
Automated Discovery of Structured Process Models From

Event Logs: The Discover-and-Structure Approach

Adriano Augustoa,b,1, Raffaele Confortib,1, Marlon Dumasa, Marcello La Rosab,1,

Giorgio Brunoc

aUniversity of Tartu, Estonia
bUniversity of Melbourne, Australia

cPolitecnico di Torino, Italy

Abstract

This article tackles the problem of discovering a process model from an event log

recording the execution of tasks in a business process. Previous approaches to this

reverse-engineering problem strike different tradeoffs between the accuracy of the

discovered models and their structural complexity. With respect to the latter property,

empirical studies have demonstrated that block-structured process models are gener-

ally more understandable and less error-prone than unstructured ones. Accordingly,

several methods for automated process model discovery generate block-structured

models only. These methods however intertwine the objective of producing accurate

models with that of ensuring their structuredness, and often sacrifice the former in

favour of the latter. In this paper we propose an alternative approach that separates

these concerns. Instead of directly discovering a structured process model, we first

apply a well-known heuristic that discovers accurate but oftentimes unstructured (and

even unsound) process models, and then we transform the resulting process model into

a structured (and sound) one. An experimental evaluation on synthetic and real-life

event logs shows that this discover-and-structure approach consistently outperforms

previous approaches with respect to a range of accuracy and complexity measures.
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1. Introduction

Process mining methods enable analysts to extract insights about the performance

and conformance of a given business process based on logs recording the execution of
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tasks thereof [30]. Among other things, process mining methods allow analysts to gen-

erate a process model from an event log, an operation commonly known as automated

process discovery. In this context, an event log is a set of traces, each consisting of a se-

quence of events observed within one execution of a process. Such event logs can gen-

erally be extracted from enterprise information systems such as Customer Relationship

Management (CRM) systems or Enterprise Resource Planning (ERP) systems [30].

A wide range of automated process discovery methods have been proposed over

the past two decades, striking various tradeoffs between accuracy and structural com-

plexity [32]. In this setting, accuracy is commonly declined into three dimensions: (i)

fitness: to what extent the discovered model is able to “parse” the traces in the log; (ii)

precision: how much behavior is allowed by the model but not observed in the log; and

(iii) generalization: to what extent is the model able to parse traces that, despite not

being present in the input log, can be produced by the process under observation. On

the other hand, structural complexity is commonly measured via metrics quantifying

either the size of the process model, its branching factor, or its degree of structuredness

(the extent to which a model is composed of well-structured single-entry, single-exit

components). Also, these metrics have been empirically shown to be proxies for un-

derstandability [20].

Inspired by the observation that structured process models are often more under-

standable than unstructured ones [12], several automated process discovery methods

generate structured models by construction [5, 18, 22]. However, these approaches in-

tertwine the concern of accuracy with that of structuredness, sometimes sacrificing the

former to achieve the latter. In this paper, we obviate this tradeoff presenting an auto-

mated process discovery method that generates structured process models, still achiev-

ing a level of fitness, precision and generalization, equal or better than methods that

generate unstructured process models. The method follows a “discover-and-structure”

approach. First, a model is discovered from the log using a heuristic process discovery

method that has been shown to consistently produce accurate, but potentially unstruc-

tured or even unsound models. Next, the discovered model is transformed into a sound

and structured model by repeated application of two refactoring operations (push-down

and pull-up of gateways) according to an A* search algorithm.

We report on an empirical evaluation of the proposed method against three state-

of-the-art automated process discovery methods, based on a dataset consisting of 619

synthetic event logs and twelve real-life ones.

The article is an extended and revised version of a previous conference paper [3].

With respect to the conference version, the main enhancements are:

• An improved search algorithm and a modified version of the push-down and

pull-down operators in order to improve the scalability of the block-structuring

method.

• A post-processing step that reduces the size of the model by refactoring cloned

model fragments introduced during the structuring phase of the method.

• An extended evaluation based on a set of twelve real-life event logs in addition

to the evaluation on synthetic logs reported in the conference version.
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The rest of the paper is organized as follows. Section 2 introduces existing methods

for automated process discovery and for block-structuring process models. Section 3

presents the proposed method while Section 4 reports on the empirical evaluation. Fi-

nally, Section 5 summarizes the contributions and outlines future work directions.

2. Background and Related Work

In this section, we review existing automated process discovery methods, and the

associated quality dimensions that we will use to compare automated process discovery

methods. Also, we introduce methods for transforming unstructured process models

into structured ones, which we use as building blocks for our proposal.

2.1. Automated Process Discovery Algorithms

The bulk of automated process discovery algorithms are not designed to produce

structured process models. This includes for example the α-algorithm [31], which

may produce unstructured models and sometimes even models with disconnected frag-

ments. The Heuristics Miner [33] partially addresses the limitations of the α-algorithm

and consistently performs well in terms of accuracy and simplicity metrics [32]. How-

ever, its output may be unstructured and even unsound, i.e. the produced models may

contain deadlocks or gateways that do not synchronize all their incoming tokens. Fod-

ina2 is a variant of the Heuristics Miner that partially addresses the latter issue but does

not generally produce structured models.

It has been observed that structured process models are generally more understand-

able than unstructured ones [12]. Moreover, structured process models are sound,

provided that the gateways at the entry and exit of each block match. Given these

advantages, several algorithms are designed to produce structured process models, rep-

resented for example as process trees [5,18]. A process tree is a tree where each leaf is

labelled with an activity and each internal node is labelled with a control-flow operator:

sequence, exclusive choice, non-exclusive choice, parallelism, or iteration.

The Inductive miner [18] uses a divide-and-conquer approach to discover process

trees. Using the direct follows dependency between event types in the log, it first cre-

ates a directly-follows graph to identify cuts. A cut represents a specific control-flow

dependency along which the log can be bisected. The identification of cuts is repeated

recursively, starting from the most representative one until no more cuts can be iden-

tified. Once all cuts are identified and the log is split into portions, a process tree is

generated from each portion of the log. The algorithm then applies filters to remove

“dangling” directly-follows edges so that the result is purely a process tree.

The Evolutionary Tree Miner (ETM) [5] is a genetic algorithm that starts by gen-

erating a population of random process trees. At each iteration, it computes an overall

fitness value for each tree in the population and applies mutations to a subset thereof. A

mutation is a tree change operation that adds or modifies nodes. The algorithm iterates

until a stop criterion is fulfilled, and returns the tree with highest overall fitness.

2http://www.processmining.be/fodina
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Molka et al. [22] proposed another genetic automated process discovery algorithm

that produces structured process models. This latter algorithm is similar in its principles

to ETM, differing mainly in the set of change operations used to produce mutations.

The above methods aim to discover flat process models. Other methods focus on

hierarchical process model discovery. For example, BPMN Miner [6, 7] employs ap-

proximate functional and inclusion dependency discovery techniques to elicit a process

hierarchy from the log, which is then used with any flat discovery method to extract

a hierarchical BPMN model. Another example is two-phase mining [19], which uses

sequential patterns mining to identify subprocess boundaries. In this paper we focus on

flat process models. As such, our work is complementary to those hierarchical discov-

ery methods such as BPMN Miner that rely on an underlying flat discovery algorithm.

2.2. Quality Dimensions in Automated Process Discovery

The quality of an automatically discovered process model is generally assessed

along four dimensions: recall (a.k.a. fitness), precision, generalization and complexity.

Fitness is the ability of a model to reproduce the behavior contained in a log. Under

trace semantics, a fitness of 1 means that the model can produce every trace in the

log. In our evaluation, we use the fitness measure proposed by Adriansyah et al. [2],

which measures the degree to which every trace in the log can be aligned with a trace

produced by the model. Precision measures the ability of a model to generate only

the behavior found in the log. A score of 1 indicates that any trace produced by the

model is somehow present in the log. In our evaluation, we use the precision measure

defined by Adriansyah et al. [1], which is based on similar principles as the above

fitness measure. Recall and precision can be combined into a single F-score, which is

the harmonic mean of the two measurements
(

2 · Fitness·Precision
Fitness+Precision

)

.

Generalization measures the ability of an automated discovery algorithm to capture

behavior that is not present in the log but that can be produced by the process under

observation. To measure generalization we use 3-fold cross validation [16]: We divide

the log into 3 parts, discover a model from 2 parts (i.e. we hold-out 1 part), and we

measure fitness of the discovered model against the hold-out part. This is repeated for

every possible hold-out part. Generalization is the mean of the fitness values obtained

for each hold-out part. A generalization of 1 means that the discovered models produce

traces in the observed process, even if those traces are not in the log from which the

model was discovered.

Finally, (structural) complexity of a process model can be quantified via several

different metrics, which have been shown to be (inversely) related to understandabil-

ity [20]. As part of our evaluation, we consider size (number of nodes), control-flow

complexity (CFC) (the amount of branching caused by gateways in the model), and

structuredness (the percentage of nodes located directly inside a well-structured single-

entry single-exit fragment). We selected these three complexity metrics since they not

only assess the structural complexity of a process model but also directly relate to three

of the seven process modelling guidelines [21].

2.3. Structuring Techniques

Polyvyanyy et al. [25, 26] propose a technique to transform unstructured process

models into behaviourally equivalent structured ones. The approach starts by con-
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structing the Refined Process Structure Tree (RPST) [27] of the input process model.

The RPST of a process model is a tree where the nodes are the single-entry single-exit

(SESE) fragments of the model and an edge denotes a containment relation between

SESE fragments. Specifically, the children of a SESE fragment in the tree are the SESE

fragments that it directly contains. Fragments at the same level of the tree are disjoint.

Each SESE fragment is represented by a set of edges. Depending on how these

edges are related, a SESE fragment can be of one of four types. A trivial fragment

consists of a single edge. A polygon is a sequence of fragments. A bond is a fragment

where all child fragments share two common gateways, one being the entry node and

the other being the exit node of the bond. Thus, a bond consists of a split gateway

with two or more sub-SESE fragments all converging into a join gateway. Any other

fragment is a rigid. A model that consists only of trivials, polygons and bonds (i.e. no

rigids) is fully structured. Thus the goal of a block-structuring technique is to replace

rigid fragments in the RPST with combinations of trivials, polygons and bonds.

In the structuring technique by Polyvyanyy et al., each rigid fragment is unfolded

and an ordering relation graph is generated. This graph is then parsed to construct a

modular decomposition tree leading to a hierarchy of components from which a max-

imally structured version of the original fragment is derived. This technique [26] pro-

duces a maximally-structured version of any acyclic fragment (and thus of any model),

but it does not structure rigid fragments that contain cycles.

The problem of structuring behavioral models has also been studied in the field

of programming, specifically for flowcharts: graphs consisting of tasks (instructions),

exclusive split and exclusive join gateways. Oulsnam [23] identified six primitive forms

of unstructuredness in flowcharts. He observed that unstructuredness is caused by the

presence either of an injection (entry point) or an ejection (exit point) in one of the

branches connecting a split gateway to its matching join gateway. Later, Oulsnam [24]

proposed an approach based on two rules to structure these six forms. The first rule

deals with an injection, and pushes the injection after the join gateway, duplicating

everything that was originally between the injection and the join. The second rule

deals with an ejection. In this case, the ejection branch is moved after the join gateway,

but an additional conditional block is added to prevent the execution of unnecessary

instructions. These two rules are recursively applied to the flowchart, starting from the

innermost unstructured form, until no more structuring is possible. Figure 1 reports

the six forms of unstructuredness detected by Oulsnam [23], and how they can be

structured according to the two rules we summarized in this paragraph.

The techniques by Polyvyanyy and Oulsnam are complementary: while the former

deals mainly with unstructured acyclic rigids with parallelism, the latter deals with

rigid fragments without parallelism (exclusive gateways only). This observation is a

centrepiece of the approach presented in the following section.

3. Approach

The proposed approach to discover maximally structured process models takes as

input an event log and operates in four phases: i) discovery, ii) structuring, iii) sound-

ness repair, and iv) clones removal. Figure 2 provides an overview of all the phases of

our approach.
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Figure 1: Oulsnam’s six forms of unstructuredness, before and after structuring [23, 24].

3.1. Discovery

In this phase, we discover a process model relying on an existing process discovery

algorithm. Despite any discovery algorithm can be used, in the context of this work,

we rely on the Heuristics Miner as discovery algorithm due to its high accuracy [32].

The output produced in this phase is a process model.

Definition 1 (Process Model). A process model is a connected graph G =
(i,o,A,G+,G×,F), where A is a non-empty set of activities, i is the start event, o is

the end event, G+ is the set of AND-gateways, G× is the set of XOR-gateways, and

F ⊆ ({i}∪A∪G+ ∪G×)× ({o}∪A∪G+ ∪G×) is the set of arcs. Moreover, a split

gateway is a gateway with one incoming arc and multiple outgoing arcs, while a join

gateway is a gateway with multiple incoming arcs and one outgoing arc.
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Figure 2: Overview of the proposed approach.

Figure 3: Example of a process model.

A process model produced by the Heuristics Miner starts with a unique start event,

representing the process trigger (e.g. “order received”) and concludes with a unique

end event, representing the process outcome (e.g. “order fulfilled”). The activities con-

tained in a model capture actions that are performed during the execution of the process

(e.g. “check order”), while gateways are used for branching (split) and merging (join)

purposes. Gateways can be of two types: XOR or AND. Gateways of type XOR are

used to model exclusive decisions (XOR-Split) and simple merges (XOR-Join), while

gateways of type AND are used to model parallelism (AND-Split) and synchroniza-

tion (AND-Join). Figure 3 shows an example of a process model containing several

activities (the rectangles) and gateways (the diamonds).

3.2. Structuring

This phase performs the structuring of a process model via the removal of injec-

tions and ejections, i.e. the cause of unstructuredness. Before illustrating this phase

in details, we need to define the notions of activity path, injection, and ejection. An

activity path is a path between two gateways traversing only activities.

Definition 2 (Activity Path). Let gentry and gexit be two gateways, and σ =
〈σ1,σ2, . . . ,σn〉 a sequence of activities with σi ∈ A, n = |σ |. There is a path from

gentry to gexit, i.e. gentry 
σ gexit iff gentry → σ1 → σ2 → ·· · → σn → gexit, where given

two activities a,b ∈ A, a → b holds iff (a,b) ∈ F. In the remainder of the paper, given

a sequence σ , we refer to σn as σ|σ |.

Moreover, given the set of all paths P, {σ ∈ A∗ | ∃g1,g2 ∈ G[g1 
σ g2]}, 3 the set

of incoming paths of a gateway gx is defined as ❜gx = {σ ∈ P | ∃g1 ∈ G[g1  
σ gx]}.

Similarly the set of outgoing paths is defined as gx
❜= {σ ∈ P | ∃g2 ∈ G[gx 

σ g2]}.

Definition 3 (Injection). Given four different gateways g1, g2, g3, g4, they constitute

an injection i = (g1,g2,g3,g4) iff ∃(σ ′,σ ′′,σ ′′′) ∈ A∗×A∗×A∗ | g1 
σ
′
g2 ∧g2 

σ
′′

3Given a set of symbols V , V ∗ refers to the set of all finite-length sequences over the symbols in V ,

including the empty sequence 〈〉.
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g3 ∧g4 
σ
′′′

g2 (see Figure 4a). Moreover, we refer to g2 as the injecting gateway and

to g3 as the exit gateway.

Definition 4 (Ejection). Given four different gateways g1, g2, g3, g4, they constitute

an ejection e = (g1,g2,g3,g4) iff ∃(σ ′,σ ′′,σ ′′′) ∈ A∗×A∗×A∗ | g1 
σ
′
g2 ∧g2 

σ
′′

g3 ∧g2 
σ
′′′

g4 (see Figure 5a). Moreover, we refer to g2 as the ejecting gateway and

to g1 as the entry gateway.

Additionally, to retrieve the subset of injections sharing the same injecting gateway

and exit gateway we use the function I : G×G×2I → 2I . Given a set of injections I,

an injecting gateway g2, and an exit gateway g3, II,g2,g3
= {(g1, g2, g3, g4) ∈ I | g2 =

g2 ∧g3 = g3]} retrieves the subset of injections sharing g2 and g3. Similarly we define

the function E : G×G×2E → 2E to retrieved the subset of ejections sharing the same

ejecting gateway and entry gateway. Given a set of ejections E, an ejecting gateway g2,

and an entry gateway g1, EE,g2,g1
= {(g1, g2, g3, g4) ∈ E | g2 = g2 ∧g1 = g1]} retrieves

the subset of ejections sharing g2 and g1.

According to the definition of SESE fragments proposed by Polyvyanyy et al. [27],

a SESE fragment containing injections or ejections is a rigid. Furthermore, if all the

gateways composing the injections and ejections of the rigid are of the same type, the

rigid is classified as homogeneous, otherwise as heterogeneous. Finally, if an injection

or an ejection is part of a cycle the rigid is cyclic, otherwise it is acyclic.

Algorithm 1: Structuring

input: Model m, Boolean pullup

rpst = computeRPST(m);1

Queue = getLeaves(rpst);2

Visited =∅;3

while Queue 6=∅ do4

node = remove(Queue);5

parent = getParent(node);6

if isRigid(node) then7

if isSound(node)∧¬isXORHomogeneous(node) then BPStruct(node);8

else iBPStruct(node,pullup);9

Visited = Visited∪{node};10

if parent /∈ Visited then insert(Queue, parent);11

Using these elements we can finally present our structuring algorithm (see Algo-

rithm 1). After computing the RPST of the input model, the algorithm structures the

model performing a bottom-up traversal of the RPST. First, all leaves of the RPST are

inserted in a queue. At each step, a node from the queue is removed and if the node

is a rigid it is structured. For sound rigids consisting only of AND gateways (sound

AND-homogeneous) or a mixture of AND and XOR gateways (sound heretogeneous)

the structuring is performed using BPStruct [25] (see line 8). For the remaining cases,

we use the structuring algorithm presented in Algorithm 4 (see line 9). After marking
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the node as visited, the parent node is added to the queue if it has not been visited yet

(see line 11). These steps are then repeated for all nodes in the queue.

We use two different structuring techniques since BPStruct cannot handle acyclic

XOR-homogeneous, cyclic XOR-homogeneous, and unsound rigids. As a matter of

fact, BPStruct guarantees optimal results only when applied on top of sound AND-

homogeneous or heterogeneous rigids. For this reason, the structuring algorithm illus-

trated in Algorithm 4 is only use for the rigids that cannot be handled by BPStruct.

Algorithm 2: Push-Down

input: Set of Activities A, Set of Flows F , Set of Gateways G, Set of Injections

I, Injecting Gateway g2, Exit Gateway g3

Ig2,g3
= II,g2,g3

;1

σ = σ
′′ ∈ A∗ | σ

′′ ∈ (g2
❜∩ ❜g3);2

while Ig2,g3
6=∅ do3

(g1,g2,g3,g4) = any(Ig2,g3
);4

g2
′ = copy(g2);5

σ
′ = copy(σ);6

G = G∪{g2
′};7

A = A∪{ai | ai ∈ σ
′};8

F = F ∪{(ax,ay) ∈ A×A | ∃σ
′
i ∈ σ

′[σ ′
i = ax ∧σ

′
i+1 = ay]};9

F = F ∪{(g2
′,σ ′

1),(σ
′
n,g3)};10

Σ = g4
❜∩ ❜g2;11

F = F ∪{(a,gy) ∈ A×G | gy = g2
′∧∃σ

′′ ∈ Σ[a = σ
′′
n ]};12

F = F \{(a,gy) ∈ A×G | gy = g2 ∧∃σ
′′ ∈ Σ[a = σ

′′
n ]};13

I = I \{(g1,g2,g3,g4),(g4,g2,g3,g1)};14

Ig2,g3
= II,g2,g3

;15

if (| ❜g2
′|= 1∧|g2

′ ❜|= 1) then16

a1 = a ∈ A | ∃σ
′′ ∈ ❜g2

′[a = σ
′′
n ];17

a2 = a ∈ A | ∃σ
′′ ∈ g2

′ ❜[a = σ
′′
1 ];18

F = F ∪{(a1,a2)}\{(a1,g2
′),(g2

′,a2)};19

G = G\{g2
′};20

if (| ❜g2|= 1∧|g2
❜|= 1) then21

a1 = a ∈ A | ∃σ
′′ ∈ ❜g2[a = σ

′′
n ];22

a2 = a ∈ A | ∃σ
′′ ∈ g2

❜[a = σ
′′
1 ];23

F = F ∪{(a1,a2)}\{(a1,g2),(g2,a2)};24

G = G\{g2};25

return (A,F,G, I);26

Before presenting the algorithm, we need to introduce the push-down operator and

the pull-up operator. The push-down operator (see Algorithm 2), inspired by Oulsnam’s

push-down [24], removes at once all injections contained in a set of shared injections.

To achieve this the operator cycles over each injection (g1,g2,g3,g4) ∈ Ig2,g3
and re-

moves it through the following four steps:
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Figure 4: Example of push-down operator.

• create a copy of g2, namely g2
′;

• duplicate the path from g2 to g3, and connect g2
′ to the path (see lines 8-10);

• replace g2 with g2
′ for each path going from g4 to g2 (see lines 11-13);

• remove g2
′, if it is a trivial gateway (see lines 17-20).
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(b) Ejection removal.

Figure 5: Example of pull-up operator.

On the other hand, the pull-up operator (see Algorithm 3) removes at once all ejec-

tions contained in a set of shared ejections applying the following steps over each

ejection (g1,g2,g3,g4) ∈ Eg2,g1
.

• create a copy of g2, namely g2
′;

• duplicate the path from g1 to g2, and connect the path to g2
′ (see lines 8-10);

• replace g2 with g2
′ for each path connecting g2 to g4 (lines 11-13);

• remove g2
′, if it is a trivial gateway (see lines 17-20).

Figure 4b and Figure 5b show the application of the push-down operator and pull-

up operator respectively. Despite providing additional structuring power, the pull-up

operator does not preserve weak bisimulation equivalence, since by pulling-up a gate-

way we are moving the moment of choice to an earlier point in the model. To address

this possible limitation, the use of this operator is left to the user to decide.

These two operators are used in the context of Algorithm 4. After retrieving the set

of activities, flows, and gateways contained in the rigid (see lines 1-3), the algorithm
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Algorithm 3: Pull-Up

input: Set of Activities A, Set of Flows F , Set of Gateways G, Set of Ejections

E, Ejecting Gateway g2, Entry Gateway g1

Eg2,g1
= EE,g2,g1

;1

σ = σ
′′ ∈ A∗ | σ

′′ ∈ (g1
❜∩ ❜g2);2

while Eg2,g1
6=∅ do3

(g1,g2,g3,g4) = any(Eg2,g1
);4

g2
′ = copy(g2);5

σ
′ = copy(σ);6

G = G∪{g2
′};7

A = A∪{ai | ai ∈ σ
′};8

F = F ∪{(ax,ay) ∈ A×A | ∃σ
′
i ∈ σ

′[σ ′
i = ax ∧σ

′
i+1 = ay]};9

F = F ∪{(g1,σ
′
1),(σ

′
n,g2

′)};10

Σ = g2
❜∩ ❜g4;11

F = F ∪{(gy,a) ∈ G×A | gy = g2
′∧∃σ

′′ ∈ Σ[a = σ
′′
1 ]};12

F = F \{(gy,a) ∈ G×A | gy = g2 ∧∃σ
′′ ∈ Σ[a = σ

′′
1 ]};13

E = E \{(g1,g2,g3,g4),(g1,g2,g4,g3)};14

Eg2,g1
= EE,g2,g1

;15

if (| ❜g2
′|= 1∧|g2

′ ❜|= 1) then16

a1 = a ∈ A | ∃σ
′′ ∈ ❜g2

′[a = σ
′′
n ];17

a2 = a ∈ A | ∃σ
′′ ∈ g2

′ ❜[a = σ
′′
1 ];18

F = F ∪{(a1,a2)}\{(a1,g2
′),(g2

′,a2)};19

G = G\{g2
′};20

if (| ❜g2|= 1∧|g2
❜|= 1) then21

a1 = a ∈ A | ∃σ
′′ ∈ ❜g2[a = σ

′′
n ];22

a2 = a ∈ A | ∃σ
′′ ∈ g2

❜[a = σ
′′
1 ];23

F = F ∪{(a1,a2)}\{(a1,g2),(g2,a2)};24

G = G\{g2};25

return (A,F,G,E);26
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Algorithm 4: iBPStruct

input: Rigid r, Boolean pullup

Ar = getActivities(r);1

Fr = getFlows(r);2

Gr = getGateways(r);3

I = getInjections(r);4

E = ∅;5

if pullup then E = getEjections(r);6

while I 6=∅∨E 6=∅ do7

(g2,gy) = selectBestUsingA∗(r);8

if g2 6=⊥ then9

if II,g2,gy
6=∅ then10

(A′,F ′,G′, I′) = Push-Down(Ar,Fr,Gr, I,g2,gy);11

Ar = A′, Fr = F ′, Gr = G′, I = I′;12

else13

(A′,F ′,G′,E ′) = Pull-Up(Ar,Fr,Gr,E,g2,gy);14

Ar = A′, Fr = F ′, Gr = G′, E = E ′;15

return (Ar,Fr,Gr);16

detects all the injections contained in the rigid (see line 4), and if the pull-up rule is

enabled, all the ejections (see line 6). It then selects the shared injections (or ejections if

enabled) which will introduce the least number duplicates (see line 8), and will remove

them applying the corresponding operator, i.e. push-down or pull-up (see lines 10-15).

These steps are repeated until no more injections or ejections can be removed, resulting

in a fully or maximally structured rigid.

To obtain a structured model with the minimum number of duplicates, we select

the shared injections (or ejections) to be removed through an A∗ search [15]. In this

scenario, the cost function required by the A∗ search and associated with each node

of the search tree is defined as f (s) = g(s) + h(s), where the current cost function

g(s) is defined as g(s) = #duplicates and the future cost function h(s) is defined as

h(s) = 0. We set h(s) = 0 since it is not possible to predict how many duplicates would

be required to structure a rigid.

Figure 6 illustrates an example where a rigid is structured using Algorithm 4. In this

example, the rigid has two sets of shared injections, I1 and I2. Set I1 contains injections

i1 = (g1,g2,g3,g5) and i2 = (g5,g2,g3,g1), where g2 is the injecting gateway and g3

the exit gateway. Set I2 contains injections i3 = (g2,g3,g4,g5) and i4 = (g5,g3,g4,g2),
where g3 is the injecting gateway and g4 the exit gateway.

Let us assume that I2 is the cheapest set of shared injections. If we apply a greedy

selection we will first remove I2 and then I1 (see Step 1.1 and Step 1.1.1), which will

result in duplicating sub-process G twice. On the other hand, this would not happen if

we first remove I1 and then I2 (see Step 1.2 and Step 1.2.1).

While it is clear why we should perform the removal of injections (ejections) at

12



rigid1

g1 g2 g3 g4

g5
A

E

C D

F G

B

(a) Input: Step 1

rigid2

g1 g2

g4

g5

F G

G'

B

D

C

A

E

(b) Step 1.1

rigid2a

g1 g3 g4

g5A

E

C
D

F G

B

F'

(c) Step 1.2

rigid3

g1 g4g5
A

E

C

D

F G

B

F'

G'

G'

(d) Step 1.1.1

rigid3a

g1 g4g5 g3'
G'A

E

C

B

D

F'

F G
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Figure 6: An example application of the A∗ search tree with our structuring method.

a global level, an A∗ search could be quite detrimental for the performance of our

approach. To avoid this, we implemented two additional versions of our algorithm, one

using a time-bound A∗ search [4] and the other using a memory-bound A∗ [28].

3.3. Soundness Repair

As a matter of facts a structured model resulting from a model that was originally

unsound will still be unsound. This phase tries to address this issue through the appli-

cation of three heuristics. The first heuristic is used in case of acyclic bonds. Whenever

we encounter an acyclic unsound bond we match the type of the join gateway of the

bond with the type of its corresponding split gateway, e.g. if the split is an AND gate-

way the join will be turned into an AND gateway. Figures 7a and 7b show the repair

of an unsound acyclic bond. The second heuristic deals with unsound cyclic bonds. In

this case we replace the split and join gateways of the bond with XOR gateways (see

Figures 7c and 7d).

Finally, the third heuristic deals with nested bonds sharing the same join gateway.

Whenever we encounter bonds sharing the same join gateway, we replace the gateway

with a chain of gateways, one for each bond. In doing so, we maintain the original

bonds hierarchy. This heuristic enables the application of the first heuristic, which

13



5 - 1 Before - AND_XOR

B
(a) Unsound acyclic bond AND-Split.

5 - 2 After - AND_XOR

B
(b) Repaired acyclic bond AND-Split.

7 - 1 Before - XOR_Activity_AND_Loop

A
(c) Unsound cyclic bond AND-Split.

7 - 2 After - XOR_Activity_AND_Loop

A
(d) Repaired cyclic bond AND-Split.

Figure 7: Repair of unsound bonds.

otherwise would not be able correctly identify the matching split. Figure 8 shows the

application of this third heuristic.
sound_fixing

BA

BA

C

C

(a) Unsound nested bonds.

sound_fixing

BA

BA

C

C

(b) Repaired nested bonds.

Figure 8: Repair of unsound nested bonds sharing the join gateway.

3.4. Clone Refactoring

As result of the application of push-downs and pull-ups, a structured model may

contain several duplicates which negatively affect the quality of the model. To address

this issue, the last phase of our approach removes duplicate activities which are not

required to maintain maximal structuredness.

Before describing the algorithm, we need to highlight some of the properties of a

bond (i.e. a node of an RPST) which allows us to remove clones:

• A bond has always at least two children, and they are both RPST nodes.

• If a child of a bond is a trivial, the trivial is an edge connecting the entry gateway

of the bond with the exit gateway of the bond.

• If a child of a bond is a rigid, the entry and the exit gateways of the rigid match

the entry and the exit gateways of the bond.

• If a child of a bond is a polygon (i.e. a sequence of RPST nodes), the entry

gateway of the first RPST node of the polygon is the entry gateway of the bond,

and the exit gateway of the last RPST node of the polygon is the exit gateway of

the bond.

14



Algorithm 5: Clone Removal

input: Process Model G

G′ =⊥;1

do2

G′ = G;3

RPST = computeRPST(G);4

computeCanonicalCodes(RPST );5

Bonds = getRPSTBonds(RPST);6

foreach bond ∈ Bonds do7

A =∅, O =∅;8

foreach child ∈ getChildren(bond) do9

if isPolygon(child) then10

A = A ∪{getFirstNode(child)};11

O = O ∪{getLastNode(child)};12

else if isRigid(child) then13

A = A ∪{child};14

O = O ∪{child};15

while A 6=∅ do16

node = any(A );17

S = {node′ ∈ A | getCode(node′) = getCode(node)};18

if |S |> 1 then G = removeClonesSharingEntry(G,S );19

A = A \S ;20

if G′ 6= G then break;21

while O 6=∅ do22

node = any(O);23

S = {node′ ∈ O | getCode(node′) = getCode(node)};24

if |S |> 1 then G = removeClonesSharingExit(G,S );25

O = O \S ;26

if G′ 6= G then break;27

while G′ 6= G ;28

return G;29
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• A child of a bond cannot be a bond.4

The removal of duplicates activities is achieve by Algorithm 5 through the follow-

ing steps. First, a canonical code [11, 29] is assigned to each node of the RPST (see

line 5). Then all bonds contained in the model are retrieved (see line 6). Successively,

the children of each bond sharing the same entry and/or the exit are identified (see

lines 8-15). In particular, if the child is a polygon we consider the first RPST node

of the polygon for the entry and the last RPST node of the polygon for the exit (see

lines 11 and 12), while if the child is a rigid (i.e. in case fully structuring was not

achieved) the node is considered for both entry and exit (see lines 14-15).

In the next step, clones among children sharing the same entry are detected (see

line 18). This is achieved comparing the canonical code of each child, (two RPST

nodes are clones if their canonical code is the same [11, 29]). Clones children sharing

the same entry or exit are then removed and the model updated (see line 19 and line 25).

Finally, after updating the model, the RPST is recalculated and a new iteration begins

(see line 21 and line 27). These steps are repeated until no further clones are removed.

Figure 9 shows an example, from one of the logs used in the evaluation, where we

applied structuring and clone removal. Figure 9a shows the model discovered using

the Heuristics Miner which is provided in input to our structuring algorithm. After

the structuring phase, the resulting model contains three bonds that are exact clones

(highlighted in orange and green in Figure 9b). The two colors are used to differentiate

the parent bond to which each clone belongs to. The two bonds in orange are the end

nodes of two polygons children of the bond starting after activity A, while the bond in

green is the end node of the polygon children of the bond starting after the start event.

After a first iteration, our algorithm only removes the two orange bonds (see Fig-

ure 9c). It is important to notice that the bond in green is not removed since it belongs

to a different parent bond. After removing the bonds in orange, we perform a second

iteration of our algorithm. This time the two bonds in green are part of the same parent

bond, hence our algorithm proceeds with their removal producing as final result the

model shown in Figure 9d. Finally, the algorithm will perform a third iteration which

will cause the algorithm to terminate not being able to find additional clones to remove.

3.5. Complexity Analysis

The complexity of our methods depends on the complexity of the model structur-

ing, the soundness repair, and the final clone removal. For the structuring, we have to

consider the complexity of the push-down and pull-up operators. Both contain a loop

on the number of injections or ejections (having the same injecting or ejecting gate-

way) to be removed. This operation is in the worst case O
((

g
2

))

, since we may have

to loop over all possible sets of shared injections (or ejections) that exist between a

given injecting gateway g2 and exit gateway g3 (or ejecting gateway g2 and entry gate-

way g1 for the pull-up). Since the number of gateways is bounded by the number of

nodes, O
((

g
2

))

is bounded by O
((

n
2

))

. The complexity of our structuring algorithm is

4Otherwise the child bond would share the entry and the exit gateways of the parent bond, and the children

of the child bond would be children of the parent bond.
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(a) Process model discovered by Heuristics Miner.

(b) Process model after the structuring.

(c) Process model after the first clone removal.

(d) Final output after the second clone removal.

Figure 9: Example of structuring and clone removal.
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linear on the number of injections and ejections, which is O
((

g
4

))

, assuming that in the

worst case we have an injection or ejection each four gateways. This operation is also

bounded by O
((

n
4

))

. Hence, O
((

n
2

))

+O
((

n
4

))

≈O
((

n
4

))

. Finally, the complexity of A∗

is O(bq) where b is the branching factor and q is the depth of the solution. In our case

the branching factor is the number of injections and ejections, and so is the depth of the

solution. Hence the complexity of the structuring is O
(

(

n
4

)(n
4)
)

·O
((

n
4

))

≈ O
(

(

n
4

)(n
4)
)

.

The complexity of repairing the soundness of a model is linear on the number of

bonds contained in the model, which is bounded by the number of nodes. Additionally,

since we have to compute the RPST of a model, which is linear on the number of

edges and nodes contained in the model, the complexity of repairing the soundness is

O(n)+O(v+n)≈ O(n)+O(n2 +n)≈ O(n2).
As for clone removal, the complexity of computing the RPST is O(v+n)≈ O(n2+

n)≈ O(n2). The complexity of computing the canonical code is linear on the numbers

of nodes and it is computed for each RPST node (bounded by the number of nodes of

the model). Thus, we obtain: n∗O(n)≈ O(n2). Given a bond, identifying the children

that share an entry or exit is linear on the number of children (bounded by the number of

nodes of the input model), hence O(n). The removal of clones which share an entry or

exit is n∗(O(n)+O(n))≈O(n2). This is because identifying the clones of a given child

is O(n), and the functions removeClonesSharingEntry and removeClonesSharingExit

are linear on the size of the input set (bounded by the number of nodes). Hence given

a bond, the removal of clones within this bond is O(n)+O(n2)≈ O(n2). Additionally,

we have to repeat this operation for each bond, hence n ·O(n2)≈ O(n3). Finally, since

we have to repeat the removal until no more clones can be found, and the number of

clones is bounded by the number of nodes, we have a final complexity for this operation

of n∗ (O(n2)+O(n2)+O(n3))≈ O(n4).

The overall complexity is thus O
(

(

n
4

)(n
4)
)

+O(n2)+O(n4)≈ O
(

(

n
4

)(n
4)
)

.

4. Evaluation

We implemented our method as a standalone Java application called Structured

Miner,5 and embedded it into the BPMN Miner plugin of the Apromore online process

analytics platform [17].6 This tool supports Heuristics Miner version 5.2 and 6, and

Fodina as the base methods for unstructured process model discovery. It takes a log in

MXML or XES format as input, and returns a process model in BPMN format.

Using this tool, we conducted a two-pronged evaluation. First, we assessed the

accuracy and complexity of the models on a large set of synthetic logs. Next, we re-

peated the measurements on a battery of publicly-available real-life logs. In addition to

execution times, we measured accuracy using fitness, precision and their F-score, gen-

eralization using 3-fold fitness, and model complexity via size, CFC and structuredness

as defined in Section 2.2.

5Available from http://apromore.org/platform/tools
6http://apromore.org
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We tested our method on top of the three base discovery algorithms supported by

the tool implementation. In the following we only report the results on top of Heuris-

tics Miner 6 (hereafter referred to as S-HM6), since the use of our method on top of

this discovery algorithm led to the best results. We compared these results with those

obtained by two representative methods for structured process model discovery: Induc-

tive Miner (IM) and Evolutionary Tree Miner (ETM). The required model conversions

(e.g. from BPMN to Petri nets to measure accuracy and generalization) were done with

ProM’s BPMN Miner package.7 This package introduces the BPMN loop marker to re-

place self-loop activities, leading to small savings in size. For IM, ETM and HM6, we

used the corresponding implementation in ProM with default parameters. For our tool

we used a standard A∗ for the structuring phase, time-bounded at two minutes, followed

by a memory-bound A∗ with 10 children per parent node, with the latter operation also

bounded at two minutes.

The experiments were conducted on a 6-core Xeon E5-1650 3.50Ghz with 128GB

of RAM running JVM 8 with 16GB of heap space. Each discovery operation was timed

out at 30 minutes for each log in the synthetic dataset, and at one hour for each log in

the real-life dataset.

4.1. Datasets

All Models(619)

SAP R/3(545)

Structured(473)

Unstructured(72)

Sound(48)

Unsound(24)

IBM BIT(54)

Structured(9)

Unstructured(45)

Sound(41)

Unsound (4)

Artificial(20)

Unstructured(20)

Sound(18)

Unsound(2)

Figure 10: Taxonomy of models dis-

covered by HM6 from the synthetic

logs.

For the first experiment, we generated three sets of

synthetic logs using the ProM plugin “Generate Event

Log from Petri Net”.8 This plugin takes as input a

process model in PNML format and generates a dis-

tinct log trace for each possible execution sequence

in the model. The first set (591 Petri nets) was ob-

tained from the SAP R/3 collection, SAP’s reference

model used to customize their R/3 ERP product [9].

The log-generator plugin was only able to parse 545

out of 591 models, running into out-of-memory ex-

ceptions for the others. The second set (54 Workflow

nets9) was obtained from a collection of sound and un-

structured models extracted from the IBM BIT collec-

tion [12]. The BIT collection is a publicly-available set

of process models in financial services, telecommuni-

cation and other domains, gathered from IBMs consul-

tancy practice [13]. The third set contains 20 artifi-

cial models, which we created to test our method with

more complex forms of unstructuredness, not observed

in the two real-life collections.

These are: i) rigids containing AND-gateway bonds, ii) rigids containing a large

number of XOR gateways (> 5); iii) rigids containing rigids and iv) rigids being the

7http://www.promtools.org
8http://processmining.be/loggenerator
9This collection originally counted 59 models, but we discarded five duplicates.
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Log Total Distinct Total Distinct Trace Length

Name Traces Traces (%) Events Events min avg max

BPIC12 13087 33.4 262200 36 3 20 175

BPIC13cp 1487 12.3 6660 7 1 4 35

BPIC13inc 7554 20.0 65533 13 1 9 123

BPIC14f 41353 36.1 369485 9 3 9 167

BPIC151f 902 32.7 21656 70 5 24 50

BPIC152f 681 61.7 24678 82 4 36 63

BPIC153f 1369 60.3 43786 62 4 32 54

BPIC154f 860 52.4 29403 65 5 34 54

BPIC155f 975 45.7 30030 74 4 31 61

BPIC17f 21861 40.1 714198 41 11 33 113

RTFMP 150370 0.2 561470 11 2 4 20

SEPSIS 1050 80.6 15214 16 3 14 185

Table 1: Descriptive statistics of the real-life logs.

root node of the model. Out of these 619 logs we only selected those for which HM6

produced an unstructured model, as our method does not add value if the resulting

model is already structured. This resulted in 137 logs, of which 72 came from SAP, 45

from IBM and 20 were artificial. These logs range from 4,111 to 201,758 total events

(avg. 50340) with 3 to 4,235 distinct traces (avg. 132). From the models discovered

with HM6, we identified 107 sound models and 30 unsound models, i.e. models whose

traces deadlock. A taxonomy of the synthetic dataset is shown in Fig. 10.

The dataset used for the second experiment contains twelve real-life logs publicly

available in the “4TU Centre for Research Data”.10 From the collection present in this

website, we included the BPI Challenge (BPIC) logs, except those that do not explicitly

capture a business process (i.e. the BPIC 2011 and 2016 logs), the Road Traffic Fines

Management Process (RTFMP) and the SEPSIS Cases logs, and left out those logs that

are already contained in other logs (e.g. the Environmental permit application process

log). The twelve selected logs record executions of business processes in different

domains, including healthcare, finance, government and IT service management. In

three logs (BPIC14, BPIC15 and BPIC17), we applied the filtering technique in [8]

to remove infrequent behavior. This was necessary since otherwise, all the models

discovered by the methods tested had very poor accuracy (F-score close to 0 or not

computable), making the comparison useless.

Table 1 reports the characteristics of these logs. We can observe that the collection

is widely heterogeneous ranging from simple to very complex logs. The log size ranges

from 681 traces (for the BPIC152f log) to 150,370 traces (for the RTFMP log). Similar

differences can be observed in the percentage of distinct traces, ranging from 0.2% to

80.6%, and in the number of event classes (i.e. activities executed within the process),

ranging from 7 to 82. The length of a trace also varies from very short traces, counting

one event only, to very long ones, counting 185 events.

10https://data.4tu.nl/repository/collection:event_logs_real
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Discovery Accuracy Gen.

Method Fitness Precision F-score (3-fold)

IM 1.00±0.01 0.73±0.30 0.80±0.24 1.00±0.01

ETM 0.90±0.08 0.92±0.09 0.91±0.07 0.90±0.07

HM6 1.00±0.01 0.98±0.04 0.99±0.03 1.00±0.01

S-HM6 1.00±0.01 0.99±0.04 0.99±0.03 1.00±0.01

IM 0.98±0.04 0.71±0.28 0.78±0.23 0.98±0.04

ETM 0.88±0.09 0.87±0.09 0.87±0.06 0.87±0.07

HM6 - - - -

S-HM6 0.98±0.05 0.95±0.12 0.96±0.09 0.98±0.05

Table 2: Accuracy results on synthetic logs.

4.2. Results

Tables 2 and 3 report the average value and standard deviation for each quality

measure across all discovery algorithms, on the synthetic dataset. Since the measure-

ments of accuracy and generalization on unsound models are unreliable, we divided

the results in two groups. The upper part of Tables 2 and 3 shows the results for those

models for which HM6 did discover a sound model, while the lower part shows the

results for those models for which HM6 returned an unsound model. In this latter case,

we did not report the measurements for accuracy and generalization for HM6.

When HM6 generates sound models, its output already has high accuracy and gen-

eralization, with a marginal standard deviation. In this case, our approach only im-

proves the structuredness of the models, at the cost of a minor increase in size, due to

the duplication introduced by the structuring. IM, despite having similarly high val-

ues of fitness and generalization, loses in precision with an average of 0.73 and a high

standard deviation, meaning that the actual precision may be much better or worse de-

pending on the specific input log. The quality of the models discovered by ETM ranks

in-between that of IM and HM both in terms of accuracy and complexity, at the price

of sensibly longer execution times. Generalization is on the other hand lower than that

obtained by all other methods.

As expected, the models discovered by IM and ETM are structured by construction.

On the contrary, HM6 produces models that are mostly unstructured, with an average

structuredness of 0.43 (0.40 for the unsound models). However, these models are then

maximally structured by S-HM6, with an average structuredness of 0.94 (0.97 for the

unsound ones).

The improvement of our method on top of HM6 is substantial when the latter dis-

covers unsound models. In this case, S-HM6 does not only notably increase structured-

ness, but it also repairs unsoundness, allowing us to measure accuracy and generaliza-

tion. More importantly, our method significantly outperforms IM in terms of precision,

and ETM in terms of both fitness and precision, leading in both cases to the highest

F-score across all artificial logs in our dataset. ETM strikes a better trade-off between

accuracy and complexity compared to IM, but at the price of significantly longer exe-

cution times, due to the high complexity of this method.

As an illustration, Fig. 11 shows the BPMN model generated by IM, HM6 and
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Discovery Complexity Exec.

Method Size CFC Struct. Time (sec)

IM 24±8 11±5 1.00±0.00 0.8±0.9
ETM 25±8 8±4 1.00±0.00 1,800±0.0
HM6 25±8 11±8 0.43±0.18 0.5±0.4

S-HM6 29±14 10±6 0.94±0.17 13±45

IM 21±8 10±7 1.00±0.00 0.4±0.5
ETM 23±8 8±5 1.00±0.00 1,800±0.0
HM6 26±12 14±9 0.40±0.21 0.3±0.3

S-HM6 35±19 14±8 0.97±0.10 19±47

Table 3: Complexity and execution time results on synthetic logs.

S-HM6 from one of the SAP R/3 logs and the corresponding quality measures.11 In

this example, the precision of the model produced by IM is low due to the presence

of a large “flower-like” structure, which causes overgeneralization, while the output of

HM6 is unsound. By structuring and fixing the soundness of this latter model, S-HM6

scores a perfect 1 for both F-score and generalization.

Table 4 shows the results of the measurements on the models discovered from the

real-life logs. As expected, all models discovered by IM and ETM are sound, given

that they are structured by construction. HM6 only discovered two sound models out of

twelve, though S-HM6 managed to repair seven out of the ten unsound models returned

by HM6. In line with the results on the synthetic logs, IM produced highly fitting

models, scoring the best result in fitness on eight models out of twelve. Nonetheless,

these models generally have low precision, ranging from 0.70 to as low as 0.18, with

an outlier score of 1.00 in the BPIC13cp log. On the other hand, ETM outperformed

all other methods in ten logs in terms of precision, ranging from a minimum of 0.76

to a maximum of 1.00. However, this is achieved at the expenses of fitness, which is

sensibly lower than that obtained by the other methods, except in the BPIC13cp log

where ETM scores the highest fitness.

This stark difference between fitness and precision for both IM and ETM (see e.g.

the BPIC13cp and RTFMP logs), is counteracted by a better balance between the two

measures, achieved by S-HM6. In fact, our method scores the best F-score seven times

out of twelve, against four times for ETM, and twice for IM and for HM. In particular,

our method obtains the highest fitness in four cases, and the second highest fitness in all

other cases for which such measure could be computed, with similar results obtained

for generalization.

The complexity of the models obtained by our method is generally higher than that

of the other methods (up to six times higher in the BPIC14f and SEPSIS logs), due

to the structuring phase, which introduces more gateways and duplicates fragments.

However, even if S-HM6 only manages to fully structure four models out of twelve, in

the remaining cases it increases, often substantially, the degree of structuredness w.r.t.

HM6 (see e.g. the BPIC12 log, where structuredness goes from 0.05 to 0.40). In two

11The original labels are replaced with letters for the sake of compactness.
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logs (BPIC14f and BPIC151f), we were unable to measure the structuredness of the

model produced by HM6 because this was disconnected.

Figure 12 reports the model discovered by IM, HM6 and S-HM6 for the BPIC13cp

log. This is one of the cases where HM6 produces an unsound model which is then

fixed by the structuring phase of our method.

In the artificial logs, clone detection led on average to the removal of two cloned

activities per model, with a maximum of fifteen activities in the best case. In the real-

life logs, clone detection did not add any extra value.

In the above experiments we disabled the pull-up operator to ensure weak-

bisimulation equivalence between the model discovered by S-HM6 and its originating

model obtained by HM6. As a result, we could not fully structure 18 models in the

synthetic dataset and 8 in the real-life dataset, which explains values of structuredness

less than one for S-HM6 in Tables 3 and 4. When we enabled the pull-up operator, all

the discovered models from the synthetic dataset were indeed fully structured, at the

price of losing weak bisimilarity, but this was not the case for the real-life logs, where

the results did not sensibly improve.

Time performance. Despite having exponential complexity in the worst case scenario,

the time our method took to structure the models used in this evaluation was within ac-

ceptable bounds, ranging from up to one minute in the synthetic dataset, to 4.5 minutes

in the real-life dataset. In comparison, IM and HM6 are much faster (taking less than

one second per log in the synthetic dataset and less than 15 seconds per log in the real-

life dataset), while ETM takes significantly longer (this method always timed out to 30

minutes in the synthetic dataset and to one hour in the real-life dataset).

4.3. Threats to Validity

A potential threat to internal validity is the use of process model complexity met-

rics as proxies for assessing the understandability of the discovered process models,

as opposed to direct human judgment. However, the three chosen complexity metrics

(size, CFC and structuredness) have been empirically shown to be highly correlated

with perceived understandability and error-proneness [12, 20, 21]. Further, while the

process models obtained with our method are affected by the individual accuracy (fit-

ness and precision) and generalization of the base discovery algorithm used, Structured

Miner is independent of these algorithms, and our experiments show that the method

always improves on structuredness while keeping at least the same level of accuracy

and generalization. In addition, the method frequently fixes issues related to soundness.

The choice of a large range of varied real-life logs, originating from different do-

mains, contributes to the external validity of the results. These logs are publicly avail-

able, as well as the artificial logs that we generated, so the experiments are fully repro-

ducible. In addition, the great majority of the artificial logs used in the first experiment,

originate from two real-life process model collections. Finally, the use of a synthetic

dataset allowed us to evaluate our method against a large variety of unstructured model

topologies, including some complex ones not observed in the real-life dataset.
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Log Discovery Accuracy Gen. Complexity Exec.

Name Method Fit. Prec. F-score (3-Fold) Size CFC Struct. Sound? Time(sec)

IM 0.98 0.50 0.66 0.98 59 37 1.00 yes 6.6

ETM 0.33 0.98 0.49 0.38 69 10 1.00 yes 3,600

BPIC12 HM6 - - - - 85 99 0.05 no 2.5

S-HM6 - - - - 88 46 0.40 no 227.8

IM 0.82 1.00 0.90 0.82 9 4 1.00 yes 0.1

ETM 0.99 0.76 0.86 0.99 11 17 1.00 yes 3,600

BPIC13cp HM6 - - - - 12 6 0.67 no 0.1

S-HM6 0.94 0.99 0.97 0.94 15 6 1.00 yes 130.0

IM 0.92 0.54 0.68 0.92 13 7 1.00 yes 1.0

ETM 0.84 0.80 0.82 0.88 28 24 1.00 yes 3,600

BPIC13inc HM6 0.91 0.96 0.93 0.91 9 4 1.00 yes 0.8

S-HM6 0.91 0.96 0.93 0.91 9 4 1.00 yes 0.8

IM 0.89 0.64 0.74 0.89 31 18 1.00 yes 3.4

ETM 0.68 0.94 0.79 0.57 22 15 1.00 yes 3,600

BPIC14f HM6 - - - - 43 51 - no 3.3

S-HM6 - - - - 202 132 0.73 no 147.4

IM 0.97 0.57 0.71 0.96 164 108 1.00 yes 0.6

ETM 0.57 0.89 0.69 0.56 73 21 1.00 yes 3,600

BPIC151f HM6 - - - - 150 98 - no 0.5

S-HM6 - - - - 204 116 0.56 no 128.1

IM 0.93 0.56 0.70 0.94 193 123 1.00 yes 0.7

ETM 0.62 0.90 0.73 0.57 78 19 1.00 yes 3,600

BPIC152f HM6 - - - - 194 158 0.11 no 0.7

S-HM6 0.98 0.59 0.74 0.97 259 150 0.29 yes 163.2

IM 0.95 0.55 0.70 0.95 159 108 1.00 yes 1.3

ETM 0.66 0.88 0.75 0.64 78 26 1.00 yes 3,600

BPIC153f HM6 0.95 0.67 0.79 0.95 157 151 0.07 yes 0.8

S-HM6 0.95 0.67 0.79 0.95 159 151 0.13 yes 139.9

IM 0.96 0.58 0.73 0.96 162 111 1.00 yes 0.7

ETM 0.66 0.95 0.78 0.63 74 17 1.00 yes 3,600

BPIC154f HM6 - - - - 156 127 0.13 no 0.5

S-HM6 0.99 0.64 0.78 0.99 209 137 0.37 yes 136.9

IM 0.94 0.18 0.30 0.94 134 95 1.00 yes 1.5

ETM 0.58 0.89 0.70 0.56 82 26 1.00 yes 3,600

BPIC155f HM6 - - - - 166 124 0.15 no 1.2

S-HM6 1.00 0.70 0.82 1.00 211 135 0.35 yes 141.9

IM 0.98 0.70 0.82 0.98 35 20 1.00 yes 13.3

ETM 0.72 1.00 0.84 0.82 31 5 1.00 yes 3,600

BPIC17f HM6 - - - - 29 10 0.45 no 6.5

S-HM6 0.95 0.62 0.75 0.94 42 13 0.97 yes 143.2

IM 0.99 0.70 0.82 0.99 34 20 1.00 yes 10.9

ETM 0.79 0.98 0.87 0.81 46 33 1.00 yes 3,600

RTFMP HM6 - - - - 47 50 0.06 no 7.8

S-HM6 0.98 0.95 0.96 0.98 163 97 1.00 yes 262.7

IM 0.99 0.45 0.62 0.96 50 32 1.00 yes 0.4

ETM 0.71 0.84 0.77 0.70 30 15 1.00 yes 3,600

SEPSIS HM6 - - - - 81 132 0.17 no 0.03

S-HM6 0.92 0.42 0.58 0.92 279 198 1.00 yes 242.7

Table 4: Accuracy and complexity results on real-life logs.
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Figure 12: Models discovered from log BPIC13cp.

26



5. Conclusion

This article presented a discover-and-structure method to generate a structured pro-

cess model from an event log. The method builds upon the hypothesis that, instead of

attempting to discover a block-structured process model directly, higher-quality pro-

cess models can be obtained by first discovering an initial, potentially unstructured

process model, and then transforming it into a structured one in a best-effort manner.

The experimental results support to a large extent this hypothesis. The experiments

show that the discover-and-structure method generally leads to higher F-score relative

to two existing methods that discover a structured process model by construction. In

addition, the discover-and-structure method is more modular, insofar as different dis-

covery and structuring methods can be plugged into it. The experiments also reveal

that the structuring phase of the proposed method significantly improves the F-score

relative to the models produced by the base discovery algorithm employed in the dis-

covery phase. As a by-product, the structuring phase turns most of the unsound models

produced by the first phase into sound ones, although soundness is not always achieved.

On the other hand, the proposed method partially inherits from the limitations of

the base algorithm employed in the discovery phase. The experiments shows that in

those cases where the first phase led to an imprecise model or a spaghetti-like model,

the structuring phase could not fully structure the model nor repair its unsoundness.

Another weakness exposed by the experiments is that when structuring an unstructured

process model, the size of the model increases, often substantially due to the addition

of new gateways and the duplication of model fragments. This is an inherent limitation

that is only slightly mitigated by the removal of exact clones. Another weakness is time

performance, which, while manageable, is in the order of minutes for the real-life logs

included in the experiments.

A natural avenue for future work is to address these weaknesses. Given that there

is a tradeoff between duplication and structuredness [12], it may be possible to im-

prove the proposed method by adaptively stopping the structuring procedure when it is

found that the benefits of continuing (higher structuredness) are not offset by the cost

(larger size). Optimization heuristics could be applied to manage this tradeoff. An-

other direction for future work is to incorporate a more robust method for eliminating

behavioral errors in the process models produced in the discovery stage. A number of

methods for repairing unsound process models have been proposed [10, 14], which if

suitably adapted, may be able to eliminate some of the behavioral errors that cannot be

eliminated by the proposed method.
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