Automated Discovery of Search-Extension
Features

P4almi Skowronski!, Yngvi Bjornsson!, and Mark H.M. Winands?

1 Reykjavik University, School of Computer Science,
Kringlan 1, Reykjavik 103, Iceland
{palmisO1, yngvi}@ru.is
2 Games and AI Group, Department of Knowledge Engineering,
Maastricht University, Maastricht, The Netherlands
m.winands@micc.unimaas.nl

Abstract. One of the main challenges with selective search extensions
is designing effective move categories (features). This is a manual trial
and error task, which requires both intuition and expert human knowl-
edge. Automating this task potentially enables the discovery of both
more complex and more effective move categories. In this work we in-
troduce Gradual Focus, an algorithm for automatically discovering in-
teresting move categories for selective search extensions. The algorithm
iteratively creates new more refined move categories by combining fea-
tures from an atomic feature set. Empirical data is presented for the
game Breakthrough showing that Gradual Focus looks at two orders of
magnitude fewer combinations than a brute force method does, while
preserving good precision and recall.

1 Introduction

The af algorithm is one of the fundamental and most effective search techniques
used by game-playing programs for playing two-person adversary board games,
such as chess and checkers. Over the years many enhancements have been pro-
posed to further improve its efficiency. In particular, it has long been evident that
the standard strategy of exploring all alternatives to the same fixed depth is not
the most effective. Instead various techniques have been proposed for searching
the game tree more selectively, where some lines of play are terminated prema-
turely whereas others are explored more deeply. The former scenario is referred
to as search reductions (or speculative pruning) and the latter as search exten-
sions. In chess, for example, it is common to resolve forced situations, such as
checks and recaptures, by searching them more deeply.

The move-decision quality of the alpha-beta algorithm is greatly influenced
by the choices of which lines are investigated deeply [1, 2]. Therefore, the design
of an effective search-extension scheme is fundamental to any high-performance
af-based game-playing program. The typical approach for incorporating search
extensions into a game-playing program is to predefine a set of move categories
(e.g. checks and recaptures), and then associate a different cost weight to each

2 P&lmi Skowronski, Yngvi Bjérnsson, and Mark H.M. Winands

Fig. 1. Fractional-ply example

category. During the search, each move is categorized as belonging to one of the
predefined move classes, and the depth of the current search path then becomes
the sum of the weights of the moves on the path. If all move categories have
the same weight, one would get the regular behavior of a fixed-depth search.
However, by assigning a weight of less than one to selected move categories, e.g.
checking moves, such lines of play gets explored more deeply. This scheme is
commonly referred to as fractional-ply extensions [3, 4], depicted in Figure 1.

The weight of each move category, i.e. its fractional-ply value, is either man-
ually assigned a value based on trial and error, or, alternatively, automatically
tuned from game records [5, 6], test-suites [7], or during play [7-9]. For creating
the move categories the standard practice is to do it manually based on intu-
ition and domain expertise. In this work we investigate ways for automatically
discovering useful move categories for use in game-playing programs. The main
contribution is a new method for automatically discovering such features, called
Gradual Focus. We experiment with it in the game Breakthrough, where there
exists little knowledge of what comprises good moves to extend on.

The paper is structured as follows. In Section 2 we give an overview of rele-
vant background material, followed by a description of the new Gradual Focus
feature-discovery algorithm in Section 3. The algorithm is empirically evaluated
in Section 4, and finally we conclude and discuss future work in Section 5.

2 Background

The general approach to automated feature discovery is to start with a set of
so-called atomic features. The atomic features are typically simple features ex-
pressing trivial facts about the problem domain, for example, type and placement
of pieces. As a standalone these features are not necessary effective, for exam-
ple, because they might be too general. More sophisticated features are then
constructed by combining the atomic feature in various ways, e.g. by using the
logical operators A and V. This may be done in an iterative fashion, that is, first
pair-wise combinations are created, then three-wise, etc. The problem though,
is that the number of possible feature combinations grows exponentially in each

Automated Discovery of Search-Extension Features 3

iteration. For example, a brute-force power set method would generate in total
2™ — 1 features from an atomic feature set of size n. Consequently, to limit the
growth rate, a selective mechanism judging the merits of newly create features
may be applied, carefully choosing which features to further evolve.

In the context of game-playing, automatic feature discovery has first and fore-
most been applied to the learning of evaluation functions, as opposed to search-
control features. One of the first such approaches was introduced in the system
ZENITH [10]. The system works in a way backwards to the general approach
described above: it starts with a single feature, a logical formula describing the
goal of the game. It then gradually breaks the goal down into simpler sub-goals
by using predefined generic actions in the form of decomposition, abstraction,
goal regression, and specialization. Logical features of this kind have also been
successfully used to extract patterns that can be used as features for general
game playing [11]. The system GLEM [12], on the other hand, creates new fea-
tures by gradually combining mutually exclusive atomic features along the lines
described above. The method is additionally capable of learning an importance
weight for each of the newly created feature. This method was used to construct
a high-quality evaluation function for the Othello program LOGISTELLO [13], al-
though, in that case the features were provided manually and GLEM used only
for tuning their relative weights. A different feature-combination approach was
used to learn an evaluation function for a program to play the card game Hearts
[14]. All possible pair-wise, three-wise, and four-wise combination were created
in more or less a brute-force manner and a reinforcement-learning approach then
used to learn their relative importance. Finally, learning of move-patterns for a
plausible move generations in chess is presented in [15].

3 Gradual Focus

Gradual focus (GF), the method we introduce here, is a more intelligent way
of constructing interesting features than an exhaustive power-set method. GF
combines atomic features in an iterative fashion, where each iteration creates a
set of more refined features, gradually narrowing their focus, using a variety of
pruning methods to reduce the number of possible combinations.

3.1 GF Overview

Given a set of atomic features GF combines these features using an A operator.
The features are combined one level at a time, i.e. one-wise, two-wise, three-wise,
etc., and their quality evaluated. Those features that do not show an improve-
ment are pruned off and prevented from occurring as subsets in later feature
combinations. This process is repeated until no more combinations are formed.

Figure 2 shows an example of this process. The first level consists of the
atomic features, called Base set, and the second level shows the feature set gen-
erated by the first iteration, where all two-wise combinations of the Base set are
created. Each feature in the set is evaluated individually and those that perform

4 P&lmi Skowronski, Yngvi Bjérnsson, and Mark H.M. Winands

() &) () (]

Base

() () () () () (=)
Iteration 1

Iteration 2

Fig. 2. Overview of Gradual Focus

worse than either parent are discarded, as feature bAc in this example. The next
iteration evolves the surviving features further by combing the two-wise features
with the features in the Base set. As the bAc feature has been discarded it is not
evolved any further, nor are any evolving features containing bAc allowed. This
results in only two three-wise combinations. Four-wise combinations cannot be
formed either as bAc is forbidden as a subfeature, so the process halts.

3.2 Implementation Details

A pseudo-code for the GF algorithm is shown as Algorithm 1. The variable
BlackList maintains disproven features, while the Output variable maintains the
viable features, and the Neutral variable is the empty feature, and is evaluated
in line 3 to establish a baseline of how the tree search behaves without search
extensions. The function ewvaluateFitness, which will be discussed in detail in
Section 3.6, returns a numerical value indicating the quality, i.e. the fitness, of
a feature. Each of Base’s features is also evaluated (line 5) Those features that
perform below an expected level of quality (lines 7-13) can optionally be removed
from the Base set, reducing GF’s branching factor. This pruning method, called
threshold pruning, is discussed in a more detail in Section 3.5.

The iterative feature-evolution process is done in lines 17-26. The function
evolveFeatures (line 19) evolves the features in the workSet by combining them
with the Base set, and using the BlackList to remove disallowed combinations.
Both the Base and the workSet sets must be sorted in a descending order by
evaluation score (lines 14 and 18) for evolveFeatures to work as intended.

The assessment of newly evolved features occurs in line 20-25, where each of
the newly evolved feature is evaluated (line 22) and its evolutionary direction
assessed within filterFeature (line 23) as either ascending or descending. De-
scending combinations are added to the BlackList, thereby removing them and
their descendants from the evolutionary process, while ascending combinations
are returned from the function and added to GF’s output (line 23). Disproving
a feature within filterFeature might also disprove other features in the workSet
that are yet to be evaluated, which is why features must be compared against
the BlackList each time in the loop before they are evaluated (line 21). This

Automated Discovery of Search-Extension Features 5

Algorithm 1 featureLearner(ref Base)

1: BlackList — {}

2: Output — {}

3: evaluateFitness(Neutral)
4: for all b € Base do
5: evaluateFitness(b)
6

7

8

: end for
. if UseThreasholdPruning then
for all b € Base do

9: if byawe < 6 then
10: Base «— Base \ {b}
11: end if
12: end for
13: end if

14: sortDesc(Base)

15: Output «— Neutral U Base

16: workSet < Base

17: while workSet # {} do

18: sortDesc(workSet)

19: workSet « evolveFeatures(workSet, Base, BlackList)
20: for all fe€ workSet do

21: if isCompositionAllowed(f, BlackList) then

22: evaluateFitness([)

23: Output — Output U filterFeature(f, BlackList)
24: end if

25: end for

26: end while
27: sortDesc(Output)
28: display(Output)

evolution process is iterated until no new features can be formed, the evolveFea-
tures function returns an empty set (line 19 and 17), meaning that all promising
evolution paths have been explored.

The implementation of the evolveFeatures routine is shown as Algorithm 2,
where A is a set of features to be evolved and B is the set of features to combine
with. The same feature can be composed in various ways with different first and
second parent (i.e. aAb and bAa are considered the same feature). However, to
simplify the evaluation of features we impose an order such that the first parent
must have a greater fitness value than the second parent, which is why the input
sets are sorted in a descending order before the evolution phase and then paired
together from left to right. To prevent unnecessary combinations, the features
cannot belong to the same group nor can a subset of the new feature ¢ be on the
BlackList (line 4 and 6). Neither are, duplicate combinations allowed (line 6).
Feature groups prevent illogical combinations and will be discussed in a more
detail in Section 3.3. Combinations that are not pruned away are added to a new
set (line 7) which is then returned (line 12) as a new generation of features.

6 P&lmi Skowronski, Yngvi Bjérnsson, and Mark H.M. Winands

Algorithm 2 evolveFeatures(A, B, BlackList)

1: new «— {}

2: for all a € A do

3: forall be B do

4: if — belongToSameGroup(a, b) then
5: ¢ «— combine(a, b)

6: if isCompositionAllowed(¢, BlackList) A\ ¢ ¢ new then
T new < new U ¢

8: end if

9: end if

10: end for

11: end for

12: return new

The assessment for the evolution progress is shown in Algorithm 3. In line
1 the new feature’s value is compared against its first parent. The value of € is
domain-specific and is added to the feature’s value to control the level of im-
provement needed for the feature to evolve further. Features that do not improve
upon their parent are pruned off by adding them to the BlackList (line 2), thus
preventing them from occurring in future evolution sets. Features that surpass
their parent, are returned (line 11). Lines 3-8 in the algorithm are a part of the
linear tree pruning method to be discussed in Section 3.4.

3.3 Groups

Some features are not compatible in a sense that combining them is meaningless
in the context of the game at hand, e.g. in chess: capture the king or move a
pawn and rook. Features can thus beforehand be put into logical groups, where
combining features within a group is not allowed (line 4 in Algorithm 2). This
prevents many useless combinations from being formed. As an example, a set of
six features divided into two equal groups, creates 63 different feature combina-

Algorithm 3 filterFeature(newFeature, ref BlackList)

if newFeatureygive < newFeaturefirstparentvaiue + € then
BlackList <+ BlackList U newFeature
if UseLinearTreePruning then
for all child € getChildren(newFeaturesccondParent) do
banned «— combine(newFeaturegirstparent, child)
BlackList <+ BlackList U banned
end for
end if
return {}
else
return newFeature
12: end if

— =
e

Automated Discovery of Search-Extension Features 7

[OH® D)

Base
Ba B4 B
Iteration 1

Fig. 3. Linear Tree Pruning example

tions without groups, but only 15 if groups are used. Combined features inherit
the groups of their parents, making them belong to more than one group.

3.4 Linear Tree Pruning

Features within a group can form a natural hierarchy, where some features are
subsets of others. This tree hierarchy can be used to predict the outcome of
future evaluations and prune off those that are expected to be inferior. The logic
is that if a new combination formed with a parent feature is pruned off, then
other combinations with that feature’s children can also be eliminated.

Figure 3 shows an example of this where the Base set has been divided
into two groups, where the second group has a hierarchy where co and cs are
children of ¢;. In the first iteration GF creates all two-wise combinations which
are then evaluated. Assuming the combination aAc; is pruned off, then if linear
tree pruning is used the features aAce and aAcs would also be pruned off.

This method cannot guarantee that interesting combinations won’t be pruned
off, as combinations with a highly frequent parent feature might extend too
aggressively, whereas a combination with its less frequent children might not.
The method is thus optional, as shown in Algorithm 3 in lines 3-8. It retrieves all
the children of the second parent feature (line 4) and creates a new combination
with the first parent and each of the retrieved children features (line 5), which
are then added to the BlackList (line 6).

3.5 Threshold Pruning

Threshold pruning is the last of the optional pruning methods available for GF. It
removes all features from the Base set that are below a provided quality thresh-
old, determining those features immediately as disadvantageous and therefore
not eligible to participate in the evolution process (lines 7-13 in Algorithm 1).
This is potentially a very effective pruning method as it reduces the expo-
nential growth of the number of combined features at all iterative levels, but at
the risk of wrongfully pruning away potentially good candidates. The risk can be

8 P&lmi Skowronski, Yngvi Bjérnsson, and Mark H.M. Winands

lessened by marking which features can be safely pruned; this however requires
knowledge of the search domain. A sensible choice for the threshold parameter
0 (line 9), would be to approximate it around the value of the Neutral feature.

3.6 Fitness Evaluation

The true quality of a search-extension feature can be found only by using it
in actual game-play. However, playing games is time-consuming, so instead we
use a suite of selected test positions where the best move is known. Information
about the feature’s effect on the search is collected: number of solved positions,
mean iteration depth, mean height, and feature’s frequency in the search. Various
methods to evaluate the feature’s quality can be formed based on the gathered
information, but we choose to simply use the number of solved positions (i.e. best
move played) as it is both simple and directly measures a feature’s effectiveness.

4 Empirical Results

We empirically evaluate the GF method by discovering search-extension features
for the game Breakthrough. The experiments were run on a Linux CentOS 5
Intel(R) Xeon (TM) 3.00GHz CPU machine with 2GB of memory.

4.1 Breakthrough

Breakthrough [16] is a two person perfect information game created by Dan
Troyka in 2001. The game is played on a chess board where each player has 16
pawn-like pieces that fill the two front and back rows of the board. The objective
of the game is to break through the opponent’s ranks and advance a piece to the
opponents back rank. Despite its simple rules, which are given below, the game
requires a sophisticated strategy to play at an expert level.

1. Players’ two back rows are filled with their pieces at the start of the game.
2. Players choose which side starts (our program assumes that White starts).
3. Players alternate moving a piece.

(a) One square forward or diagonally-forward to unoccupied squares.

(b) One square diagonally-forward to a square containing an opponent’s

piece, capturing opponent’s piece and removing it from the board.

4. Capture moves are not forced.
5. A game ends when a player’s piece reaches the opponent’s back rank.

4.2 Experiments Setup

A description of the atomic features forming GF’s Base set is shown in Table 1.
Each feature belongs to its own group except the following larger groups: { Rdb,
RdBb, RdBt}, {Rdt, RATb, RdTt}, and {Edg, Mr}. Two of these have a tree-
hierarchy: RdBb and RdBt are Rdb’s children, and RdTb and RdTt are Rdt’s

Automated Discovery of Search-Extension Features 9

Table 1. Description of Breakthrough’s base features

Feature Feature Description

Ud Moved piece is not threatened on destination square.

PP Piece’s direction is unhindered towards opponent’s back rank.
Re Capture previously moved piece.

C Capture opponents piece.

Ms Majority of squares surrounding moved piece is

occupied by players pieces, forming a greater mass.
Rdb Players half of the board.
RdBb First and second rank of the board.
RdBt Third and fourth rank of the board.
Rdt Opponents half of the board.
RdATb Fifth and sixth rank of the board.
RdATt Seventh and eighth rank of the board.
Edg The board’s edges, columns a, b, g, and h.
Mr The board’s middle, columns ¢, d, e, and f.
Udp Prepare to move around opponent’s piece.
Piece is not threatened and standing opposite opponent’s piece.
Bv2 Block opponent’s advancement by placing piece in front of it,
creating a vertical defensive line of two pieces.

children. The features are evaluated using a fixed fractional-ply value of 0.5, cho-
sen somewhat arbitrary although such that it is neither too conservative nor too
aggressive. Each feature was evaluated using our Breakthrough program search-
ing 500,000 nodes per search, which corresponds to approximately 5-ply search.
The program uses a3 search with iterative deepening, and a simple but fairly ef-
fective heuristic based on material and bonuses for advanced non-attacked pieces.
GF’s evolution parameter € is set to 3 to compensate for fluctuating evaluations,
and the threshold pruning parameter ¢ equals to the Neutral feature’s value. As
there exists no standard position test-suite for Breakthrough we created a set
of 302 positions which were picked from a game of self-play where the terminal
state could be reached in 7 plies. This allowed us to unambiguously identify the
best move, but has the drawback of all the positions being from the endgame.
Three programs using different heuristic evaluations were used to get a variety
of endgame positions.

4.3 Feature Evolution Results

Four different instantiations of GF were evaluated. The results are shown in Ta-
ble 2 where Default disregards previously presented grouping of feature, placing
each feature in a group of its own. The GF’s enhancements, Groups (G), Linear
tree pruning (LTP), and Threshold pruning (TP), are then cumulatively added
using the previously described grouping of features. The calculated result of a
power-set’s feature expansion are also shown.

As can be seen by the Default instance, GF reduces the number of generated
feature combinations immensely compared to the brute-force power-set method,

10 P&lmi Skowronski, Yngvi Bjérnsson, and Mark H.M. Winands

Table 2. Gradual focus evaluations in Breakthrough

. Overlooked
Method type Hours Evaluations # % of P combinations
Power Set - 32,768 100%
Default 30.6 138 0.42%
Default + G 24.9 112 0.34% 0
Default + G + LTP 23.7 105 0.32% 0
Default + G + LTP + TP 5.8 27 0.08% 5

Table 3. Tree-Wise Combinations in Breakthrough

Feature Solved Parent Feature Solved Parent

% Ud-RdATt 235 Ud PP-Edg-RdTt 115 PP-RdTt
Ud-PP-RdTt 224 Ud-RdTt Ud-Ms-RdTt 114 Ud-RdTt

% PP-RdATt 211 PP Ud-PP-RdTb 111 Ud-PP

% RdATt 202 - Ms-RdTt 110 RdTt

% Ud-PP-Rdt 173 Ud-PP Ud-PP-Mr 109 Ud-PP

% Ud-PP 155 Ud * PP-Rdt-Edg 108 PP-Rdt
Ud-Edg-RdTt 149 Ud-RdTt Ud-Rdt-Mr 105 Ud-Rdt
Edg-RdTt 142 RdTt % Ud 102 -
Ud-RdTt-Mr 141 Ud-RdTt Ud-Rdt-Edg 102 Ud-Rdt
PP-RdTt-Mr 140 PP-RdTt| PP-Rdt 98 PP
RdTt-Mr 188 RdTt % PP-Edg 97 PP

% Ud-Rdt 125 Ud % Rc-Rdb 96 Rc
Ud-PP-Edg 122 Ud-PP

and without overlooking any interesting combinations. Thirteen of these evalu-
ations are incompatible combinations that can never occur in the game, which
were prevented in the G instance. Adding LTP improves the pruning slightly
further without overlooking any previously interesting combinations. TP, on the
other hand, further reduces the number of evaluations substantially, but at the
cost of overlooking five of Default’s top ten most interesting combination, Ud-
PP-Rdt, Ud-Rdt, PP-Rdt, PP-Rdt-Edg, and Rc-Rdb.

4.4 Precision and Recall

GF’s findings were compared with the complete set of all one, two, and tree-wise
combinations, in all 377 features. The resulting top 25 features are shown in Table
3 along with the number of positions they solve and their first parent. Features
written in italic are less effective descendants of already discovered features and
as such redundant as their benefits are already obtained with the use of their
parent. Ignoring these features leaves only 11 of the original 25 features.

The top features that GF returns are exactly these 11 features. Thus, in this
domain, GF offers both perfect precision (number of correctly identified features)
and perfect recall (how large portion of the interesting features were discovered).

Automated Discovery of Search-Extension Features 11

Table 4. Features’ result in Breakthrough

Feature Games # Wins % Conf. Int. ggf&ug;ﬁes
Ud-Rdt 2400 58.17% +1.97(15.57% 4.71%
PP-RdATt 2400 57.04% +1.98] 2.87% 0.87%
RATt 2400 56.54% +1.98] 8.75% 1.91%
Ud-RdTt 2400 55.96% +1.99| 7.76% 1.90%
Ud-PP 2400 53.92% +1.99| 8.44% 2.31%
Ud-PP-Rdt 2400 53.50% +2.00| 6.94% 1.99%
PP-Rdt 2400 52.03% +2.00(12.33% 3.92%
Rec-Rdb 2400 49.29% 4+2.00| 1.55% 1.48%
PP-Rdt-Edg 2400 49.13% +2.00| 3.18% 1.18%
Ud 2400 46.46% +2.00(32.18% 43.37%

4.5 Tournament Results

The top ten features suggested by GF as being interesting were also evaluated
through self-play. Table 4 shows the results, with the last two columns contrast-
ing the feature frequency when searching the test suit and in actual games.

All but three of the features lead to an improved play. The features Re-Rdb
and PP-Rdt-Fdg have a little effect on the game, which can in part be explained
by their low frequency. However, that alone is a not a sufficient explanation as
PP-RdTt with even a lower frequency is doing well. That feature is extending
only on safe pawn moves just about to reach the back rank and thus, even though
infrequent, almost always results in a more accurate evaluation score. The Ud
feature on the other hand has a negative effect on in-game performance, whereas
it was slightly beneficial on the test-suite. We see that this type of extension is
substantially more frequent in actual game play than in the test-suit, which
might be enough to tilt the balance. This could probably be avoided by using a
more diverse test suit containing start, middle, and endgame positions.

5 Conclusions

We introduced a new method for learning search-extension features, called Grad-
ual Focus. It iteratively creates new refined features by combining atomic features
from a base set using the A operator, using various merit-based pruning tech-
niques to select which features to further evolve. We evaluated the method in the
game Breakthrough, where there exists little domain knowledge of what makes
up good move categories to extend on. The method learned several promising
search-extensions features from a suite of test positions. Moreover, it required
several orders of magnitude less time than a brute-force approach while demon-
strating both an excellent precision and recall. The learned features, when used
in regular game play, significantly improved our program’s playing strength.
Also, the method does not require the learned features necessarily to be move
categories, and GF could thus be used for other search-control features as well.

12 P&lmi Skowronski, Yngvi Bjérnsson, and Mark H.M. Winands

There is still much scope for improvements and we view this work as a first
step in exploring automatic discovery of search-control features. In particular,
currently we use the number of solved positions as the only indicator of a fea-
ture’s quality, however, by also monitoring other statistics when evaluating a
feature, such as its frequency in the search, one could pinpoint promising evolu-
tion paths more intelligently. For example, a feature that is much less frequent
than another might be preferred even if it solves a slightly less number of test
positions. Another issue is that we evaluate all features using a fixed FP value,
which undeniably excludes the discovery of potentially useful features (we have
observed that feature’s quality is quite sensitive to its FP value). Thus, com-
bining learning of features with methods for learning FP values is a worthwhile
avenue for future research. Finally, it would be interesting to explore the method
in other game domains, and we have started preliminary work in chess.

References

1. Anantharaman, T.S., Campbell, M.S., Hsu, F.: Singular extensions: adding selec-
tivity to brute-force searching. Artificial Intelligence 43(1) (1990) 99-109
2. Beal, D.F., Smith, M.C.: Quantification of search extension benefits. ICCA Journal
8(4) (1995) 205-218
3. Hyatt, R.M.: Crafty. A chess program available March 27th., 2008 at
ftp://ftp.cis.uab.edu/pub/hyatt (1996)
4. Levy, D., Broughton, D., Taylor, M.: The SEX algorithm in computer chess. ICCA
Journal 12(1) (1989) 1021
5. Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-tree search algorithm based
on realization probability. ICGA Journal 25(3) (2002) 146-153
6. Winands, M.H.M., Bjornsson, Y.: Enhanced realization probability search. New
Mathematics and Natural Computation 4(3) (2008) 329-342
7. Bjornsson, Y.: Selective Depth-First Game-Tree Search. Phd dissertation, Univer-
sity of Alberta (2002)
8. Bjornsson, Y., Marsland, T.A.: Learning extension parameters in game-tree search.
Information Sciences 154(3-4) (2003) 95-118
9. Kocsis, L., Szepesvéri, C., Winands, M.H.M.: RSPSA: Enhanced Parameter Op-
timization in Games. In: Advances in Computer Games 11. (2006) 39-56
10. Fawcett, T.E., Utgoff, P.E.: Automatic feature generation for problem solving
systems. In: Intern. Conf. on Machine Learning (ICML). (1992) 144-153
11. Kaneko, T., Yamaguchi, K., Kawai, S.: Automated identification of patterns in
evaluation functions. In: Advances in Computer Games 10. (2003) 279-298
12. Buro, M.: From simple features to sophisticated evaluation functions. In: Com-
puters and Games (CG98), LNCS. Volume 1558. (1998) 126-145
13. Buro, M.: Experiments with Multi-ProbCut and a new high-quality evaluation
function for Othello. In: Games in AI Research. (1999) 77-96
14. Sturtevant, N.R., White, A.M.: Feature construction for reinforcement learning in
hearts. In: Computers and Games (CGO06). (2006) 122-134
15. Finkelstein, L., Markovitch, S.: Learning to play chess selectively by acquiring
move patterns. ICCA Journal 21(2) (1998) 100-119
16. Handscomb, K.: 8 X8 game design competition: The winning game: Breakthrough
...and two other favorites. Abstract Games Magazine 7 (2001)

