
1

Automated diagnosis for computer forensics
Christopher Elsaesser and Michael C. Tanner

Cognitive Science & Artificial Intelligence Center
The MITRE Corporation

7515 Colshire Drive, McLean, VA 22102-7508

Abstract - Upon discovery, security administrators must determine how computer system
intrusions were accomplished to prevent their reoccurrence. This paper describes an
automated diagnosis system designed to focus investigation on the evidence most likely to
reveal a hacker’s method. The system takes as input victim configuration and vulnerability
information and a description of the unauthorized access gained by the attacker. With this
information and templates describing hacker exploits and computer actions the system
generates possible attack sequences. Because it is impossible to know everything the attacker
might be aware of or have done, attack hypotheses can include assumptions where there is no
apparent action to accomplish part of an attack. The hypothetical attacks are next simulated
on a model of the victim network. Successful simulation indicates a feasible means of
accomplishing the unauthorized access. The simulation generates representative log entries
that a pattern matching subsystem compares to system records. Close matches are indicators
that the associated hypothesis was the means of attack.

Key words: computer security, abduction, plan recognition, heuristic search

Problem description
Computer hackers have become so capable, and networked computer systems so riddled
with vulnerabilities and exposures, that it is almost impossible for such systems to be
simultaneously secure and useful. When an intrusion is noticed, a security administrator
must become a detective, developing and testing theories about the intruder’s modus
operandi in order to prevent the attack from recurring.

One problem today’s computer sleuth does not face is a lack of data. Modern systems are
monitored by Intrusion Detection Systems (IDS) that routinely log suspicious activities.1

Most installations also log many (apparently) legitimate activities such as connections to
services, user commands, and so on. These logs are the main sources of evidence for the
investigator.

Dealing with the volume of potentially relevant data is a problem for an investigator. A
large enclave logs millions of activities each day.2 Identifying the log entries relevant to a
particular intrusion is a daunting task. Many steps of an attack are indistinguishable from
authorized activity. Even when one knows what to look for, the evidence is difficult to
find without a good idea about the details.

This paper describes a system designed to aid an investigator to determine how a
computer intrusion was accomplished. Our approach is to hypothesize attacks that could

1 In most cases, IDSs are blocking filters with log files. Unsuccessful attacks—true positives—and
misconstrued legitimate activities—false positives—are logged. Successful, undetected intrusions—false
negatives—are discovered through their side effects, not by the IDS.
2 IDSs on MITRE’s DMZ log more than three million alarms per day, not including routinely logged events
that did not trigger alarms.

2

account for an intrusion, simulate the attacks to verify that they could succeed on the
target systems, and match the simulated side effects of apparently viable attacks to log
files.

The following sections describe our approach and status of an experimental prototype.
We begin by listing our assumptions. Next, we give an overview of computer-aided
diagnosis and describe how it matches the computer forensics activity. A description of
our system follows. We conclude with a status of our implementation and identify areas
for extension.

Assumptions
The objective of our research is a decision support system for computer intrusion
diagnosis. In designing the system, we assumed:

1. An up-to-date list of an enclave’s configuration (hosts, local area networks,
routers, firewalls, etc.). Getting up-to-date configuration information might
require running vulnerability scanning and mapping systems after an intrusion is
discovered. In investigations that preclude doing so, our system will use whatever
information is available, with concomitant effects on the validity of a diagnosis.

2. Logs of activities on the systems that were attacked were recorded during the
attack.

3. The diagnosis system can examine the enclave’s records for evidence the attacker
executed hypothesized attacks.

We did not assume:

1. The intrusion started at an identifiable border, e.g., from outside the enclave’s
firewall.

2. Computing the transitive closure of the system’s vulnerabilities and exposures is
sufficient to deduce how the incursion occurred. This implies that our system
must be able to hypothesize an attacker with special information such as an
account password.

Overview of computer-assisted diagnosis
Diagnosis is the process of deducing the most likely mechanism that caused an observed
condition. Figuring out how a hacker created an unauthorized computer account is an
example of diagnosis. Diagnosis is a type of abduction.

Abduction is inference that begins with data describing some state and produces an
explanation of the data [Josephson & Josephson, 1994]. Medical doctors perform
abductive inference when they determine that a patient has a disease. Normally they
mean that disease, among all diseases, best explains the patient’s pains, test results,
radiology findings, etc.

So what is an explanation? Explanations give causes; to explain something is to assert its
cause. What do we mean by the “best” explanation? Obviously the best explanation is the
true one. Without knowing the true cause of the state (which would eliminate the need for
inference) one must weigh an explanation’s plausibility. The plausibility of an
explanation depends on how much better it is than the alternatives, how good it is
independent of the alternatives, how reliable the data is, and the breadth of search for

3

alternatives. 3 Accepting an explanation is a decision made under risk. One must weigh
the costs of being wrong, the benefits of being right, and the expected value of a
conclusion made immediately compared to the expected value after delaying the decision,
perhaps to gather more information for a possibly better answer [Raiffa, 1968].

The argument supporting a diagnostic conclusion is as follows:

1. Something abnormal is observed. 4

2. There are several possible explanations for this abnormal state. [Something
interesting enough to be explained will usually have a number of possible
explanations.]

3. Some of the explanations are eliminated as impossible because their preconditions
were not present.

4. Some of the explanations are judged to be implausible because their anticipated
consequences5 are not observed or because they cannot explain other important
data. [Sometimes we have data in addition to the original problem that we want
our diagnostic hypothesis to explain.] If examining the data does not find such
side effects, then that hypothesis can be ruled out by modus tollens.

5. Of the remaining plausible explanations, the best is the diagnostic conclusion.

Our Approach

Follows the steps of abduction, here we describe our approach to computer forensic
investigation:

1) Observe abnormality: Abnormalities include altered or unreadable files, inability of
authorized users to use the system, etc. Explaining such an abnormality is the
diagnostic problem.

2) Generate possible explanations: We use a planning system to generate sequences of
actions that could have caused the abnormality. The abnormality, represented as a
goal state, is passed to the planner along with a description of the state of the system
presumed to hold before the attack. Any plans generated are potential explanations.

3) Eliminate impossible explanations: The planning system is first limited to generating
plans for which the situation includes their necessary preconditions. For example, an
action might require access to a modem. If no modem is connected to the network, no
explanation that includes that action will be generated. It is possible that in some
situations no explanation can be generated. In such cases, the planning system is able
to hypothesize explanations that include assumptions. 6 When it does, it is up to the
user to determine when to eliminate an explanation based on an assumption.

4) Eliminate implausible explanations: Executing a diagnostic plan on the victim system
generally is not feasible. Criminal investigators often proscribe tampering with a

3 An alternative way to determine the “best” explanation is Occam’s Razor: the best one is the “simplest”
explanation—perhaps the explanation with the fewest clauses and logical connectives.
4 The reason for diagnosing abnormal values is that one may presume that something out of the ordinary
had to have happened for the abnormality to come about.
5 Possibly, side effects.
6 For example, security experts know that just because they are told there are no modems on a system does
not mean that is the case. This example might be a good candidate for an assumption.

4

compromised system. More prosaically, the current state of the system often will not
be the same as when the attack occurred. For example, if the hacker created a new
account, then that account was not present when the attack began. To address such
situations, we test hypothesized attacks in a simulator. Simulation can eliminate plans
that are not feasible as well as generate side effects a planner is unable to foresee
[Shoham, 1988]. To prune the possibilities further, we compare simulation traces to
records from the compromised system to find evidence of the events and their side
effects.

5) Rate the remainder: Abduction often produces more than one plausible explanation.
For example, in computer forensics we cannot rule out plans that fail to exactly match
the logs, because logs are usually not complete. In such cases we rate the explanations
to focus the investigator on the most likely ones. If the attack involved actions that the
planner knows, then the true cause will be among the explanatory hypotheses,
because our hypothesis generation technique considers all possibilities.

A system for diagnosis of computer intrusions
This section describes a prototype computer intrusion diagnosis system. The prototype
consists of: (1) an interface that converts data from the target enclave to a representation
suitable for attack planning and simulation, (2) a planning system that generates possible
explanatory plans from an observed symptom of an intrusion, (3) a simulator that can
execute the attack plans on a model of the victim system, and (4) a pattern matching
system that searches system log files for actions and side-effects of a successfully
simulated attack.

Representing the domain

Domain representation is, of course, the key aspect of any reasoning system. In our case,
the representation language and the elements of the domain that are represented must be
chosen so that the hypothesis generation system and the simulation agree.

Our planning system is general purpose— it has no domain-specific object classes.
Instead, it creates domain classes and state descriptions from a user’s description of the
domain of interest. The language it uses is the Planning Domain Description Language
(PDDL) [Gallab, 1998]. We found this language to be as suited for defining a simulation
as for planning, and use it for both subsystems.

Before we describe a problem situation, we describe the domain for the planner based on
object classes and propositions from the simulation. That is, the planner’s object classes
are those implemented in the simulation (Figure 7) and the propositions describe states in
terms of relations implemented in the simulation. Figure 1 is a representative fragment of
such a description.

5

(define (domain network)
 (:extends computer) 7

 (:types network domain – simulation-object
 router – host

 firewall - router)
 (:predicates
 (connected-to ?node - object

 ?net – simulation-object)
 (part-of ?net - network ?domain - domain)

 …)

Figure 1: Example domain description

The :types clause of a domain definition describes an object class hierarchy. The domain
description also defines a list of :predicates that define the state representation. These
predicates are used for situation, action, and problem descriptions. Action descriptions
are discussed in some detail below.

Initialization

The first step of a diagnosis is to collect facts about the situation. Situation descriptions
are input to both the hypothesis generation system and the simulation. Our system uses
off the shelf tools to create a description of a victim system’s configuration and state in
PDDL. If Figure 2 were the victim system, Figure 3 would be its PDDL description.

7 The Planning Domain Description Language permits hierarchical definition of domains with inheritence.

B

A

h1

R1

C

h2

R2

Figure 2: A sample network

 (define (situation example)
 (:domain network)
 (:objects
 R1 R2 - Router
 h1 h2 - unix-host
 A B C - Network)
 (:init
 (connected-to h1 A)
 (connected-to h2 C)
 (connected-to R1 A)
 (connected-to R1 B)
 (connected-to R2 B)
 (connected-to R2 C)
 (offers-service h2 r-commands)
 (found + h2 /etc/hosts.equiv)))

Figure 3: Description of the sample network

6

The “:objects” field names the parts of the enclave and specifies their class. The “:init”
field is a list of predicates that describe the configuration of networks and hosts. For
example, connected-to predicates specify which hosts (including routers) are
connected to which networks. offers-service specifies that a host provides a
network service. found specifies contents of files. In the example in Figure 3, the “+”
wildcard in /etc/hosts.equiv, exposes h2 to a well-known UNIX exploit.

Creating a situation snapshot of an arbitrary enclave is a large undertaking, and our
prototype only scratches the surface. So far we include network connectivity and trust
relationships in .rhosts, .xhosts, and hosts.equiv files. Shared files are also noted. Each
host is initialized with a standard file system, and user and group information is used. In
the future we intend to integrate several of the emerging off-the-shelf security analysis
tools to fill in details.

Generate attack hypotheses

Hypothesis generation is the most important part of automated diagnosis. As we stated,
we use a general purpose planning system for this task. Its main inputs are a situation
description like the one in Figure 3 (with much more detail, of course), and a problem
description such as the one in Figure 4.

(define (problem login-as-guest)
 (:domain network)
 (:situation example)
 (:goal (has-shell hacker admin.stu.edu guest)))

Figure 4: Example problem statement

The problem is specified by the user based on an observed symptom such as unauthorized
access to particular resources. The :goal clause describes the symptom as a state. Given a
situation and problem, the role of hypothesis generation is to generate a sequence of
actions starting in the situation that could result in the goal state.

General-purpose planners create plans from action templates. In this domain, actions
usually represent computer commands (Figure 5).

(:action login
 :parameters (?user - user

 ?host - host
 ?uid - account)

 :precondition
 (and (know-password ?user ?host ?uid)

 (offers-service ?host console))
 :effect (has-shell ?user ?host ?uid))

Figure 5: Planning template representing a computer command

Many state-based planning systems are based on the concept of “means-ends analysis.”
Means-ends planning proceeds by chaining backward by matching effects to subgoals,
starting with the problem goal. Preconditions (means) of applicable actions are turned
into subgoals that preceding actions must establish with their effects. The process

7

terminates when all the preconditions of actions are either established by preceding
actions or are found in the input situation.

It has occurred to other that means-ends planning is suited to computer security
applications [Roberts, 1995; Zerkle 1996; Ho, 1998]. But we found means-ends search
difficult to control in this domain, resulting in combinatorial explosion for all but the
simplest examples. This occurs because is difficult in means-ends planning to incorporate
domain knowledge to guide search, such as well-known procedures that exploit particular
vulnerabilities and exposures. Without such knowledge, planning is made tractable by
searching for the shortest plan that accomplishes the goal. But it is sometimes the case
that the shortest plan is not an accurate means of diagnosis, because many hacker engage
in stealth that, while it makes their attacks take more steps, have advantages hard to
qualify in a state-based representation.

We found task decomposition planning better suited to generating intrusion hypotheses.
Task decomposition makes it easy to represent abstract activities such as establishing user
accounts and known “hacks” that exploit exposures due to promiscuous configuration
settings (Figure 6). A task decomposition template tells the planner the subgoals that
must be established –and roughly in which order—to accomplish the task. Just as in
means-ends planning, task decomposition planning bottoms out in executable actions,
retaining a convenient representation for hypothesis verification.

(:action rlogin-hack
 :parameters (?local ?victim - host

 ?uid ?root - account
 ?home - unix-directory
 ?user - user)

 :precondition
 (and (has-account ?victim ?uid user ?home)

 (found ?home ?victim /etc sharetab)
 (has-account ?local ?root superuser /))

 :expansion (sequential
 (has-shell ?user ?local ?root)
 (access ?local ?victim ?home)
 (account-exists ?local ?uid)
 (has-shell ?user ?local ?uid)
 (found ?local ?victim ?home rhosts)
 (has-shell ?user ?victim ?uid))

 :effect (has-shell ?user ?victim ?uid)
 :documentation "edit ?home/rhosts when ?home

 directory exported")

Figure 6: Task decomposition templates can model hacker knowledge

Retaining control of the search process enables us to address two sources of complexity
in the forensics domain: uncertainty about the attacker’s knowledge state, and the need to
generate many alternative plans.

We implemented in our hypothesis generation system the capability to make (selective)
assumptions about the attacker. For example, we can consider the possibility that the

8

attacker is an insider or used “social engineering” to obtain a password by inserting an
assumption as an establisher of an attack precondition. Of course assumptions must be
examined for plausibility by a human investigator.

Generating multiple plans is done by expanding several alternative subplans to
accomplish any given subgoal. This allows us to consider the possibility that the attacker
might have used an attack that, by planning standards, is less “efficient” than an
alternative. Combinatorics are controlled by the planner by reusing subplans or actions
where possible (i.e., an action can fulfill subgoals in several alternative plans), and by
parameterizing the number of subplans that are expanded.8

The output of hypothesis generation is a set of possible attacks in the form of sequences
of actions and assumptions that could account for the observed intrusion. Our system
produces plan sequences as lists of commands in the syntax simulator can directly
evaluate. An example of the syntax is given in the following section.

An important capability of our hypothesis generation system is the ability to identify the
enabling conditions for an attack. Enabling conditions are propositions from the problem
situation that are required preconditions of plan actions that are necessary for the
plan—that is, there are no available alternatives—and are impossible to establish by
alternate means.9 For example, an enabling condition of certain attacks is promiscuous
trust of other systems within an enclave, expressed by including a wildcard in a .rhost
file.10 Knowing these enabling conditions helps the system administrator prevent future
incursions. Their identification can be valuable even when a hypothesized attack cannot
be proven to be the one that led to the incursion. We recommend that enabling conditions
should be the first thing the investigator examines.

Simulation

Each hypothesis about how an intrusion was accomplished must be tested to see if it is
feasible. Deleting those that will not work because of some detail the planner did not
consider simplifies the check for evidence. Our system uses simulation to test the
feasibility of attacks and to generate side effects for comparison to records from the
victim system.

Why simulate when you have a planner? In short, because it is possible to simulate
effects of actions that would be impossible to note in a practical plan representation
[Shoham, 1988]. In any domain, actions can have contingent effects that are apparently
irrelevant to planning or unknowable by a planner but can affect the executability of
possible subsequent plan steps. There are domains, and computer attack is one of them,
where ramifications of actions can indirectly affect preconditions of subsequent actions
through a chain of effects on processes outside the planner’s control. For example, on
some systems, an attempt to copy a password file will cause an alarm that leads to the

8 Our system can interleave planning and simulated execution, allowing us to investigate unexpanded
alternatives at a later time.
9 Assumptions also represent enabling conditions that do not appear in the problem situation. Assumptions
are only made when there is no other way to establish the problem goal.
10 Doing this also makes life much easier for users. It is particularly useful when setting up a large military
command and control system on short notice.

9

offending user to be knocked off the system.11 There are simply too many alternatives to
account for this possibility: that there is no IDS, there is an IDS but it does not have that
rule, there is an IDS with that rule but it was disabled for a particular UID on a prior visit
to the machine, and so on.

If a planner had to consider all the possible ramifications of every proposed action to
ensure that none of them affect later steps of the plan, the search space would be doubly
exponential (for each candidate action, there are exponentially many futures to consider).
If, instead, the planner only concerns itself with action effects that are locally relevant,
then its problem is tractable but it could generate plans that cannot execute. The purpose
of our system is to test possible plans for feasibility, not to find a single, guaranteed to
execute plan.

A simulation starts from a known initial state and computes effects of actions. While it is
impossible to simulate every detail, a simulation can represent more than a planner can
because the simulator does not have to search the resulting state space. Therefore,
simulation can be used to check if an apparently feasible plan can execute. As important
in our domain, there can be apparently insignificant side effects—things that would not
be modeled for the purpose of planning—which provide evidence that an action was
executed.

Our simulation takes as input a situation description like the example in Figure 3, and a
sequence of commands that result from parsing a plan representing an attack hypothesis.

The first thing the simulation does is create a model of the enclave described in the
situation description. The simulation reads PDDL situation syntax and creates the objects
specified in the description. In contrast to a general purpose planning system, our
simulation is designed specifically for this domain. Therefore, each object type in a
situation specification must exist in the predefined object class hierarchy shown in Figure
7.

There are several classes of particular interest here. The network class models
connections between hosts. User instances represent persons who use the computer
systems (hacker, system administrator, etc.). Each instance holds information about the
current identity of that person on each host, the services in use, and the person’s history
during the session.

11 Examples of this problem involve actors outside the control or knowledge of the planner. The classic
example is the Yale Shooting Problem, which points out that it is impossible for know the effect of pulling
the trigger of a gun that was loaded some time before it was picked up and pointed at a victim.

10

directory-entry

file

link

directory

share-file

structured-file

dot-file

file-system

unix-directory

passwd-file

log-file

host

router

unix-host

nt-host

firewall

service

shell

console

inet

login-shell

nfs

r-commands

icmp

finger

user

network

domain

simulation-
object

various
bookkeeping
classes

Figure 7: Simulation object class hierarchy

The main loop of the simulation interprets and executes commands on simulated host
computers. “command” is the application program interface function that fields all
simulation directives. A list of such commands is the output of the planning system and
one of the inputs to the simulation.

Directives represent computer commands that are enabled by services. There are default
services for some classes of host, but most must be specified in the situation description.

Suppose an attack plan calls for a user called “hacker” who has access to host h1 on
network A to access host h2. He might first log in to h1 at a console, then rlogin to h2.
The simulation directives from such a plan would be as follows:

(…
 (command hacker login root h1.A)
 (command hacker rlogin root h2.A)

…)

When the simulation interprets the “login” command, it creates a console service on the
host h1, then dispatches the arguments “root” and “h1.A” to the login method. Login
checks h1’s /etc/passwd file12 to determine that there is an account called root and

12 Because h1 is an instance of a Unix machine, the method implementing login will be the one designed to
simulate Unix. Other operating systems have their own versions of the login method that function in the
appropriate, system-specific manner.

11

whether the user knows the password for that account. Password knowledge is
represented by a list of passwords that each user knows. In this example, if hacker knows
the password of the root account on h1, the login method will create a login-shell service
and establish hacker’s identity on h1 to be root.

The command interpreter logs every directive executed on each host. This includes
access to the log files on the hosts, which attackers can modify. The simulation also
includes a “ground truth” log that is not accessible to user directives. This log, an
example of which is shown in Figure 8, is used for searching the real system logs for
evidence of an attack, as described in the next section.

8/20/2001 14:44:14 EDT, icmp: anybody ping butterfinger.stu.edu successful.
8/20/2001 14:44:14 EDT, icmp: anybody exit successful.
8/20/2001 14:44:24 EDT, inet: anybody network-services successful.
8/20/2001 14:44:24 EDT, inet: anybody exit successful.
8/20/2001 14:44:35 EDT, finger: anybody finger guest nil successful.
8/20/2001 14:44:35 EDT, finger: anybody exit successful.
8/20/2001 14:44:46 EDT, nfs: anybody showmount -e butterfinger successful.
8/20/2001 14:44:46 EDT, nfs: anybody exit successful.
8/20/2001 14:44:59 EDT, nfs: anybody mount butterfinger.stu.edu (/ export foo) (/ foo) successful.
8/20/2001 14:44:59 EDT, nfs: anybody exit successful.
8/20/2001 14:45:51 EDT, r-commands: anybody rlogin butterfinger guest successful.
8/20/2001 14:46:03 EDT, login-shell: guest ls nil successful.
8/20/2001 14:46:14 EDT, login-shell: guest cat (important) successful.
8/20/2001 14:46:25 EDT, login-shell: guest write important trash t successful.
8/20/2001 14:46:35 EDT, login-shell: guest logout successful.
8/20/2001 14:46:35 EDT, login-shell: guest exit successful.
8/20/2001 14:46:35 EDT, r-commands: anybody exit successful.
8/20/2001 14:47:06 EDT, console: anybody login root butterfinger.stu.edu successful.
8/20/2001 14:47:18 EDT, login-shell: root cat (/ var log) successful.

Figure 8: Sample log generated by the simulation for one host

In addition to executing directives on simulated hosts, the simulation allows one to query
the state of the simulation. There are queries to list commands available to a user,
determine whether an account exists on a host, determine whether a host is listening on a
port, and determine whether a file exists and has certain information in it. This capability
might be used if one wishes to interleave planning with execution.

Verifying hypotheses by searching log files

The final step of diagnosis is to match simulated log entries from viable attack
hypotheses to records from the victim system.

One way system administrators diagnose attacks is by running a tool such as Ethereal13 or
Review14 on tcpdump logs to reconstruct each session and examining the resulting
command-line traces to try to find the attack and how it was accomplished. One problem
with this approach is that the logs can include hundreds of potentially relevant sessions.15

13 http://www.ethereal.com/.
14 http://www.net.ohio-state.edu/security/talks/1997-06_review_first/paper/paper.html.
15 In general, it is infeasible to keep network traffic forever, but it is possible to keep some of it. Some sites
keep several days’ worth. So we assume the user or system administrator detected the problem soon
enough after the attack occurred that this site still has the data.

12

We aim to simplify this task by automatically matching simulated logs to reconstructed
sessions.

One issue to address in the log matching process is partial ordering of attack steps. In
general, potential explanations generated by the planner will be partially ordered. For
example, if several files are to be modified, the order in which they are changed usually
does not matter. During planning it is more efficient not to commit to a particular order.

Even though the planner might be indifferent to the order of certain steps, some order
must be specified for execution. This presents a design choice. If the simulation is given
only one possible linear order of a plan, then the pattern matcher becomes responsible to
search for all the possible orders of the resulting log entries. To do so, the pattern matcher
would need to be able to reason about the ordering constraints. Likewise, if the
simulation were given a partially ordered plan, it would have to be able to generate the
alternative linearizations. We decided that the best alternative is making the planner send
to the simulation all possible linearizations of each plan. The simulation then passes the
results of successfully simulated executions to the pattern matcher. This makes pattern
matching much simpler. Because some linearizations turn out not to be executable, this
design also reduces the number of passes through the log files.

Intelligent pattern matching involves two aspects: exploiting serial position in the pattern
being matched, and partial pattern matching.

Exploiting serial position in the example logs is straightforward. It is enabled by the
assumption that the input—i.e., the output from the simulator—is in the exact order it
must be for that explanation of the attack to be valid. For example, if the explanation
indicates that someone first copied the shadow password file and then accessed a user’s
.rhosts file, then seeing the order reversed in the system logs eliminates that explanation.

Partial pattern matching is required for two reasons. First, the simulated log entries will
not match the actual session log exactly, even when the hypothesis is correct. For
example, if someone logged in as a trusted user—perhaps by surreptitiously obtaining a
password—then the hypothesis generator may only be able to guess the UID. Second, the
session including the attack might include steps that are not necessary for accomplishing
the goal; these steps will not be generated by the planner.

Belief computation is required when partial pattern matching is necessary. The planning
system we are using computes probabilities for each of the propositions contributing to a
plan [Seligman, 2000]. This information could be used to weigh partial matches, and can
be augmented with heuristics about how good each individual and sequence of matches
is. We are investigating this issue and are not prepared to comment on its solution as yet.

Related Research

Other Diagnostic Methods
Artificial Intelligence researchers have built a number of abductive diagnosis systems,
including the earliest expert systems [Josephson & Josephson, 1994]. Most diagnostic
systems use either a heuristic or a model-based approach.

13

Heuristic approaches are exemplified by early rule-based expert systems such as MYCIN
[Shortliffe, 1976]. In these systems, rules encode expert diagnostic knowledge. Rule-
based systems were found to be plagued by maintenance difficulties. Rules interact in
unexpected ways and new rules, or new clauses in existing rules, have unpredictable
consequences. This made adding new knowledge very difficult. Dealing with uncertainty
by associating belief measures with rules turned out to lead to incorrect conclusions
[Wise, 1986], precluding an important aspect of diagnosis.

Model-based diagnosis attempts to deal with some of the problems encountered by
heuristic approaches. Model-based diagnosis is based on the assumption that it is easier
to understand how a system works than to understand how to diagnose faults in it. Thus, a
system based on knowledge derived from more reliable sources than human experts
would be able to handle novel problems. An example of model-based reasoning is GDE
[deKleer, 1987]. GDE generates diagnoses that account for differences between behavior
predicted by the model, representing an ideal, and observed behavior. Reiter [1987]
describes a diagnostic method similar to GDE but based on first-order logic as a
formalized way of doing model-based diagnosis.

The main problem with model-based diagnosis is its computational complexity. For
example, Reiter’s method requires generating all possible diagnoses—there are
exponentially many of them—and proving the consistency of each one—a semi-
decidable problem. To make this approach practical it is necessary to make a number of
assumptions about the problem or the domain. One assumption is that a single fault
caused the problem. Another assumption, used in GDE, called minimality, is that
supersets of diagnoses are also diagnoses and therefore the minimal set can stand for all
of them. However, minimality implies independence and monotonicity, i.e., that a
diagnosis that includes more faults explains more symptoms. It turns out that only experts
can tell whether problems in a domain arise from single faults, or whether diagnostic
hypotheses are monotonic. Thus, model-based diagnosis has many of the same problems
as heuristic diagnosis, transformed into new concepts. See Bylander [1991] for more
discussion of these issues.

Our approach is more model-based than heuristic. We address the computational
complexity of the model in two ways. First, we only use the model to test candidate
explanations generated by the planner, not to generate the candidates. Second, our model
is an event-driven simulation, not logic-based. Therefore, it only has to predict states that
are important for rating the plausibility of the candidate explanations, not all possible
states.

AI approaches to intrusion analysis
Ho, et al. [Ho, 1998] suggest combining partial order planning and executable Petri nets
to generate attack signatures that allow unordered events in the action sequence. Their
idea is to use a planning system to construct a Petri Net representation of intrusion
scenarios and use a “searching agent” to determine whether any of the intrusions are in
progress. The benefit of partially ordered scenarios is to create a more general signature
that is possible with state transition based signatures. While this approach seems to be a
promising advance over exhaustive enumeration of possible attack sequences, the authors
do not address the matching process. As we note, giving a matcher a partially ordered

14

signature requires that the matching subsystem be capable of reasoning about possible
linearizations. The resulting computational complexity would make real time intrusion
detection impossible.

NetKuang [Zerkle, 1996] proposes to find vulnerabilities on networked computer systems
created by poor system configuration. It resembles our planning step but uses a
backward, goal-based search of the actual host computers to find the transitive closure of
vulnerable systems. Goals are privileges—such as becoming a member of a group that
would then have access to a file. Computing the transitive closure of a vulnerability or
exposure does little to help discover how an intrusion was accomplished. The means-ends
style of planning, added to the fact that NetKuang bases its planning on direct access of
configuration information (i.e., each action must be executed on the real hosts), mean this
approach could get out of control, essentially creating a worm.16 It certainly would not be
suitable for computer forensics.

Roberts [Roberts, 1995] created a plan-based simulation of malicious intruders to
generate realistic audit logs that illustrate malicious behavior. This is similar to the
purpose of our simulation. The “plan-based” notion comes from using means-ends
analysis to assemble sequences of actions to accomplish a (malicious) goal. This
simulation is geared to training systems administrators to be able to recognize patterns of
malicious behavior by showing them logs of actions that represent the behavior. Our use
of simulation is geared to helping them find these patterns when they are “a needle” in
the “haystack” of a typical week’s logs from a large enclave.

Discussion
This paper describes a way to use abstract models of computer systems to guide the
search for causes of an intrusion. A planning process generates hypotheses about how an
intrusion was accomplished. Abstract plan templates describe well-known hacker
techniques and common system administrator actions that a hacker may use (e.g., create-
new-user). Plan decomposition fills in subgoals with action templates that represent user
commands.

A hypothesis generated by the planning system can include assumptions. This is where
our approach differs from other planning-based approaches to intrusion analysis, and
from most planning systems. Assumptions are necessary because it is generally
impossible to have complete information about the state of the victim system before it
was invaded or of the knowledge of the attacker. One important use of assumptions is to
account for the possibility of insider attacks. Assumptions and the enabling conditions of
hypothesized attacks should be the first thing the forensics expert should attend to.

Because it is impossible to anticipate and encode every detail of every action in this
domain,17 we use simulation to test hypotheses and generate detailed side effects. Using
simulation allows us to avoid tampering with the victim system, although it will be most
effective if current configuration data can be extracted to initialize the simulation. We
simulate every possible linear ordering of the hypothetical intruder plan, collecting a log

16 It would seem that to obtain access to some of the files needed to compute the transitive closure of
promiscuous trust exposures, the NetKuang process would have to run at root (GUID=0) level.
17 Or in any realistic domain [Shoham, 1988].

15

of the actions of each one that successfully executes. Plans that do not execute in the
simulation are not viable explanations of the intrusion.

There are likely to be several viable hypotheses after simulation. The simulated logs from
these are compared, via pattern matching, with sessions recreated from log files from the
victim system. We are working on automated aids that should make this process much
faster than human evaluation of logs.

We have a proof-of-concept implementation of the system described in this paper. Each
part works on several representative attacks. Development effort remains in three areas:

1. System integration. The three parts of the system are not yet cleanly “glued
together.” There is also some work needed to integrate off-the-shelf tools used to
collect system configuration and vulnerability information and to translate tcpdump
files into session logs.

2. Pattern matching. Our pattern matcher is rudimentary. Extension is needed to
account for partial matches—including belief management—and to better control
repeated search of recreated sessions.

3. Knowledge engineering. The planning system needs many more templates
representing attacks. One possibility of assisting this normally time consuming task
is to use automatic text summarization techniques to convert descriptions such as
CERT advisories into attack templates.

Acknowledgements
This research was funded by The MITRE Corporation. We thank the Chief Technical
Officer, David Lehman, and the Chief Engineers for their support. We thank Dr. John
Vasak for suggesting attack generation as a research objective. Dr. Todd Wittbold
suggested the forensics application, helping us avoid wandering the wilderness of the
information security domain.

References
Bylander, T., D. Allemang, M. C. Tanner, J. R. Josephson, “The computational
complexity of abduction,” Artificial Intelligence, 49:25–60, 1991.

de Kleer, J. and B. C. Williams, “Diagnosing multiple faults,” Artificial Intelligence,
32(1):97–130, 1987.

Ghallab, M., A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, D.
Wilkins, PDDLæ the planning domain definition language, Technical report, Yale

University, 1998.

Ho, Y., D. Frincke, and D. Tobin, Planning, Petri Nets, and Intrusion Detection,
Department of Computer Science, University of Idaho, Moscow, ID, 1998.

Josephson, J. R. and S. G. Josephson, Abductive Inference, Cambridge Univ. Press, 1994.

Raiffa, H., Decision Analysis, Addison-Wesley, 1968.

Reiter, R., “A theory of diagnosis from first principles,” Artificial Intelligence,
32(1):57–96, 1987.

16

Roberts, C. C., Plan-based Simulation of Malicious Intruders on a Computer System,
Naval Postgraduate School, Monterey, CA, 1995.

Seligman, L., P. Lehner, K. Smith, C. Elsaesser and D. Mattox, “Decision-Centric
Information Monitoring,” Journal of Intelligent Information Systems, Kluwer Scientific
Publishers, 14(1), March 2000

Shoham, Y., Reasoning about change, The MIT Press, Cambridge, MA, 1988.

Shortliffe, E. H., Computer-Based Medical Consultations: MYCIN, Elsevier, 1976.

Wise, Ben P., An Experimental Comparison of Uncertain Inferences Systems, Carnegie
Mellon University, Pittsburgh PA, 1986.

Zerkle, D., K. Levitt, “NetKuang—A Multi-Host Configuration Vulnerability Checker”,
Proc. of the 6th USENIX Security Symposium. San Jose, California, July 22–25, 1996, pp.
195–204.

