
1

Automated Discovery of Process Models from
Event Logs: Review and Benchmark

Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa,

Fabrizio Maria Maggi, Andrea Marrella, Massimo Mecella, Allar Soo

Abstract—Process mining allows analysts to exploit logs of historical executions of business processes to extract insights regarding

the actual performance of these processes. One of the most widely studied process mining operations is automated process discovery.

An automated process discovery method takes as input an event log, and produces as output a business process model that captures

the control-flow relations between tasks that are observed in or implied by the event log. Various automated process discovery

methods have been proposed in the past two decades, striking different tradeoffs between scalability, accuracy and complexity of the

resulting models. However, these methods have been evaluated in an ad-hoc manner, employing different datasets, experimental

setups, evaluation measures and baselines, often leading to incomparable conclusions and sometimes unreproducible results due to

the use of closed datasets. This article provides a systematic review and comparative evaluation of automated process discovery

methods, using an open-source benchmark and covering twelve publicly-available real-life event logs, twelve proprietary real-life event

logs, and nine quality metrics. The results highlight gaps and unexplored tradeoffs in the field, including the lack of scalability of some

methods and a strong divergence in their performance with respect to the different quality metrics used.

Index Terms—Process mining, automated process discovery, survey, benchmark.

✦

1 INTRODUCTION

Modern information systems maintain detailed trails of the
business processes they support, including records of key
process execution events, such as the creation of a case or the
execution of a task within an ongoing case. Process mining
techniques allow analysts to extract insights about the actual
performance of a process from collections of such event
records, also known as event logs [1]. In this context, an event
log consists of a set of traces, each trace itself consisting of
the sequence of events related to a given case.

One of the most widely investigated process mining op-
erations is automated process discovery. An automated process
discovery method takes as input an event log, and produces
as output a business process model that captures the control-
flow relations between tasks that are observed in or implied
by the event log.

In order to be useful, such automatically discovered pro-
cess models must accurately reflect the behavior recorded in
or implied by the log. Specifically, the process model discov-
ered from an event log should be able to: (i) generate each
trace in the log, or for each trace in the log, generate a trace
that is similar to it; (ii) generate traces that are not in the log
but that are identical or similar to traces of the process that
produced the log; and (iii) not generate other traces [2]. The

• A. Augusto, M. Dumas, F.M. Maggi, A. Soo are with the University of
Tartu, Estonia.
E-mail: {adriano.augusto,marlon.dumas,f.m.maggi}@ut.ee,
allar.soo@gmail.com

• A. Augusto, R. Conforti, M. La Rosa are with the University of Mel-
bourne, Australia.
E-mail: {raffaele.conforti,marcello.larosa}@unimelb.edu.au

• A. Marrella, M. Mecella are with Sapienza Universitá di Roma, Italy.
E-mail: {marrella,mecella}@diag.uniroma1.it

Manuscript received XX; revised XX.

first property is called fitness, the second generalization and
the third precision. In addition, the discovered process model
should be as simple as possible, a property that is usually
quantified via complexity measures.

The problem of automated discovery of process models
from event logs has been intensively researched in the past
two decades. Despite a rich set of proposals, state-of-the-
art automated process discovery methods suffer from two
recurrent deficiencies when applied to real-life logs [3]:
(i) they produce large and spaghetti-like models; and (ii)
they produce models that either poorly fit the event log
(low fitness) or over-generalize it (low precision or low
generalization). Striking a tradeoff between these quality
dimensions in a robust manner has proved to be a difficult
problem.

So far, automated process discovery methods have been
evaluated in an ad hoc manner, with different authors
employing different datasets, experimental setups, evalua-
tion measures and baselines, often leading to incomparable
conclusions and sometimes unreproducible results due to
the use of non-publicly available datasets. This work aims
at filling this gap by providing: (i) a systematic review of
automated process discovery methods; and (ii) a compar-
ative evaluation of seven implementations of representa-
tive methods, using an open-source benchmark framework
and covering twelve publicly-available real-life event logs,
twelve proprietary real-life event logs, and nine quality
metrics covering all four dimensions mentioned above (fit-
ness, precision, generalization and complexity), as well as
execution time.

The outcomes of this research are a classified inventory
of automated process discovery methods and a benchmark
designed to enable researchers to empirically compare new
automated process discovery methods against existing ones

2

in a unified setting. The benchmark is provided as an open-
source command-line Java application to enable researchers
to replicate the reported experiments with minimal config-
uration effort.

The rest of the article is structured as follows. Section 2
describes the search protocol used for the systematic lit-
erature review, whereas Section 3 classifies the methods
identified in the review. Then, Section 4 introduces the
experimental benchmark and results, whereas Section 5 dis-
cusses the overall findings and Section 6 acknowledges the
threats to the validity of the study. Finally, Section 7 relates
this work to previous reviews and comparative studies in
the field and Section 8 concludes the paper and outlines
future work directions.

2 SEARCH PROTOCOL

In order to identify and classify research in the area of
automated process discovery, we conducted a Systematic
Literature Review (SLR) through a scientific, rigorous and
replicable approach as specified by Kitchenham [4].

First, we formulated a set of research questions to scope
the search, and developed a list of search strings. Next,
we ran the search strings on different data sources. Finally,
we applied inclusion criteria to select the studies retrieved
through the search.

2.1 Research questions

The objective of our SLR is to analyse research studies
addressing the problem of automated (business) process
discovery from event logs. Studies related to event log
filtering, enhancement, and decomposition are orthogonal
to automated process discovery. In this study, we focus
only on the automated discovery problem. We consider
that reviewing and comparing existing orthogonal studies
(e.g. event log pre-processing [5], [6]) deserves a separate
study. With this aim, we formulated the following research
questions:

RQ1 What methods exist for automated (business) process
discovery from event logs?

RQ2 What type of process models can be discovered by these
methods, and in which modeling language?

RQ3 Which semantic can be captured by a model discov-
ered by these methods?

RQ4 What tools are available to support these methods?
RQ5 What type of data has been used to evaluate these

methods, and from which application domains?

RQ1 is the core research question, which aims at identify-
ing existing methods to perform (business) process discov-
ery from event logs. The other questions allow us to identify
a set of classification criteria. Specifically, RQ2 categorizes
the output of a method on the basis of the type of process
model discovered (i.e., procedural, declarative or hybrid),
and the specific modeling language employed (e.g., Petri
nets, BPMN, Declare). RQ3 delves into the specific semantic
constructs supported by a method (e.g., exclusive choice,
parallelism, loops). RQ4 explores what tool support the
different methods have, while RQ5 investigates how the
methods have been evaluated and in which application
domains.

2.2 Search string development and validation

Next, we developed four search strings by deriving key-
words from our knowledge of the subject matter. We first
determined that the term “process discovery” is a very
generic term which would allow us to retrieve the majority
of methods in this area. Furthermore, we used “learning”
and “workflow” as synonyms of “discovery” and “process”
(respectively). This led to the following four search strings:
(i) “process discovery”, (ii) “workflow discovery”, (iii) “pro-
cess learning”, (iv) “workflow learning”. We intentionally
excluded the terms “automated” and “automating” in the
search strings, because these terms are often not explicitly
used.

However, this led to retrieving many more studies than
those that actually focus on automated process discovery,
e.g., studies on process discovery via workshops or inter-
views. Thus, if a query on a specific data source returned
more than one thousand results, we refined it by combin-
ing the selected search string with the term “business” or
“process mining” to obtain more focused results, e.g., “pro-
cess discovery AND process mining” or “process discovery
AND business”. According to this criterion, the final search
strings used for our search were the following:

i. “process discovery AND process mining”
ii. “process learning AND process mining”

iii. “workflow discovery”
iv. “workflow learning”

First, we applied each of the four search strings to
Google Scholar, retrieving studies based on the occurrence
of one of the search strings in the title, the keywords or the
abstract of a paper. Then, we used the following six popular
academic databases: Scopus, Web of Science, IEEE Xplore,
ACM Digital Library, SpringerLink, ScienceDirect, to double
check the studies retrieved from Google Scholar. We noted
that this additional search did not return any relevant study
that was not already discovered in our primary search. The
search was completed in December 2017.

2.3 Study selection

As a last step, as suggested by [7], [8], [9], [10], we defined
inclusion criteria to ensure an unbiased selection of relevant
studies. To be retained, a study must satisfy all the following
inclusion criteria.

IN1 The study proposes a method for automated (business)
process discovery from event logs. This criterion draws
the borders of our search scope and it is direct
consequence of RQ1.

IN2 The study proposes a method that has been implemented
and evaluated. This criterion let us exclude methods
whose properties have not been evaluated nor ana-
lyzed.

IN3 The study is published in 2011 or later. Earlier studies
have been reviewed and evaluated by De Weerdt
et al. [3], therefore, we decided to focus only on
the successive studies. Nevertheless, we performed
a mapping of the studies assessed in 2011 [3] and
their successors (when applicable), cf. Table 1.

3

IN4 The study is peer-reviewed. This criterion guarantees a
minimum reasonable quality of the studies included
in this SLR.

IN5 The study is written in English.

α, α+, α++ [11], [12], [13] α$ [14]
AGNEs Miner [15] —

(DT) Genetic Miner [16], [17] Evolutionary Tree Miner [18]
Heuristics Miner [19], [20] Heuristics Miner [21], [22], [23], [24]

ILP Miner [25] Hybrid ILP Miner [26]

TABLE 1: Methods assessed by De Weerdt et al. [3] (left) and
the respective successors (right).

Inclusion criteria IN3, IN4 and IN5 were automatically
applied through the configuration of the search engines.
After the application of the latter three inclusion criteria,
we obtained a total of 2,820 studies. Then, we skimmed title
and abstract of these studies to exclude those studies that
were clearly not compliant with IN1. As a result of this first
iteration, we obtained 344 studies.

Then, we assessed each of the 344 studies against the
inclusion criteria IN1 and IN2. The (combined) assessment
of IN1 and IN2 on the 344 selected studies was performed
independently by two authors of this paper, whose deci-
sions were compared in order to resolve inconsistencies
with the mediation of a third author, when needed. The
assessment of IN1 was based on the accurate reading of the
abstract, introduction and conclusion. On the other hand,
to determine whether a study fulfilled IN2, we relied on
the findings reported in the evaluation of the studies. As a
result of the iterations, we found 86 studies matching the
five inclusion criteria.

However, many of these studies refer to the same au-
tomated process discovery method, i.e., some studies are
either extensions, optimization, preliminaries or generaliza-
tion of another study. For such reason, we decided to group
the studies by either the last version or the most general
one. When in doubt, the grouping decision was taken after
a consultation with the main author. At the end of this
process, as shown in Table 2, 35 main groups of discovery
algorithms were identified.

The excel sheet available at https://drive.google.
com/open?id=1fW8WLXSwI2ntiPu3XVgsDI1cJUJr762G re-
ports the 344 studies found after the first iteration. For
each of these studies, we explicitly refer to the inclusion
criterion fulfilled for the study to be selected. Furthermore,
each selected study has a reference to the group it belongs
to (unless it is the main study).

Fig. 1 shows how the studies are distributed over time.
We can see that the interest in the topic of automated process
discovery grew over time with a sharp increase between
2013 and 2014, and lately declining close to the average
number of studies per year.

3 CLASSIFICATION OF METHODS

Driven by the research questions defined in Section 2.1, we
identified the following classification dimensions to survey
the methods described in the primary studies:

1) Model type (procedural, declarative, hybrid) and
model language (e.g., Petri nets, BPMN, Declare) —
RQ2

2011 2012 2013 2014 2015 2016 2017

3

7

11

16

28

Publication Year

#
S

tu
d

ie
s

Fig. 1: Number of studies over time.

2) Semantic captured in procedural models: paral-
lelism (AND), exclusive choice (XOR), inclusive
choice (OR), loop — RQ3

3) Type of implementation (standalone or plug-in, and
tool accessibility) — RQ4

4) Type of evaluation data (real-life, synthetic or ar-
tificial log, where a synthetic log is one generated
from a real-life model while an artificial log is one
generated from an artificial model) and applica-
tion domain (e.g., insurance, banking, healthcare) —
RQ5.

This information is summarized in Table 2. Each entry in
this table refers to the main study of the 35 groups found.
Also, we cited all the studies that relate to the main one.
Collectively, the information reported by Table 2 allows us
to answer the first research question: “what methods exist
for automated process discovery?”

In the remainder of this section, we proceed with survey-
ing each main study method along the above classification
dimensions, to answer the other research questions.

3.1 Model type and language (RQ2)

The majority of methods (26 out of 35) produce procedural
models. Six approaches [28], [35], [48], [51], [77], [87] dis-
cover declarative models in the form of Declare constraints,
whereas [58] produces declarative models using the WoMan
formalism. The methods in [64], [70] are able to discover
hybrid models as a combination of Petri nets and Declare
constraints.

Regarding the modeling languages of the discovered
process model, we notice that Petri nets is the predominant
one. However, more recently, we have seen the appearance
of methods that produce models in BPMN, a language
that is more practically-oriented and less technical than
Petri nets. This denotes a shift in the target audience of
these methods, from data scientists to practitioners, such as
business analysts and decision managers. Other technical
languages employed, besides Petri nets, include Causal
nets, State machines and simple Directed Acyclic Graphs,

https://drive.google.com/open?id=1fW8WLXSwI2ntiPu3XVgsDI1cJUJr762G
https://drive.google.com/open?id=1fW8WLXSwI2ntiPu3XVgsDI1cJUJr762G

4

Method Main study Year Related studies Model type Model language Semantic Constructs Implementation Evaluation
AND XOR OR Loop Framework Accessible Real-life Synth. Art.

HK Huang and Kumar [27] 2012 Procedural Petri nets X X X Standalone X X

Declare Miner Maggi et al. [28] 2012 [29], [30], [31], [32], [33], [34] Declarative Declare ProM X X X

MINERful Di Ciccio, Mecella [35] 2013 [36], [37], [38], [39] Declarative Declare ProM, Standalone X X X

Inductive Miner - Infrequent Leemans et al. [40] 2013 [41], [42], [43], [44], [45], [46], [47] Procedural Process trees X X X X ProM X X

Data-aware Declare Miner Maggi et al. [48] 2013 Declarative Declare ProM X X

Process Skeletonization Abe, Kudo [49] 2014 [50] Procedural Directly-follows graphs X X Standalone X

Evolutionary Declare Miner vanden Broucke et al. [51] 2014 Declarative Declare Standalone X

Evolutionary Tree Miner Buijs e al. [18] 2014 [52], [53], [54], [55], [56] Procedural Process trees X X X X ProM X X X

Aim Carmona, Cortadella [57] 2014 Procedural Petri nets X X X Standalone X X

WoMan Ferilli [58] 2014 [59], [60], [61], [62], [63] Declarative WoMan Standalone X X

Hybrid Miner Maggi et al. [64] 2014 Hybrid Declare + Petri nets ProM X X

Competition Miner Redlich et al. [65] 2014 [66], [67], [68] Procedural BPMN X X X Standalone X X

Direted Acyclic Graphs Vasilecas et al. [69] 2014 Procedural Directed acyclic graphs X Standalone X X

Fusion Miner De Smedt et al. [70] 2015 Hybrid Declare + Petri nets ProM X X X X

CNMining Greco et al. [71] 2015 [72] Procedural Causal nets X X X ProM X X X

alpha$ Guo et al. [14] 2015 Procedural Petri nets X X X ProM X X X

Maximal Pattern Mining Liesaputra et al. [73] 2015 Procedural Causal nets X X X ProM X X

DGEM Molka et al. [74] 2015 Procedural BPMN X X X Standalone X X

ProDiGen Vazquez et al. [75] 2015 [76] Procedural Causal nets X X X ProM X X

Non-Atomic Declare Miner Bernardi et al. [77] 2016 [78] Declarative Declare ProM X X X

RegPFA Breuker et al. [79] 2016 [80] Procedural Petri nets X X X Standalone X X X

BPMN Miner Conforti et al. [81] 2016 [82] Procedural BPMN X X X X Apromore, Standalone X X X

CSMMiner van Eck et al. [83] 2016 [84] Procedural State machines X X X ProM X X

TAU miner Li et al. [85] 2016 Procedural Petri nets X X X ProM X X

PGminer Mokhov et al. [86] 2016 Procedural Partial order graphs X X Standalone, Workcraft X X X

SQLMiner Schönig et al. [87] 2016 [88] Declarative Declare Standalone X X

ProM-D Song et al. [89] 2016 Procedural Petri nets X X X Standalone X X

CoMiner Tapia-Flores et al. [90] 2016 Procedural Petri nets X X X ProM X

Proximity Miner Yahya et al. [91] 2016 [92] Procedural Causal nets X X X ProM X X

Heuristics Miner Augusto et al. [21] 2017 [22], [23], [24], [93] Procedural BPMN X X X Apromore, Standalone X X X X

Split miner Augusto et al. [94] 2017 Procedural BPMN X X X Apromore, Standalone X X

Fodina vanden Broucke et al. [95] 2017 [96] Procedural BPMN X X X ProM X X X

Stage miner Nguyen et al. [97] 2017 Procedural Causal nets X X X Apromore, Standalone X X

Decomposed Process Miner Verbeek, van der Aalst [98] 2017 [99], [100], [101], [102], [103] Procedural Petri nets X X X X ProM X X X

HybridILPMiner van Zelst et al. [26] 2017 [104], [105] Procedural Petri nets X X X ProM X X

TABLE 2: Overview of the 35 primary studies resulting from the search (ordered by year and author).

while Declare is the most commonly-used language when
producing declarative models.

Petri nets. In [27], the authors describe an algorithm to
extract block-structured Petri nets from event logs. The
algorithm works by first building an adjacency matrix be-
tween all pairs of tasks and then analyzing the information
in it to extract block-structured models consisting of basic
sequence, choice, parallel, loop, optional and self-loop struc-
tures as building blocks. The method has been implemented
in a standalone tool called HK.

The method presented in [14] is based on the α$ algo-
rithm, which can discover invisible tasks involved in non-
free-choice constructs. The algorithm is an extension of the
well-known α algorithm, one of the very first algorithms for
automated process discovery, originally presented in [1].

In [98], the authors propose a generic divide-and-
conquer framework for the discovery of process models
from large event logs. The method partitions the event
log into smaller logs and discovers a model from each of
them. The output is then assembled from all the models
discovered from the sublogs. This method aims to produce
high quality models by reducing the overall complexity. A
range of preliminary studies [99], [100], [101], [102], [103]
widely illustrate the idea of splitting a large event log into
a collection of smaller logs to improve the performance of a
discovery algorithm.

van Zelst et al. [26], [104], [105] propose an improvement
of the ILP miner implemented in [25], their method is
based on hybrid variable-based regions. Through hybrid
variable-based regions, it is possible to vary the number of
variables used within the ILP problems being solved. Using
a different number of variables has an impact on the average
computation time for solving the ILP problem.

In [79], [80], the authors propose an approach that allows
the discovery of Petri nets using the theory of grammatical
inference. The method has been implemented as a stan-
dalone application called RegPFA.

The approach proposed in [89] is based on the obser-
vation that activities with no dependencies in an event log

can be executed in parallel. In this way, this method can
discover process models with concurrency even if the logs
fail to meet the completeness criteria. The method has been
implemented in a tool called ProM-D.

In [57], the authors propose the use of numerical abstract
domains for discovering Petri nets from large logs while
guaranteeing formal properties of the discovered models.
The technique guarantees the discovery of Petri nets that
can reproduce every trace in the log and that are minimal in
describing the log behavior.

The approach introduced in [90] addresses the problem
of discovering sound Workflow nets from incomplete logs.
The method is based on the concept of invariant occurrence
between activities, which is used to identify sets of activities
(named conjoint occurrence classes) that can be used to infer
the behaviors not exhibited in the log.

In [85], the authors leverage data carried by tokens in the
execution of a business process to track the state changes in
the so-called token logs. This information is used to improve
the performance of standard discovery algorithms.

Process trees. The Inductive Miner [40] and the Evolution-
ary Tree Miner [18] are both based on the extraction of
process trees from an event log. Concerning the former,
many different variants have been proposed during the last
years, but its first appearance is in [41]. Successively, since
that method was unable to deal with infrequent behavior,
an improvement was proposed in [40], which efficiently
drops infrequent behavior from logs, still ensuring that
the discovered model is behaviorally correct (sound) and
highly fitting. Another variant of the Inductive Miner is
presented in [42]. This variant can minimize the impact
of incompleteness of the input logs. In [44], the authors
discuss ways of systematically treating lifecycle information
in the discovery task. They introduce a process discovery
technique that is able to handle lifecycle data to distinguish
between concurrency and interleaving. The method pro-
posed in [43] provides a graphical support for navigating
the discovered model and the one described in [47] can deal
with cancelation or error-handling behaviors (i.e., with logs

5

containing traces that do not complete normally). Finally,
the variant presented in [45] and [46] combines scalability
with quality guarantees. It can be used to mine large event
logs and produces sound models.

In [18], Buijs et al. introduce the Evolutionary Tree Miner.
This method is based on a genetic algorithm that allows the
user to drive the discovery process based on preferences
with respect to the four quality dimensions of the discovered
model: fitness, precision, generalization and complexity. The
importance of these four dimensions and how to address
their balance in process discovery is widely discussed in the
related studies [52], [53], [54], [55], [56].

Causal nets. Greco et al. propose a discovery method that
returns causal nets [71], [72]. A causal net is a net where only
the causal relation between activities in a log is captured.
This method encodes causal relations gathered from an
event log and if available, background knowledge in terms
of precedence constraints over the topology of the resulting
model. A discovery algorithm is formulated in terms of
reasoning problems over precedence constraints.

In [73], the authors propose a method for automated
process discovery using Maximal Pattern Mining where
they discover recurrent sequences of events in the traces
of the log. Starting from these patterns they build process
models in the form of causal nets.

ProDiGen, a standalone miner by Vazquez et al. [75],
[76], allows users to discover causal nets from event logs us-
ing a genetic algorithm. The algorithm is based on a fitness
function that takes into account completeness, precision and
complexity and specific crossover and mutation operators.

Another method that produces causal nets is the Prox-
imity Miner, presented in [91], [92]. This method extracts
behavioral relations between the events of the log which are
then enhanced using inputs from domain experts.

Finally, in [97], the authors propose a method to discover
causal nets that optimizes the scalability and interpretability
of the outputs. The process under analysis is decomposed
into a set of stages, such that each stage can be mined
separately. The proposed technique discovers a stage de-
composition that maximizes modularity.

State machines. The CSM Miner, discussed in [83], [84],
discovers state machines from event logs. Instead of fo-
cusing on the events or activities that are executed in the
context of a particular process, this method concentrates on
the states of the different process perspectives and discover
how they are related with each other. These relations are
expressed in terms of Composite State Machines. The CSM
Miner provides an interactive visualization of these multi-
perspective state-based models.

BPMN models. In [82], Conforti et al. present the BPMN
Miner, a method for the automated discovery of BPMN
models containing sub-processes, activity markers such
as multi-instance and loops, and interrupting and non-
interrupting boundary events (to model exception han-
dling). The method has been subsequently improved in [81]
to make it robust to noise in event logs.

Another method to discover BPMN models has been
presented in [74]. In this approach, a hierarchical view
on process models is formally specified and an evolution

strategy is applied on it. The evolution strategy, which is
guided by the diversity of the process model population,
efficiently finds the process models that best represent a
given event log.

A further method to discover BPMN models is the
Dynamic Constructs Competition Miner [65], [67], [68]. This
method extends the Constructs Competition Miner pre-
sented in [66]. The method is based on a divide-and-conquer
algorithm which discovers block-structured process models
from logs.

In [94], the authors propose a discovery method that
produces simple process models with low branching com-
plexity and consistently high and balanced fitness, precision
and generalization. The approach combines a technique to
filter the directly-follows graph induced by an event log,
with an approach to identify combinations of split gateways
that accurately capture the concurrency, conflict and causal
relations between neighbors in the directly-follows graph.

Fodina [95], [96] is a discovery method based on the
Heuristics Miner [20]. However, differently from the latter,
Fodina is more robust to noisy data, is able to discover
duplicate activities, and allows for flexible configuration
options to drive the discovery according to end user inputs.

In [23], the authors present the Flexible Heuristics Miner.
This method can discover process models containing non-
trivial constructs but with a low degree of block structured-
ness. At the same time, the method can cope well with noise
in event logs. The discovered models are a specific type of
Heuristics nets where the semantics of splits and joins is
represented using split/join frequency tables. This results
in easy to understand process models even in the presence
of non-trivial constructs and log noise. The discovery al-
gorithm is based on that of the original Heuristics Miner
method [20]. In [24], the method presented in [23] has been
improved as anomalies were found concerning the validity
and completeness of the resulting process model. The im-
provements have been implemented in the Updated Heuris-
tics Miner. A data-aware version of the Heuristics Miner
that takes into consideration data attached to events in a log
has been presented in [22]. Finally, in [21], [93], the authors
propose an improvement of the Heuristics Miner algorithm
to separate the objective of producing accurate models and
that of ensuring their structuredness and soundness. Instead
of directly discovering a structured process model, the ap-
proach first discovers accurate, possibly unstructured (and
unsound) process models, and then transforms the resulting
process model into a structured (and sound) one.

Declarative models. In [29], the authors present the first
basic approach for mining declarative process models ex-
pressed using Declare constraints [106], [107]. This approach
was improved in [28] using a two-phase approach. The first
phase is based on an apriori algorithm used to identify
frequent sets of correlated activities. A list of candidate
constraints is built on the basis of the correlated activity
sets. In the second phase, the constraints are checked by
replaying the log on specific automata, each accepting only
those traces that are compliant to one constraint. Those
constraints satisfied by a percentage of traces higher than
a user-defined threshold, are discovered. Other variants of
the same approach are presented in [30], [31], [32], [33], [34].

6

The technique presented in [30] leverages apriori knowledge
to guide the discovery task. In [31], the approach is adapted
to be used in cross-organizational environments in which
different organizations execute the same process in different
variants. In [32], the author extends the approach to discover
metric temporal constraints, i.e., constraints taking into ac-
count the time distance between events. Finally, in [33], [34],
the authors propose mechanisms to reduce the execution
times of the original approach presented in [28].

MINERful [35], [36], [37] discovers Declare constraints
using a two-phase approach. The first phase computes
statistical data describing the occurrences of activities and
their interplay in the log. The second one checks the validity
of Declare constraints by querying such a statistic data
structure (knowledge base). In [38], [39], the approach is ex-
tended to discover target-branched Declare constraints, i.e.,
constraints in which the target parameter is the disjunction
of two or more activities.

The approach presented in [48] is the first approach
for the discovery of Declare constraints with an extended
semantics that take into consideration data conditions. The
data-aware semantics of Declare presented in this paper is
based on first-order temporal logic. The method presented
in [77], [78] is based on the use of discriminative rule mining
to determine how the characteristics of the activity lifecycles
in a business process influence the validity of a Declare
constraint in that process.

Other approaches for the discovery of Declare con-
straints have been presented in [51], [87]. In [51], the authors
present the Evolutionary Declare Miner that implements the
discovery task using a genetic algorithm. The SQLMiner,
presented in [87], is based on a mining approach that
directly works on relational event data by querying a log
with standard SQL. By leveraging database performance
technology, the mining procedure is extremely fast. Queries
can be customized and cover process perspectives beyond
control flow [88].

The WoMan framework, proposed by Ferilli in [58] and
further extended in the related studies [59], [60], [61], [62],
[63], includes a method to learn and refine process models
from event logs, by discovering first-order logic constraints.
It guarantees incrementality in learning and adapting the
models, the ability to express triggers and conditions on the
process tasks and efficiency.

Further approaches. In [49], [50], the authors introduce a
monitoring framework for automated process discovery. A
monitoring context is used to extract traces from relational
event data and attach different types of metrics to them.
Based on these metrics, traces with certain characteristics
can be selected and used for the discovery of process models
expressed as directly-follows graphs.

Vasilecas et al. [69] present a method for the extraction of
directed acyclic graphs from event logs. Starting from these
graphs, they generate Bayesian belief networks, one of the
most common probabilistic models, and use these networks
to efficiently analyze business processes.

In [86], the authors show how conditional partial order
graphs, a compact representation of families of partial or-
ders, can be used for addressing the problem of compact
and easy-to-comprehend representation of event logs with

data. They present algorithms for extracting both the control
flow as well as relevant data parameters from a given event
log and show how conditional partial order graphs can be
used to visualize the obtained results. The method has been
implemented as a Workcraft plug-in and as a standalone
application called PGminer.

The Hybrid Miner, presented in [64], puts forward the
idea of discovering a hybrid model from an event log
based on the semantics defined in [108]. According to such
semantics, a hybrid process model is a hierarchical model,
where each node represents a sub-process, which may be
specified in a declarative or procedural way. Petri nets are
used for representing procedural sub-processes and Declare
for representing declarative sub-processes.

[70] proposes an approach for the discovery of hybrid
models based on the semantics proposed in [109]. Dif-
ferently from the semantics introduced in [108], where a
hybrid process model is hierarchical, the semantics defined
in [109] is devoted to obtain a fully mixed language, where
procedural and declarative constructs can be connected with
each other.

3.2 Procedural language constructs (RQ3)

All the 26 methods that discover a procedural model can
detect the basic control-flow structure of sequence. Out of
these methods, only four can also discover inclusive choices,
but none in the context of non-block-structured models. In
fact, [18], [40] are able to directly identify block-structured
inclusive choices (using process trees), while [81], [98] can
detect this construct only when used on top of the methods
in [18] or [40] (i.e., indirectly).

The remaining 22 methods can discover constructs for
parallelism, exclusive choice and loops, with the exception
of [49], which can detect exclusive choice and loops but not
parallelism, [86], which can detect parallelism and exclusive
choice but not loops, and [69], which can discover exclusive
choices only.

3.3 Implementation (RQ4)

Over 50% of the methods (19 out of 35) provide an imple-
mentation as a plug-in for the ProM platform. 1 The reason
behind the popularity of ProM can be explained by its open-
source and portable framework, which allows researchers
to easily develop and test new discovery algorithms. Also,
ProM is the first software tool for process mining. One of
the methods which has a ProM implementation [35] is also
available as standalone tool. The works [21], [81], [94], [97]
provide both a standalone implementation and a further
implementation as a plug-in for Apromore.2 Apromore is
an online process analytics platform also available under
an open-source license. Finally, one method [86] has been
implemented as a plug-in for Workcraft,3 a platform for
designing concurrent systems.

Notice that 22 tools out of 35 are made publicly available
to the community. These exclude 4 ProM plug-ins and 9
standalone tools.

1. http://promtools.org
2. http://apromore.org
3. http://workcraft.org

http://promtools.org
http://apromore.org
http://workcraft.org

7

3.4 Evaluation data and domains (RQ5)

The surveyed methods have been evaluated using three
types of event logs: (i) real-life logs, i.e., logs of real-life
process execution data; (ii) synthetic logs, generated by
replaying real-life process models; and (iii) artificial logs,
generated by replaying artificial models.

We found that the majority of methods (31 out of 35)
were tested using real-life logs. Among them, 11 approaches
(cf. [21], [27], [28], [35], [69], [70], [71], [77], [79], [89],
[95]) were further tested against synthetic logs, while 13
approaches (cf. [14], [18], [21], [57], [58], [65], [70], [73],
[74], [81], [85], [86], [98]) against artificial logs. Finally, one
method was tested both on synthetic and artificial logs only
(cf. [75]), while [26], [90] were tested on artificial logs and
[51] on synthetic logs only. Among the methods that employ
real-life logs, we observed a growing trend in employing
publicly-available logs, as opposed to private logs which
hamper the replicability of the results.

Concerning the application domains of the real-life logs,
we noticed that several methods used a selection of the
logs made available by the Business Process Intelligence
Challenge (BPIC), which is held annually as part of the
BPM Conference series. These logs are publicly available
at the 4TU Centre for Research Data,4 and cover domains
such as healthcare (used by [21], [35], [40], [48], [73], [87],
[94]), banking (used by [21], [35], [40], [64], [69], [74], [79],
[83], [87], [94], [98]), IT support management in automotive
(cf. [21], [77], [79], [94]), and public administration (cf. [18],
[28], [40], [57], [98]). A public log pertaining to a process
for managing road traffic fines (also available at the 4TU
Centre for Research Data) was used in [21], [94]. In [86],
the authors use logs from various domains available at
http://www.processmining.be/actitrac/.

Besides these publicly-available logs, a range of private
logs were also used, originating from different domains
such as logistics (cf. [89], [91]), traffic congestion dynam-
ics [71], employers habits (cf. [58], [83]), automotive [14],
healthcare [21], [74], [94], and project management and
insurance (cf. [49], [81]).

4 BENCHMARK

Using a selection of the methods surveyed in this paper,
we conducted an extensive benchmark to identify relative
advantages and tradeoffs. In this section, we justify the
criteria of the methods selection, describe the datasets, the
evaluation setup and metrics, and present the results of the
benchmark. These results, consolidated with the findings
from the systematic literature review, are then discussed in
Section 5.

4.1 Methods selection

Assessing all the methods that resulted from the search
would not be possible due to the heterogeneous nature
of the inputs required and the outputs produced. Hence,
we decided to focus on the largest subset of comparable
methods. The methods considered were the ones satisfying
the following criteria:

4. https://data.4tu.nl/repository/collection:event_logs_real

i an implementation of the method is publicly accessi-
ble;

ii the output of the method is a BPMN model or a Petri
net.

Techniques that produce BPMN models were retained
because it is a de facto and de jure standard for process
modeling, while techniques that produce Petri nets were
also included due to the fact that a large number of ex-
isting process discovery techniques produce Petri nets as
discussed above.

The application of these criteria resulted in an initial
selection of the following methods (corresponding to one
third of the total studies): α$ [14], Inductive Miner [41], Evo-
lutionary Tree Miner [18], Fodina [95], Structured Heuristic
Miner 6.0 [21], Split Miner [94], Hybrid ILP Miner [105],
RegPFA [79], Stage Miner [97], BPMN Miner [81], Decom-
posed Process Mining [102].

A posteriori, we excluded the latter four due to the fol-
lowing reasons: Decomposed Process Mining, BPMN Miner,
and Stage Miner were excluded as such approaches follow
a divide-and-conquer approach which could be applied on
top of any discovery method to improve its results; on
the other hand, we excluded RegPFA because its output
is a graphical representation of a Petri net (DOT), which
could not be seamlessly serialized into the standard Petri
net format.

We also considered including commercial process min-
ing tools in the benchmark. Specifically, we investigated
Disco,5 Celonis,6 Minit,7 and myInvenio.8 Disco and Minit
are not able to produce business process models from event
logs. Instead, they can only produce directly-follows graphs,
which do not have an execution semantics. Indeed, when
a given node (task) has several incoming arcs, a directly-
follows graph does not tell us whether or not the task in
question should wait for all its incoming tasks to complete,
or just for one of them, or a subset of them. A similar
remark applies to split points in the directly-follows graph.
Given their lack of execution semantics, it is not possible
to directly translate a directly-follows graph into a BPMN
models or a Petri net. Instead, one has to determine what is
the intended behavior at each split and join point, which is
precisely what several of the automated process discovery
techniques based on directly-follows graph do (e.g., the
Inductive Miner or Split Miner).

Celonis and myInvenio can produce BPMN process
models but all they do is to insert OR (inclusive) gateways
at the split and join points of the process map. To the
best of our knowledge, there is no existing technique for
measuring precision and fitness (three key measures used
for evaluating automated process discovery methods) for
BPMN models with OR-joins. When the model does not
contain OR-joins, or when the OR-joins are arranged in
block-structured topologies, it is possible to translate the
BPMN models to Petri nets using existing mappings from
BPMN to Petri nets [110]. Once the model is translated as
a Petri net, it becomes possible to use existing techniques

5. http://fluxicon.com/disco
6. http://www.celonis.com
7. http://minitlabs.com/
8. http://www.my-invenio.com

http://www.processmining.be/actitrac/
https://data.4tu.nl/repository/collection:event_logs_real
http://fluxicon.com/disco
http://www.celonis.com
http://minitlabs.com/
http://www.my-invenio.com

8

for assessing fitness and precision available for Petri nets.
But when OR-joins appear in arbitrary topologies, including
unstructured cycles, this approach cannot be applied.

In conclusion, the final selection of methods for the
benchmark contained: α$, Inductive Miner (IM), Evolution-
ary Tree Miner (ETM), Fodina (FO), Structured Heuristic
Miner 6.0 (S-HM6), Split Miner (SM), and Hybrid ILP Miner
(HILP).

4.2 Evaluation metrics

For all the selected discovery methods we measured the
following accuracy and complexity metrics: recall (a.k.a. fit-
ness), precision, generalization, complexity, and soundness.

Fitness measures the ability of a model to reproduce the
behavior contained in a log. Under trace semantics, a fitness
of 1 means that the model can reproduce every trace in
the log. In this paper, we use the fitness measure proposed
in [111], which measures the degree to which every trace in
the log can be aligned (with a small number of errors) with a
trace produced by the model. In other words, this measures
tells us how close on average a given trace in the log can be
aligned with a trace that can be generated by the model.

Precision measures the ability of a model to generate only
the behavior found in the log. A score of 1 indicates that any
trace produced by the model is contained in the log. In this
paper, we use the precision measure defined in [112], which
is based on similar principles as the above fitness measure.
Recall and precision can be combined into a single measure
known as F-score, which is the harmonic mean of the two

measurements
(

2 · Fitness·Precision

Fitness+Precision

)

.

Generalization refers to the ability of an automated dis-
covery algorithm to discover process models that generate
traces that are not present in the log but that can be pro-
duced by the business process under observation. In other
words, an automated process discovery algorithm has a
high generalization on a given event log if it is able to
discover a process model from the event log, which gen-
erates traces that: (i) are not in the event log, but (ii) can be
produced by the business process that produced the event
log. Note that unlike fitness and precision, generalization
is a property of an algorithm on an event log, and not
a property of the model produced by an algorithm when
applied to a given event log.

In line with the above definition, we use k-fold cross-
validation [113] to measure generalization. This k-fold cross-
validation approach to measure generalization has been ad-
vocated in several studies in the field of automated process
discovery [2], [114], [115], [116]. Concretely, we divide the
log into k parts, we discover a model from k − 1 parts
(i.e., we hold-out one part), and measure the fitness of the
discovered model against the part held out. This is repeated
for every possible part held out. Generalization is the mean
of the fitness values obtained for each part held out. A
generalization of one means that the discovered model
produces traces in the observed process, even if those traces
are not in the log from which the model was discovered. The
algorithm we implemented to measure the generalization
computes the folds of each log randomly, i.e., starting from
the complete log a random set of traces is selected to com-
pose each fold. To compare the generalization of different

discovered methods, we ensured that the folds given as
input to each discovery method were always the same. In
the results reported below, we use a value of k = 3 for
performance reasons (as opposed to the classical value of
k = 10). The fitness calculation for most of the algorithm-log
pairs is slow, and repeating it 10 times for every algorithm-
log combination is costly. To test if the results could be
affected by this choice of k, we used k = 10 for SM and IM
on the BPIC12 log, and found that the value of the 10-fold
generalization measure was within one percentage point of
that of the 3-fold generalization measure.

Complexity quantifies how difficult it is to understand
a model. Several complexity metrics have been shown to
be (inversely) related to understandability [117], including
Size (number of nodes); Control-Flow Complexity (CFC) (the
amount of branching caused by gateways in the model)
and Structuredness (the percentage of nodes located directly
inside a block-structured single-entry single-exit fragment).
In the context of this work, we will consider each metric
independently since there is no established approach to
combine these metrics in a single complexity metric.

In the following we provide the individual formulas
used to compute these three metrics:

• Size: SN (G) = |N |, where N is the set of nodes of
the process model G;

• CFC: CFC(G) =
∑

c∈Sand
1 +

∑

c∈Sxor
|cxor•| +

∑

c∈Sor
2|cor•| − 1, where Sand, Sxor, and Sor are the

sets of AND, XOR, and OR connectors of the process
model G and • identifies the nodes directly reachable
from a connector;

• Structuredness: Φ = 1 − SN (G′)
SN (G) , where G is the

original process model and G′ is the reduced process
model.

Lastly, soundness assesses the behavioral quality of a
process model by reporting whether the model violates one
of the three soundness criteria [118]: i) option to complete,
ii) proper completion, and iii) no dead transitions.

4.3 Setup and datasets

To guarantee the reproducibility of our benchmark and to
provide the community with a tool for comparing new
methods with the ones evaluated in this paper, we de-
veloped a command-line Java application that performs
measurements of accuracy and complexity metrics on the
discovery methods selected above, against all the logs used
in our benchmark. The only exception was ETM, which we
could not embed in our tool due to its complex configuration
settings, hence we relied on its ProM implementation. The
tool can be easily extended to incorporate new logs. More-
over, one can include additional discovery methods and
metrics by implementing two predefined interfaces. This
is possible through the use of Java reflection, which allows
the tool to automatically detect the presence of new algo-
rithms and metrics. More information about the interfaces
to implement, how to include them in the benchmark, and
the benchmark source code structure are available in the
Readme files provided with the tool.9

9. The tool and its source code are available at https://doi.org/10.
5281/zenodo.1219321. For the latest version of the source code refer to
https://github.com/raffaeleconforti/ResearchCode.

https://doi.org/10.5281/zenodo.1219321
https://doi.org/10.5281/zenodo.1219321
https://github.com/raffaeleconforti/ResearchCode

9

Log Total Dist. Total Dist. Tr. length
Name traces traces (%) events events min avg max

BPIC12 13,087 33.4 262,200 36 3 20 175
BPIC13cp 1,487 12.3 6,660 7 1 4 35
BPIC13inc 7,554 20.0 65,533 13 1 9 123
BPIC14f 41,353 36.1 369,485 9 3 9 167
BPIC151f 902 32.7 21,656 70 5 24 50
BPIC152f 681 61.7 24,678 82 4 36 63
BPIC153f 1,369 60.3 43,786 62 4 32 54
BPIC154f 860 52.4 29,403 65 5 34 54
BPIC155f 975 45.7 30,030 74 4 31 61
BPIC17f 21,861 40.1 714,198 41 11 33 113
RTFMP 150,370 0.2 561,470 11 2 4 20
SEPSIS 1,050 80.6 15,214 16 3 14 185

TABLE 3: Descriptive statistics of public logs.

For our evaluation, we used two datasets. The first is
the collection of real-life event logs publicly available at the
4TU Centre for Research Data as of March 2017.10 Out of
this collection, we considered the BPI Challenge (BPIC) logs,
the Road Traffic Fines Management Process (RTFMP) log, and
the SEPSIS Cases log. These logs record executions of busi-
ness processes from a variety of domains, e.g., healthcare,
finance, government and IT service management. For our
evaluation we held out those logs that do not explicitly cap-
ture business processes (i.e., the BPIC 2011 and 2016 logs),
and those contained in other logs (e.g., the Environmental
permit application process log). Finally, in seven logs (i.e., the
BPIC14, BPIC15 collection, and BPIC17 logs), we applied the
filtering technique proposed in [119] to remove infrequent
behavior.11 This filtering step was necessary since all the
models discovered by the considered methods exhibited
very poor accuracy (F-score close to 0 or not computable)
on the above logs, making the comparison useless.

Table 3 reports the characteristics of the twelve logs used.
These logs are widely heterogeneous ranging from simple to
very complex, with a log size ranging from 681 traces (for
the BPIC152f log) to 150.370 traces (for the RTFMP log). A
Similar variety can be observed in the percentage of distinct
traces, ranging from 0,2% to 80,6%, and the number of event
classes (i.e., activities executed within the process), ranging
from 7 to 82. Finally, the length of a trace also varies from
very short, with traces containing only one event, to very
long with traces containing 185 events.

The second dataset is composed of twelve proprietary
logs sourced from several companies around the world.
Table 4 reports the characteristics of these logs. Also in this
case, the logs are quite heterogeneous, with the number of
traces (and the percentage of distinct traces) ranging from
225 (of which 99,9% distinct) to 787.657 (of which 0,01%
distinct). The number of recorded events varies between
4.434 and 2.099.835, whilst the number of event classes
ranges from 8 to 310.

We performed two types of evaluations. In the first
evaluation, we compared all the process discovery methods
using their default parameters. In the second one, we anal-
ysed to what extent each discovery method could improve
its output using hyper-parameter optimization. Due to the

10. https://data.4tu.nl/repository/collection:event_logs_real
11. This technique uses a parameter called “percentile” which refers

to the percentile of the distribution of the frequency of the arcs in the
directly-follows graph extracted from the log, to automatically deter-
mine the frequency threshold for the filtering. We set this parameter to
its default value of 12.5%.

Log Total Dist. Total Dist. Tr. length
Name traces traces (%) events events min avg max
PRT1 12,720 8.1 75,353 9 2 5 64
PRT2 1,182 97.5 46,282 9 12 39 276
PRT3 1,600 19.9 13,720 15 6 8 9
PRT4 20,000 29.7 166,282 11 6 8 36
PRT5 739 0.01 4,434 6 6 6 6
PRT6 744 22.4 6,011 9 7 8 21
PRT7 2,000 6.4 16,353 13 8 8 11
PRT8 225 99.9 9,086 55 2 40 350
PRT9 787,657 0.01 1,808,706 8 1 2 58
PRT10 43,514 0.01 78,864 19 1 1 15
PRT11 174,842 3.0 2,099,835 310 2 12 804
PRT12 37,345 7.5 163,224 20 1 4 27

TABLE 4: Descriptive statistics of proprietary logs.

extremely-long execution times, it was prohibitive to hyper-
parameter optimize the α$ and ETM methods. So we held
out these two methods from the second evaluation. Addi-
tionally, we excluded HILP since we did not find any input
parameters which could be used to optimize the F-score of
the models produced. For the remaining four methods, we
evaluated the following input parameters: the two filtering
thresholds required as input by SM and S-HM6, the single
threshold required as input by IM, and the threshold and
the boolean flag required as input by FO. All the thresholds
ranged from 0.0 to 1.0. Specifically, to appreciate variance in
the discovered models, we used steps of 0.05 for IM, steps
of 0.10 for the thresholds of SM and FO, and steps of 0.20 for
S-HM6. For FO, we considered all the possible combinations
of the filtering threshold and the boolean flag, while for S-
HM6 we used steps of 0.20. In terms of logs, in the second
evaluation we considered all logs except PRT11, because all
methods failed to generate a model from this log (except
ETM), as evidenced by the results of the first evaluation
with default parameters.

We performed the first evaluation on a 6-core Intel Xeon
CPU E5-1650 v3 @ 3.50GHz with 128GB RAM running Java
8. We allocated a total of 16GB to the heap space and 10GB
to the stack space. We enforced a timeout of four hours for
the discovery phase and one hour for measuring each of the
quality metrics. We ran the second evaluation on a 6-core
Intel Xeon CPU E5-2699 v4 @ 2.20GHz with 128GB RAM
running Java 8, and we increased the heap and stack spaces
to 25GB and 15GB respectively, using a timeout of 24 hours
for each method-log evaluation.

4.4 Benchmark results

The results of the default parameters evaluation are shown
in Tables 5, 6, 7, and 8. In the tables, we used “-” to report
that a given accuracy or complexity measurement could
not be reliably obtained due to syntactical or behavioral
issues in the discovered model (i.e., a disconnected model or
an unsound model). Additionally, to report the occurrence
of a timeout or an exception during the execution of a
discovery method we used “t/o” and “ex”, respectively. We
highlighted the best score for each measure on each log in
bold, the second-best score in italic, and we summarized
these achievements in Table 9.

The first evaluation shows the absence of a clear winner
among the discovery methods tested, although almost each
of them clearly showed specific benefits and drawbacks.

HILP experienced severe difficulties in producing useful
outputs. The method often produced disconnected models

https://data.4tu.nl/repository/collection:event_logs_real

10

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound Time(s)

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.98 0.50 0.66 0.98 59 37 1.00 yes 6.60

ETM 0.44 0.82 0.57 t/o 67 16 1.00 yes 14,400
BPIC12 FO - - - - 102 117 0.13 no 9.66

S-HM6 - - - - 88 46 0.40 no 227.80
HILP - - - - 300 460 - no 772.20
SM 0.97 0.72 0.83 0.97 63 43 0.73 yes 0.58
α$ - - - - 18 9 - no 10,112.60
IM 0.82 1.00 0.90 0.82 9 4 1.00 yes 0.10

ETM 1.00 0.70 0.82 t/o 38 38 1.00 yes 14,400
BPIC13cp FO - - - - 25 23 0.60 no 0.06

S-HM6 0.94 0.99 0.97 0.94 15 6 1.00 yes 130.0
HILP - - - - 10 3 - yes 0.10
SM 0.99 0.93 0.96 0.99 13 7 1.00 yes 0.03
α$ 0.35 0.91 0.51 t/o 15 7 0.47 yes 4,243.14
IM 0.92 0.54 0.68 0.92 13 7 1.00 yes 1.00

ETM 1.00 0.51 0.68 t/o 32 144 1.00 yes 14,400
BPIC13inc FO - - - - 43 54 0.77 no 1.41

S-HM6 0.91 0.96 0.93 0.91 9 4 1.00 yes 0.80
HILP - - - - 24 9 - yes 2.50
SM 0.98 0.92 0.95 0.98 15 10 1.00 yes 0.23
α$ 0.47 0.63 0.54 t/o 62 36 0.31 yes 14,057.48
IM 0.89 0.64 0.74 0.89 31 18 1.00 yes 3.40

ETM 0.61 1.00 0.76 t/o 23 9 1.00 yes 14,400
BPIC14f FO - - - - 37 46 0.38 no 27.73

S-HM6 - - - - 202 132 0.73 no 147.40
HILP - - - - 80 59 - no 7.30
SM 0.77 0.91 0.84 0.78 24 15 1.00 yes 0.59
α$ 0.71 0.76 0.73 t/o 219 91 0.22 yes 3,545.9
IM 0.97 0.57 0.71 0.96 164 108 1.00 yes 0.60

ETM 0.56 0.94 0.70 t/o 67 19 1.00 yes 14,400
BPIC151f FO 1.00 0.76 0.87 0.94 146 91 0.25 yes 1.02

S-HM6 - - - - 204 116 0.56 no 128.10
HILP - - - - 282 322 - no 4.40
SM 0.90 0.88 0.89 0.89 114 43 0.48 yes 0.48
α$ - - - - 348 164 0.08 no 8,787.48
IM 0.93 0.56 0.70 0.94 193 123 1.00 yes 0.70

ETM 0.62 0.91 0.74 t/o 95 32 1.00 yes 14,400
BPIC152f FO - - - - 195 159 0.09 no 0.61

S-HM6 0.98 0.59 0.74 0.97 259 150 0.29 yes 163.2
HILP - - - - - - - - t/o
SM 0.77 0.90 0.83 0.75 124 41 0.32 yes 0.25
α$ - - - - 319 169 0.03 no 10,118.15
IM 0.95 0.55 0.70 0.95 159 108 1.00 yes 1.30

ETM 0.68 0.88 0.76 t/o 84 29 1.00 yes 14,400
BPIC153f FO - - - - 174 164 0.06 no 0.89

S-HM6 0.95 0.67 0.79 0.95 159 151 0.13 yes 139.90
HILP - - - - 433 829 - no 1,062.90
SM 0.78 0.94 0.85 0.78 92 29 0.61 yes 0.36
α$ - - - - 272 128 0.13 no 6,410.25
IM 0.96 0.58 0.73 0.96 162 111 1.00 yes 0.7

ETM 0.65 0.93 0.77 t/o 83 28 1.00 yes 14,400
BPIC154f FO - - - - 157 127 0.14 no 0.50

S-HM6 0.99 0.64 0.78 0.99 209 137 0.37 yes 136.90
HILP - - - - 364 593 - no 14.7
SM 0.73 0.91 0.81 0.74 98 31 0.31 yes 0.25
α$ 0.62 0.75 0.68 t/o 280 126 0.10 yes 7,603.19
IM 0.94 0.18 0.30 0.94 134 95 1.00 yes 1.50

ETM 0.57 0.94 0.71 t/o 88 18 1.00 yes 14,400
BPIC155f FO 1.00 0.71 0.83 1.00 166 125 0.15 yes 0.56

S-HM6 1.00 0.70 0.82 1.00 211 135 0.35 yes 141.90
HILP - - - - - - - - t/o
SM 0.79 0.94 0.86 0.78 105 30 0.33 yes 0.27
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.98 0.70 0.82 0.98 35 20 1.00 yes 13.30

ETM 0.76 1.00 0.86 t/o 42 4 1.00 yes 14,400
BPIC17f FO - - - - 98 82 0.25 no 64.33

S-HM6 0.95 0.62 0.75 0.94 42 13 0.97 yes 143.20
HILP - - - - 222 330 - no 384.50
SM 0.96 0.81 0.88 0.96 39 21 1.00 yes 2.53

TABLE 5: Default parameters evaluation results for the BPIC logs.

11

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound? Time (sec)

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.99 0.70 0.82 0.99 34 20 1.00 yes 10.90

ETM 0.99 0.92 0.95 t/o 57 32 1.00 yes 14,400
RTFMP FO 1.00 0.94 0.97 0.97 31 32 0.19 yes 2.57

S-HM6 0.98 0.95 0.96 0.98 163 97 1.00 yes 262.70
HILP - - - - 57 53 - no 3.50
SM 1.00 0.97 1.00 1.00 25 18 0.40 yes 1.25
α$ - - - - 146 156 0.01 no 3,883.12
IM 0.99 0.45 0.62 0.96 50 32 1.00 yes 0.40

ETM 0.83 0.66 0.74 t/o 108 101 1.00 yes 14,400
SEPSIS FO - - - - 60 63 0.28 no 0.17

S-HM6 0.92 0.42 0.58 0.92 279 198 1.00 yes 242.70
HILP - - - - 87 129 - no 1.60
SM 0.76 0.77 0.77 0.77 39 25 0.82 yes 0.05

TABLE 6: Default parameters evaluation results for the public logs.

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound Time(s)

α$ - - - t/o 45 34 - no 11,168.54
IM 0.90 0.67 0.77 0.90 20 9 1.00 yes 2.08

ETM 0.99 0.81 0.89 t/o 23 12 1.00 yes 14,400
PRT1 FO - - - - 30 28 0.53 no 0.95

S-HM6 0.88 0.77 0.82 0.88 59 39 1.00 yes 122.16
HILP - - - - 195 271 - no 2.59
SM 0.98 0.99 0.98 0.98 27 16 1.00 yes 0.47
α$ - - - - 134 113 0.25 no 3,438.72
IM ex ex ex ex 45 33 1.00 yes 1.41

ETM 0.57 0.94 0.71 t/o 86 21 1.00 yes 14,400
PRT2 FO - - - - 76 74 0.59 no 0.88

S-HM6 - - - - 67 105 0.43 no 1.77
HILP - - - - 190 299 - no 21.33
SM 0.81 0.70 0.75 0.81 38 28 0.87 yes 0.31
α$ 0.67 0.76 0.71 0.67 70 40 0.11 yes 220.11
IM 0.98 0.68 0.80 0.98 37 20 1.00 yes 0.44

ETM 0.98 0.86 0.92 t/o 51 37 1.00 yes 14,400
PRT3 FO 1.00 0.86 0.92 1.00 34 37 0.32 yes 0.50

S-HM6 1.00 0.83 0.91 1.00 40 38 0.43 yes 0.67
HILP - - - - 343 525 - no 0.73
SM 0.82 0.92 0.87 0.84 29 13 0.76 yes 0.17
α$ 0.86 0.93 0.90 t/o 21 10 1.00 yes 13,586.48
IM 0.93 0.75 0.83 0.93 27 13 1.00 yes 1.33

ETM 0.84 0.85 0.84 t/o 64 28 1.00 yes 14,400
PRT4 FO - - - - 37 40 0.54 no 6.33

S-HM6 1.00 0.86 0.93 1.00 370 274 1.00 yes 241.57
HILP - - - - 213 306 - no 5.31
SM 0.83 1.00 0.91 0.88 31 19 0.77 yes 0.45
α$ 1.00 1.00 1.00 1.00 10 1 1.00 yes 2.02
IM 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.03

ETM 1.00 1.00 1.00 1.00 10 1 1.00 yes 2.49
PRT5 FO 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.02

S-HM6 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.11
HILP 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.05
SM 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.02
α$ 0.80 0.77 0.79 0.80 38 17 0.24 yes 40.10
IM 0.99 0.82 0.90 0.99 23 10 1.00 yes 2.30

ETM 0.98 0.80 0.88 t/o 41 16 1.00 yes 14,400
PRT6 FO 1.00 0.91 0.95 1.00 22 17 0.41 yes 0.05

S-HM6 1.00 0.91 0.95 1.00 22 17 0.41 yes 0.42
HILP - - - - 157 214 - no 0.13
SM 0.94 1.00 0.97 0.94 15 4 1.00 yes 0.02

TABLE 7: Default parameters evaluation results for the proprietary logs - Part 1/2.

or models containing multiple end places without provid-
ing information about the final marking (a well defined
final marking is required in order to measure fitness and
precision). Due to these difficulties, we could only assess
model complexity for HILP, except for the simplest event
log (the PRT5), where HILP had performance comparable to
the other methods.

α$ showed scalability issues, timing out in eight event
logs (33% of the times). Although none of the discovered
models stood out in accuracy or in complexity, α$ in general
produced models striking a good balance between fitness
and precision (except for the BPIC13inc log).

FO struggled to deliver sound models, discovering only

eight sound models. Nevertheless, its outputs were usually
highly fitting, scoring the best fitness four times out of 24.
S-HM6 performed better than FO, although its discovered
models were also often unsound. Out of the 16 sound mod-
els discovered, nine scored the best fitness and generaliza-
tion, making S-HM6 the best discovery method for these two
quality dimensions along with IM (see Table 9). Precision
varied according to the input event log, demonstrating that
the performance of S-HM6 is bounded to the type of input
log. Whilst it was not always the best in F-score, S-HM6

achieved good results, scoring often the second-best F-score.

The remaining three methods, namely IM, ETM, and
SM, consistently performed very well across the whole

12

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound? Time (sec)

α$ 0.85 0.90 0.88 0.85 29 9 0.48 yes 143.66
IM 1.00 0.73 0.84 1.00 29 13 1.00 yes 0.13

ETM 0.90 0.81 0.85 t/o 60 29 1.00 yes 14,400
PRT7 FO 0.99 1.00 0.99 0.99 26 16 0.39 yes 0.08

S-HM6 1.00 1.00 1.00 1.00 163 76 1.00 yes 249.74
HILP - - - - 278 355 - no 0.27
SM 0.91 1.00 0.95 0.92 29 10 0.48 yes 0.06
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.98 0.33 0.49 0.93 111 92 1.00 yes 0.41

ETM 0.35 0.88 0.50 t/o 75 12 1.00 yes 14,400
PRT8 FO - - - - 228 179 0.74 no 0.55

S-HM6 - - - - 388 323 0.87 no 370.66
HILP t/o t/o t/o t/o t/o t/o t/o t/o t/o
SM 0.97 0.41 0.57 0.93 241 322 0.82 yes 1.28
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.90 0.61 0.73 0.89 28 16 1.00 yes 63.70

ETM 0.75 0.49 0.59 0.74 27 13 1.00 yes 1,266.71
PRT9 FO - - - - 32 45 0.72 no 42.83

S-HM6 0.96 0.98 0.97 0.96 723 558 1.00 yes 318.69
HILP - - - - 164 257 - no 51.47
SM 0.92 1.00 0.96 0.92 29 19 1.00 yes 9.11
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.96 0.79 0.87 0.96 41 29 1.00 yes 2.50

ETM 1.00 0.63 0.77 t/o 61 45 1.00 yes 14,400
PRT10 FO 0.99 0.93 0.96 0.99 52 85 0.64 yes 0.98

S-HM6 - - - - 77 110 - no 1.81
HILP - - - - 846 3130 - no 2.55
SM 0.97 0.95 0.96 0.97 60 49 0.75 yes 0.47
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM t/o t/o t/o t/o 549 365 1.00 yes 121.50

ETM 0.10 1.00 0.18 t/o 21 3 1.00 yes 14,400
PRT11 FO - - - - 680 713 0.68 no 81.33

S-HM6 ex ex ex ex ex ex ex ex ex
HILP t/o t/o t/o t/o t/o t/o t/o t/o t/o
SM - - - - 712 609 0.12 no 19.53
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 1.00 0.77 0.87 1.00 32 25 1.00 yes 3.94

ETM 0.63 1.00 0.77 t/o 21 8 1.00 yes 14,400
PRT12 FO - - - - 87 129 0.38 no 1.67

S-HM6 - - - - 4370 3191 1.00 yes 347.57
HILP - - - - 926 2492 - no 7.34
SM 0.96 0.97 0.97 0.96 78 65 0.78 yes 0.36

TABLE 8: Default parameters evaluation results for the proprietary logs - Part 2/2.

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Time (sec)

α$ 0 0 0 0 1 2 0 0
IM 9 1 0 9 5 2 24 1

Frequency ETM 5 11 2 0 10 13 24 0
Absolute FO 4 1 2 4 1 0 0 0

Best S-HM6 9 2 4 9 1 1 8 0
HILP 0 0 0 0 0 1 0 0
SM 2 10 17 5 4 4 7 23
α$ 0 3 0 0 1 1 1 0
IM 8 2 3 9 9 13 0 6

Frequency ETM 3 4 7 0 1 2 0 0
Second FO 2 2 5 2 4 0 6 17

Best S-HM6 1 4 6 2 1 1 7 1
HILP 0 0 0 0 1 0 0 0
SM 10 9 3 8 9 7 11 0
α$ 0 3 0 0 2 3 1 0
IM 17 3 3 18 14 15 24 7

ETM 8 15 9 0 11 15 24 0
Total FO 6 3 7 6 5 0 6 17

S-HM6 10 6 10 11 2 2 15 1
HILP 0 0 0 0 1 1 0 0
SM 12 19 20 13 13 11 18 23

TABLE 9: Best score frequencies for each quality dimension (default parameters evaluation).

13

Discovery Accuracy Gen. Complexity
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct.

IM 0.90 0.69 0.78 0.91 69 46 1.00
FO* 1.00 0.07 0.14 - 112 1369 1.00

BPIC12 S-HM6 0.96 0.67 0.79 0.96 97 110 0.63
SM 0.97 0.72 0.83 0.97 63 43 0.73
IM 0.99 0.98 0.98 0.99 11 5 1.00
FO 0.00 0.42 0.00 - 19 16 1.00

BPIC13cp S-HM6 0.96 0.92 0.94 0.96 20 14 0.80
SM 0.99 0.93 0.96 0.99 13 7 1.00
IM 0.90 0.87 0.89 0.90 13 5 1.00
FO 0.00 0.36 0.00 - 42 76 0.88

BPIC13inc S-HM6 0.93 0.98 0.96 0.93 16 10 1.00
SM 0.98 0.92 0.95 0.98 15 10 1.00
IM 0.75 0.97 0.85 0.75 19 4 1.00
FO 0.97 0.81 0.88 0.31 27 34 0.56

BPIC14f S-HM6 0.91 0.84 0.88 0.91 178 117 0.97
SM 0.85 0.86 0.86 0.85 30 22 0.70
IM 0.81 0.68 0.74 0.83 140 70 1.00
FO 1.00 0.76 0.87 0.94 146 91 0.26

BPIC151f S-HM6 0.88 0.89 0.89 0.58 1576 550 1.00
SM 0.95 0.86 0.90 0.95 122 51 0.45
IM 0.71 0.76 0.74 0.69 141 61 1.00
FO 0.99 0.63 0.77 0.99 195 164 0.09

BPIC152f S-HM6 0.99 0.62 0.76 0.99 246 167 0.19
SM 0.81 0.86 0.83 0.81 141 58 0.31
IM 0.65 0.99 0.79 0.63 73 8 1.00
FO 0.99 0.60 0.75 0.99 162 163 0.07

BPIC153f S-HM6 0.81 0.77 0.79 0.81 231 77 0.97
SM 0.78 0.94 0.85 0.78 92 29 0.61
IM 0.73 0.84 0.78 0.75 108 42 1.00
FO 1.00 0.67 0.80 1.00 155 128 0.14

BPIC154f S-HM6 0.99 0.66 0.79 0.99 217 145 0.36
SM 0.77 0.90 0.83 0.78 102 35 0.34
IM 0.64 0.88 0.74 0.65 105 34 1.00
FO 1.00 0.71 0.83 1.00 166 125 0.15

BPIC155f S-HM6 0.82 0.94 0.87 0.81 610 166 0.96
SM 0.84 0.92 0.88 0.82 108 36 0.22
IM 1.00 0.70 0.82 1.00 39 24 1.00
FO* - - - - - - -

BPIC17f S-HM6 0.97 0.70 0.81 0.97 51 25 1.00
SM 0.94 0.83 0.88 0.94 37 19 1.00
IM 0.94 0.98 0.96 0.94 28 10 1.00
FO 1.00 0.94 0.97 0.84 31 32 0.19

RTFMP S-HM6 0.95 0.99 0.97 0.95 82 30 1.00
SM 1.00 0.97 0.98 1.00 25 18 0.40
IM 0.62 0.98 0.76 0.76 31 14 1.00
FO 0.96 0.36 0.53 0.30 51 109 0.33

SEPSIS S-HM6 0.80 0.39 0.52 0.86 299 187 1.00
SM 0.76 0.77 0.77 0.77 39 25 0.82

TABLE 10: Hyper-parameters optimization evaluation results for the public logs (best F-score models).

evaluation, excelling either in fitness, precision, F-score or
generalization, and simultaneously striking the highest sim-
plicity for the discovered process models. IM scored 20 times
a fitness greater than 0.90 (of which 9 times the highest),
and it achieved similar results for generalization. Despite
this, IM did not stand out for its precision, nor for its F-
score. ETM and SM achieved respectively 19 and 21 times
a precision greater than 0.80, and ETM’s precision was the
best 11 times. However, ETM scored high precision at the
cost of lower fitness. Lastly, SM stood out for its F-score
(i.e., high and balanced fitness and precision), achieving an
F-score above 0.80 20 times out of 24, outperforming the
other methods 17 times. Despite these remarkable results,
SM does not guarantee soundness by design. As a result,
it produced one unsound model out of 24 (from the PRT11
log).

In terms of complexity, IM, ETM, and SM stood out
among all methods (see Table 9). IM and ETM always
discovered sound and fully block-structured models (struc-
turedness equal to 1.00). ETM and SM discovered the small-
est or second-smallest model for more than 50% of the logs.
These models also had low CFC, and were the ones with the

lowest CFC on 13 logs (ETM) and on four logs (SM). On the
execution time, SM was the clear winner. It systematically
outperformed all the other methods, regardless of the input.
It was the fastest discovery method 23 times out of 24,
discovering a model in less than a second for 19 logs. In
contrast, ETM was the slowest method, reaching the timeout
of four hours for 22 logs.

The results of the hyper-parameter optimization evalu-
ation are shown in Tables 10–13. Here we marked with a
“*” the discovery methods that were not able to complete
the exploration of the solution space within 24 hours of
timeout time. The purpose of this second evaluation was
to understand if the discovery methods can achieve higher
F-score when optimally tuned, and what price they pay for
such an improvement, i.e. at the cost of which other quality
dimension. In line with our goal, Tables 10 and 11 report the
accuracy and complexity scores of the discovered models
with the highest F-score. We note that some of the insights
gained from the default parameters evaluation do not hold
anymore. FO and S-HM6 were almost always able to dis-
cover sound models from each log for at least one input
configuration. FO outperformed IM in fitness, by scoring

14

Discovery Accuracy Gen. Complexity
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct.

IM 0.91 0.89 0.90 0.91 24 11 1.00
FO 0.98 0.92 0.95 0.99 25 29 0.72

PRT1 S-HM6 0.95 0.97 0.96 0.95 37 29 0.92
SM 0.98 0.98 0.98 0.98 27 16 1.00
IM - - - - - - -
FO 1.00 0.17 0.30 1.00 55 241 0.93

PRT2 S-HM6 - - - - - - -
SM 0.81 0.70 0.75 0.81 38 28 0.87
IM 0.87 0.93 0.90 0.87 27 8 1.00
FO 1.00 0.86 0.92 1.00 34 37 0.32

PRT3 S-HM6 0.99 0.85 0.91 0.96 40 34 0.48
SM 0.95 0.89 0.92 0.95 33 24 0.55
IM 0.86 1.00 0.92 0.86 21 5 1.00
FO 1.00 0.87 0.93 - 32 41 0.50

PRT4 S-HM6 0.93 0.96 0.95 0.93 66 55 0.77
SM 0.97 0.93 0.95 0.97 36 32 0.56
IM 1.00 1.00 1.00 1.00 12 1 1.00
FO 1.00 1.00 1.00 0.95 10 1 1.00

PRT5 S-HM6 1.00 1.00 1.00 1.00 12 1 1.00
SM 1.00 1.00 1.00 1.00 10 1 1.00
IM 0.90 1.00 0.95 0.90 17 2 1.00
FO 1.00 0.91 0.95 0.96 22 17 0.41

PRT6 S-HM6 0.98 0.96 0.97 0.98 24 15 0.46
SM 0.94 1.00 0.97 0.94 15 4 1.00
IM 0.88 1.00 0.93 0.88 23 5 1.00
FO 0.99 1.00 0.99 0.99 26 16 0.39

PRT7 S-HM6 1.00 1.00 1.00 1.00 165 76 1.00
SM 0.93 1.00 0.96 0.92 34 16 0.29
IM* 1.00 0.09 0.16 0.99 95 86 1.00
FO - - - - - - -

PRT8 S-HM6 0.93 0.42 0.58 0.89 221 422 0.83
SM 0.77 0.58 0.66 0.76 214 176 0.93
IM 0.93 0.71 0.80 0.93 28 14 1.00
FO - - - - - - -

PRT9 S-HM6 0.99 0.99 0.99 0.99 41 59 0.68
SM 0.99 1.00 0.99 0.99 41 34 0.68
IM 1.00 0.81 0.89 1.00 47 33 1.00
FO 0.99 0.93 0.96 - 52 85 0.64

PRT10 S-HM6 0.98 0.83 0.90 0.98 1440 972 1.00
SM 0.98 0.95 0.97 0.98 64 55 0.66
IM 0.93 0.92 0.93 0.93 37 26 1.00
FO 1.00 0.80 0.89 0.94 60 237 0.87

PRT12 S-HM6 0.88 0.67 0.76 0.88 3943 2314 1.00
SM 0.97 0.97 0.97 0.97 80 75 0.76

TABLE 11: Hyper-parameters optimization evaluation results for the proprietary logs (best F-score models).

Discovery BPIC Logs
Metric Method 12 13cp 13inc 14f 151f 152f 153f 154f 155f 17f RTFMP SEPSIS

IM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fitness FO 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00

S-HM6 0.96 1.00 0.93 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.95 0.80
SM 0.98 1.00 1.00 0.85 0.97 0.95 0.81 0.83 0.92 0.96 1.00 0.98
IM 0.92 1.00 0.89 1.00 0.97 1.00 0.99 0.91 0.99 0.89 0.98 0.98

Prec. FO 0.07 0.42 0.36 0.81 0.76 0.63 0.60 0.67 0.71 - 0.94 0.36
S-HM6 0.67 0.92 0.98 0.84 0.89 0.78 0.77 0.66 0.94 0.70 0.99 0.39

SM 0.80 0.93 0.92 0.91 0.92 0.92 0.94 0.93 0.96 0.83 1.00 0.81
IM 0.78 0.98 0.89 0.85 0.74 0.74 0.79 0.78 0.74 0.82 0.96 0.76

F-score FO 0.14 0.00 0.00 0.88 0.87 0.77 0.75 0.80 0.83 - 0.97 0.53
S-HM6 0.79 0.94 0.96 0.88 0.89 0.76 0.79 0.79 0.87 0.81 0.97 0.52

SM 0.83 0.96 0.95 0.86 0.90 0.83 0.85 0.83 0.88 0.88 0.98 0.77
IM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Gen. FO - - 0.00 0.96 1.00 1.00 1.00 1.00 1.00 - 0.90 0.94
(3-Fold) S-HM6 0.96 0.99 0.93 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.95 0.86

SM 0.98 1.00 1.00 0.85 0.97 0.94 0.82 0.85 0.91 0.96 1.00 0.98
IM 15 9 9 17 63 30 17 25 32 23 11 14

Size FO 112 19 39 27 113 137 114 111 117 - 23 40
S-HM6 87 8 16 13 74 246 207 139 232 22 82 299

SM 53 13 15 23 107 117 92 92 103 36 22 36
IM 8 2 3 2 10 7 8 9 9 6 5 9

CFC FO 1369 16 54 34 47 57 53 46 44 - 13 35
S-HM6 65 0 10 0 0 167 77 35 140 0 30 187

SM 28 7 10 15 35 34 28 27 28 19 10 21
IM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Struct. FO 1.00 1.00 1.00 1.00 1.00 0.29 1.00 1.00 1.00 - 1.00 1.00
S-HM6 0.77 1.00 1.00 0.97 1.00 0.99 0.98 0.37 0.96 1.00 1.00 1.00

SM 1.00 1.00 1.00 1.00 0.48 0.41 0.62 0.35 0.33 1.00 0.54 0.92

TABLE 12: Hyper-parameter optimization evaluation results for the public logs (best score for each quality dimension).

15

Discovery Proprietary (PRT) Logs
Metric Method # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 12

IM 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fitness FO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - 1.00 1.00

S-HM6 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.88
SM 1.00 0.83 1.00 0.97 1.00 0.94 0.93 0.99 0.99 1.00 1.00
IM 0.89 - 0.93 1.00 1.00 1.00 1.00 0.09 0.89 0.95 0.99

Prec. FO 0.92 0.17 0.89 0.94 1.00 0.91 1.00 - - 0.96 0.80
S-HM6 0.97 - 0.85 0.96 1.00 0.96 1.00 0.42 0.99 0.83 0.67

SM 0.98 0.71 0.92 1.00 1.00 1.00 1.00 0.58 1.00 0.95 0.98
IM 0.90 - 0.90 0.92 1.00 0.95 0.93 0.16 0.80 0.89 0.93

F-score FO 0.95 0.30 0.92 0.93 1.00 0.95 0.99 - - 0.96 0.89
S-HM6 0.96 - 0.91 0.95 1.00 0.97 1.00 0.58 0.99 0.90 0.76

SM 0.98 0.75 0.92 0.95 1.00 0.97 0.96 0.66 0.99 0.97 0.97
IM 1.00 - 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

Gen. FO 1.00 1.00 1.00 - 0.95 0.96 1.00 - - - 0.94
(3-Fold) S-HM6 1.00 - 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 0.88

SM 1.00 0.83 1.00 0.97 1.00 0.94 0.92 0.94 0.99 1.00 0.99
IM 14 - 27 21 12 17 23 95 16 27 25

Size FO 22 55 30 30 10 22 21 - - 48 60
S-HM6 13 - 37 66 12 24 40 59 41 23 3943

SM 27 33 29 29 8 13 21 210 29 52 66
IM 4 - 8 5 1 2 5 86 2 10 18

CFC FO 16 74 24 33 1 17 7 - - 44 66
S-HM6 0 - 27 55 1 15 15 0 58 0 2314

SM 16 24 13 18 0 3 6 176 19 39 49
IM 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Struct. FO 0.77 0.93 0.57 0.54 1.00 0.41 0.81 - - 0.81 0.87
S-HM6 1.00 - 0.72 1.00 1.00 0.50 1.00 0.85 1.00 1.00 1.00

SM 1.00 1.00 0.76 0.77 1.00 1.00 0.76 0.93 1.00 0.89 0.90

TABLE 13: Hyper-parameter optimization evaluation results for the proprietary logs (best score for each quality dimension).

the best fitness 14 times. IM performed better in precision
(being eight times the best), yet falling behind SM, which
was the most accurate in precision (12 times out of 23).
Further, IM delivered the simplest model for size, CFC and
structuredness all at once, 14 times, followed only by SM
(six times). Despite S-HM6 was only in less than one third
of the logs the best in any accuracy dimension and never
the best for size and CFC, its performance was very close
to the best for the majority of the times. SM confirmed to
be the most balanced discovery method, scoring the highest
F-score most of the times (18 out of 23), at the same time
discovering very simple models along with IM. Only the
results for generalization got mixed, with SM scoring the
best generalization eight times, followed very closely by FO
(seven times) and by S-HM6 (six times), with IM achieving
the highest generalization in four cases only.

Finally, Tables 12 and 13 report the best score that each
discovery method can achieve in each dimension.12 FO and
IM are always able to maximally optimize fitness, scoring
always 1.00 as their best score. S-HM6 and SM perform
slightly worse in fitness, the former being always in the
range 0.90-1.00 and the latter in the range 0.80-1.00. Similar
are the results for generalization, with FO and IM leading
again, and S-HM6 and SM following suit closely. As for
precision, FO and S-HM6 get over 0.80 66% of the times
only, whilst SM and IM strike better results, being always
in the range 0.90-1.00 (excluding the two outlier models
from the logs PRT2 and PRT8). Finally, F-score results reveal
the ability of the discovery methods to properly balance
fitness and precision. We note that IM lacks such an ability,
reaching an F-score above 0.90 only 30% of the times, with
values below 0.80 35% of the times. These results are as such
despite IM can reach very high values both in fitness and in

12. Full results of the hyper-parameter optimization evaluation are
included in the zip file available at https://doi.org/10.5281/zenodo.
1219321

precision, individually. FO follows IM as worst performer
in F-score with similar outcomes, whilst S-HM6 and SM
distinguished themselves with scores in the range 0.80-1.00
and often over 0.90 (more than 50% of the times). As for
model simplicity, IM leads the way, followed by SM. Whilst
FO and S-HM6 struggle to optimize both size and CFC, most
of the times falling behind IM and SM.

In conclusion, a method outperforming all others across
all metrics could not be identified. Despite this, when it
comes to default parameters IM, ETM and SM showed to
be the most effective methods when the focus is either
on fitness, precision, or F-score, and these methods all
yield simple process models. However, even these three
methods suffer from a common weakness, which is their
inability to handle large-scale real-life logs, as reported for
the PRT11 log in our evaluation. On the other hand, the
hyper-parameter optimization exercise showed that also FO
and S-HM6 can perform very well, though at the expenses
of long execution times (up to 24 hours for some logs) and
powerful computational resources.

5 DISCUSSION

Our review highlights a growing interest in the field of au-
tomated process discovery, and confirms the existence of a
wide and heterogeneous number of proposals. Despite such
a variety, we can clearly identify two main streams: methods
that output procedural process models, and methods that
output declarative process models. Further, while the latter
ones only rely on declarative statements to represent a
process, the former provide various language alternatives,
though, most of these methods output Petri nets.

The predominance of Petri nets is driven by the expres-
sive power of this language, and by the requirements of
the methods used to assess the quality of the discovered
process models (chiefly, fitness and precision). Despite some
modeling languages have a straightforward conversion to

https://doi.org/10.5281/zenodo.1219321
https://doi.org/10.5281/zenodo.1219321

16

Petri nets, the strict requirements of these quality assess-
ment tools represent a limitation for the proposals in this
research field. For the same reason, it was not possible to
compare the two main streams, so we decided to focus
our evaluation and comparison on the procedural methods,
which in any case, have a higher practical relevance than
their declarative counterparts, given that declarative process
models are hardly used in practice.

Our benchmark shows the benefits of procedural auto-
mated process discovery methods, as well as their limita-
tions. These latter include lack of scalability for large and
complex logs, and strong differences in the output models,
across the various quality metrics. Regarding this aspect,
the majority of methods were not able to excel in accuracy
or complexity, except for IM, ETM and SM. Indeed, these
three methods were the only ones to consistently perform
very well in fitness (IM), precision (ETM, SM), F-score
(SM), complexity (IM, ETM, SM) and execution time (SM).
Nevertheless, our evaluation shows that even IM, ETM and
SM can fail when challenged with large-scale unfiltered real-
life events logs, as shown in the case of the PRT11 log.

To conclude, even if many proposals are available in this
research area, and some of them are able to systematically
deliver good to optimal results, there is still space for
research and improvements. Furthermore, it is important to
highlight that the great majority of the methods do not have
a working or available implementation. This hampers their
systematic evaluation, so one can only rely on the results
reported in the respective papers. Finally, for those methods
we assessed, we were not able to identify a unique winner,
since the best methods showed to either maximize fitness,
precision or F-score. Despite these considerations, it can be
noted that there has been significant progress in this field in
the past five years. Indeed, IM, ETM and SM outperformed
the discovery methods developed in the previous decade,
as well as their extensions (i.e., AGNEs Miner and S-HM6).

6 THREATS TO VALIDITY

The first threat to validity refers to the potential selection
bias and inaccuracies in data extraction and analysis typical
of literature reviews. In order to minimize such issues,
our systematic literature review carefully adheres to the
guidelines outlined in [4]. Concretely, we used well-known
literature sources and libraries in information technology
to extract relevant works on the topic of automated pro-
cess discovery. Further, we performed a backward reference
search to avoid the exclusion of potentially relevant papers.
Finally, to avoid that our review was threatened by insuf-
ficient reliability, we ensured that the search process could
be replicated by other researchers. However, the search may
produce different results as the algorithm used by source
libraries to rank results based on relevance may be updated
(see, e.g., Google Scholar).

The experimental evaluation on the other hand is limited
in scope to techniques that produce Petri nets (or models
in languages such as BPMN or Process Trees, which can
be directly translated to Petri nets). Also, it only considers
main studies identified in the SLR with an available im-
plementation. In order to compensate for these shortcom-
ings, we published the benchmarking toolset as open-source

software in order to enable researchers both to reproduce
the results herein reported and to run the same evaluation
for other methods, or for alternative configurations of the
evaluated methods.

Another limitation is the use of only 24 event logs, which
to some extent limits the generalizability of the conclusions.
However, the event logs included in the evaluation are
all real-life logs of different sizes and features, including
different application domains. To mitigate this limitation,
we have structured the released benchmarking toolset in
such a way that the benchmark can be seamlessly rerun with
additional datasets.

Finally, we selected the folds of each log randomly
when computing the 3-fold generalization. We did check the
fitness values obtained for the three folds of each algorithm,
and found variations in these values ranging from 1 to 3 per-
centage points, suggesting that the algorithms did produce
different results for different folds. However, given that the
folds were generated randomly, we have no guarantee that
there is sufficient difference between the folds.

7 RELATED WORK

A previous survey and benchmark of automated process
discovery methods has been reported by De Weerdt et al. [3].
This survey covered 27 approaches, and it assessed seven of
them. We used it as starting point for our study.

The benchmark reported by De Weerdt et al. [3] includes
seven approaches, namely AGNEsMiner, α+, α++, Genetic
Miner (and a variant thereof), Heuristics Miner and ILP
Miner. In comparison, our benchmark includes α$ (which is
an improved version of α+ and α++), Structured Heuris-
tics miner (which is an extension of Heuristics Miner),
Hybrid ILP Miner (an improvement of ILP), Evolutionary
Tree Miner (which is a genetic algorithm postdating the
evaluation of De Weerdt et al. [3]) Notably, we did not
include AGNEsMiner due to the very long execution times
(as suggested by the authors in a conversation over emails
exchanged during this work).

Another difference with respect to the previous sur-
vey [3], is that in our paper we based our evaluation both
on public and proprietary event logs, whilst the evaluation
of De Weerdt et al. [3] is solely based on artificial event
logs and closed datasets, due to the unavailability of public
datasets at the time of that study.

In terms of results, De Weerdt et al. [3] found that
Heuristics Miner achieved a better F-score than other ap-
proaches and generally produced simpler models, while ILP
achieved the best fitness at the expense of low precision and
high model complexity. Our results show that SM achieves
even better F-score and lower model complexity than other
techniques, followed by ETM and IM, which excelled for
precision and fitness (respectively). Thus it appears that in
the last years progress has been pursued successfully.

Another previous survey in the field is outdated [120]
and a more recent one is not intended to be comprehen-
sive [121], but rather limits on plug-ins available in the
ProM toolset. Another related effort is CoBeFra – a tool suite
for measuring fitness, precision and model complexity of
automatically discovered process models [122].

17

8 CONCLUSION

This article presented a Systematic Literature Review (SLR)
of automated process discovery methods and a comparative
evaluation of existing implementations of these methods
using a benchmark covering twelve publicly-available real-
life event logs, twelve proprietary real-life event logs, and
nine quality metrics. The toolset used in this benchmark is
available as open-source software and the 50% of the event
logs are publicly available. The benchmarking toolset has
been designed in a way that it can be seamlessly extended
with additional methods, event logs, and evaluation metrics.

The SLR put into evidence a vast number of automated
process discovery methods (344 relevant papers were anal-
ysed). Traditionally, many of these proposals produce Petri
nets, but more recently, we observe an increasing number of
methods that produce models in other languages, including
BPMN and declarative constraints. We also observe a recent
emphasis on producing block-structured process models.

The results of the empirical evaluation show that meth-
ods that seek to produce block-structured process models
(Inductive Miner and Evolutionary Tree Miner) achieve the
best performance in terms of fitness or precision, and com-
plexity. Whilst, methods that do not restrict the topology of
the generated process models (Split Miner), produce process
models of higher quality in terms of F-score, although these
methods cannot guarantee soundness (though they can
guarantee deadlock-freedom). We also observed that in the
case of very complex event logs, it is necessary to use a fil-
tering method prior to applying existing automated process
discovery methods. Without this filtering, the precision of
the resulting models was close to zero. A direction for future
work is to develop automated process discovery techniques
that incorporate adaptive filtering approaches so that they
can auto-tune themselves to deal with very complex logs.

Another limitation observed while conducting the
benchmark, was the lack of universal measures of fitness
and precision, which would be applicable not only to Petri
nets (or BPMN models that can be mapped to Petri nets), but
equally well to declarative or data-driven process modeling
notations. Developing more universal measures of fitness
and precision is another possible target of future work.

ACKNOWLEDGMENTS

This research is partly funded by the Australian Re-
search Council (grant DP150103356) and the Estonian Re-
search Council (grant IUT20-55). It is also partly sup-
ported by the H2020-RISE EU project FIRST (734599), the
Sapienza grant DAKIP and the Italian projects Social Mu-
seum and Smart Tourism (CTN01_00034_23154), NEPTIS
(PON03PE_00214_3), and RoMA - Resilience of Metropoli-
tan Areas (SCN_00064).

REFERENCES

[1] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow
mining: Discovering process models from event logs,” IEEE
Trans. Knowl. Data Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

[2] W. van der Aalst, Process Mining: Data Science in Action. Springer,
2016.

[3] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A
multi-dimensional quality assessment of state-of-the-art process
discovery algorithms using real-life event logs,” Information Sys-
tems, vol. 37, no. 7, pp. 654–676, 2012.

[4] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[5] W. M. van der Aalst, A. Kalenkova, V. Rubin, and E. Verbeek,
“Process discovery using localized events,” in International Con-
ference on Applications and Theory of Petri Nets and Concurrency.
Springer, 2015, pp. 287–308.

[6] F. Folino, M. Guarascio, and L. Pontieri, “On the discovery of
explainable and accurate behavioral models for complex lowly-
structured business processes.” in ICEIS (1), 2015, pp. 206–217.

[7] A. Fink, Conducting research literature reviews: from the internet to
paper, 3rd ed. Sage Publications, 2010.

[8] C. Okoli and K. Schabram, “A guide to conducting a system-
atic literature review of information systems research,” Sprouts:
Working Papers on Information Systems, vol. 10, no. 26, pp. 1–49,
2010.

[9] J. Randolph, “A guide to writing the dissertation literature re-
view,” Practical Assessment, Research & Evaluation, vol. 14, no. 13,
pp. 1–13, 2009.

[10] R. Torraco, “Writing integrative literature reviews: guidelines and
examples,” Human Resource Development Review, vol. 4, no. 3, pp.
356–367, 2005.

[11] W. Van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Transactions
on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142,
2004.

[12] A. Alves de Medeiros, B. Van Dongen, W. Van Der Aalst, and
A. Weijters, “Process mining: Extending the α-algorithm to mine
short loops,” BETA Working Paper Series, Tech. Rep., 2004.

[13] L. Wen, W. M. van der Aalst, J. Wang, and J. Sun, “Mining
process models with non-free-choice constructs,” Data Mining and
Knowledge Discovery, vol. 15, no. 2, pp. 145–180, 2007.

[14] Q. Guo, L. Wen, J. Wang, Z. Yan, and S. Y. Philip, “Mining invisi-
ble tasks in non-free-choice constructs,” in International Conference
on Business Process Management. Springer, 2015, pp. 109–125.

[15] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens, “Ro-
bust process discovery with artificial negative events,” Journal of
Machine Learning Research, vol. 10, no. Jun, pp. 1305–1340, 2009.

[16] A. A. De Medeiros and A. Weijters, “Genetic process mining,” in
Applications and Theory of Petri Nets 2005, Volume 3536 of Lecture
Notes in Computer Science. Citeseer, 2005.

[17] A. K. A. de Medeiros, A. J. Weijters, and W. M. van der Aalst, “Ge-
netic process mining: an experimental evaluation,” Data Mining
and Knowledge Discovery, vol. 14, no. 2, pp. 245–304, 2007.

[18] J. C. Buijs, B. F. van Dongen, and W. M. van der Aalst, “Qual-
ity dimensions in process discovery: The importance of fitness,
precision, generalization and simplicity,” International Journal of
Cooperative Information Systems, vol. 23, no. 01, p. 1440001, 2014.

[19] A. J. Weijters and W. M. Van der Aalst, “Rediscovering workflow
models from event-based data using little thumb,” Integrated
Computer-Aided Engineering, vol. 10, no. 2, pp. 151–162, 2003.

[20] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros,
“Process mining with the heuristics miner-algorithm,” Technische
Universiteit Eindhoven, Tech. Rep. WP, vol. 166, pp. 1–34, 2006.

[21] A. Augusto, R. Conforti, M. Dumas, and M. La Rosa, “Automated
Discovery of Structured Process Models From Event Logs: The
Discover-and-Structure Approach,” Data and Knowledge Engineer-
ing (to appear), 2017.

[22] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. van der
Aalst, “Data-Driven Process Discovery-Revealing Conditional
Infrequent Behavior from Event Logs,” in International Conference
on Advanced Information Systems Engineering. Springer, 2017, pp.
545–560.

[23] A. Weijters and J. Ribeiro, “Flexible heuristics miner (FHM),”
in Computational Intelligence and Data Mining (CIDM), 2011 IEEE
Symposium on. IEEE, 2011, pp. 310–317.

[24] S. De Cnudde, J. Claes, and G. Poels, “Improving the quality of
the heuristics miner in prom 6.2,” Expert Systems with Applications,
vol. 41, no. 17, pp. 7678–7690, 2014.

[25] J. M. E. van derWerf, B. F. van Dongen, C. A. Hurkens, and
A. Serebrenik, “Process discovery using integer linear program-
ming,” Fundamenta Informaticae, vol. 94, no. 3-4, pp. 387–412, 2009.

18

[26] S. van Zelst, B. van Dongen, W. van der Aalst, and H. Verbeek,
“Discovering workflow nets using integer linear programming,”
Computing, pp. 1–28, 2017.

[27] Z. Huang and A. Kumar, “A study of quality and accuracy trade-
offs in process mining,” INFORMS Journal on Computing, vol. 24,
no. 2, pp. 311–327, 2012.

[28] F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst, “Efficient
Discovery of Understandable Declarative Process Models from
Event Logs,” in Advanced Information Systems Engineering - 24th
International Conference, CAiSE 2012, Gdansk, Poland, June 25-29,
2012. Proceedings, 2012, pp. 270–285.

[29] F. M. Maggi, A. J. Mooij, and W. M. van der Aalst, “User-guided
discovery of declarative process models,” in Computational Intel-
ligence and Data Mining (CIDM), 2011 IEEE Symposium on. IEEE,
2011, pp. 192–199.

[30] F. M. Maggi, R. J. C. Bose, and W. M. van der Aalst, “A
knowledge-based integrated approach for discovering and re-
pairing declare maps,” in International Conference on Advanced
Information Systems Engineering. Springer, 2013, pp. 433–448.

[31] M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Discovering
cross-organizational business rules from the cloud,” in 2014 IEEE
Symposium on Computational Intelligence and Data Mining, CIDM
2014, Orlando, FL, USA, December 9-12, 2014, 2014, pp. 389–396.

[32] F. M. Maggi, “Discovering metric temporal business constraints
from event logs,” in Perspectives in Business Informatics Research
- 13th International Conference, BIR 2014, Lund, Sweden, September
22-24, 2014. Proceedings, 2014, pp. 261–275.

[33] T. Kala, F. M. Maggi, C. Di Ciccio, and C. Di Francescomarino,
“Apriori and sequence analysis for discovering declarative pro-
cess models,” in Enterprise Distributed Object Computing Conference
(EDOC), 2016 IEEE 20th International. IEEE, 2016, pp. 1–9.

[34] F. M. Maggi, C. D. Ciccio, C. D. Francescomarino, and T. Kala,
“Parallel algorithms for the automated discovery of declarative
process models,” Information Systems, 2017.

[35] C. Di Ciccio and M. Mecella, “A two-step fast algorithm for the
automated discovery of declarative workflows,” in Computational
Intelligence and Data Mining (CIDM), 2013 IEEE Symposium on.
IEEE, 2013, pp. 135–142.

[36] C. Di Ciccio and M. Mecella, “Mining constraints for artful
processes,” in Business Information Systems - 15th International Con-
ference, BIS 2012, Vilnius, Lithuania, May 21-23, 2012. Proceedings,
2012, pp. 11–23.

[37] ——, “On the discovery of declarative control flows for artful
processes,” ACM Trans. Management Inf. Syst., vol. 5, no. 4, pp.
24:1–24:37, 2015.

[38] C. Di Ciccio, F. M. Maggi, and J. Mendling, “Discovering target-
branched declare constraints,” in International Conference on Busi-
ness Process Management. Springer, 2014, pp. 34–50.

[39] ——, “Efficient discovery of Target-Branched Declare Con-
straints,” Information Systems, vol. 56, pp. 258–283, 2016.

[40] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discov-
ering block-structured process models from event logs containing
infrequent behaviour,” in Business Process Management Workshops
- BPM 2013 International Workshops, Beijing, China, August 26,
2013, Revised Papers, 2013, pp. 66–78.

[41] ——, “Discovering Block-Structured Process Models from Event
Logs - A Constructive Approach,” in Application and Theory of
Petri Nets and Concurrency: 34th International Conference, PETRI
NETS 2013, Milan, Italy, June 24-28, 2013. Proceedings. Springer
Berlin Heidelberg, 2013, pp. 311–329.

[42] ——, “Discovering Block-Structured Process Models from Incom-
plete Event Logs,” in Application and Theory of Petri Nets and
Concurrency: 35th International Conference, PETRI NETS 2014, Tu-
nis, Tunisia, June 23-27, 2014. Proceedings. Springer International
Publishing, 2014, pp. 91–110.

[43] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Exploring
Processes and Deviations,” in Business Process Management Work-
shops: BPM 2014 International Workshops, Eindhoven, The Nether-
lands, September 7-8, 2014, Revised Papers. Springer, 2014, pp.
304–316.

[44] ——, “Using Life Cycle Information in Process Discovery,” in
Business Process Management Workshops: BPM 2015, 13th Interna-
tional Workshops, Innsbruck, Austria, August 31 – September 3, 2015,
Revised Papers. Springer, 2015, pp. 204–217.

[45] ——, “Scalable process discovery with guarantees,” in Interna-
tional Conference on Enterprise, Business-Process and Information
Systems Modeling. Springer, 2015, pp. 85–101.

[46] ——, “Scalable process discovery and conformance checking,”
Software & Systems Modeling, pp. 1–33, 2016.

[47] M. Leemans and W. M. van der Aalst, “Modeling and discovering
cancelation behavior,” in OTM Confederated International Confer-
ences" On the Move to Meaningful Internet Systems". Springer,
2017, pp. 93–113.

[48] F. M. Maggi, M. Dumas, L. García-Bañuelos, and M. Montali,
“Discovering data-aware declarative process models from event
logs,” in Business Process Management. Springer, 2013, pp. 81–96.

[49] M. Abe and M. Kudo, “Business Monitoring Framework for Pro-
cess Discovery with Real-Life Logs,” in International Conference on
Business Process Management. Springer, 2014, pp. 416–423.

[50] M. Kudo, A. Ishida, and N. Sato, “Business process discovery
by using process skeletonization,” in Signal-Image Technology &
Internet-Based Systems (SITIS), 2013 International Conference on.
IEEE, 2013, pp. 976–982.

[51] S. K. vanden Broucke, J. Vanthienen, and B. Baesens, “Declarative
process discovery with evolutionary computing,” in Evolutionary
Computation (CEC), 2014 IEEE Congress on. IEEE, 2014, pp. 2412–
2419.

[52] W. M. van der Aalst, J. C. Buijs, and B. F. van Dongen, “Towards
Improving the Representational Bias of Process Mining,” in Data-
Driven Process Discovery and Analysis: First International Sympo-
sium (SIMPDA 2011). Springer, 2011, pp. 39–54.

[53] J. C. Buijs, B. F. van Dongen, and W. M. van der Aalst, “A
genetic algorithm for discovering process trees,” in Evolutionary
Computation (CEC), 2012 IEEE Congress on. IEEE, 2012, pp. 1–8.

[54] J. C. Buijs, B. F. Van Dongen, W. M. van Der Aalst et al., “On
the Role of Fitness, Precision, Generalization and Simplicity in
Process Discovery,” in OTM Conferences (1), vol. 7565, 2012, pp.
305–322.

[55] J. C. Buijs, B. F. van Dongen, and W. M. van der Aalst, “Discover-
ing and navigating a collection of process models using multiple
quality dimensions,” in Business Process Management Workshops:
BPM 2013 International Workshops, Beijing, China, August 26, 2013,
Revised Papers. Springer, 2013, pp. 3–14.

[56] M. L. van Eck, J. C. Buijs, and B. F. van Dongen, “Genetic Process
Mining: Alignment-Based Process Model Mutation,” in Business
Process Management Workshops: BPM 2014 International Workshops,
Eindhoven, The Netherlands, September 7-8, 2014, Revised Papers.
Springer, 2014, pp. 291–303.

[57] J. Carmona and J. Cortadella, “Process discovery algorithms us-
ing numerical abstract domains,” IEEE Transactions on Knowledge
and Data Engineering, vol. 26, no. 12, pp. 3064–3076, 2014.

[58] S. Ferilli, “Woman: logic-based workflow learning and man-
agement,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 44, no. 6, pp. 744–756, 2014.

[59] S. Ferilli, B. De Carolis, and D. Redavid, “Logic-based incremen-
tal process mining in smart environments,” in International Con-
ference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems. Springer, 2013, pp. 392–401.

[60] B. De Carolis, S. Ferilli, and G. Mallardi, “Learning and Recogniz-
ing Routines and Activities in SOFiA,” in Ambient Intelligence: Eu-
ropean Conference, AmI 2014, Eindhoven, The Netherlands, November
11-13, 2014. Revised Selected Papers. Springer, 2014, pp. 191–204.

[61] S. Ferilli, B. De Carolis, and F. Esposito, “Learning Complex
Activity Preconditions in Process Mining,” in New Frontiers in
Mining Complex Patterns: Third International Workshop, NFMCP
2014, Held in Conjunction with ECML-PKDD 2014, Nancy, France,
September 19, 2014, Revised Selected Papers. Springer, 2014, pp.
164–178.

[62] S. Ferilli, D. Redavid, and F. Esposito, “Logic-Based Incremental
Process Mining,” in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 2015, pp. 218–
221.

[63] S. Ferilli, “The WoMan Formalism for Expressing Process Mod-
els,” in Advances in Data Mining. Applications and Theoretical
Aspects: 16th Industrial Conference, ICDM 2016, New York, NY, USA,
July 13-17, 2016. Proceedings. Springer, 2016, pp. 363–378.

[64] F. M. Maggi, T. Slaats, and H. A. Reijers, “The automated discov-
ery of hybrid processes,” in International Conference on Business
Process Management. Springer, 2014, pp. 392–399.

[65] D. Redlich, T. Molka, W. Gilani, G. S. Blair, and A. Rashid,
“Scalable Dynamic Business Process Discovery with the Con-
structs Competition Miner,” in Proceedings of the 4th International
Symposium on Data-driven Process Discovery and Analysis (SIMPDA
2014), 2014, pp. 91–107.

19

[66] D. Redlich, T. Molka, W. Gilani, G. Blair, and A. Rashid, “Con-
structs competition miner: Process control-flow discovery of bp-
domain constructs,” in International Conference on Business Process
Management. Springer, 2014, pp. 134–150.

[67] D. Redlich, W. Gilani, T. Molka, M. Drobek, A. Rashid, and
G. Blair, “Introducing a framework for scalable dynamic pro-
cess discovery,” in Enterprise Engineering Working Conference.
Springer, 2014, pp. 151–166.

[68] D. Redlich, T. Molka, W. Gilani, G. Blair, and A. Rashid, “Dy-
namic constructs competition miner-occurrence-vs. time-based
ageing,” in International Symposium on Data-Driven Process Dis-
covery and Analysis (SIMPDA 2014). Springer, 2014, pp. 79–106.

[69] O. Vasilecas, T. Savickas, and E. Lebedys, “Directed acyclic graph
extraction from event logs,” in International Conference on Informa-
tion and Software Technologies. Springer, 2014, pp. 172–181.

[70] J. De Smedt, J. De Weerdt, and J. Vanthienen, “Fusion miner:
process discovery for mixed-paradigm models,” Decision Support
Systems, vol. 77, pp. 123–136, 2015.

[71] G. Greco, A. Guzzo, F. Lupia, and L. Pontieri, “Process discovery
under precedence constraints,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 9, no. 4, p. 32, 2015.

[72] G. Greco, A. Guzzo, and L. Pontieri, “Process discovery via prece-
dence constraints,” in Proceedings of the 20th European Conference
on Artificial Intelligence. IOS Press, 2012, pp. 366–371.

[73] V. Liesaputra, S. Yongchareon, and S. Chaisiri, “Efficient process
model discovery using maximal pattern mining,” in International
Conference on Business Process Management. Springer, 2015, pp.
441–456.

[74] T. Molka, D. Redlich, M. Drobek, X.-J. Zeng, and W. Gilani,
“Diversity guided evolutionary mining of hierarchical process
models,” in Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation. ACM, 2015, pp. 1247–1254.

[75] B. Vázquez-Barreiros, M. Mucientes, and M. Lama, “Prodigen:
Mining complete, precise and minimal structure process models
with a genetic algorithm,” Information Sciences, vol. 294, pp. 315–
333, 2015.

[76] ——, “A genetic algorithm for process discovery guided by com-
pleteness, precision and simplicity,” in International Conference on
Business Process Management. Springer, 2014, pp. 118–133.

[77] M. L. Bernardi, M. Cimitile, C. Di Francescomarino, and F. M.
Maggi, “Do activity lifecycles affect the validity of a business
rule in a business process?” Information Systems, 2016.

[78] M. L. Bernardi, M. Cimitile, C. D. Francescomarino, and F. M.
Maggi, “Using discriminative rule mining to discover declarative
process models with non-atomic activities,” in Rules on the Web.
From Theory to Applications - 8th International Symposium, RuleML
2014, Co-located with the 21st European Conference on Artificial
Intelligence, ECAI 2014, Prague, Czech Republic, August 18-20, 2014.
Proceedings, 2014, pp. 281–295.

[79] D. Breuker, M. Matzner, P. Delfmann, and J. Becker, “Comprehen-
sible predictive models for business processes,” MIS Quarterly,
vol. 40, no. 4, pp. 1009–1034, 2016.

[80] D. Breuker, P. Delfmann, M. Matzner, and J. Becker, “Designing
and evaluating an interpretable predictive modeling technique
for business processes,” in Business Process Management Work-
shops: BPM 2014 International Workshops, Eindhoven, The Nether-
lands, September 7-8, 2014, Revised Papers. Springer, 2014, pp.
541–553.

[81] R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa,
“Bpmn miner: Automated discovery of bpmn process models
with hierarchical structure,” Information Systems, vol. 56, pp. 284–
303, 2016.

[82] ——, “Beyond tasks and gateways: Discovering bpmn models
with subprocesses, boundary events and activity markers,” in
International Conference on Business Process Management. Springer,
2014, pp. 101–117.

[83] M. L. van Eck, N. Sidorova, and W. M. van der Aalst, “Discover-
ing and exploring state-based models for multi-perspective pro-
cesses,” in International Conference on Business Process Management.
Springer, 2016, pp. 142–157.

[84] M. L. van Eck, N. Sidorova, and W. M. P. van der Aalst, “Guided
Interaction Exploration in Artifact-centric Process Models,” in
19th IEEE Conference on Business Informatics, CBI 2017, Thessaloniki,
Greece, July 24-27, 2017, Volume 1: Conference Papers, 2017, pp. 109–
118.

[85] C. Li, J. Ge, L. Huang, H. Hu, B. Wu, H. Yang, H. Hu, and B. Luo,

“Process mining with token carried data,” Information Sciences,
vol. 328, pp. 558–576, 2016.

[86] A. Mokhov, J. Carmona, and J. Beaumont, “Mining Conditional
Partial Order Graphs from Event Logs,” in Transactions on Petri
Nets and Other Models of Concurrency XI. Springer, 2016, pp.
114–136.

[87] S. Schönig, A. Rogge-Solti, C. Cabanillas, S. Jablonski, and
J. Mendling, “Efficient and customisable declarative process min-
ing with sql,” in International Conference on Advanced Information
Systems Engineering. Springer, 2016, pp. 290–305.

[88] S. Schönig, C. Di Ciccio, F. M. Maggi, and J. Mendling, “Discovery
of multi-perspective declarative process models,” in International
Conference on Service-Oriented Computing. Springer, 2016, pp. 87–
103.

[89] W. Song, H.-A. Jacobsen, C. Ye, and X. Ma, “Process discovery
from dependence-complete event logs,” IEEE Transactions on
Services Computing, vol. 9, no. 5, pp. 714–727, 2016.

[90] T. Tapia-Flores, E. Rodríguez-Pérez, and E. López-Mellado, “Dis-
covering Process Models from Incomplete Event Logs using
Conjoint Occurrence Classes,” in ATAED@ Petri Nets/ACSD, 2016,
pp. 31–46.

[91] B. N. Yahya, M. Song, H. Bae, S.-o. Sul, and J.-Z. Wu, “Domain-
driven actionable process model discovery,” Computers & Indus-
trial Engineering, 2016.

[92] B. N. Yahya, H. Bae, S.-o. Sul, and J.-Z. Wu, “Process discovery
by synthesizing activity proximity and user’s domain knowl-
edge,” in Asia-Pacific Conference on Business Process Management.
Springer, 2013, pp. 92–105.

[93] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno,
“Automated discovery of structured process models: Discover
structured vs. discover and structure,” in Conceptual Modeling:
35th International Conference, ER 2016, Gifu, Japan, November 14-17,
2016, Proceedings. Springer, 2016, pp. 313–329.

[94] A. Augusto, R. Conforti, M. Dumas, and M. L. Rosa, “Split Miner:
Discovering Accurate and Simple Business Process Models from
Event Logs,” in 2017 IEEE International Conference on Data Mining,
ICDM 2017, New Orleans, LA, USA, November 18-21, 2017, 2017,
pp. 1–10.

[95] S. K. vanden Broucke and J. De Weerdt, “Fodina: a robust and
flexible heuristic process discovery technique,” Decision Support
Systems, 2017.

[96] J. De Weerdt, S. K. vanden Broucke, and F. Caron, “Bidimen-
sional Process Discovery for Mining BPMN Models,” in Business
Process Management Workshops: BPM 2014 International Workshops,
Eindhoven, The Netherlands, September 7-8, 2014, Revised Papers.
Springer, 2014, pp. 529–540.

[97] H. Nguyen, M. Dumas, A. H. ter Hofstede, M. La Rosa, and F. M.
Maggi, “Mining business process stages from event logs,” in In-
ternational Conference on Advanced Information Systems Engineering.
Springer, 2017, pp. 577–594.

[98] H. Verbeek, W. van der Aalst, and J. Munoz-Gama, “Divide
and Conquer: A Tool Framework for Supporting Decomposed
Discovery in Process Mining,” The Computer Journal, pp. 1–26,
2017.

[99] H. Verbeek and W. van der Aalst, “An experimental evaluation of
passage-based process discovery,” in Business Process Management
Workshops, International Workshop on Business Process Intelligence
(BPI 2012), vol. 132, 2012, pp. 205–210.

[100] W. M. Van der Aalst, “Decomposing Petri nets for process
mining: A generic approach,” Distributed and Parallel Databases,
vol. 31, no. 4, pp. 471–507, 2013.

[101] B. Hompes, H. Verbeek, and W. M. van der Aalst, “Finding
suitable activity clusters for decomposed process discovery,”
in International Symposium on Data-Driven Process Discovery and
Analysis. Springer, 2014, pp. 32–57.

[102] H. Verbeek and W. M. van der Aalst, “Decomposed Process
Mining: The ILP Case,” in Business Process Management Workshops:
BPM 2014 International Workshops, Eindhoven, The Netherlands,
September 7-8, 2014, Revised Papers. Springer, 2014, pp. 264–276.

[103] W. M. van der Aalst and H. Verbeek, “Process discovery and
conformance checking using passages,” Fundamenta Informaticae,
vol. 131, no. 1, pp. 103–138, 2014.

[104] S. J. van Zelst, B. F. van Dongen, and W. M. van der Aalst, “Avoid-
ing over-fitting in ILP-based process discovery,” in International
Conference on Business Process Management. Springer, 2015, pp.
163–171.

20

[105] S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst,
“ILP-Based Process Discovery Using Hybrid Regions,” in Inter-
national Workshop on Algorithms & Theories for the Analysis of Event
Data, ATAED 2015, ser. CEUR Workshop Proceedings, vol. 1371.
CEUR-WS.org, 2015, pp. 47–61.

[106] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “DE-
CLARE: full support for loosely-structured processes,” in 11th
IEEE International Enterprise Distributed Object Computing Confer-
ence (EDOC 2007), 15-19 October 2007, Annapolis, Maryland, USA,
2007, pp. 287–300.

[107] M. Westergaard and F. M. Maggi, “Declare: A tool suite for
declarative workflow modeling and enactment,” in Proceedings
of the Demo Track of the Nineth Conference on Business Process
Management 2011, Clermont-Ferrand, France, August 31st, 2011,
2011.

[108] T. Slaats, D. M. M. Schunselaar, F. M. Maggi, and H. A. Reijers,
The Semantics of Hybrid Process Models, 2016, pp. 531–551.

[109] M. Westergaard and T. Slaats, “Mixing paradigms for more
comprehensible models,” in BPM, 2013, pp. 283–290.

[110] C. Favre, D. Fahland, and H. Völzer, “The relationship between
workflow graphs and free-choice workflow nets,” Inf. Syst.,
vol. 47, pp. 197–219, 2015.

[111] A. Adriansyah, B. van Dongen, and W. van der Aalst, “Con-
formance checking using cost-based fitness analysis,” in Proc. of
EDOC. IEEE, 2011.

[112] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen,
and W. M. P. van der Aalst, “Alignment based precision check-
ing,” in Proc. of BPM Workshops, ser. LNBIP, vol. 132. Springer,
2012, pp. 137–149.

[113] R. Kohavi, “A study of cross-validation and bootstrap for ac-
curacy estimation and model selection,” in International Joint
Conference on Artificial Intelligence, IJCAI. Morgan Kaufmann,
1995, pp. 1137–1145.

[114] A. Rozinat, A. Alves de Medeiros, C. G’́unther, A. Weijters, and
W. van der Aalst, “Towards an evaluation framework for process
mining algorithms,” BPM Center Report BPM-07-06, 2007.

[115] A. Bolt, M. de Leoni, and W. M. P. van der Aalst, “Scientific
workflows for process mining: building blocks, scenarios, and
implementation,” Software Tools and Technology Transfer, vol. 18,
no. 6, pp. 607–628, 2016.

[116] B. F. van Dongen, J. Carmona, T. Chatain, and F. Taymouri,
“Aligning modeled and observed behavior: A compromise be-
tween computation complexity and quality,” in Advanced Infor-
mation Systems Engineering - 29th International Conference, CAiSE
2017. Springer, 2017, pp. 94–109.

[117] J. Mendling, Metrics for Process Models: Empirical Foundations
of Verification, Error Prediction, and Guidelines for Correctness.
Springer, 2008.

[118] W. M. P. van der Aalst, Verification of workflow nets. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 407–426.

[119] R. Conforti, M. L. Rosa, and A. ter Hofstede, “Filtering out
infrequent behavior from business process event logs,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 2, 2017.

[120] van der Aalst, W. M. P., van Dongen, B. F., J. Herbst, L. Maruster,
G. Schimm, and Weijters, A. J. M. M., “Workflow mining: a
survey of issues and approaches,” Data Knowl. Eng., vol. 47, no. 2,
pp. 237–267, 2003.

[121] J. Claes and G. Poels, “Process Mining and the ProM Framework:
An Exploratory Survey,” in Business Process Management Work-
shops. Springer, 2012, pp. 187–198.

[122] S. K. L. M. vanden Broucke, J. D. Weerdt, J. Vanthienen, and
B. Baesens, “A comprehensive benchmarking framework (CoBe-
Fra) for conformance analysis between procedural process mod-
els and event logs in ProM,” in IEEE Symposium on Computational
Intelligence and Data Mining, CIDM. IEEE, 2013, pp. 254–261.

Adriano Augusto is joint Ph.D. student at Uni-
versity of Tartu (Estonia) and University of Mel-
bourne (Australia). He graduated in Computer
Engineering at Polytechnic of Turin (Italy) in
2016, presenting a master thesis in the field of
Process Mining.

Raffaele Conforti is a Lecturer at the University
of Melbourne, Australia. He conducts research
on process mining and automation, with a fo-
cus on automated process discovery, quality im-
provement of process event logs and process-
risk management.

Marlon Dumas is Professor of Information Sys-
tems at University of Tartu, Estonia. His research
interests span across the fields of software engi-
neering, information systems and business pro-
cess management. He is co-author of the text-
book “Fundamentals of Business Process Man-
agement” (Springer, 2nd edition).

Marcello La Rosa is Professor of Information
Systems at the University of Melbourne, Aus-
tralia. His research interests include process
mining, consolidation and automation. He leads
the Apromore Initiative, a cross-university col-
laboration for the development of an advanced
process analytics platform, and co-authored the
textbook “Fundamentals of Business Process
Management” (Springer, 2nd edition).

Fabrizio Maria Maggi is an Associate Professor
at the University of Tartu, Estonia. He worked as
Post-Doctoral Researcher at the Department of
Mathematics and Computer Science, Eindhoven
University of Technology. His research interest
span business process management, data min-
ing and service-oriented computing.

Andrea Marrella is Post-Doctoral Research Fel-
low at Sapienza Universitá di Roma. His re-
search interests include human-computer inter-
action, user experience design, knowledge rep-
resentation, reasoning about action, automated
planning, business process management. He
has published over 40 research papers and arti-
cles and 1 book chapter on the above topics.

Massimo Mecella is Associate Professor with
Sapienza Università di Roma. His research fo-
cuses on service oriented computing, business
process management, cyber-physical systems
and Internet-of-Things, advanced interfaces and
human-computer interaction. He published more
than 150 research papers and chaired different
conferences in the above areas.

Allar Soo Allar Soo is student in the Masters of
Software Engineering at University of Tartu. His
Masters thesis is focused on automated process
discovery and its use in practical settings.

	Introduction
	Search protocol
	Research questions
	Search string development and validation
	Study selection

	Classification of methods
	Model type and language (RQ2)
	Procedural language constructs (RQ3)
	Implementation (RQ4)
	Evaluation data and domains (RQ5)

	Benchmark
	Methods selection
	Evaluation metrics
	Setup and datasets
	Benchmark results

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	References
	Biographies
	Adriano Augusto
	Raffaele Conforti
	Marlon Dumas
	Marcello La Rosa
	Fabrizio Maria Maggi
	Andrea Marrella
	Massimo Mecella
	Allar Soo

