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S U M M A R Y
We present an algorithm for automatic P-phase arrival time determination for local and
regional seismic events based on higher order statistics (HOS). Using skewness or kurtosis
a characteristic function is determined to which a new iterative picking algorithm is applied.
For P-phase identification we apply the Akaike Information Criterion to the characteristic
function, while for a precise determination of the P-phase arrival time a pragmatic picking
algorithm is applied to a recalculated characteristic function. In addition, an automatic quality
estimate is obtained, based on the slope and the signal-to-noise ratio, both calculated from the
characteristic function. To get rid of erroneous picks, a Jackknife procedure and an envelope
function analysis is used. The algorithm is applied to a large data set with very heterogeneous
qualities of P-onsets acquired by a temporary, regional seismic network of the EGELADOS-
project in the southern Aegean. The reliability and robustness of the proposed algorithm is
tested by comparing more than 3000 manually derived P readings, serving as reference picks,
with the corresponding automatically estimated P-wave arrival times. We find an average
deviation from the reference picks of 0.26 ± 0.64 s when using kurtosis and 0.38 ± 0.75 s
when using skewness. If automatically as excellent classified picks are considered only, the
average difference from the reference picks is 0.07 ± 0.31 s and 0.07 ± 0.41 s, respectively.
However, substantially more P-arrival times are determined when using kurtosis, indicating
that the characteristic function derived from kurtosis estimation is to be preferred. Since the
characteristic function is calculated recursively, the algorithm is very fast and hence suited
for earthquake early warning purposes. Furthermore, a comparative study with automatically
derived P-readings using Allen’s and Baer & Kradolfer’s picking algorithms applied to the same
data set demonstrates better quantitative and qualitative performance of the HOS approach.
This study shows, that precise automatic P-onset determination is feasible, even when using
data sets with very heterogeneous signal-to-noise ratio.
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1 I N T RO D U C T I O N

One of the most fundamental tasks in seismology is the precise
location of earthquakes. Aside from the obvious requirement to use
an accurate velocity model, reliable earthquake location depends
strongly upon the accuracy of phase onset determination, which is
done traditionally by visual human analyst inspection. With the de-
ployment of digital seismological stations and due to the increasing
amount of continuous data, much effort has been spent to develop
reliable, automated phase picking algorithms. The most important
advantages of automated procedures are their consistency and their
capability of processing large data sets, such as those produced

during reservoir characterization at enhanced geothermal systems
(EGS) and hydrocarbon reservoirs, or in tomographic experiments.
Furthermore, the precise and fast evaluation of P- and S-phase on-
sets is the basis for any earthquake early warning system (EEWS),
which has to operate continuously and as reliably as possible. Nev-
ertheless, the accuracy of experienced analysts has not yet been
reached by routine automatic picking algorithms, mainly due to
phase misidentifications and due to picking errors caused by the
high variability of noise and P-phase waveforms. Diehl et al. (2009)
point out, that phase misidentification may result in errors of up to
several seconds. On the other hand, it has been shown that even
for clear and unambiguous onsets, the error of manual picks can
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be greater than 0.5 s (Douglas et al. 1997). Therefore, there is still
a need for improved algorithms of automated P-phase onset-time
determination including the consistent estimation of the pick uncer-
tainty.

One of the first signal detectors was proposed by Freiberger
(1962), who applied an approximative comparison of spectral den-
sities for the detection of Gaussian signals in Gaussian noise. This
method is suitable for recognizing signals rather than detecting sig-
nal onsets. Stewart (1977) developed an automated procedure for
P-phase detection, P-phase processing and coda processing for lo-
cal seismic event analysis in central California. By computing three
‘moving-time noise averages’ of the incoming signal it is tested,
whether the seismic station is operating within acceptable limits of
noise. A P-phase is detected and confirmed, if the waveform meets
certain requirements based on amplitudes and zero-crossings during
the post-detection process.

A fundamental step towards automatic phase-onset determination
was the algorithm proposed by Allen (1978, 1982). He introduced
the concept of the characteristic function (CF), resulting from a non-
linear transformation of the seismic trace from which the P-wave
arrival time is estimated. Allen’s CF is based on short-term-average
to long-term-average ratios (STA/LTA). His picking algorithm is
still frequently applied, for example, by the USGS Earthworm
system (Johnson et al. 1995).

Due to lack of computer power in the early days of digital seis-
mology, Goforth & Herrin (1981) developed an automatic seismic
signal detector based on the Walsh transform. It is similar to the
Fourier transform, but the CF is generated by a series of rectangular
waveforms that take only the values +1 and −1, thus requiring less
computation time than the Fast Fourier Transform. A signal is de-
tected when the current sum of absolute values of Walsh coefficients
exceeds a detection threshold, which is calculated from the previous
512 evaluation of this sum. Michael et al. (1982) used this approach
to develop a real-time event detection and recording system for the
MIT Seismic Network.

Joswig (1990) proposed a pattern recognition technique using
characteristic event features in spectrograms to detect events rather
than precisely picking onset times.

Baer & Kradolfer (1987) developed an automatic phase picker
by modifying Allen’s envelope function and incorporated a dy-
namic signal threshold. This algorithm is still frequently applied,
for example, in Programmable Interactive Toolbox for Seismolog-
ical Analysis (PITSA, Scherbaum & Johnson (1992) and in the
automatic repicking system MannekenPix (Aldersons 2004). Earle
& Shearer (1994) calculate STA/LTA-ratios of a smoothed envelope
function (termed a ‘smoothed ratio function’ or SRF), determined
by a Hilbert transform of the seismogram.

Besides these time and frequency domain approaches, model-
oriented algorithms have also proliferated. Most widespread is the
use of autoregressive (AR) models. Based on the Akaike Infor-
mation Criterion (AIC, Akaike 1971; Akaike 1974), which can be
considered as a measure of the badness of an estimated model,
Takanami & Kitagawa (1988) developed a procedure for the fitting
of a locally stationary autoregressive model to seismograms. They
implemented this procedure as an on-line system called Fast Uni-
variate Case of Minimum AIC Method of AR (FUNIMAR) model
fitting. Leonard & Kennett (1997) propose an autoregressive method
that detects increases in the AR-model order caused by the higher
complexity of signals compared to preceding noise. The standard
autoregressive two-model Akaike Information Criterium (AR-AIC,
e.g. Sleeman & van Eck 1998) estimates the AR-coefficients from
a fixed noise and a fixed signal window. The AIC is calculated

from the prediction error in two adjacent moving time segments
as a function of their merging point. Takanami & Kitagawa (1991)
extended their FUNIMAR method by using a multivariate locally
stationary autoregressive model (MLSAR), where they sum up the
three AICs of the univariate autoregressive models of each seismic
trace. Gentili & Michelini (2006) propose an artificial neural net-
work approach for P- and S-phase onset time determination, called
innovative model of neural network (IUANT2).

Withers et al. (1998) investigated several algorithms in a wave-
form correlation event detection and location system (WCEDS).
They compared an STA/LTA-algorithm with a detector based on
Z-statistics, which estimates the distance of the data from the mean
in units of the standard deviation, an algorithm based on the esti-
mation of power spectral densities, and with an algorithm based on
polarization analysis. They concluded, that ‘no specific algorithm
and set of user-defined parameters is optimal for all scenarios of
source, path, receiver, and background noise’. Hence, many new
automatic phase-detection algorithms attempt to benefit from the
strengths of the different approaches by combining them (e.g. Bai
& Kennett 2000; Zhang et al. 2003).

Though many location routines require the input of uncertainty
estimates, only few automatic picking algorithms determine the
quality of the picks. Di Stefano et al. (2006) used a hand-picked
subset of the available data for calibrating their proposed repick-
ing system MannekenPix (Aldersons 2004), which provides the
capability for high-precision automatic earthquake locations by in-
corporating automatic quality assessment.

Algorithms have been proposed that estimate relative traveltimes
instead of absolute ones. Examples are multi-station and array ap-
proaches using multichannel cross-correlation methods (VanDecari
& Crosson 1990) or adaptive stacking techniques (e.g. Rawlinson
& Kennett 2004).

In their proposed P-pick extractor module, Gentili & Bragato
(2006) and Gentili & Michelini (2006) calculate skewness, kurtosis,
a combination of skewness and kurtosis and their time derivatives
in a 2.048 s long moving window as an input for a neural network.

Here we modify and apply the scheme proposed by Saragiotis
et al. (2002), who calculate skewness and kurtosis in sliding win-
dows for P-onset determination, to a large data set of a temporary
broad-band seismic network. Its performance is compared to man-
ual P-phase arrival time readings and established automatic picking
routines. A quality estimation scheme is introduced. The proposed
iterative algorithm can briefly be described as follows: (1) iden-
tification of the P-phase by applying AIC to a CF, that has been
calculated using higher order statistics (HOS), (2) recalculation of
the CF and precise determination of the arrival time using a prag-
matic picking algorithm, (3) estimation of the quality of the P-onset
and (4) identification of erroneous picks.

In our procedure the CF is calculated recursively, making pro-
cessing much faster. Maeda (1985) derived a formula, from which
the AIC can be derived directly from the raw seismogram. We adopt
his approach to calculate the AIC from the CF. The quality of the P-
onset is estimated from the slope of the CF after the derived P-onset
and from the signal-to-noise ratio (SNR) of the CF. Erroneous picks
are recognized by checking the signal length, the time interval of all
determined P-readings for one event and their individual effect on
the onset time variance using a Jackknife procedure. To avoid pick-
ing of later phases (e.g. S), our algorithm compares the amplitudes
of the vertical component around the derived P-arrival with the am-
plitudes on the horizontal components. The proposed algorithm is
applied to a large data set resulting from a temporary, regional seis-
mic network of the EGELADOS-project, which covered the entire
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Automated P-phase determination 1161

Hellenic subduction zone and continuously monitored the seismic-
ity for 18 months. The automatically derived P-onsets are compared
with the corresponding manual picks. Configuration parameters of
the proposed P-phase detection algorithm are adjusted by compar-
ison with selected manually derived picks which are divided into
three quality classes. Furthermore, in order to test the robustness
and performance of our picking procedure, we compare the results
of our picker with the results of Allen’s and Baer’s & Kradolfer’s
picking algorithms.

1.1 Higher Order Statistics

In the following we give at first a brief introduction to HOS, describe
its applications to P-phase picking and point out the similarity of
the Baer- & Kradolfer-algorithm to HOS estimates.

The expectation of a continuous distribution is given by (e.g.
Hartung 1991)

E[X ] =
∫ ∞

−∞
xp(x) dx (1)

with the distribution function p(x) of the random variable X .
Using the expectation the statistic moment α of order k of the

random variable X is defined as

αk = E[Xk] =
∫ ∞

−∞
xk p(x) dx . (2)

By analogy the central statistic moment m of order k is defined as

mk = E[(X − E[X ])k], k > 1. (3)

The second central moment is the variance, the lowest moment
yielding informations about the variability of a random variable

Var[X ] := E[(X − E[X ])2] = m2. (4)

The variance defines the mean power of the alternating part of an
ergodic process.

The skewness is defined in terms of the third central moment

S = E[(X − E[X ]]3

E[X − E[X ]]3/2
= m3

m3/2
2

. (5)

S becomes zero if the distribution is symmetrical. It becomes nega-
tive (positive) if the distribution contains outlayers to the left (right).
The skewness gives informations about positive or negative devia-
tions of the distribution density function from the mean value.

The kurtosis is defined using the fourth central moment

K = E[(X − E[X ]]4

E[X − E[X ]]4/2
= m4

m2
2

. (6)

K becomes 3 for normally distributed random variables. Positive
(negative) deviations of K from 3 indicate widening (narrowing) of
the distribution.

An estimation of the central moment from the spot check is

m̂k = 1

n

n∑
j=1

(x j − x̄)k (7)

with x̄ being the arithmetic mean.
Estimates of the second central moment, skewness and kurtosis

are hence given by

σ̂ 2 = m̂2 = 1

n

n∑
j=1

(x j − x̄)2 (8)

Table 1. Examples of spot checks and cor-
responding values for variance, skewness and
kurtosis.

Spot check σ̂ 2 Ŝ K̂

[1, −1, 1, −1] 1 0 1
[1, −1, 2, −2] 2.5 0 1.36
[1, −1, 1,−√

7] 2.5 −1.11 2.08

Ŝ = m̂3

m̂3/2
2

(9)

K̂ = m̂4

m̂2
2

. (10)

Table 1 shows some example spot checks which demonstrate
the superiority of skewness and kurtosis over variance to detect
even small outliers. The first two examples show symmetrically
distributed samples with zero skewness. In the second example
the variance increases, though no outlier distorts the distribution.
The skewness remains zero and kurtosis increases only slightly. In
the third example the outlier is detected by skewness and kurtosis,
while the estimate of the variance remains the same as for the second
example.

Figs 1(a) and (b) show the influence of a signal onset on the sta-
tistical properties of a noisy time-series. Shown are the time-series,
the distribution density function of the samples and the variance,
skewness and kurtosis, determined for a moving window of 10 s
length. When the signal onset is reached (Fig. 1b), variance, kurto-
sis and skewness increase strongly and the shape of the distribution
density function is no longer Gaussian.

2 A P P L I C AT I O N O F H I G H E R O R D E R
S TAT I S T I C S F O R D E T E R M I NAT I O N
O F T H E C F

Throughout this paper, we calculate several CFs by evaluating
higher order statistical moments, particularly skewness and kur-
tosis, in moving time windows. The length of the window depends
on the sampling interval and the dominant period. In order to make
the calculation fast, a recursive procedure is applied, which can be
described as follows:

Let {x( j)}, j = 1, . . . , M be a zero-mean, stationary process, T
the length of the moving window, d t the sampling interval and

N = T/dt + 1, (11)

the number of samples of the window. The current value of central
moment of order k of the moving window ending at sample j is

m̂k( j) = 1

N

N−1∑
l=0

xk
j−l . (12)

Its estimate at sample j may be calculated from the previous one at
sample j − 1

m̂k( j) = m̂k( j − 1) − xk( j − N ) + xk( j). (13)

The recursive calculation of the central moment with eq. (13) re-
duces the computation times by a factor of about 10.

Note, that in case of mean and variance the CF is determined as the
ratio STA/LTA, while in case of kurtosis or skewness the calculation
is done by using just one long term moving window. Fig. 2 shows
a comparison of CFs from mean and variance. The lengths of the
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Figure 1. (a) Seismic trace (top panel) showing almost Gaussian distributed noise, as indicated by the statistical parameters variance, skewness and kurtosis
(bottom panel) and the corresponding distribution function (middle panel), calculated using a 10 s length moving window (top, indicated by the box). (b) As
soon as the moving window reaches the P-onset, the distribution is no longer Gaussian (middle panel) and variance, skewness and kurtosis increase strongly
(bottom panel).
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Figure 2. CF for recordings of a local event calculated from STA-/LTA-ratios of the mean (a) and the variance (b) using a 1 s length short-term window and a
10 s length long-term window, as well as skewness and kurtosis (c and d) calculated using a 10 s length moving window. The onset is recognized by each CF,
while the CF calculated using skewness and kurtosis show the steepest gradient.

short and long term moving windows are 0.1 and 10 s, respectively.
The length of the moving window for the determination of the
CFs from skewness and kurtosis is 10 s. Each CF is normalized
to its maximum. The onset is recognized by each CF, but the CFs
calculated from skewness and kurtosis exhibit steeper gradients,
which make these CFs very useful for picking procedures.

The length of the moving window must be adopted to the sam-
pling frequency and the applied filtering. Too short time windows
may result in biased estimates of HOS, while too long time win-
dows may result in a smooth CF, which hides little, but impor-
tant changes in amplitude of the original seismic trace. Gentili &
Michelini (2006) use a 2.048 s length moving window for 2–50 and

2–8 Hz bandpass filtered data. Savvaidis et al. (2002) applied differ-
ent time window lengths, ranging from 0.125 to 2 s for 200 Hz data,
but found better results when applying a 2 s length moving window
for kurtosis calculations. Fig. 3 shows the influence on the shape
of the CF when using different time window lengths for kurtosis
calculations.

3 A L L E N ’ S A N D B A E R A N D
K R A D O L F E R ’ S C F

Allen (1978) introduced the concept of the characteristic func-
tion CF, by which the ‘character’ of the seismic trace is specified.
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31 31.5 32 32.5 33
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Figure 3. CF determined using kurtosis calculated for moving windows of
7 s (blue), 10 s (red) and 20 s (green), respectively.

However, it should be noted that Allen does not use his CF to de-
termine the phase arrival times, but instead STA/LTA ratios of the
CF. In the context of this paper, we follow Baer & Kradolfer (1987),
who defined the CF as the time-series, from which the phase arrival
time is estimated. Allen defined his CF as the envelope function

ei = x2
i + Ci · ẋ2

i . (14)

xi is the time-series under investigation, ẋi its first difference and
Ci a weighting constant with

Ci =
∑i

j=1 |x j |∑i
j=1 |x j − x j−1|

.

to control the relative importance of amplitude and derivative.
Baer & Kradolfer (1987) modified Allen’s envelope function

ei to

Ei = x2
i + ẋ2

i

∑i
j=1 x2

j∑i
j=1 ẋ2

j

. (15)

By squaring this envelope function and implementing the variance
of Ei, they get the following CF:

C Fi = E2
i − E2

i

σ 2
(
E2

i

) , (16)

where E2
i is the mean of E2

i from 1 to i and σ 2(E2
i ) is the variance

of E2
i from 1 to i. Note, that similar to kurtosis this CF also involves

fourth powers of the data values. However, in eq. (16) the variance
of E2

i instead of Ei is taken. This means, that Baer & Kradolfer’s
CF is pragmatically motivated in contrast to the CF using HOS, that
has a specific statistical meaning.

4 T E S T S O N S Y N T H E T I C DATA

In order to verify the potentials of the different CF, tests were car-
ried out on synthetic data. P-onsets may be associated with changes
in amplitude, frequency and phase, respectively. Therefore, we
compared the sensitivities of CF calculated using STA/LTA-ratios,
skewness and kurtosis (Fig. 4a), the envelope function proposed
by Allen and the CF proposed by Baer & Kradolfer (Fig. 4b)
to synthetic data including changes in amplitude, frequency or
phase.

Fig. 4 indicates that a change in amplitude only is recognized by
all CFs. The CF based on kurtosis shows the most distinct onset and
a simple shape, making it best suitable for picking algorithms.

A change from higher frequencies to lower ones is best recognized
by skewness, kurtosis and Baer’s & Krodolfer’s CF (Fig. 4, both
middle). The way, in which the CFs using STA/LTA and Allen’s
envelope function recognize a change in frequency is not suitable
for threshold based picking algorithms.

A change in phase is best recognized by skewness and Baer’s &
Kradolfer’s CF (Fig. 4, both bottom). Kurtosis and Allen’s envelope
function are only weakly affected by a change in phase.

These simple tests indicate that skewness, kurtosis and the CF
proposed by Baer & Kradolfer are to be preferred for picking algo-
rithms.

12 14 16 18 20 22 24 26 28

Time [sec]

12 14 16 18 20 22 24 26 28

Time [sec]

b)a)

Figure 4. Tests on synthetic data (black) with change in amplitude only (top panel), change in frequency only (middle panel) and change in phase only (bottom
panel). Amplitudes are normalized. (a) CF determined using STA/LTA-ratios (blue), skewness (green) and kurtosis (red). (b) CF determined using Allen’s
envelope function (blue) and the one proposed by Baer & Kradolfer (red).
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1164 L. Küperkoch et al.

5 AU T O M AT I C P I C K I N G

A new iterative picking algorithm is applied to the CF in order to
detect the P-phase onset. The algorithm is organized into four stages.
In the first stage, the data are 2–10 Hz bandpass filtered, using a
causal third-order Butterworth filter. Then a CF is calculated using
skewness or kurtosis from a 3 min time window of the vertical
component seismogram. In analogy to Maeda (1985) the AIC is
applied to the CF in the following way:

AI C(k) = (k − 1) lg

⎛
⎝1

k

k∑
j=1

CF2
j

⎞
⎠

+ (L − k + 1) lg

⎛
⎝ 1

L − k + 1

L∑
j=k

CF2
j

⎞
⎠ , (17)

where is L the length of the CF and k ranges from 0 to L. The
applied formula differs from the original version by Maeda (1985)
by taking cumulative sums of the squared CF instead of the variance
of the data. The P-arrival is ascribed to the local minimum of the
AIC-function before the global maximum. The minimum is found
by searching for a common minimum of the original and a smoothed
AIC-function.

In stage 2 the precise P-onset is determined. To this purpose the
waveform is bandpass filtered between 2 and 15 Hz and the CF is
recalculated. In addition, a smooth CF is calculated by taking the
averages over the samples in a time interval of length C1 ≈ 1.5 s
(Table 2). The length of the smoothing interval should be large
enough to ensure that only the most prominent extrema remain
within the smoothed CF. The picker searches then for a common
local minimum of the smoothed and the unsmoothed CF to the right
of the initial onset within a certain pick window of length C2 ≈ 2 s.
C2 should be large enough to contain at least two full cycles of the
dominating period. Looking to the right avoids picking short-term
increase of noise. Then the algorithm searches for a common local
minimum of the smoothed and unsmoothed CF to the left of the
initial onset within the pick window of length C2 s. The condition
for a local minimum is defined as follows:

C Fi < (1 + C3) · C Fi−1 .

C3 is set to 0.005 or to C4, the smallest non-zero value of C F ′ · (1 +
C3), if C4 is less than C3. C F ′ denotes the first derivative of CF.
If local minima are found to the left as well as to the right of the

Table 2. Constants needed for automatic picking.

Constant Value/unit Remark

C1 1.5 [s] Window length for moving average calculation
for smoothing of CF

C2 2 [s] Window length of picking window
C3 0.005 Factor for artificial up-lifting of

smoothed CF-values
C4 <C3 Calculated from C3 and CF′
C5 0.3 [s] Window length for fitting slope to CF
C6 30 [per cent] Minimum adjusted standard deviation for

slope fitting as percentage of C Fmax

C7 2 [s] Window length for noise level estimation
C8 0.5 [s] Window length for signal level estimation

Note: For details see text (Section 5).

initial P-onset, the lower common minimum is assumed to coincide
with the true P-arrival time. An example of a calculated CF and
the corresponding automatically and manually derived P-onset is
shown in Fig. 5(c).

The next stage is the automatic quality estimation. Two quality
criteria serve as input for the quality evaluation scheme. The first
quality criterion is defined as the logarithm of the slope of the CF
normalized to the rms of the noise. Therefore, the unit of the first
quality criterion becomes dB s−1. The slope is calculated within a
time window of length C5 ≈ 0.3 s immediately after the determined
onset (Fig. 5c). An estimate of C5 may be obtained by taking the
average of the corner periods of the applied band pass filter, here
0.07–0.5 s. The slope is derived by a polynominal fit of order one.
In order to evaluate the local properties of the CF from the onset to
its first prominent local maximum, the window length for the slope
estimation is decreased until the misfit of the slope reduces to C6 ≈
30 per cent of the global maximum of the CF.

The second quality criterion is the SNR of the CF. The noise
window starts C7 ≈ 2 s before the determined P-onset and ends at
the onset time. The signal window starts at the onset time and ends
C8 ≈ 0.5 s later (Fig. 5c). The SNR in dB is calculated according to

SNR = 20 · lg
A

A0
,

where A0 is the rms-value of the noise amplitudes and A the rms-
value of the signal amplitudes. While the slope of the CF serves as a

49 50 51 52 53
Time [sec]

50 50.5 51 51.5 52
Time [sec]

50 50.5 51 51.5 52
Time [sec]

Tnoise

Tsignal

a) b) c)

Figure 5. Automatic determination of a P-onset in a 2–10 Hz bandpass filtered, local event waveform (a, black) using the iterative picking algorithm. The
manual P-reading is indicated by the dash–dotted vertical line. (b) Zoomed in portion of the above waveform (black), also showing the CF calculated using
kurtosis (red), the unsmoothed AIC-function (cyan) and the smoothed AIC-function (blue). The initial P-onset (dashed vertical line) is determined from the
two AIC-functions. (c) Zoomed in waveform (black), recalculated, unsmoothed CF (red) using kurtosis, calculated from 2 to 15 Hz bandpass filtered data,
and recalculated, smoothed CF (blue). The final automatically derived P-onset (black vertical line) is close to the derived manual P-reading. The green line
indicates the slope fitted to the unsmoothed CF. The noise window T noise and the signal window T signal are used for SNR estimation. T noise is 2 s.
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Automated P-phase determination 1165

very local quality estimate, the SNR provides a more global quality
estimate of the P-onset.

In order to decide if the derived picks belong to a seismic event
and not noise, it is crucial for every automatic picking algorithm
to check the reliability of the determined onset. In stage 4 of our
algorithm we implemented three tools to get rid of erroneous picks.
At first, the signal length is checked using an envelope function
of the filtered trace. Thus, noise peaks are rejected. In order to
get rid of S-onsets, which were spuriously declared to be P-onsets,
the amplitudes of the envelope function of the vertical trace are
compared with the amplitudes of the envelope functions of the
horizontal traces.

The third tool is applied after all available traces for one event
have been picked and verifies the following conditions to be met: (1)
All onset times must lie within a certain time interval, depending on
the dimensions of the seismic network and (2) the single P-readings
should not distort the estimate of the variance of all determined
P-onsets, which is tested by applying a Jackknife-procedure. Picks,
which lie outside the proposed time interval or distort the vari-
ance of all determined P-readings, are skipped or down weighted
to 4 implying their exclusion from later event location. This pro-
cedure contributes to the reliability of the algorithm. Furthermore,
the applied location routines HYPOINVERSE (Klein 2002) and
HYPOSAT (Schweitzer 2001) recognize outliers due to large rms-
traveltime residuals.

6 A P P L I C AT I O N T O E G E L A D O S - DATA

The large temporary, regional seismic network of the EGELADOS
project (a Greek word for earthquake, here an abbreviation for Ex-

ploring the Geodynamics of subducted Lithosphere using an Am-
phibian Deployment Of Seismographs) monitored the seismicity
of the entire Hellenic subduction zone for 18 months (Friederich
& Meier 2008). More than 1000 seismic events were detected per
month. Fig. 6 shows the locations of the earthquakes used for this
study and the available stations of the EGELADOS-network. Us-
ing three months of data (2005.12–2006.02), manually derived P-
onsets, serving as reference picks, are compared with our automat-
ically derived P-onsets.

For manual uncertainty/quality estimation a weighting scheme
for manual P-phase determination is used, which is summarized
in Table 3. The manual P-weights are determined from errors of
onset times provided by the analysis software. The relation between
weighting classes and picking uncertainty is given in Table 3, col-
umn 2. The applied weighting scheme is adopted from the location
routine HYPOINVERSE (Klein 2002), where weight-0 onsets de-
note excellent or impulsive (100 per cent weight), weight-1 very
good (75 per cent weight), weight-2 good (50 per cent weight)
and weight-3 intermediate onsets (25 per cent weight). Weight-4
picks are not used for location. In contrast to the manual quality
estimation, the automated picking algorithm uses the CF for un-
certainty and quality assessment, resulting in different parameters,
which are the slope of the CF after the determined P-onset and
the SNR estimated from the CF (Fig. 5). The thresholds for slope
and SNR assigned to the weighting classes 0-4 are summarized in
Table 3.

In order to restrict the analysis to well-constrained events, we
require more than five automatically and manually derived P-
readings, a maximum azimuthal gap of 180◦ and a maximum rms-
value of traveltime and single station residuals of two seconds,
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Figure 6. The seismic network of the EGELADOS project, covering the entire Hellenic subduction zone. Green circles indicate the locations of events used
for this comparative study, ranging in magnitudes from ML = 0.7–4.3. Hypocentral depths extend from near surface to 144 km. OBS-data are not used in this
study.
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1166 L. Küperkoch et al.

Table 3. Weighting scheme for manual and automatic picking (kurtosis).

Weight Man. uncertainty ε (s) Slope m (dB) SNR (dB) Remark

0 0 < ε ≤ 0.04 m ≥ 35 SN R > 8 Excellent onset
1 0.04 < ε ≤ 0.08 m ≥ 25 SN R ≥ 5 Very good onset
2 0.08 < ε ≤ 0.16 m ≥ 11 SN R ≥ 3 Good onset
3 0.16 < ε ≤ 0.32 m ≥ 3 SN R ≥ 1 Intermediate onset
4 ε > 0.32 m < 3 SN R < 1 Bad onset, not used

Note: Slope and SNR are automatically derived by the proposed algorithm.

respectively. Using these restrictions, 475 manually located events
with 3383 manually determined P-readings, serving as reference
picks, are available for this study. For the comparison between man-
ual and automatic picks it is required, that the difference between
manually and automatically derived source times does not exceed
10 s, otherwise it is assumed that automatic and manual picks be-
long to different events. Though the available manual P-readings
do not meet the formal, very restrictive conditions for reference
picks as defined by Di Stefano et al. (2006) or Diehl et al. (2009)
(such as equal choice of filtering and equal phase identification),
we nevertheless use these manual picks as a reference, as they are
appropriate for testing the robustness of the proposed picking algo-
rithm and comparing different automatic algorithms applied to the
same data set.

Fig. 7(a) shows the histogram of the differences (T auto − T manu)
between automatically and manually derived P-arrival times using
skewness for automatically derived quality classes 0-3 and 0, respec-
tively. 132 automatically as well as manually located events meet
the introduced conditions. 1461 automatically determined P-phase
arrival times fall into weighting classes 0-3 and are further used
for location. 472 out of them correspond to automatic weighting
class 0. For automatic weighting classes 0-3 the average deviation
from the manually derived reference picks is 0.380 ± 0.75 s, while
for automatic weighting class 0 the average difference is 0.070 ±
0.41 s.

As an upper bound for the acceptable automatic picking error,
we adopt the 68 per cent interval (equals the standard deviation in
the case of a Gaussian distribution) of the rms traveltime residuals
of the manually derived locations. For our reference data the width
of this interval is 0.5 s. Thus, the differences between automatically
and manually derived P-onset times within the 68 per cent interval
should be smaller than 0.5 s. This ensures, that the location errors
are not dominated by picking errors.

When the CF is calculated from skewness, the width of the
68 per cent interval of the deviations from the reference picks is
0.4 s and hence below this error bound. However, the tail of the his-
togram in Fig. 7(a) indicates that the automatically derived P-onsets
are somewhat late compared to manually derived P-onsets. This is
confirmed by the width of the 80 per cent interval which is 0.75 s.
Visual inspections of corresponding waveforms show that the tail
is mainly due to different filtering. While the automatic algorithm
uses 2–10 and 2–15 Hz bandpass filtering, the analysts very often
pick the first break on unfiltered data. Fig. 8 shows an example
of a differently filtered waveform and the corresponding manu-
ally and automatically derived P-onsets, respectively. This example
indicates, that a comparison of differently derived picks may be
misleading when different filters are applied. This fact also applies
to the comparison of manual picks derived from differently filtered
seismograms. Furthermore, while the automatic usually picks the
first P-arrival (Pn), the analysts sometimes chose to pick the later
and much clearer Pg-phase, in case that the corresponding Sg-phase
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Figure 7. (a) Histogram of differences between manually and automatically
derived P-onsets using skewness. (b) Same as (a), but P-onsets determined
using kurtosis. Weighting classes are defined in Table 3.

is also clearer than the preceding Sn-phase. This problem also has
been recognized by other authors (e.g. Sleeman & van Eck 1998;
Diehl et al. 2009). Usually, the number of phase misidentifications is
especially large at distances � > 100 km, where emergent Pn phases
are followed by impulsive Pg or PmP phases (e.g. Diehl et al. 2009).
However, such a distance dependence of differences between man-
ually and automatically derived P-arrivals is not present in our data
set, a fact which might be due to the complex tectonic settings of
the Aegean region.

Fig. 7(b) shows the histogram of differences between automati-
cally derived P-arrival times using kurtosis and corresponding man-
ually derived P-onsets. The automatic algorithm produced 2406 P-
readings in weighting classes 0-3 leading to 177 comparable events.
The average differences from the manual picks are ranging from
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Automated P-phase determination 1167

40 42 44 46 48

Time [sec]

Figure 8. Unfiltered (black) and filtered (blue, third order butterworth,
2–10 Hz bandpass) waveform and corresponding manual (dash–dotted line)
and automatic (dashed line) picks demonstrating the effect of different fil-
tering on P-onset determination.

0.260 ± 0.64 s for automatic weights 0-3 to 0.070 ± 0.31 s for
automatic weight 0. The width of the 68 per cent interval of the
differences between manually and automatically derived P-picks is
0.2 s and hence below the picking error bound of 0.5 s. This au-
tomatic picks also tend to be somewhat late compared to manual
P-readings due to different filtering and Pg/Pn mismatch. However,
the width of the 80 per cent interval is 0.45 s compared to 0.75 s
for skewness. Since the comparison reveals better qualitative and
quantitative performance for the kurtosis application, we will focus
on kurtosis for the following comparative studies.

Fig. 9(a) displays the number of picks plotted against the slope
of the CF and the deviation from the corresponding manual pick
for the kurtosis-picker, hereafter referred to as residuals. The larger
the slope, the less the number of outliers. Furthermore, even for
automatically low weighted picks, that is, for emergent onsets, the
number of P-readings with small residuals is nevertheless high. The
automatic weighting classes, indicated by red horizontal lines, are
defined by visual comparisons of determined slopes and manually
determined weighting classes. Fig. 9(b) shows the number of picks
versus SNR [dB] determined from the CF and the residuals. The
figure indicates a clear correlation between SNR and number of
picks with large residuals. All P-onsets with SNR smaller than 1 dB
are skipped or downweighted to 4. Fig. 10(a) compares the auto-
matically estimated weights of the automatically determined onset
times compared with the manually determined weights. This figure
demonstrates a strong correlation between manually and automati-
cally assigned weights. However, the automatic weighting scheme
seems to be too conservative for manual weight-0 picks, but not
strict enough for manual weight-1 picks. The manual weight-2 P-
readings are well resolved by the automatic. Manual weight-4 picks
are upgraded to automatic weight-0 picks in only 0.6 per cent of the
cases. The majority of manual weight-4 P-readings are upgraded to
automatic weight-2 and weight-3 picks. About 44 per cent of the
automatic weight-4 picks get the same manual weight. Visual in-
spections of manual weight-4 picks, upgraded to weight-0 P-onsets
by the automatic, and their corresponding waveforms indicate, that
most of them are not false picks, but either very noisy onsets or
good onsets of a different seismic event, occurring nearly at the
same time.
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Figure 9. Frequency distribution of automatic picks against slope of CF
(a) and SNR (b) and corresponding residuals to manual picks. The width of
the frequency distributions increases with decreasing slope (SNR) and thus
justifies our use of slope and SNR as quality criteria. The applied weighting
classes are indicated by the red horizontal lines. For every weighting class
the automatically derived P-onset has to meet both criteria. Note the large
number of low-weight onsets with small residuals.

7 C O M PA R I S O N W I T H T H E A L L E N -
A N D T H E B A E R - A N D
K R A D O L F E R - P I C K E R

In order to test the robustness and reliability of the proposed picking
algorithm, we applied the Rex–Allen-picker (RA hereafter) and the
Baer- & Kradolfer-picker (BK hereafter) to the same data set. As
for the kurtosis-picker, the required parameters are optimized on
categorized P-onsets. For quality estimation we use the proposed
weighting scheme by Allen (1978). However, Allen only gives cer-
tain criteria to be met by impulsive P-onsets. They are successively
relaxed for lower weights 1, 2 and 3. In this study, we tried to adjust
these conditions so that the resulting weights match the manually
determined weights. Baer & Kradolfer (1987) did not implement
an automatic quality assessment. In order to make the results more
comparable, we applied Allen’s weighting scheme also to the BK
picks. As Baer & Kradolfer squared Allen’s envelope function,
some values adopted from Allen’s weighting scheme are squared,
too. The conditions to be met by the automatically derived P-onsets
are summarized in Table 4.

124 events are automatically as well as manually located and
meet the introduced restrictions when using RA. Fig. 11(a) shows
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Figure 10. Comparison between frequencies of automatically and manually determined quality classes using a matrix representation. (a) kurtosis-picker, (b)
RA (Allen-) picker and (c) BK- (Baer- & Kradolfer-) picker. Each column shows the frequency distribution of weights assigned to those manual picks, which
are associated to automatic picks of one fixed weighting class. For example, in panel (a), second column, 23 automatic picks or 7.3 per cent of all available
automatic picks of quality class 1 are assigned to manual weight-0 picks, but 103 automatic picks or 32.7 per cent of all available automatic picks of quality
class 1 belong to the same manual weighting class. Percentages in one column add up to 100 corresponding to all available automatic picks with manual
complements of the certain weighting class.

Table 4. Applied weighting scheme for RA and BK.

Weight Criterium I Criterium II Criterium III Criterium IV

0 D >
√

B A1 > 450 A1/
√

B > 4 A2 > 6 · √
B or A3 > 6

1 D > 0.5 · √
B A1 > 100 A1/2 · √

B > 4 A2 > 3 · √
B or A3 > 5

2 D > 0.3 · √
B A1 > 50 A1/

√
B > 3 A2 > 2 · √

B or A3 > 4
3 D > 0.1 · √

B A1 > 20 A1/
√

B > 2 A2 >
√

B or A3 > 3

Notes: D is the trace first difference and B a measure of the noise level derived from the CF at
the onset time, respectively. A1, A2 and A3 are the first three amplitude peaks of the seismic
trace. For more details, see Allen (1978). For the BK all values depending on B are squared.
For each weight all four criteria must be fulfilled.

the histogram of differences between RA-picks and manually de-
rived P-onsets, indicating that this algorithm tends to be somewhat
early compared to what an analyst would pick. The average residual
is −0.12 ± 1.44 s for automatic weight 0-3 picks and −0.179 ±
0.47 s for automatic weight-0 onsets. 1546 P-readings were auto-
matically determined and further used for location, compared to
1419 when using skewness and 2406 P-readings when using kur-
tosis. The 68 per cent interval of all differences between manual
and automatic picks is 0.3 s wide and thus within the upper picking
error bound. The width of the 80 per cent interval is 0.5 s compared
to 0.45 s for kurtosis.

The comparison with the results of the RA confirms the results
of Saragiotis et al. (2002), who found a better performance of HOS
applications. In their study they used 44 seismograms of local and
regional seismic events in Northern Greece. Skewness and kurtosis
applications yielded similar results and performed better in 75 per
cent of the cases. However, automatic quality assessment was not
considered in their work.

Fig. 10(b) shows the comparison between manually and auto-
matically derived weights of available P-readings when using RA.
Allen’s weighting scheme is quite conservative as most of the auto-
matic weight-0 picks are downgraded compared to manual weights.
The weighting classes 1 and 2 are in good agreement to the manual
weights. However, in ≈3 per cent of the cases, manual weight-4
picks are upgraded to automatic weight-0 picks. Manual weight-4
picks are well resolved by RA.

Another test for robustness and reliability of the proposed picking
algorithm is the comparison with the BK. The histogram of devia-
tions of the automatically derived picks from manual P-readings is
shown in Fig. 11(b). 124 events are automatically as well as manu-

ally located and meet the introduced restrictions. 1683 P-readings
were determined by this algorithm and classified as weight 0-3
picks. The overall pattern of the distribution of differences from
the manual picks indicates that this algorithm tends to be somewhat
late compared to the reference picks. This has also been shown
by Sleeman & van Eck (1998). For weight 0-3 P-picks the average
residual is 0.341 ± 2.43 s. The large number of excellently weighted
P-onsets indicates that the weighting scheme adopted from the RA
needs to be modified for the BK CF. However, the standard devi-
ation slightly decreases for weight-0 P-picks. Though this picking
algorithm produces some large outliers, the width of the 68 per cent
interval is 0.2 s, which is below the introduced acceptable picking
error bound and equal to the corresponding width of the 68 per cent
interval of differences from the manual picks when using kurtosis.
The width of the 80 per cent interval is 0.6 s compared to 0.45 s for
kurtosis.

Fig. 10(c) shows the comparison between manually and automat-
ically derived weights when using the BK. About 20 per cent of
automatic weight-0 picks are in agreement with manual weight-0
P-readings, but ≈4 per cent show an upgrading of manual weight-
4 picks to automatic weight-0. The comparison between automatic
weight-0 classes derived with BK reveals that the weighting scheme
needs to be improved, as to many P-readings are automatically clas-
sified as weight-0 P-onsets. However, weight-2 class picks are well
resolved by the applied automatic weighting scheme. In ≈48 per
cent of the cases manual weight-4 picks are resolved by the auto-
matic.

For a direct comparison of the RA, the BK and the kurtosis-
picker, we selected P-readings determined both manually and by
all three automatic picking algorithms. Fig. 12 shows the results
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Figure 11. (a) Histogram of differences between manually and automati-
cally derived P-onsets using RA. (b) Same as (a), but P-onsets determined
using BK. Weighting classes are defined in Table 4.
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Figure 12. Cumulative frequencies of automatic picks obtained by using
kurtosis (blue), RA (red) and BK (green), plotted versus their residuals to
associated manual picks.

for automatic weighting classes 0-3 for 755 available P-picks as
cumulative frequencies of residuals, which reveals the tendency
of a picking algorithm whether it picks to late or to early. The
figure indicates nearly similar and excellent results of the BK and

the kurtosis-picker for negative residuals, that is, for earlier picked
onsets compared to the manual ones. The BK shows more outliers
for later picked P-onsets compared to the kurtosis- and RA, which
tends to be somewhat late compared to the manual P-readings. The
best results are achieved when using the kurtosis-picker, where the
residuals are more or less equally distributed around zero.

The quantitative performance is best for the kurtosis picker. 71.1
per cent of 3383 available P-onsets are determined and classified as
useful picks for location purposes by this automatic, 49.7 per cent
by the BK, 45.7 per cent by RA and 43.2 per cent by the skewness-
picker. The overall low number of automatically determined P-
readings is due to low SNR, noise bursts at island stations, and due
to the introduced restrictions on the selection of seismic events.

8 C O N C LU S I O N S

We present an iterative algorithm for automated P-onset determina-
tion for local and regional seismic events based on HOS and Akaike
Information Criterion. The algorithm also accounts for quality as-
sessment, based on the slope of the characteristic function after
the derived P-onset and its SNR. Using a large data set of wave-
forms recorded at the temporary, regional seismic network of the
EGELADOS-project in the southern Aegean, we compare the per-
formance of the proposed algorithm with Allen’s (RA) and Baer- &
Kradolfer’s (BK) picking algorithms. 475 well constrained events
with 3383 manually derived P-readings, serving as reference picks,
are available for this study. The comparison shows similar and very
good results for kurtosis and skewness applications with a bet-
ter quantitative performance of the kurtosis-picker. Adopting the
weighting scheme applied in the location routine HYPOINVERSE
(Klein 2002), the average deviation from the reference picks for the
kurtosis application is 0.070 ± 0.31 s to 0.260 ± 0.64 s, depend-
ing on the automatically derived weighting class. For the skewness
application the corresponding average deviation is 0.070 ± 0.41 to
0.380 ± 0.75 s, respectively. Both, kurtosis and skewness applica-
tions, performed well below the picking error bound of 0.5 s, which
is estimated from the width of the 68 per cent interval of the rms
traveltime residuals obtained from the manual locations. In this way
it is ensured, that the location error is not dominated by picking
errors. For the kurtosis application 80 per cent of the differences
between automatic picks and the corresponding manual picks re-
main below 0.5 s. Furthermore, even emergent or noisy P-onsets
are determined reliably by the proposed algorithm.

Erroneous picks are found by checking the signal length deter-
mined from the envelope function of the seismic trace, by applica-
tion of a Jackknife procedure applied to the variance of all available
automatic P-readings, and a comparative envelope function analy-
sis to get rid of noise peaks and spuriously picked S-phases, which
enhances the reliability of the presented picking algorithm signifi-
cantly. The majority of the rejected automatic picks (≈75 per cent)
do not pass the requirement of a minimum signal length. Ran-
dom inspections on these rejected automatic picks revealed that this
quality control reliably detects noise peaks or short-term increase
of noise. The low number of large outliers confirms the robustness
of the proposed weighting scheme. However, the automatic quality
assessment based on the slope and SNR of the CF is somewhat
conservative for weight-0 picks compared to manual weighting.
Only 0.6 per cent of automatic weight-0 picks got weight 4 by the
operator. This is an indication for the reliable performance of the
proposed weighting scheme.

Comparison of the proposed algorithm using kurtosis with the
RA and the BK shows better results for the kurtosis application
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regarding both the quantitative and the qualitative performance.
When considering the 80 per cent interval the differences between
automatic picks and the corresponding reference picks exceed 0.5 s
for both the RA and the BK.

Allen’s automatic quality estimation scheme assigns weight 0 to
≈3 per cent of the manually declared weight-4 P-readings. For the
BK Allen’s weighting scheme is slightly modified to account for
the squared envelope function but needs further improvement when
implemented into the BK, as too many picks are upgraded to higher
quality classes.

On the basis of this comparative study, we conclude that the
proposed iterative algorithm provides an efficient way to pick reli-
able P-wave arrivals. The speed of the presented algorithm makes
it well suitable for implementation into near-real time processing
schemes. The proposed automatic weighting scheme works reliably
and assigns similar weights to the P-onsets as the analyst does.
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