An AdaBoost classifier with weighted cost coefficient 
is trained to classify the vessel segments into normal and abnormal categories. To demonstrate 

its effectiveness, we apply this framework to 6,358 vessel segments in images from 10 patients 
with malarial retinopathy. The test sensitivity, specificity, accuracy, and area under curve (AUC) are 
74.7%, 73.5%, 74.1% and 74.2% respectively when compared to the reference standard of human 
expert manual annotations. This performance is comparable to the agreement that we find between 
human observers of intravascular filling defects. Our method will be a powerful new tool for studying 
malarial retinopathy.

Cerebral malaria (CM) is a major cause of death and disability, especially in children in sub-Saharan 
Africa. CM is characterised by sequestration of parasitised erythrocytes in cerebral vessels1, but despite 
much research the mechanisms by which the intravascular malaria parasite causes coma and death 
remain unclear2,3. Malarial retinopathy (MR) has been identi�ed as an important clinical sign in the 
diagnosis and prognosis of cerebral malaria4. �e retina and brain are a�ected in similar ways in CM, 
and so the photographic features of MR are likely to give further valuable information about CM disease 
process, diagnosis, treatment and prognosis2.

Intravascular �lling defects (IVFD) are a feature of MR that can be observed in �uorescein angiogram 
(FA) images. IVFD may represent sequestration of parasitised erythrocytes in the microvasculature5. 
Sequestration is the pathological hallmark of cerebral malaria6,7, but as yet, it has only been possible to 
quantify it histopathologically at post mortem. IVFD can be seen in large and small venules, arterioles 
and capillaries, but appear to be most prominent in venules. As shown in Fig. 1, the appearance ranges 
from mottling and slight irregularities of the vessel wall, to more obvious lesions that look as if small bites 
have been taken from the vessel4,8. Cerebral and retinal sequestration is always seen in fatal cases of CM 
with MR2,9, and the histopathological appearance of sequestration is similar to IVFD2,10. Moreover, IVFD 
o�en resolve the day a�er treatment with anti-malarial drugs is started (personal observation). �is is 
consistent with resolution of sequestration and clinical recovery. It is plausible that IVFD represent this 
fundamental pathological process, and this lesion merits further investigation.
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Previous studies of FA in severe malaria were based on semi-quantitative data based on human obser-
vation11. Manual grading is o�en time consuming, is subject to observer variations12, and may not ade-
quately capture important details such as the precise extent or location of lesions. By overcoming some 
of the limitations of manual grading, automated detection of IVFD may help to illuminate CM disease 
mechanisms. Unlike retinal haemorrhages, and capillary non-perfusion13, to the best of our knowledge 
automated quanti�cation of IVFD has not yet been attempted. We address this by presenting a frame-
work for automated detection of IVFD, with the aim of quantifying an under-researched retinal feature 
that has plausible links to the fundamental disease process involved in cerebral malaria.

Automated vessel analysis is an active research area in the �eld of medical imaging14. �e primary 
e�ort has been focused on automated vessel segmentation, as evidenced by extensive reviews15,16, and 

Figure 1. Two example �uorescein angiography images illustrating the appearances of IVFDs. Vessels 

with IVFD are shown by single arrows. Vessels without IVFD, in the same image, are shown by double 

arrows. (a) Example 1: Intensity of mature parasitized red blood cells in vessels with IVFD is signi�cantly 

di�erent from normal vessels. (b) Example 2: Edges of vessels with IVFDs become unsmooth, the diameter 

is changed dramatically when compared to normal vessels. �e images on the right are the zoom-in view of 

the regions enclosed by the green box within the original image on the le� respectively.
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quantitative measurements of vessel geometry such as arteriovenous ratio (AVR), tortuosity, and fractal 
number14. �ere are few works on automatic vasculature analysis in FA17,18, and within this literature, 
the detection of discrete vessel abnormalities involving speci�c sections of the vessel wall has received 
little, if any, attention. Only one study addresses the related objective of detecting arteriolar narrowing in 
color fundus photography19. In their work19, a density analysis method is �rst used to detect the vessels, 
then connectivity analysis is performed to establish vessel trees, and �nally arterioles are separated from 
venules by analysing vessel colour and width so as to assess arteriolar narrowing. �is method had a 
sensitivity of about 75%.

We propose a new framework for automated detection of IVFD. Essentially we have formulated the 
problem in terms of image classi�cation, where the objective is to train a classi�er to determine if a 
vessel segment is normal or not based on a set of features that represent each segment. �roughout this 
paper, a vessel segment is de�ned as a connected segment of the detected vasculature between junctions 
or bifurcations, or a segment containing only one endpoint. �e proposed framework will address three 
major challenges: 1) Accurate, e�cient and reliable detection of vessels; 2) �e process of deriving the 
features that are most discriminative and able to separate normal and abnormal vessels. 3) A classi�er 
with good performance has to be identi�ed and trained properly.

Our framework includes graph cut-based vessel segmentation, vessel geometry analysis, saliency map 
generation, and ensemble classi�cation by AdaBoost (details of these technical components are described 
in the methods, below).

Saliency is a predictor of object regions which attract human attention. It indicates the relative impor-
tance of visual features and is closely related to characteristics of human perception and processing of 
visual stimuli20–22. Saliency originates from visual uniqueness, unpredictability, rarity, or surprise, and is 
o�en attributed to variations in image attributes like colour, gradient, edges, and boundaries23. Saliency 
in 2D images is the perceptual quality that makes an object, person, or pixel stand out relative to its 
neighbours, and that captures our attention22. Estimated saliency maps are widely used in many com-
puter vision applications including object of interest image segmentation24, object recognition25, and so 
on. A pixel is salient if its appearance is unusual, considering the context of neighbouring pixels - one 
always looks at a pixel within its surrounding patch rather than simply observing a pixel in isolation. We 
de�ne saliency in terms of information content: a key-point corresponds to a particular image location 
within a structure with a low probability of occurrence (i.e. high information content). Many saliency 
detection approaches for 2D images exist. �ey have a similar structure, computing several features 
in parallel and then fusing their values in a representation which is usually called a saliency map. �e 
most general model of saliency detection is described by Itti and Koch21. Other existing saliency detec-
tion methods for feature determination can be divided into four classes: pixel-based methods21,26–30; 
region-based methods22,23,31; frequency-based methods32–35; parameter learning-based methods36–38.

In the case of IVFD, there is a contrast between the normally smooth vessel wall and individual dis-
crete lesions that appear to protrude into the vessel lumen (Fig. 1(a)). �ese lesions may be de�ned as 
salient regions. Similarly, in the vessels a�ected by IVFD, some sections of the diameters or curvatures 
of vessel walls may be signi�cantly di�erent from neighbouring vessels or even other segments of the 
same vessel (Fig. 1(b)), such vessel edges may also be determined as salient features. �ese observations 
prompted us to use vessel intensity and shape saliency maps, and combine them to generate a combined 
saliency map.

Results
In this section we describe the dataset used, evaluation metrics, experiments performed to evaluate the 
e�ects of various parameters, and the experimental results.

Dataset. Our automated framework was evaluated against a dataset containing 6,358 vessel segments 
(3,033 abnormal segments) from 10 retinal FA images with a size of 3008 ×  1960 pixels. �ese images 
were taken in the children with CM admitted to the Malaria Research Project Ward, Department of 
Paediatrics, Queen Elizabeth Central Hospital, Blantyre, Malawi. All subjects had signs of MR on admis-
sion. Ethical approval for retinal examination and imaging was given by committees in Blantyre and at 
collaborating institutions. Consent was given by the parents/guardians of subjects before examination 
and imaging. �e tenets of the Declaration of Helsinki were adhered to. 50-degree images were taken 
a�er pupil dilation with Tropicamide 1% and Phenylephrine 2.5%, using a Topcon 50-EX optical unit 
(Topcon, Tokyo, Japan) and Nikon E1-H digital camera. Manual annotation of IVFD is extremely time 
consuming even aided by computer programs, it takes over an hour per image. �erefore, only 10 rep-
resentative cases were selected for the evaluation of IVFD detection. We intentionally chose images that 
display a range of IVFD severity to create this dataset. �is selection was made by ophthalmologists and 
professional graders who have been leading concurrent development of a protocol for manual grading of 
IVFD and other retinal features in cerebral malaria. Although the number of subjects is relatively small, 
we feel that these images represent a fair range of this spectrum.

Human expert graders used a systematic approach to label vessels as abnormal or normal in terms 
of IVFDs aided by an in-house Matlab program version 2013a (Mathworks, Natick, CA). During the 
process, the original and an overlay image of the original with centrelines of vessels highlighted in yel-
low were displayed side by side. Observers were asked to select abnormal and normal vessel segments in 
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turn by clicking on the vessel segment of interest. �e selected abnormal segments were then highlighted 
in red while normal ones in green. In order to assess the detection performance of the framework on 
vessel segments with di�erent diameters, the observers were asked to look at the peri-capillary vessels, 
small vessels or large vessels separately. Following our in-house FA grading workbook, we de�ne cap-
illaries as the smallest vessels visible on a well-focussed angiogram. A post-capillary venule is formed 
by the con�uence of two or more capillaries, and extends up to the point where it is joined by a second 
post-capillary venule or other larger venular segment. Small venules are de�ned as any section of vein 
between the edge of the post-capillary venule complex up to the point of con�uence with another vessel 
of similar or larger calibre. Large venules extend from the point where two small venules converge to 
the edge of the optic disc.

�ree experienced observers in grading MR images were involved in the grading. A professional 
grader (DGP) and an ophthalmologist (IJCM) labelled the vessels using the same so�ware and following 
the same guidelines in a masked pattern. �e grading results by DGP were reviewed together by a sen-
ior ophthalmologist familiar with IVFDs (SPH) and the consensus between them was used as the �nal 
reference standard. When human graders were uncertain whether IVFDs were present or absent, vessels 
were le� unlabelled and are not analyzed in this study.

Evaluation Metrics. Four commonly-used metrics were employed to evaluate the performance of the 
program in terms of vessel segment: sensitivity, speci�city, accuracy, and the area under a receiver operat-
ing characteristic curve AUC. Sensitivity is a measure of e�ectiveness in identifying abnormal vessel seg-
ments while speci�city performs the same function for normal vessel segments. Accuracy indicates the 
overall classi�cation performance. AUC has the ability to re�ect the trade-o�s between the sensitivity and 
speci�city in particular in the case of imbalanced data classi�cation. �ese metrics are de�ned as follows:
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where tp, tn, fp and fn indicate the true positive (the number of correctly identi�ed abnormal vessel 
segments), true negative (the number of correctly identi�ed normal vessel segments), false positive (the 
number of incorrectly identi�ed abnormal vessel segments), and false negative(the number or incorrectly 
identi�ed normal vessel segments), respectively. In particular AUC is calculated as suggested by Hong et al.39. 
An AUC of 1.0 means that the classi�er distinguishes class examples perfectly.

Experiment Settings. �e 10 images in the dataset were randomly separated into a training set  
(8 images) and testing set (2 images). �e training set was used to train and validate models while 
the testing set for evaluating the performance of the �nal model. An image-wise partition strategy was 
chosen in order to avoid possible over�tting, which could be introduced by a segment-wise partition 
strategy. With a segment-wise partition strategy, a classi�er trained and tested on vessel segments from 
the same images may provide surprisingly good results on the training images, but perform poorly 
on new images. We applied repeated leave-one-out cross validation (LOOCV) to the training set for 
parameter optimization (or model selection)40. In brief, of the 8 images in the training set, 7 images 
were used to train a model while the remaining image was retained as the validation data for testing the 
model trained. �e process was repeated 8 times with each single portion (image) used exactly once as 
the validation data. �e LOOCV was then repeated �ve times on di�erent random splits of the dataset, 
and the mean values of sensitivity, speci�city, accuracy and AUC were used for comparisons of di�erent 
parameter settings. �e range tested for the number of trees was 500, 1000, 2000, 5000 and 10,000 while 
the range for the cost coe�cient was 2 to 8 with an interval of 2. �e ‘optimal’ values of the class weights 
and number of trees found from the repeated LOOCV were used to train the whole training set to obtain 
the �nal model. �e performance of the �nal model was determined by applying it to the testing set. 
Sub-analysis on the performance of the �nal model for detection of vessel segments at di�erent types 
was also performed.

Experimental Results. Figure 2 shows the results of the proposed automated abnormal vessel detec-
tion framework on 3 FA images where the normal vessels are illustrated in green colour whilst the 
abnormal vessels are in red colour. As we can see from Fig. 2(b), our method has classi�ed all the vessel 
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segments segmented by our vessel segmentation method into normal and abnormal segments respec-
tively. However, there were a number of thin vessels that were ungradable for the human observers due 
to poor contrast. In this work, only the vessels labelled by human observers were considered for the 
purpose of comparison. Comparing results from our automated method (Fig. 2(c)) with those of human 
observer’s (Fig. 2(d)), it can be seen that the results are visually very similar either in the case of lots of 
abnormal vessels contained images (Fig. 2 le� and middle column) or fewer abnormal contained image 
(Fig. 2 right column).

Figure 2. Comparison of abnormal vessel detection between the automated framework and manual 

annotations (abnormal vessels are highlighted in red and normal vessels in green). (a) �ree example 

�uorescein angiography images. �e inset in each image shows the zoom-in view of the region enclosed 

by the green box within that image. (b) Detection results on all the segmented vessels by the framework. 

(c) Detection results on the gradable vessels only by the human observers. (d) Manual annotations from a 

consensus of two observers was used as the reference standard.
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Figure 3 shows the classi�cation performance for di�erent values of the cost coe�cient and di�erent 
numbers of decision trees. It is clear that the classi�er with 2000 trees and a cost coe�cient of 8 was 
most e�ective in the detection of IVFD. With this set of parameters we were able to train a �nal model 
and apply it to the test set to obtain the evaluation results of the proposed method with the consensus 
annotations. Table  1 shows that the evaluation results in terms of sensitivity, speci�city, accuracy, and 
AUC are 0.747, 0.735, 0.741, and 0.742, respectively. In addition, �e overall inter-observer agreement 
for IJCM and DGP was found to be κ =  0.424 (p <  0.001) implying good agreement. �e κ value for the 
framework and DGP is 0.555 (p <  0.001).

In order to provide clinicians with more information about abnormalities in vessel segments, we also 
evaluated the performance on large, small and peri-capillary vessels separately. Figure 4 shows the results 
on one image by the program and the expert annotation side by side and Fig. 4(a–c) show the results 
on large, small and peri-capillary vessels respectively. �e results for these three vessel types in terms of 
sensitivity, speci�city, accuracy, and AUC were also presented in Table 1. Overall, the proposed abnormal 
vessel detection for the vessels from small vessel has the highest performance, which achieve sensitivity 
of 0.765, speci�city of 0.782, accuracy of 0.751, and AUC of 0.776.

Discussion and Conclusions. We have developed a novel abnormal vessel detection framework to 
identify IVFD – a neurovascular sign that may represent an important part of CM pathogenesis. �e 
framework comprises four major components: vessel segmentation, analysis of vessel geometry, salient 
feature generation, and vessel classi�cation. Our evaluation of this framework yielded results that are 

Figure 3. Evaluation results in terms of sensitivity, speci�city, accuracy, and area under the curve 

(AUC), under di�erent combinations of decision trees and cost coe�cients. (a) Results using 500 trees; 

(b) Results using 2000 trees; (c) Results using 5000 trees. On each plot, from le� to right are the results with 

cost coe�cient of 6, 7, and 8 respectively.

sensitivity speci�city accuracy AUC

overall 0.747 0.735 0.741 0.742

large 0.732 0.713 0.729 0.728

small 0.765 0.782 0.751 0.776

peri-capillary 0.743 0.709 0.743 0.723

Table 1.  Detection performance of the proposed framework for all the vessel segments, and for vessel 

segments with di�erent types (large, small and peri-capillary vessels).
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comparable to expert human observers. While much work has been done to develop tools to measure 
retinal vessel geometry, to the best of our knowledge this is the �rst report of automated analysis of 
discrete retinal vessel abnormalities.

Our method demonstrated satisfactory overall performance: sensitivity of 74.7%, speci�city of 73.5%, 
and accuracy of 74.1%. In terms of vessel type-wise analysis, the framework achieved a sensitivity of 
76.4%, speci�city of 79.1%, and accuracy of 75.9% on small vessel. �ese results are consistent with the 
fact that there are relatively few large vessels, compared to smaller vessels. Unfortunately peri-capillary 
vessels were not typically photographed with su�cient quality for analysis to be accurate.

Figure 4. Illustration of the detection performance of the framework on vessels with di�erent sizes (Le� 

column: Manual annotations. Right column: Automated annotations). From top to bottom, (a) Results on 

large vessels. (b) Results on small vessels. (c) Results on peri-capillary vessels.
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�ese promising results largely rely on our novel adaptation of the concept of salient features to the 
�eld of medical image analysis. In psychological terms, saliency is a predictor of visual object regions 
that attract human attention. Saliency indicates the relative importance of components of our visual 
world, and is closely involved in perception and processing of visual stimuli. In computational terms, 
saliency refers to a region or object that stands out from its neighbours or background. In this paper, we 
represented IVFD as salient regions on the background of the retinal image. IVFD can be thought of as 
minute vessel regions that have di�erent diameter, curvature, or contrast to neighbouring regions. �ese 
features of IVFD are in line with the de�nition of saliency in computer vision �eld: the salient region is 
one that is signi�cantly di�erent from nearby regions in terms of contrast or shape.

Another highlight of our approach is the use of weighted ensemble classi�cation method to deal 
with imbalanced data. �is is very important as the proportion of abnormal to normal vessel segments 
in a retinal image is o�en skewed. A weighted classi�cation strategy appears to be an appropriate way 
to penalize misclassi�cation errors for each class di�erently. Furthermore, an ensemble classi�cation 
technique will usually provide better performance compared to single classi�ers. We chose weighted 
AdaBoost for this speci�c application because of its simplicity, e�ciency and robustness against potential 
problem of over�tting. Other classi�cation methods, such as weighted-SVM41, could also be used.

Automated analysis of retinal images is an important objective in medical research. �e main empha-
sis has been on analysis of colour fundus photographs rather than FA, and on quantifying vessel geom-
etry rather than identifying particular vessel segments a�ected by focal lesions. As a result the problem 
of detecting discrete vessel abnormalities is relatively unexplored. Achieving high performance in auto-
mated lesion detection is a challenging task. In our experience, there are many di�erent factors that 
could compromise performance. First of all, there is o�en a very large variation in brightness, contrast, 
and artefact across images. �is makes it di�cult to have universal criteria to de�ne the abnormalities. 
Secondly, IVFD can be di�cult to grade, even for expert human graders. It is possible that an automated 
technique such as ours might provide more accurate detection than the current human expert reference 
standard.

Development of this framework is motivated by medical demands for a tool to measure the number 
of abnormal vessels in retinal FA images, and our method should allow better estimation of associations 
between MR and clinical outcome in patients with CM. �is work is ongoing. �e �exibility of this 
framework suggests it might be suitable for detecting abnormal vessel segments in other retinal or neu-
rovascular diseases that involve discrete vascular lesions.

In conclusion, we have proposed and evaluated an innovative abnormal vessel detection framework to 
support the study of malaria retinopathy, and our experimental results have demonstrated its e�ective-
ness. It has potential to be further developed as a useful tool for fast accurate and objective assessment 
for a range of retinal diseases.

Methods
In this section the proposed automated IVFD detection framework is described in detail.

Vessel Segmentation. �e automated detection of blood vessels is a prerequisite in the development 
of automated system for the analysis of vessels. For this work, we adopted a state-of-the-art segmentation 
technique for its good accuracy and e�ciency42. �is technique is built on local phase enhancement and 
graph cut method. Local phase-based vessel enhancement is employed to enhance vessel-like structures 
in an image to form a ‘vesselness map’. As suggested by the name, this �lter uses local phase information 
in the image to enhance vessel-like structures. Compared to the conventional intensity-based �lters, 
this �lter is invariant to intensity inhomogeneity within the image and also capable of producing more 
accurate enhancement results for vessels with di�erent widths, even at the bifurcations or end of ves-
sels. �e vessels are segmented by applying a graph-cut based Chan-Vese (CV) model to the vesselness 
map for its computational e�ciency. �is model43 as a region-based active contour model, segments the 
image into two regions (objects and background) by minimizing an energy for smooth boundary and 
low intra-region intensity variance. In this work we use the optimal parameter values as suggested by the 
original paper. In particular, for the graph-cut segmentation model, initialisation is achieved automati-
cally by applying a threshold with an empirically chosen value of 0.5 to the vesselness map (a�erwards ‘1’ 
denotes vessel pixel while ‘0’ background). E�ects of di�erent threshold values have been evaluated and 
it seems that the �nal results are not sensitive to it. Figure 5(a) shows two original example FA images, 
and their segmentation results are illustrated on Fig. 5(b).

Geometric Analysis of Vessels. Following the vessel segmentation step, geometrical analysis of the 
segmented vessels is performed in order to split the vasculature into individual segments for further 
processing. �e morphological thinning algorithm is �rst applied to the segmented vessel trees in order 
to estimate the centre line and diameter of vessel segments: the exterior pixels from the segmented 
vessels are removed iteratively by using the thinning algorithm, and obtaining a new binary image con-
taining connected lines of ‘on’ pixels locating along the vessel centres. �e centerlines are re�ned by 
using a least-squared cubic spline technique in order to obtain smoother trajectories44. Branch points 
(>2 neighbours) are removed so as to divide the centrelines of the vascular tree into individual portions 
where each portion corresponds a vessel segment. Segments with a short centreline length (<10 pixels) 
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are eliminated to improve the speed of the later processing. Guided from the centerline location of each 
segment, individual vessel segments will be isolated from the original segmentation result by removing 
the branch points and their neighbour pixels. Figure  5(c) demonstrates the vessel segments produced 
a�er removing the branch pixels and pixels around them of Fig. 5(b).

�e vessel diameters of each segment are estimated by using the distance transform of the inverted 
binary segmented image as suggested by45. It uses the Euclidean distance of each vessel pixel from the 
closest non-vessel pixel, and thus, doubling the maximum values of the distance transform along the 
thinned centerlines provides an estimate of the diameter of every vessel segment at its widest point. 
Bankhead et al. has demonstrated that this method can provide good width estimation results at loca-
tions in the middle of vessel segments45. It seems to us that this method may su�er at the two ends of 

Figure 5. Illustration of vessel segmentation and geometric analysis results. (a) Two example �uorescein 

angiography images. (b) Vessel segmentation results. (c) Vessel segments a�er removing branch pixels from 

images in the second row. In (b) and (c) pixels in white denote vessels.
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vessel segments due to the complex geometry. In order to avoid this problem, only diameters at locations 
5 pixels away from branch (or end) pixels are considered for the subsequent analysis. A segment will be 
removed if its centreline contains fewer pixels than its estimated mean diameter. A�er this process, each 
segment will be indexed for subsequent analysis.

Feature Generation. To classify the vessel segments detected in the previous step as normal or 
abnormal, a set of features need to be derived to represent each vessel segment so as to form an input 
vector for the classi�er to be used. In this work, for each segment, a total of 21 features including inten-
sity and shape saliency maps are generated.

Intensity-based Vessel Saliency. Let w(x) ∈  V to be the viable local representation as a patch that 
represents pixel x, and V indicates all the vessel segments. �e average vessel diameter of our dataset is 
around 5 pixels, so the size of the patch is set as 3 ×  3 in this work, where x is the centre of the patch. 
�e patches can be seen as samples of a multivariate probability function (PDF). A number of methods 
to estimate an unknown multivariate PDF with a su�cient number of samples have been introduced in 
the literature. �e kernel density estimator (KDE) is chosen in this paper. �e KDE is appropriate since 
it is non-parametric, which will allow to estimate any PDF. �erefore, the probability of a patch w(y) 
can be de�ned as
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where d is a distance function that will be discussed later, K is a kernel, h is a smoothing parameter, 
and N represents the number of pixels. KDE method is capable to blur the contribution of each sample 
x by spreading it to a certain area in vessel segments with a certain shape46, which is de�ned by K. �e 
multivariate distribution will have higher probability if the patches are in dense areas. From our expe-
rience, the most commonly used and the most appropriate kernel is Gaussian function with zero mean 
and standard deviation σk. Using a Gaussian kernel, Eq. (5) is rewritten as
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�e estimated probabilities are taken from an actual PDF by setting a proper constant Γ . σ =  0.2 
is chose to substitute h. A�er determining the probability of the patches, the intensity-based saliency 
measure can be de�ned as follows:
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In our application, the intensity-based saliency �nally will be normalized into range [0,1]. d is esti-
mated by relative average distance. �e relative distance is used in case the distribution of the data is not 
uniform, and the distance metric mainly focuses on the relationships between neighboring points. Let a 
patch set W in a vessel contains n patches w1,w2,...wn. �e relative average distance of a pair of patches 
w(x), w(y) ∈  W is de�ned as follows:

( )
( ( ), ( )) =

( ) − ( )

( ) − ( ) )( )⊂

d w y w x
w x w y

ave w x w k 8w k W

2

2

�e ( )( ) − ( )⊂ave w x w kw W 2k
 are the average Euclidean distance between w(x) and other patches 

w(k) belonging to W respectively. For two sets of points/pixels with similar neighboring relationships but 
di�erent densities (i.e., similar relative density), the absolute distances between corresponding points 
di�er dramatically from each other, but the relative distances are in general similar. �is is an advantage 
of the relative distance in re�ecting the relative density of points and relative scale of the objects.

Shape-based Vessel Saliency. Let u be the diameter of p1 and p'1, and v be the diameter of p2 and 
p'2. Let c1 and c2 be the centre points of these two diameters, and their coordinates c1 =  (xu, yu) and 
c2 =  (xv, yv). Denotes u(p1, p'1), v(p2, p'2) are two random diameters of a given vessel, where (p1, p'1) and 
(p2, p'2) are the edge points on the vessel. �e dissimilarity values of diameter u due to v in terms of 
length is given by  (u, v), where,

( , ) =
−

( − ) + ( − )
,

( )


 

u v
x x y y 9

u v

u v u v

2 2
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where  is diameter length, and ⋅  calculates the Euclidean distance of centre points of diameter of 
u and v in the vessel. The dissimilarity values of the orientation of each centreline pixels c1 and c2 
is calculated as

Θ( , ) =
Θ − Θ

( − ) + ( − )
,

( )

u v
x x y y 10

u v

u v u v

2 2

where Θ  is the orientation of each pixel located on the centreline. A�er all the dissimilarity values in 

terms of diameter length and orientation, they are fused as weighted values = + ΘW L
2 2 . A dissim-

ilarity measure between a pair of diameters may be given as:

( , ) =
( ) − ( )

+ ⋅ ( , ) ( )

 
diss u v

u v

h d u v1 11position

where h is the control parameter, and h =  3 in our implementation. Let dposition(u, v) be the Euclidean 
distance between the centre points cu and cv of the two diameters of u and v.

We need to compute a distinctness value for each diameter, given the dissimilarity values calculated 
above. Diameter u is considered salient when it is highly dissimilar to other vertices, i.e., when diss(u, v) 
is high: ∀v. �e saliency value of u is de�ned as

∑( ) = −





− ( , )





 ( )=

u exp diss u vSS 1
12u

U

1

where U is the total number of the diameter in a given vessel. However, in practice, to evaluate the 
uniqueness of a diameters, there is no need to incorporate its dissimilarity to all the other diameters. If 
the most similar diameters (low dissimilarity diameters) are signi�cantly di�erent from diameter u, then 
clearly all diameters are also highly di�erent from diameter u. �erefore, for diameter u, we search for 
the M most similar diameter according to the dissimilarity values, and de�ne the diameters set as 

=Q{ }m m
M

1. Hence, the saliency value of diameter u can be rewritten as

∑( ) = −





− ( , )






.

( )=

u exp
M

diss u QSS 1
1

13m

M

m
1

In practice, M is the number of diameters whose dissimilarity value are higher than the average dis-
similarity value. Similarly, the shape-based saliency values are also normalized into [0,1].

A�er obtaining the saliency values for each pixel of vessel and vessel centreline, the shape-based 
saliency and intensity-based saliency are simply combined together into a �nal saliency map SM 
(SM =  SI +  SS), as shown as Fig.  6(b), the blue colour indicates the most salient regions, and the red 
colour shows the least salient regions. Two example images were selected: one with many abnormal vessel 
contained (top image of Fig. 6), and one with few abnormalities (bottom image of Fig. 6). It is clear that 
the salient regions in the top image are relatively more than the salient regions from the bottom one.

According to the pixel number of abnormal regions of each vessel in the �nal saliency map, the 
abnormality rate R(v) for each vessel is calculated as:

( ) = .
( )

R v
v

v

the number of pixels belonging to abnormal regions of vessel

the total number of pixels belonging to vessel 14

Figure 6(c) illustrates the saliency map a�er the thresholding process applied: the vessel regions where 
their saliency values is larger than an empirically de�ned threshold value of 0.65 will be set to 1 (abnor-
mal), otherwise will be decided to 0 (normal).

Feature Vector. Based on the saliency maps derived above, a feature vector of 21 features is derived 
for each vessel segment. �ese features are listed below:

Feature 1–4. Mean, standard deviation, entropy and the sum of gradient magnitude of the intensity-based 
saliency SI within the segment.

Feature 5–8. Mean, standard deviation, entropy and the sum of gradient magnitude of the shape-based 
saliency SS within the vessel segment.

Feature 9. Saliency-based abnormality rate R of the vessel segment.

Other Feature 10–21. Curvatures of the edges and the centerline of the vessel. Mean, standard deviation 
and entropy values of orientations of the two edges and the centerline.
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AdaBoost Classification. In this work we have used the AdaBoost classi�er47 with weighted cost 
coe�cient classi�er for the purpose of classi�cation task. AdaBoost works by building a stronger and 
more powerful classi�er from lots of smaller weak classi�ers. We used a decision tree as the weak clas-
si�er47. �e weak classi�ers are generated sequentially in order to decrease the estimation error of the 
previous weak classi�er48. Although various classi�cation techniques have been proposed, such as arti�-
cial neural networks, support vector machine (SVM), decision trees, the choice of classi�er is dependent 
on the complexity of that speci�c application and the nature of the data. �e reasons for our choice of 
weighted AdaBoost are three-fold. First, AdaBoost is relatively simple, easy to train and less susceptible 
to over-�tting than other classi�ers. As such it usually provides relatively good performance for most 
classi�cation problems48. Second, as an ensemble classi�er it can be more e�ective than a single classi�er 

Figure 6. Illustration of saliency maps. (a) Two example �uorescein angiography images. (b) Saliency 

maps of each individual vessel segments. (c) Vessels are divided into salient and non-salient regions a�er 

applying thresholding process to images in the second row respectively. Blue colour indicates the most 

salient regions while red colour shows the least salient regions for images in the second and third rows. �e 

inset in each image shows the zoom-in view of the region enclosed by the green box within that image.
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in many cases, though this depends on the statistical properties of the data being analysed. �ird, di�er-
ent weights can be easily introduced to tackle challenging classi�cation problems. A weighted AdaBoost 
classi�er has two parameters (class weights and number of trees) that have to be optimized in order to 
achieve the best classi�cation performance. As described in Section Experiments, these are determined 
by the repeated LOOCV.
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