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ABSTRACT: A novel and robust automated docking method that predicts the
bound conformations of flexible ligands to macromolecular targets has been
developed and tested, in combination with a new scoring function that estimates
the free energy change upon binding. Interestingly, this method applies a
Lamarckian model of genetics, in which environmental adaptations of an
individual’s phenotype are reverse transcribed into its genotype and become

Ž .heritable traits sic . We consider three search methods, Monte Carlo simulated
annealing, a traditional genetic algorithm, and the Lamarckian genetic algorithm,
and compare their performance in dockings of seven protein�ligand test systems
having known three-dimensional structure. We show that both the traditional
and Lamarckian genetic algorithms can handle ligands with more degrees of
freedom than the simulated annealing method used in earlier versions of
AUTODOCK, and that the Lamarckian genetic algorithm is the most efficient,
reliable, and successful of the three. The empirical free energy function was
calibrated using a set of 30 structurally known protein�ligand complexes with
experimentally determined binding constants. Linear regression analysis of the
observed binding constants in terms of a wide variety of structure-derived
molecular properties was performed. The final model had a residual standard

�1 Ž �1 .error of 9.11 kJ mol 2.177 kcal mol and was chosen as the new energy
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function. The new search methods and empirical free energy function are
available in AUTODOCK, version 3.0. � 1998 John Wiley & Sons, Inc. J Comput
Chem 19: 1639�1662, 1998
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Introduction

fast atom-based computational docking toolA is essential to most techniques for structure-
based drug design.1, 2 Reported techniques for au-
tomated docking fall into two broad categories:
matching methods and docking simulation meth-
ods.3 Matching methods create a model of the
active site, typically including sites of hydrogen
bonding and sites that are sterically accessible, and
then attempt to dock a given inhibitor structure
into the model as a rigid body by matching its
geometry to that of the active site. The most suc-
cessful example of this approach is DOCK,4, 5 which
is efficient enough to screen entire chemical
databases rapidly for lead compounds. The second
class of docking techniques model the docking of a
ligand to a target in greater detail: the ligand
begins randomly outside the protein, and explores
translations, orientations, and conformations until
an ideal site is found. These techniques are typi-
cally slower than the matching techniques, but
they allow flexibility within the ligand to be mod-
eled and can utilize more detailed molecular me-
chanics to calculate the energy of the ligand in the
context of the putative active site. They allow
computational chemists to investigate modifica-
tions of lead molecules suggested by the chemi-
cal intuition and expertise of organic synthetic
chemists.

AUTODOCK6, 7 is an example of the latter, more
physically detailed, flexible docking technique.
Previous releases of AUTODOCK combine a rapid
grid-based method for energy evaluation,8, 9 pre-
calculating ligand�protein pairwise interaction en-
ergies so that they may be used as a look-up table
during simulation, with a Monte Carlo simulated
annealing search10, 11 for optimal conformations of
ligands. AUTODOCK has been applied with great
success in the prediction of bound conformations
of enzyme�inhibitor complexes,12, 13 peptide�anti-
body complexes,14 and even protein�protein inter-
actions15; these and other applications have been
reviewed elsewhere.16

We initiated the current work to remedy two
Ž .limitations of AUTODOCK. i We have found that

the simulated annealing search method performs
well with ligands that have roughly eight rotatable
bonds or less: problems with more degrees of
freedom rapidly become intractable. This de-

Ž .manded a more efficient search method. ii
AUTODOCK is often used to obtain unbiased dock-
ings of flexible inhibitors in enzyme active sites: in
computer-assisted drug-design, novel modifica-
tions of such lead molecules can be investigated
computationally. Like many other computational
approaches, AUTODOCK performs well in predict-
ing relative quantities and rankings for series of
similar molecules; however, it has not been possi-
ble to estimate in AUTODOCK whether a ligand will
bind with a millimolar, micromolar, or nanomolar
binding constant. Earlier versions of AUTODOCK

used a set of traditional molecular mechanics
force-field parameters that were not directly corre-
lated with observed binding free energies; hence,
we needed to develop a force field that could be
used to predict such quantities.

Molecular docking is a difficult optimization
problem, requiring efficient sampling across the
entire range of positional, orientational, and con-

Ž .formational possibilities. Genetic algorithms GA
fulfill the role of global search particularly well,
and are increasingly being applied to problems
that suffer from combinatorial explosions due to
their many degrees of freedom. Both canonical
genetic algorithms17 � 21 and evolutionary program-
ming methods22 have been shown to be successful
in both drug design and docking.

In this report, we describe two major advances
that are included in the new release of AUTODOCK,
version 3.0. The first is the addition of three new
search methods: a genetic algorithm; a local search
method; and a novel, adaptive global�local search
method based on Lamarckian genetics, the La-

Ž .marckian genetic algorithm LGA . The second ad-
vance is an empirical binding free energy force
field that allows the prediction of binding free
energies, and hence binding constants, for docked
ligands.
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Methods

GENETIC ALGORITHMS

Genetic algorithms23 use ideas based on the lan-
guage of natural genetics and biological evolu-
tion.24 In the case of molecular docking, the partic-
ular arrangement of a ligand and a protein can be
defined by a set of values describing the transla-
tion, orientation, and conformation of the ligand
with respect to the protein: these are the ligand’s
state variables and, in the GA, each state variable
corresponds to a gene. The ligand’s state corre-
sponds to the genotype, whereas its atomic coordi-
nates correspond to the phenotype. In molecular
docking, the fitness is the total interaction energy
of the ligand with the protein, and is evaluated
using the energy function. Random pairs of indi-
viduals are mated using a process of crossover, in
which new individuals inherit genes from either
parent. In addition, some offspring undergo ran-
dom mutation, in which one gene changes by a
random amount. Selection of the offspring of the
current generation occurs based on the individual’s
fitness: thus, solutions better suited to their envi-
ronment reproduce, whereas poorer suited ones
die.

A variety of approaches have been adopted to
improve the efficiency of the genetic algorithm.
Classical genetic algorithms represent the genome
as a fixed-length bit string, and employ binary
crossover and binary mutation to generate new
individuals in the population. Unfortunately, in
many problems, such binary operators can gener-
ate values that are often outside the domain of
interest, leading to gross inefficiencies in the search.
The use of real encodings helps to limit the genetic
algorithm to reasonable domains. Alternative ge-
netic algorithms have been reported25 that employ
more complicated representations and more so-
phisticated operators besides crossover and muta-
tion. Some of these retain the binary represen-
tation, but must employ decoders and repair
algorithms to avoid building illegal individuals
from the chromosome, and these are frequently
computationally intensive. However, the search
performance of the genetic algorithm can be im-
proved by introducing a local search method.26, 27

HYBRID SEARCH METHODS IN AUTODOCK

Earlier versions of AUTODOCK used optimized
variants of simulated annealing.6, 7 Simulated an-
nealing may be viewed as having both global and

local search aspects, performing a more global
search early in the run, when higher temperatures
allow transitions over energy barriers separating
energetic valleys, and later on performing a more
local search when lower temperatures place more
focus on local optimization in the current valley.
AUTODOCK 3.0 retains the functionality of earlier
versions, but adds the options of using a genetic

Ž .algorithm GA for global searching, a local search
Ž .LS method to perform energy minimization, or a
combination of both, and builds on the work of
Belew and Hart.27, 28 The local search method is
based on that of Solis and Wets,29 which has the
advantage that it does not require gradient infor-
mation about the local energy landscape, thus fa-
cilitating torsional space search. In addition, the
local search method is adaptive, in that it adjusts
the step size depending upon the recent history of
energies: a user-defined number of consecutive
failures, or increases in energy, cause the step size
to be doubled; conversely, a user-defined number
of consecutive successes, or decreases in energy,
cause the step size to be halved. The hybrid of the
GA method with the adaptive LS method together
form the so-called Lamarckian genetic algorithm
Ž .LGA , which has enhanced performance relative
to simulated annealing and GA alone,21, 26 and is
described in detail later. Thus, the addition of
these new GA-based docking methods enhances
AUTODOCK, and allows problems with more de-
grees of freedom to be tackled. Furthermore, it is
now possible to use the same force field as is used
in docking to perform energy minimization of
ligands.

IMPLEMENTATION

In our implementation of the genetic algorithm,
the chromosome is composed of a string of real-
valued genes: three Cartesian coordinates for the
ligand translation; four variables defining a
quaternion specifying the ligand orientation; and
one real-value for each ligand torsion, in that or-
der. Quaternions are used to define the orienta-
tion30 of the ligand, to avoid the gimbal lock
problem experienced with Euler angles.31 The or-
der of the genes that encode the torsion angles is
defined by the torsion tree created by AUTOTORS, a
preparatory program used to select rotatable bonds
in the ligand. Thus, there is a one-to-one mapping
from the ligand’s state variables to the genes of the
individual’s chromosome.

The genetic algorithm begins by creating a ran-
dom population of individuals, where the user
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defines the number of individuals in the popula-
tion. For each random individual in the initial
population, each of the three translation genes for
x, y, and z is given a uniformly distributed ran-
dom value between the minimum and maximum
x, y, and z extents of the grid maps, respectively;
the four genes defining the orientation are given a
random quaternion, consisting of a random unit
vector and a random rotation angle between �180�
and �180�; and the torsion angle genes, if any, are
given random values between �180� and �180�.
Furthermore, a new random number generator has
been introduced that is hardware-independent.32 It
is used in the LS, GA, and LGA search engines,
and allows results to be reproduced on any hard-
ware platform given the same seed values. The
creation of the random initial population is fol-
lowed by a loop over generations, repeating until
the maximum number of generations or the maxi-
mum number of energy evaluations is reached,
whichever comes first. A generation consists of
five stages: mapping and fitness evaluation, selec-
tion, crossover, mutation, and elitist selection, in
that order. In the Lamarckian GA, each generation
is followed by local search, being performed on a
user-defined proportion of the population. Each of
these stages is discussed in more detail in what
follows.

Mapping translates from each individual’s geno-
type to its corresponding phenotype, and occurs
over the entire population. This allows each indi-
vidual’s fitness to be evaluated. This is the sum of
the intermolecular interaction energy between the
ligand and the protein, and the intramolecular
interaction energy of the ligand. The physicochem-
ical nature of the energy evaluation function is
described in detail later. Every time an individual’s
energy is calculated, either during global or local
search, a count of the total number of energy
evaluations is incremented.

This is followed, in our implementation, by pro-
portional selection to decide which individuals will
reproduce. Thus, individuals that have better-
than-average fitness receive proportionally more
offspring, in accordance with:

f � fw i ² :n � f � fo w² :f � fw

where n is the integer number of offspring to beo
allocated to the individual; f is the fitness of thei

Ž .individual i.e., the energy of the ligand ; f is thew
fitness of the worst individual, or highest energy,

Žin the last N generations i.e., N is a user-defina-
. ² :ble parameter, typically 10 ; and f is the mean

fitness of the population. Because the worst fitness,
² :f , will always be larger than either f or f ,w i

except when f � f , then for individuals that havei w
² :a fitness lower than the mean, f � f , the nu-i

merator in this equation, f � f , will always bew i
² :greater than the denominator f � f , and thusw

such individuals will be allocated at least one
offspring, and thus will be able to reproduce.

² :AUTODOCK checks for f � f beforehand, and ifw
true, the population is assumed to have con-
verged, and the docking is terminated.

Crossover and mutation are performed on ran-
dom members of the population according to
user-defined rates of crossover and mutation. First,
crossover is performed. Two-point crossover is
used, with breaks occurring only between genes,
never within a gene—this prevents erratic changes
in the real values of the genes. Thus, both parents’
chromosomes would be broken into three pieces at
the same gene positions, each piece containing one
or more genes; for instance, ABC and abc. The
chromosomes of the resulting offspring after two-
point crossover would be AbC and aBc. These
offspring replace the parents in the population,
keeping the population size constant. Crossover is
followed by mutation; because the translational,
orientational, and torsional genes are represented
by real variables, the classical bit-flip mutation
would be inappropriate. Instead, mutation is per-
formed by adding a random real number that has
a Cauchy distribution to the variable, the distribu-
tion being given by:

�
Ž .C � , � , x � 22 Ž .� � � x � �Ž .

� � 0, � � 0, �� � x � �

where � and � are parameters that affect the
mean and spread of the distribution. The Cauchy
distribution has a bias toward small deviates, but,
unlike the Gaussian distribution, it has thick tails
that enable it to generate large changes occasion-
ally.26

An optional user-defined integer parameter
elitism determines how many of the top individu-
als automatically survive into the next generation.
If the elitism parameter is non-zero, the new popu-
lation that has resulted from the proportional se-
lection, crossover, and mutation is sorted accord-
ing to its fitness; the fitness of new individuals
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having resulted from crossover and�or mutation
is calculated as necessary. Because populations are
implemented as heaps, selection of the best n
individuals is efficient.

The genetic algorithm iterates over generations
until one of the termination criteria is met. At the
end of each docking, AUTODOCK reports the fitness
Ž .the docked energy , the state variables, and the
coordinates of the docked conformation, and also
the estimated free energy of binding. AUTODOCK

performs the user-specified number of GA dock-
ings, and then carries out conformational cluster
analysis on the docked conformations to determine
which are similar, reporting the clusters ranked by
increasing energy.

LAMARCKIAN GENETIC ALGORITHM

The vast majority of genetic algorithms mimic
the major characteristics of Darwinian evolution
and apply Mendelian genetics. This is illustrated

Žon the right-hand side of Figure 1 note the one-
way transfer of information from the genotype to

.the phenotype . However, in those cases where an
Žinverse mapping function exists i.e., one which

.yields a genotype from a given phenotype , it is
possible to finish a local search by replacing the
individual with the result of the local search; see
the left-hand side of Figure 1. This is called the

Ž .Lamarckian genetic algorithm LGA , and is an
Ž .allusion to Jean Batiste de Lamarck’s discredited

assertion that phenotypic characteristics acquired
during an individual’s lifetime can become herita-
ble traits.33

The most important issues arising in hybrids of
Ž .local search LS techniques with the GA revolve

around the developmental mapping, which trans-
forms genotypic representations into phenotypic
ones.26 The genotypic space is defined in terms of
the genetic operators—mutation and crossover in
our experiments—by which parents of one genera-
tion are perturbed to form their children. The phe-
notypic space is defined directly by the problem,
namely, the energy function being optimized. The
local search operator is a useful extension of GA
global optimization when there are local ‘‘smooth-

Ž .ness’’ characteristics continuity, correlation, etc.
of the fitness function that local search can exploit.
In hybrid GA � LS optimizations, the result of the
LS is always used to update the fitness associated
with an individual in the GA selection algorithm.
If, and only if, the developmental mapping func-
tion is invertible, will the Lamarckian option—

FIGURE 1. This figure illustrates genotypic and
phenotypic search, and contrasts Darwinian and
Lamarckian search.27 The space of the genotypes is
represented by the lower horizontal line, and the space
of the phenotypes is represented by the upper horizontal
line. Genotypes are mapped to phenotypes by a
developmental mapping function. The fitness function is
( )f x . The result of applying the genotypic mutation

operator to the parent’s genotype is shown on the
right-hand side of the diagram, and has the
corresponding phenotype shown. Local search is shown
on the left-hand side. It is normally performed in
phenotypic space and employs information about the
fitness landscape. Sufficient iterations of the local search
arrive at a local minimum, and an inverse mapping
function is used to convert from its phenotype to its
corresponding genotype. In the case of molecular
docking, however, local search is performed by
continuously converting from the genotype to the
phenotype, so inverse mapping is not required. The
genotype of the parent is replaced by the resulting
genotype, however, in accordance with Lamarckian
principles.

converting the phenotypic result of LS back into its
corresponding genotype become possible.

In our case, the fitness or energy is calculated
from the ligand’s coordinates, which together form
its phenotype. The genotypic representation of the
ligand, and its mutation and crossover operators,
have already been described. The developmental
mapping simply transforms a molecule’s geno-
typic state variables into the corresponding set of
atomic coordinates. A novel feature of this applica-
tion of hybrid global�local optimization is that the
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Solis and Wets LS operator searches through the
genotypic space rather than the more typical phe-
notypic space. This means that the developmental
mapping does not need to be inverted. Nonethe-
less, this molecular variation of the genetic algo-
rithm still qualifies as Lamarckian, because any
‘‘environmental adaptations’’ of the ligand ac-
quired during the local search will be inherited by
its offspring.

At each generation, it is possible to let a user-
defined fraction of the population undergo such a
local search. We have found improved efficiency
of docking with local search frequencies of just
0.06, although a frequency of 1.00 is not signifi-
cantly more efficient.26 Both the canonical and a
slightly modified version of the Solis and Wets
method have been implemented. In canonical Solis
and Wets, the same step size would be used for
every gene, but we have improved the local search
efficiency by allowing the step size to be differ-

˚ ˚Žent for each type of gene: a change of 1 A 1 A �
�10 .10 m in a translation gene could be much

more significant than a change of 1� in a rotational
or torsional gene. In the docking experiments pre-

˚sented here, the translational step size was 0.2 A,
and the orientational and torsional step sizes
were 5�.

In the Lamarckian genetic algorithm, genotypic
mutation plays a somewhat different role than it
does in traditional genetic algorithms. Tradition-
ally, mutation plays the role of a local search
operator, allowing small, refining moves that are
not efficiently made by crossover and selection
alone. With the explicit local search operator, how-
ever, this role becomes unnecessary, and is needed
only for its role in replacing alleles that might have
disappeared through selection. In LGA, mutation
can take on a more exploratory role. The Cauchy
deviates are a compromise between radical jumps
to arbitrary sections of the conformation space and
detailed exploration of the local topography.

DERIVATION OF THE EMPIRICAL BINDING
FREE ENERGY FUNCTION

The study of molecular structure underpins
much of computational molecular biology. There
are several established methods for performing
molecular mechanics and molecular dynamics, no-
tably AMBER,34, 35 CHARMM,36 DISCOVER,37 ECEPP,38

and GROMOS.39 Many of these traditional force
fields model the interaction energy of a molecular
system with terms for dispersion�repulsion,40 hy-
drogen bonding,41 electrostatics,42 � 45 and devia-

tion from ideal bond lengths and bond angles.
These methods are excellent for studying molecu-
lar processes over time, for optimizing bound con-
formations, and for performing free energy per-
turbation calculations between molecules with a
single atom change,46 but they often require con-
siderable investments of computer time and, un-
fortunately, these approaches tend to perform less
well in ranking the binding free energies of com-
pounds that differ by more than a few atoms.
What is needed is an empirical relationship
between molecular structure and binding free
energy.

The first thoroughly established linear free en-
ergy relationship was observed by Hammett as
early as 1933, and reported in 1937.47 It was used
to relate structure and reactivity of small organic
molecules on a quantitative basis. Hammett was
able to derive substituent constants and reaction
constants that could then be used to calculate rate
constants and equilibrium constants for a specific
reaction of a specific compound. It could be said
that Hammett’s work was the forerunner of mod-
ern-day quantitative structure�activity relation-

Ž .ships QSAR , pioneered by Hansch and cowork-
ers in the 1960s. Here it is assumed that the sum of
the steric, electronic, and hydrophobic effects of
substituents in a compound determines its biologi-
cal activity; see, for example, Fujita,48 Hansch,49

and more recently Selassie et al.50

Current structure-based scoring functions seek
to remedy some of the deficiencies of traditional
force fields by developing empirical free energy
functions that reproduce observed binding con-
stants. Most of these approaches use an expanded
‘‘master equation’’ to model the free energy of
binding, adding entropic terms to the molecular
mechanics equations51:

�G � �G � �G � �G � �Gvdw hbond elec conform

� �G � �Gtor sol

where the first four terms are the typical molecular
mechanics terms for dispersion�repulsion, hydro-
gen bonding, electrostatics, and deviations from
covalent geometry, respectively; �G models thetor
restriction of internal rotors and global rotation
and translation; and �G models desolvationsol

Župon binding and the hydrophobic effect solvent
.entropy changes at solute�solvent interfaces . This

latter term is the most challenging. Most workers
use variants of the method of Wesson and Eisen-
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berg,52 calculating a desolvation energy based on
the surface area buried upon complex formation,
with the area of each buried atom being weighted
by an atomic solvation parameter. Bohm built on¨
earlier work with the de novo inhibitor design
program LUDI,53 and used linear regression to cali-
brate a similar function against a set of 45 diverse
protein�ligand complexes with published binding
constants.54 The final function predicted binding
constants for a set of test complexes with a stan-
dard deviation equivalent to about a factor of 25 in
binding constant: more than sufficient to rank in-
hibitors with millimolar, micromolar, and nanomo-
lar binding constants. Jain devised a continuous,
differentiable scoring function,55 which is, in
essence, very similar to that of Bohm, but based on¨
non-physical pairwise potentials using Gaussians
and sigmoidal terms.

We have implemented a similar approach using
the thermodynamic cycle of Wesson and Eisen-
berg.52 The function includes five terms:

A Bi j i j
�G � �G �ÝvdW 12 6ž /r ri j i ji , j

C Di j i jŽ .� �G E t �Ýhbond 12 10ž /r ri j i ji , j

q qi j� �G Ýelec Ž .� r ri j i ji , j

� �G Ntor tor

Ž . Ž�r 2
i j �2 � 2 . Ž .� �G S V � S V e 1Ýsol i j j i

i , j

where the five �G terms on the right-hand side
are coefficients empirically determined using lin-
ear regression analysis from a set of protein�ligand
complexes with known binding constants, shown
in Table I. The summations are performed over all
pairs of ligand atoms, i, and protein atoms, j, in
addition to all pairs of atoms in the ligand that are
separated by three or more bonds.

The in vacuo contributions include three interac-
tion energy terms, used in previous versions of
AUTODOCK: a Lennard�Jones 12-6 dispersion�re-
pulsion term; a directional 12�10 hydrogen bond-

Ž .ing term, where E t is a directional weight based
on the angle, t, between the probe and the target
atom9; and a screened Coulombic electrostatic po-
tential.56 Each of these terms, including their pa-
rameterization, have already been described.7

A measure of the unfavorable entropy of ligand
binding due to the restriction of conformational

degrees of freedom is added to the in vacuo func-
tion. This term is proportional to the number of
sp3 bonds in the ligand, N .54 We investigatedtor
variants that included and excluded methyl, hy-
droxyl, and amine rotors.

In the development of an empirical free energy
function for AUTODOCK, the desolvation term was
most challenging, because AUTODOCK uses a grid-
based method for energy evaluation, and most
published solvation methods are based on surface
area calculations. We investigated two different
methods of calculating the desolvation energy
term. The first of these methods was based on
estimating atom-by-atom contributions to the in-
terfacial molecular surface area between the ligand
and the protein using the difference in the surface
areas of the complex and the unbound protein and
unbound ligand. Both the solvent-accessible and
solvent-excluded surface areas were considered,
being calculated with MSMS,57 a fast and reliable
program that computes analytical molecular sur-
faces. Unfortunately, there can be significant errors
in the value of the interfacial solvent-accessible
surface areas, due to the ‘‘collar’’ of accessible
surface that surrounds the ligand�protein interface
in the complex. We also tested seven variants of
the pairwise, volume-based method of Stouten
et al.58: this method has the advantage that it is
consistent with the pre-calculated affinity grid for-
mulation used by AUTODOCK. For each atom in the
ligand, fragmental volumes of surrounding protein
atoms are weighted by an exponential function
and then summed, evaluating the percentage of
volume around the ligand atom that is occupied
by protein atoms. This percentage is then weighted
by the atomic solvation parameter of the ligand
atom to give the desolvation energy. The full
method may be broken into four separate compo-
nents: burial of apolar atoms in the ligand, burial
of apolar protein atoms, burial of polar and charged
atoms in the ligand, and burial of polar and
charged protein atoms. Great success has also been
reported in using simply the amount of hydropho-
bic surface area buried upon complexation as a
measure of the ‘‘hydrophobic effect,’’54 so we
tested several formulations that included only the
volume lost around ligand carbon atoms. The
burial of polar atoms caused particular problems,
as discussed in what follows. Apart from the vol-
ume-based method, we tested a simpler formula-
tion for the solvent transfer of polar atoms; that is,
a constant term corresponding to the favorable free
energy of interaction of a polar atom with solvent
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TABLE I.
Protein–Ligand Complexes Used to Calibrate Empirical Free Energy Function, Along with Brookhaven Protein

( )Data Bank PDB Accession Codes and Binding.

a( )Protein�ligand complex PDB code Log Ki

Concanavalin A / �-methyl-D-mannopyranoside 4cna 2.00
Carboxypeptidase A / glycyl-L-tyrosine 3cpa 3.88

( )Carboxypeptidase A / phosphonate ZAA P O F 6cpa 11.52
Cytochrome P-450 / camphor 2cpp 6.07cam
Dihydrofolate reductase / methotrexate 4dfr 9.70
�-Thrombin / benzamidine 1dwb 2.92
Endothiapepsin / H-256 zer6 7.22
�-Thrombin / MQPA 1etr 7.40
�-Thrombin / NAPAP 1ets 8.52
�-Thrombin / 4-TAPAP 1ett 6.19

( )FK506-binding protein FKBP / immunosuppressant FK506 1fkf 9.70
D-Galactose / D-glucose binding protein / galactose 2gbp 7.60
Hemagglutinin / sialic acid 4hmg 2.55
HIV-1 Protease / A78791 1hvj 10.46
HIV-1 Protease / MVT101 4hvp 6.15
HIV-1 Protease / acylpepstatine 5hvp 5.96
HIV-1 Protease / XK263 1hvr 9.51
Fatty-acid-binding protein / C COOH 2ifb 5.4315

( )Myoglobin ferric / imidazole 1mbi 1.88
McPC603 / phosphocholine 2mcp 5.23
�-Trypsin / benzamidine 3ptb 4.74
Retinol-binding protein / retinol 1rbp 6.72
Thermolysin / Leu-hydroxylamine 4tln 3.72
Thermolysin / phosphoramidon 1tlp 7.55

( )Thermolysin / n- 1-carboxy-3-phenylpropyl -Leu-Trp 1tmn 7.30
( )Thermolysin / Cbz-Phe-p-Leu-Ala ZFpLA 4tmn 10.19
( )Thermolysin / Cbz-Gly-p-Leu-Leu ZGpLL 5tmn 8.04
( )Purine nucleoside phosphorylase PNP / guanine 1ulb 5.30

Xylose isomerase / CB3717 2xis 5.82
( ) ( )Triose phosphate isomerase TIM / 2-phosphoglycolic acid PGA 2ypi 4.82

a Adapted from Bohm.54¨

is estimated, and this is subtracted from the bind-
ing free energy.

Trilinear interpolation is used to evaluate
rapidly the intermolecular dispersion�repulsion
energy, the hydrogen bonding energy, the electro-
static potential, and the solvation energy of each
atom in the ligand, using grid maps that have been
pre-calculated over the protein for each atom type
in the ligand. In AUTODOCK 3.0, we have imple-
mented a faster method of trilinear interpolation59

than was available in earlier versions of AUTODOCK.
Both methods are mathematically equivalent. The
original implementation used 24 multiplications to
perform each three-dimensional trilinear interpola-
tion, but, by cascading seven one-dimensional in-
terpolations, the number of multiplications has
been reduced to 7.

Thirty protein�ligand complexes with pub-
lished binding constants were used in the calibra-

Ž .tion of AUTODOCK’s free energy function Table I ,
and were chosen from the set of 45 used by Bohm,54¨

Žomitting all complexes that he modeled i.e., using
only complexes for which crystallographic struc-

.tures were available . One of the limitations of
these binding constant data is that the conditions
under which they were determined vary, which
intrinsically limits the accuracy of our best model.
We converted between the inhibition constant, K ,i
and the observed free energy change of binding,
�G , using the equation:obs

�G � RT ln Kobs i

where R is the gas constant, 1.987 cal K�1 mol�1,
and T is the absolute temperature, assumed to be
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room temperature, 298.15 K.60 Note that this equa-
tion lacks a minus sign because the inhibition
constant is defined for the dissociation reaction,
EI � E � I,61 whereas �G refers to the oppositeobs
process of binding, E � I � EI; where E is the
enzyme and I is the inhibitor.

To remove any steric clashes in the crystallo-
graphic complexes, each ligand was optimized us-
ing AUTODOCK’s new Solis and Wets local mini-
mization technique described earlier, but with
the previously reported force field.7 The separate
contributions from the hydrogen bonding, disper-
sion�repulsion, electrostatic, and solvation ener-
gies were evaluated. Empirical free energy coeffi-
cients for each of these terms were derived using
linear regression in the S-PLUS software package,62

and cross-validation studies were performed. In
total, 900 different binding free energy models
were tested: each linear model consisted of a van

Žder Waals term, a hydrogen bonding term one of
.6 variants , an electrostatic term, a torsional en-
Ž .tropy term one of 5 variants , and a desolvation

Ž .term one of 15 variants . We also investigated
whether the inclusion of a constant term improved
the model. Six of the seven test systems used to
test the docking procedure, which were originally
used to test AUTODOCK, version 2.4,7 were also in
the training set of 30 protein�ligand complexes;
therefore, to validate the chosen coefficients, linear
regression was repeated for the set of 24
protein�ligand complexes, excluding the 6 over-
lapping test systems.

TESTING DOCKING METHODS

Seven protein�ligand complexes, with a range
of complexity and chemical properties, were cho-
sen from the Brookhaven Protein Data Bank63, 64 to
compare the performance of the docking tech-

Ž .niques see Fig. 2 . To facilitate comparison with
the previous force field, we chose the same set of
six test systems investigated earlier,7 but added a
harder docking problem to challenge all the search

Ž .methods see Table II . The simplest test cases
were the �-trypsin�benzamidine and cytochrome
P-450 �camphor complexes, which had small,cam
rigid ligands. Interactions in the former are domi-
nated by electrostatic interactions and hydrogen
bonds to the substrate amidine, whereas the latter
is dominated by hydrophobic interactions. McPC-
603�phosphocholine and streptavidin�biotin were
moderately flexible, and represented test systems
having an intermediate level of difficulty. HIV-1

protease�XK263, hemagglutinin�sialic acid, and
dihydrofolate reductase�methotrexate provided
more difficult tests, with many rotatable bonds
and diverse chemical characteristics.

We compared the performance of Monte Carlo
Ž .simulated annealing SA , the genetic algorithm

Ž . Ž .GA , and the Lamarckian genetic algorithm LGA .
The new empirical free energy function presented
here was used for energy evaluation in all cases.
Dockings were performed using approximately the

Žsame number of energy evaluations � 1.5 mil-
.lion , so each method could be judged given simi-

lar computational investments. The CPU time
taken for a single docking varied from 4.5 to 41.3
minutes, on a 200-MHz Silicon Graphics MIPS
4400 with 128 MB of RAM, depending on the
number of rotatable bonds and the number of
atoms in the ligand.

At the end of a set of dockings, the docked
conformations were exhaustively compared to one
another to determine similarities, and were clus-
tered accordingly. The user-defined root-mean-

Ž .square positional deviation rmsd tolerance was
used to determine if two docked conformations
were similar enough to be included in the same
cluster, and symmetrically related atoms in the
ligand were considered. These clusters were ranked
in order of increasing energy, by the lowest energy
in each cluster. Ordinarily, the structure of the
protein�ligand complex would not be known, so
the criteria by which the dockings would be evalu-
ated are the energies of the docked structures, and,
in cases where there are several plausible, low-en-
ergy structures, the number of conformations in a
conformationally similar cluster. Because one of
our goals was to test the ability of the methods to
reproduce known structures, we also compared
the rmsd between the lowest energy docked struc-
ture and the crystallographic structure.

DOCKING- AND SEARCH-METHOD-SPECIFIC
PARAMETERS

The proteins and ligands in the seven docking
tests were treated using the united-atom approxi-
mation, and prepared using the molecular model-
ing program, SYBYL.65 Only polar hydrogens were
added to the protein, and Kollman united-atom
partial charges were assigned. Unless stated other-
wise, all waters were removed. Atomic solvation
parameters and fragmental volumes were assigned
to the protein atoms using a new AUTODOCK util-
ity, ADDSOL. The grid maps were calculated using
AUTOGRID, version 3.0. In all seven protein�ligand
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( ) ( )FIGURE 2. The seven ligands chosen for docking, showing the rotatable bonds as curly arrows: a benzamidine; b
( ) ( ) ( ) ( ) ( )camphor; c phosphocholine; d biotin; e HIV-1 protease inhibitor XK-263; f isopropylated sialic acid; and g

( ) ( )methotrexate. Note that two ligands, e and f , contain hydroxyl rotors, which are not counted in the total number of
torsional degrees of freedom; note also that cyclic rotatable bonds are excluded.

cases, we used grid maps with 61 � 61 � 61 points,
˚a grid-point spacing of 0.375 A, and, because the

location of the ligand in the complex was known,
the maps were centered on the ligand’s binding
site. The ligands were treated in SYBYL initially as
all atom entities, that is, all hydrogens were added,
then partial atomic charges were calculated using
the Gasteiger�Marsili method.66, 67 AUTOTORS, an
AUTODOCK utility, was used to define the rotatable
bonds in the ligand, if any, and also to unite the

nonpolar hydrogens added by SYBYL for the partial
atomic charge calculation. The partial charges on
the nonpolar hydrogens were added to that of the
hydrogen-bearing carbon also in AUTOTORs.

In all three search methods, 10 dockings were
performed; in the analysis of the docked conforma-
tions, the clustering tolerance for the root-mean-

˚square positional deviation was 0.5 A, and the
crystallographic coordinates of the ligand were
used as the reference structure. For all three search
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TABLE II.
X-Ray Crystal Structure Coordinates Used in Docking Experiments, Their Brookhaven Protein Data Bank
Accession Codes and Resolution, Number of Rotatable Bonds in the Ligand, Number of Torsional
Degrees of Freedom, Total Number of Degrees of Freedom, and Energy of Crystal Structure Using the
Empirical Force Field Presented Here.

Number Total Energy
of number of of crystal

PDB Resolution rotatable degrees of structure
a � 1˚( ) ( )Protein�ligand complex code A Reference bonds N freedom kcal moltor

�-Trypsin / benzamidine 3ptb 1.7 69 0 0 7 �7.86
Cytochrome P-450 / camphor 2cpp 1.63 70 0 0 7 �4.71cam

bMcPC-603 / Phosphocholine 2mcp 3.1 71 4 4 11 +5.48
Streptavidin / biotin 1stp 2.6 73 5 5 12 �8.86
HIV-1 protease / XK263 1hvr 1.8 75 10 8 17 �18.62
Influenza hemagglutinin / sialic acid 4hmg 3.0 76 11 7 18 �4.71
Dihydrofolate reductase / methotrexate 4dfr 1.7 79 7 7 14 �13.64

a N is the number of torsional degrees of freedom used in the calculation of the predicted free energy change of binding, �G .tor pred
Note that this excludes rotatable bonds that only move hydrogens, such as hydroxyl, amino, and methyl groups.
b This energy is dominated by a large, positive contribution from C2 and O1 to the internal nonbonded energy, of +6.13 kcal

� 1 ˚mol ; these atoms are 2.26 A apart.

˚methods, the step sizes were 0.2 A for translations
and 5� for orientations and torsions. These step
sizes determined the amount by which a state
variable could change when a move is made in
simulated annealing and the relative size of muta-
tion in the local search, whereas the � and �
parameters determined the size of the mutation in
the genetic algorithms, GA and LGA. The Cauchy
distribution parameters were � � 0 and � � 1.
Note that in simulated annealing, random changes
were generated by a uniformly distributed random
number generator; in the Solis and Wets local
search, by a normal distribution; and, in the ge-
netic algorithm, by a Cauchy distribution. In the
simulated annealing tests, the initial state of the
ligand was chosen randomly by AUTODOCK. We
used the optimal set of simulated annealing pa-
rameters that were determined from the schedule
experiments described earlier.7 These included an
initial annealing temperature of 616 cal mol�1, a
linear temperature reduction schedule, 10 runs, 50
cycles, and a cycle-termination criterion of a maxi-
mum of 25,000 accepted steps or 25,000 rejected
steps, whichever came first. The minimum energy
state was used to begin the next cycle; the only
exception was for 1hvr, where the initial annealing
temperature was increased to 61,600 cal mol�1.
The maximum initial energy allowed was 0.0 kcal
mol�1, and the maximum number of retries was
1000, used to generate a low energy random initial
state to begin each simulated annealing docking.

In the GA and LGA dockings, we used an initial
population of random individuals with a popula-
tion size of 50 individuals; a maximum number of
1.5 � 106 energy evaluations; a maximum number
of generations of 27,000; an elitism value of 1,
which was the number of top individuals that
automatically survived into the next generation; a
mutation rate of 0.02, which was the probability
that a gene would undergo a random change; and
a crossover rate of 0.80, which was the probability
that two individuals would undergo crossover.
Proportional selection was used, where the aver-
age of the worst energy was calculated over a
window of the previous 10 generations. In the
LGA dockings, the pseudo-Solis and Wets local
search method was used, having a maximum of
300 iterations per local search; the probability of
performing local search on an individual in the
population was 0.06; the maximum number of
consecutive successes or failures before doubling
or halving the local search step size, �, was 4, in
both cases; and the lower bound on �, the termi-
nation criterion for the local search, was 0.01.

Results and Discussion

CALIBRATION OF EMPIRICAL FREE
ENERGY FUNCTION

Several linear regression models were tested for
their ability to reproduce the observed binding
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TABLE III.
Calibration of Empirical Free Energy Function.

Residual
standard Multiple

ba 2Model error R �G �G �G �G �Gvdw estat hbond tor solv

A 2.324 0.9498 0.1795 0.1133 0.0166 0.3100 0.0101
( ) ( ) ( ) ( ) ( )0.0263 0.0324 0.0625 0.0873 0.0585

B 2.232 0.9537 0.1518 0.1186 0.0126 0.3548 0.1539
( ) ( ) ( ) ( ) ( )0.0269 0.0246 0.0382 0.0890 0.1050

C 2.177 0.9559 0.1485 0.1146 0.0656 0.3113 0.1711
( ) ( ) ( ) ( ) ( )0.0237 0.0238 0.0558 0.0910 0.1035

a Models differ in the formulation of the solvation term and the hydrogen bonding term. Model A: full volume-based solvation term
( )and standard 10�12 hydrogen bonding, as in Eq. 1 . Model B: apolar ligand atoms only in the solvation term, and standard 10�12

hydrogen bonding. Model C: apolar ligand atoms only in the solvation term, and the standard 10�12 hydrogen less the estimated
( )average, as in Eq. 2 .

b Values for the model coefficients, with standard deviations in parentheses.

constants of structurally characterized complexes.
Table III shows the results for the three major
candidates, and Figure 3 shows the correlation
between the observed and the predicted binding
free energies for the 30 protein�ligand complexes

in the calibration set, using the chosen model
Ž .model C . Model A adds the full volume-based
solvation method and the torsional restriction term
to the original molecular mechanics force field.
Model B simplifies the solvation method by evalu-

FIGURE 3. Predicted versus observed binding free energies for the calibration set and the docking tests. The solid
line shows a perfect fit, and the dotted lines show one standard deviation above and below this. Hollow diamonds show
the 30 protein�ligand complexes used in fitting the terms of the binding free energy function. Solid triangles show the

( ) ( )results of the simulated annealing SA dockings, solid diamonds show the genetic algorithm GA dockings, and the
( )solid squares show the Lamarckian genetic algorithm LGA dockings. Note the outlying biotin�streptavidin complex

( )1stp , where it is believed there are significant contributions to the binding free energy due to protein rearrangements.
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ating the volume buried for only the carbon atoms
in the ligand. Model C also uses only ligand car-
bon atoms in the desolvation calculation, and also
adds a constant term to the hydrogen bonding
function, modeling desolvation of polar atoms.
Model C was chosen for incorporation into AUTO-
DOCK 3.0, based on its better overall statistics, and
on criteria discussed in what follows. The form of
this free energy function is:

A Bi j i j
�G � �G �ÝvdW 12 6ž /r ri j i ji , j

C Di j i jŽ .� �G E t � � EÝhbond hbond12 10ž /r ri j i ji , j

q qi j� �G Ýelec Ž .� r ri j i ji , j

� �G Ntor tor

Ž�r 2
i j �2 � 2 . Ž .� �G S V e 2Ýsol i j

i , jC

where E is the estimated average energy ofhbond
hydrogen bonding of water with a polar atom, and
the summation in the solvation term is performed-
over all pairs consisting of only carbon atoms in
the ligand, i, and atoms of all types, j, in the
protein. Note that the internal or intramolecular
interaction energy of the ligand is not included in
the calculation of binding free energy; during
docking, however, internal energy is included in
the total docked energy, because changes in ligand
conformation can affect the outcome of the dock-
ing, so this must be taken into consideration. We
looked at linear regression models that did include
the internal energy, and found that adding this
term did not improve the model. The assumption
made is that the internal energy of the ligand in
solution and in the complex are the same. The
energies used and reported by AUTODOCK should
be distinguished: there are docked energies, which
include the intermolecular and intramolecular in-
teraction energies, and which are used during
dockings; and predicted free energies, which include
the intermolecular energy and the torsional free
energy, and are only reported at the end of a
docking. Because the intermolecular energy grid
maps include the desolvation term, dockings using
the new, empirical force field in AUTODOCK ver-
sion 3.0 may be qualitatively different from results
found using earlier versions.

Three coefficients, for dispersion�repulsion,
electrostatics, and loss of torsional freedom were

very stable in the linear regression analysis, with
consistent coefficient values in different formula-
tions and reasonable standard deviations. In our
best model, dispersion�repulsion energies, with
parameters taken from AMBER,34 were weighted by
a factor of 0.1485, yielding an energy of about
�0.2 kcal mol�1 for the most favorable atom�atom
contacts. Electrostatics, modeled with a screened
Coulomb potential,56 were weighted by a factor of
0.1146, yielding an energy of about �1.0 kcal
mol�1 for an ideal salt bridge. In the torsional
restriction term, each torsional degree of freedom
requires 0.3113 kcal mol�1.

The major differences between models occurred
with the interaction of the hydrogen bonding term
and the desolvation term. Hydrogen bonding is
modeled with a directional 12�10 potential.68 We
encountered a major problem when calibrating this
hydrogen bonding function. Because the test set
included only natural enzyme�ligand complexes,
optimized by millions of years of evolution, hydro-
gen bonding groups in the ligands are nearly al-
ways paired with the appropriate hydrogen bond-
ing group in the protein. Thus, the number of
hydrogen bonds that the ligand forms in the com-
plex and the number it forms with solvent when
free in solution are approximately the same; that
is, there is little change in the free energy of
hydrogen bonding, and �G was evaluated tohbond
be approximately zero. Unfortunately, this pro-
vides no information on the cost of burying a
hydrogen bonding group without forming a bond
with the protein, and our data set did not include
cases to evaluate this. Of course, the volume-based
solvation method should account for this—the un-
favorable polar contribution to the solvation en-
ergy should compensate for the favorable 12�10
hydrogen bonding energy. The linear regression,
however, consistently returned coefficients that set
the hydrogen bonding energy and desolvation en-
ergy to nearly zero, and increased the dispersion�

Žrepulsion term to compensate see Model A in
.Table III . We chose an alternative formulation to

resolve this problem.
We obtained the best results by separating the

desolvation of polar atoms from the volume-based
calculation. We assumed that the extent of hydro-
gen bonding in the complexes was roughly the
same as the extent of hydrogen bonding in solu-
tion. The calculated hydrogen bonding energy, us-
ing the directional 12�10 hydrogen bonding func-
tion, was divided by the maximal number of
possible hydrogen bonds, counting two for each
oxygen atom and one for each polar hydrogen. For
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the 30 complexes used in calibration, it was found
that 36% of the maximum possible hydrogen
bonding sites were actually utilized. Values of
E ranging from 36% to 100% of the maximalhbond
well depth of 5 kcal mol�1 had little effect on the

Ž .success of the formulation data not shown , and a
value of 36% was chosen. Optimized weights
yielded an ideal hydrogen bonding energy in the
complex of �0.328 kcal mol�1, and the estimated
average energy of each hydrogen bond in solution
of �0.118. Because hydrogen bonding was mod-
eled by this difference, the typical hydrogen bond-
ing free energy of a complex was approximately
zero, but there was a penalty of about 0.2 kcal
mol�1 for oxygen and nitrogen atoms that did not
form hydrogen bonds, driving the simulation to-
ward docked conformations with maximal hydro-
gen bonding. We are currently exploring an appro-
priate data set for evaluating this formulation more
rigorously.

The desolvation for carbon atoms in the ligand
was evaluated using two different classes of atom
type, aliphatic and aromatic, as in the original
study.58 The desolvation term was weighted by a
factor of 0.1711 in our final empirical free energy
force field, so a typical aliphatic carbon atom yields
an energy of about �0.2 kcal mol�1 upon binding.

We cross-validated the free energy model in
two ways. First, we investigated the influence of
each member of the training set on the final coeffi-
cients of the model, by removing each one from
the training set and calculating the coefficients
from the remaining 29 complexes. We found that
none of them had a strong effect on the final
values of the coefficients.

We also performed a second kind of cross-vali-
dation of the free energy model, by performing
Solis and Wets local search using AUTODOCK and
the new free energy function, starting from the
x-ray crystallographic conformations of each in-
hibitor in 20 HIV-1 protease-inhibitor complexes,
to compare the resulting optimized conformations’
predicted free energy change of binding, �G ,binding
with the experimentally determined values. These
protease inhibitors were quite different, having
from 7 to 28 torsions, and widely different side
chains—charged, polar, and hydrophobic, and
constituted a diverse test set. As can be seen from
the results in Table IX, the correlation was very
good, with an overall rmsd between the experi-
mental and calculated values of �G of 1.92binding
kcal mol�1.

The final form of the free energy function may
seem overparameterized, with additional weight-

ing parameters added to a previously optimized
parameterization. We retained the molecular me-
chanics formulation, however, specifically for its
ability to model the distance dependence of each

Ženergetic term. This distance dependence and an-
.gular dependence in hydrogen bonding is essen-

tial for finding valid docked conformations, but
the amount and resolution of the available pro-
tein�ligand data do not support a full re-pameteri-
zation of the functions.

DOCKING EXPERIMENTS

Because we are comparing different search
methods, it is important to ensure that the meth-
ods are treated equally. It is therefore important
that each search method be allowed approximately
the same number of energy evaluations in a dock-
ing. The number of energy evaluations in a dock-
ing depends on the termination criteria, and be-
cause it is not possible to predict how many
accepted or rejected steps the stochastic SA method
will make at a given temperature, the number of
evaluations varies in SA. The range was from
1.19 � 106 to 2.33 � 106, depending on the pro-
tein�ligand test system, even though the same
parameters were used for the number of cycles,
accepted steps and rejected steps. In the case of the
GA dockings, the population was 50 and the num-
ber of generations was 27,000, which gave a total
of 1.35 � 106 energy evaluations in a docking;
thus, the GA dockings were terminated by reach-
ing the maximum number of generations. In the
case of the LGA dockings, 6% of the population
underwent Lamarckian local search, each search
consisting of 300 iterations and each iteration us-
ing an extra energy evaluation. Thus, the LGA
dockings, even with the same population size and
number of generations as the GA, were terminated
by reaching the maximum number of energy eval-
uations, 1.50 � 106.

The results of the simulated annealing, genetic
algorithm, and the Lamarckian genetic algorithm
docking experiments are summarized in Tables IV,
V and VI, respectively. The lowest energy docked
structure found by each method is compared with
the crystal structure of the ligand in Figure 4. The
predicted change in free energy upon binding,
�G , for the lowest energy found by LGA ispred
shown in Table VII, along with the experimentally
observed change in free energy upon binding,
�G . In addition, the breakdown of the energy ofobs
the lowest energy docked conformation is shown,
in terms of the intermolecular interaction energy,
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TABLE IV.
Results of Simulated Annealing Dockings.a

� 1 ˚( ) ( )Energy kcal mol and rmsd A

rmsd
Number Number of Number of

PDB of in Lowest lowest Mean Mean energy
code clusters rank 1 energy energy energy rmsd evaluations

6( ) ( )3ptb 5 6 �8.03 0.21 �7.84 0.08 0.50 0.17 2.01 � 10
6( ) ( )2cpp 4 6 �7.29 0.81 �7.22 0.03 0.91 0.30 2.33 � 10

2 6( ) ( )2mcp 10 1 �4.09 0.88 70.89 2.10 � 10 5.40 4.80 1.85 � 10
6( ) ( )1stp 10 1 �8.48 1.27 �7.71 0.66 1.24 0.35 2.00 � 10

5 5 6( ) ( )1hvr 10 1 �11.77 1.15 1.12 � 10 3.36 � 10 6.13 2.61 1.19 � 10
4 5 6( ) ( )4hmg 10 1 �2.59 3.77 6.99 � 10 1.52 � 10 6.20 2.94 1.55 � 10
2 3 6( ) ( )4dfr 10 1 �8.73 4.83 6.13 � 10 1.96 � 10 5.04 1.74 1.30 � 10

a The parameters used were 10 runs, 50 cycles, and a cycle-termination criterion of 25,000 accepted steps or 25,000 rejected
˚steps, whichever came first. The rmsd conformational clustering tolerance was 0.5 A, calculated from the ligand’s crystallographic

coordinates. Standard deviations given in parentheses.

�G the intramolecular energy, �G , and theinter intra
torsional free energy, �G . These results are dis-tor
cussed case-by-case in what follows; ‘‘crystallo-
graphic rmsd’’ refers to the root-mean-square posi-
tional deviation of a given conformation from the
crystallographic coordinates.

( )�-Trypsin / Benzamidine 3ptb

The recognition of benzamidine by �-trypsin,
which binds tightly in the specificity pocket of
trypsin, is chiefly due to the polar amidine moiety

and the hydrophobic benzyl ring.69 The amidine
moiety was treated as being protonated. It was
assumed that delocalization of the �-electrons of
the benzene ring extended to the �-system of the
amidine, and thus the ligand was treated as a rigid
body. All three search methods succeeded in find-
ing lowest energy conformations that were also the
ones with the lowest crystallographic rmsd. In this
case, the method that found the docked structure

Ž .with the lowest energy was GA Table V , but that
Ž .found by the LGA method Table VI was practi-

cally the same. The mean of the final docked

TABLE V.
Results of Genetic Algorithm Dockings.a

� 1 ˚( ) ( )Energy kcal mol and rmsd A

rmsd
Number Number of Number of

PDB of in Lowest lowest Mean Mean energy
code clusters rank 1 energy energy energy rmsd evaluations

6( ) ( )3ptb 2 9 �8.17 0.32 �7.72 1.35 1.50 3.39 1.35 � 10
6( ) ( )2cpp 4 7 �7.36 0.93 �6.65 2.11 2.18 3.42 1.35 � 10
6( ) ( )2mcp 10 1 �5.17 0.85 �3.61 0.95 5.26 2.98 1.35 � 10
6( ) ( )1stp 7 4 �10.09 0.75 �8.42 1.82 2.96 3.04 1.35 � 10
6( ) ( )1hvr 7 4 �21.41 0.82 �11.09 9.79 2.79 1.97 1.35 � 10
6( ) ( )4hmg 9 2 �7.60 1.11 �5.72 1.77 2.32 1.43 1.35 � 10
6( ) ( )4dfr 10 1 �16.10 0.95 �10.24 3.95 4.39 2.37 1.35 � 10

a The parameters used were 10 runs a population size of 50, and a run-termination criterion of a maximum of 27,000 generations or
a maximum of 1.5 � 106 energy evaluations, whichever came first. Note that, in this case all runs terminated after the maximum
number of generations was reached, which equals the product of the population size and the number of generations. The rmsd

˚conformational clustering tolerance was 0.5 A, calculated from the ligand’s crystallographic coordinates. Standard deviations are
given in parentheses.
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TABLE VI.
Results of Lamarckian Genetic Algorithm Dockings.a

� 1 ˚( ) ( )Energy kcal mol and rmsd A

rmsd
Number Number of Number of

PDB of in Lowest lowest Mean Mean energy
code clusters rank 1 energy energy energy rmsd evaluations

6( ) ( )3ptb 1 10 �8.15 0.45 �8.15 0.00 0.46 0.01 1.50 � 10
6( ) ( )2cpp 1 10 �7.36 0.93 �7.36 0.00 0.93 0.00 1.50 � 10
6( ) ( )2mcp 6 2 �5.54 1.05 �4.15 0.15 1.10 0.07 1.50 � 10
6( ) ( )1stp 1 10 �10.14 0.69 �10.06 0.05 0.66 0.06 1.50 � 10
6( ) ( )1hvr 2 9 �21.38 0.76 �19.11 6.92 0.85 0.35 1.50 � 10
6( ) ( )4hmg 3 7 �7.72 1.14 �7.54 0.19 1.18 0.12 1.50 � 10
6( ) ( )4dfr 2 7 �16.98 1.03 �16.90 0.07 0.98 0.07 1.56 � 10

a The parameters used were 10 runs, a population size of 50, and a run-termination criterion of a maximum of 27,000 generations
or a maximum of 1.5 � 106 energy evaluations, whichever came first. Because local search also uses energy evaluations, the total
number of energy evaluations for the LGA method was greater than that for the GA method, using the same population size and
maximum number of generations; in the LGA dockings, the runs terminated because the maximum number of energy evaluations

˚was exceeded. The rmsd conformational clustering tolerance was 0.5 A, calculated from the ligand’s crystallographic coordinates.
Standard deviations are given in parentheses.

energy across the ten dockings was lowest for
LGA, followed by SA, and finally GA. This is
reflected in a comparison of the mean rmsd of the
docked conformation from the crystallographic
structure for each of the methods: GA had the
highest mean rmsd, followed by SA, and on aver-
age, the LGA produced conformations with the
lowest crystallographic rmsd. Thus, considering
their average performance, the best search method
at finding the lowest energy and the lowest rmsd
was the LGA. The predicted binding free energy,
�G , of the lowest docked energy structure ob-pred
tained using the LGA method was �8.15 kcal

�1 Ž .mol Table VII , whereas the observed value,
�G was �6.46 kcal mol�1 : this is within theobs
estimated error of the model.

( )Cytochrome P-450 / Camphor 2cppcam

Camphor binds to the monooxygenase cy-
tochrome P-450 such that the 5-exo C—H bondcam
is hydroxylated stereospecifically. The active site is
deeply sequestered within the enzyme, and the
crystal structure of the complex does not possess
an obvious substrate access channel.70 This buried
active site presents a more challenging docking
problem than 3ptb. Once bound, however, the
substrate is ‘‘tethered’’ by a hydrogen bond that is
donated from the Tyr-96 hydroxyl to the carbonyl
oxygen of camphor, while the subtle complemen-
tarity of the pocket and the hydrophobic skeleton
of camphor help to position the rest of the sub-

strate. The lowest energy found was �7.36 kcal
�1 Ž .mol , found by both the GA Table V and LGA

Ž .methods Table VI ; SA’s lowest energy was �7.29
�1 Ž .kcal mol Table IV , which is practically the

same. All methods found the crystallographic
structure, SA succeeding in 9 of 10 dockings, GA
in 7 out of 10 dockings, and LGA in all of the

Ždockings with success, once again, being mea-
sured as having a crystallographic rmsd of less

˚.than 1 A . In all three search method cases, the
lowest energy cluster was the most populated,
with 6, 9, and 10 members using SA, GA, and
LGA, respectively. The predicted binding free en-
ergy, �G , of the lowest docked energy struc-pred
ture, was �7.36 kcal mol�1 using the LGA method
Ž .see Table VII , whereas the observed value, �G ,obs
was �8.27 kcal mol�1 —once again, this was
within the estimated error of the model.

( )McPC-603 / Phosphocholine 2mcp

Antibody molecules bind their target antigens
with exquisite specificity, having close comple-
mentarity between antigen and antibody surfaces,
hydrogen bonding, van der Waals, and electro-
static interactions. Phosphocholine binds to Fab
McPC-603,71 and is an example of recognition is
predominantly electrostatic in character, primarily
due to the influence of Arg H52.72 There is little
conformational change in the side chains of Fab
McPC-603 upon binding, as indicated from the
unbound crystal structure. We allowed all four
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FIGURE 4. A comparison of the lowest energy structure found by each search method and the crystal structure. The
latter is shown in black. The simulated annealing results are rendered with a striped texture, the genetic algorithm
results are shaded gray, and the Lamarckian genetic algorithm results are white. Oxygen atoms are shown as spheres;
other heteroatoms are not shown. Note that simulated annealing failed in the last two test cases, 4hmg and 4dfr, but
both the genetic algorithm and the Lamarckian genetic algorithm succeeded.

bonds to rotate during docking. The energy of the
crystal structure was positive, due in most part to
a large, positive internal energy dominated by C2

˚Ž .and O1 being too close 2.26 A ; this could be
improved if local minimization had been per-
formed on the crystal structure before docking.
The lowest energy found by each of the three
search methods were �4.09, �5.17, and �5.54
kcal mol�1, using SA, GA, and LGA, respectively.
Unlike 3ptb and 2cpp, these differences in energy

were more significant. Both SA and GA found 10
different clusters, whereas LGA found 6 clusters.
The mean energy of the 10 dockings was �70.89,
�3.61, and �4.15 kcal mol�1 for SA, GA, and
LGA, respectively. Thus, on average, the LGA per-
formed best in finding the lowest energy docked
structure. Furthermore, the mean rmsd from the
crystallographic coordinates was 5.40, 5.26, and

˚1.10 A for SA, GA, and LGA, respectively, indicat-
ing that LGA also reproduced the crystal structure
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TABLE VII.
Comparison of Predicted Free Energy of Binding, �G , of Lowest Energy Docked Structure Obtainedpred

aUsing Lamarckian Genetic Algorithm, and Observed Free Energy of Binding, �G .obs

� 1 ˚( ) ( )Energy kcal mol and rmsd A

rmsd of
PDB Lowest lowest

( )code energy energy �G �G �G �G �G �G � �Ginter intra tor pred obs pred obs

3ptb �8.15 0.45 �8.15 0.00 0.00 �8.15 �6.46 �1.69
2cpp �7.36 0.93 �7.36 0.00 0.00 �7.36 �8.27 +0.91
2mcp �5.54 1.05 �6.57 +1.03 +1.25 �5.32 �7.13 +1.81

b1stp �10.14 0.69 �9.90 �0.24 +1.56 �8.34 �18.27 +9.93
1hvr �21.38 0.76 �19.34 �2.04 +2.49 �16.85 �12.96 �3.89
4hmg �7.72 1.14 �8.93 +1.21 +2.18 �6.75 �3.48 �3.27
4dfr �16.97 1.03 �16.57 �0.40 +2.18 �14.39 �13.22 �1.17

a
�G is the intermolecular interaction energy between the ligand and the receptor, �G is the intramolecular interactionin ter in tra

energy of the ligand, and �G is the torsional free energy change of the ligand upon binding.tor
b This large discrepancy may be due to neglect of the conformational rearrangements of streptavidin upon binding biotin, which are
neglected in the docking simulation and binding free energy calculation.

most often. The predicted binding free energy,
�G , of the lowest docked energy structure waspred

�1 Ž�5.32 kcal mol using the LGA method see
.Table VII , whereas the observed value, �G , wasobs

�7.13 kcal mol�1 —this was also within the esti-
mated error of the model.

( )Streptavidin / Biotin 1stp

One of the most tightly binding noncovalent
complexes is that of streptavidin�biotin, with an
experimentally observed dissociation constant, K ,d
of 10�15M. Comparison of the apo form and the
complex73 shows that the high affinity results from
several factors, including formation of multiple
hydrogen bonds and van der Waals interactions
between the biotin and the protein, in addition to
the ordering of surface polypeptide loops of strep-
tavidin upon binding biotin. The method that
found the lowest energy was LGA, at �10.14 kcal
mol�1, although GA was not significantly differ-
ent, followed by SA with �8.48 kcal mol�1. The
method with the lowest mean energy was LGA at
�10.06 kcal mol�1, then GA with �8.42 kcal
mol�1, and finally SA with �7.76 kcal mol�1. The
method that found the crystallographic complex
coordinates most often was LGA, having a mean

˚ ˚rmsd of 0.66 A, then SA at 1.24 A, and finally GA
˚with 2.96 A. At the rmsd tolerance chosen for these

˚experiments, 0.5 A, SA found 10 different confor-
Žmational clusters, GA found 7 clusters the most

.populated was rank 1, with 4 members , and LGA
found 1 cluster.

It was not possible to include the entropic ef-
fects of the flexible surface loops of streptavidin in
the docking of biotin, although they make signifi-
cant contributions to the binding free energy as
revealed by a recent set of experiments involving
an atomic force microscope.74 It was found that the
unbinding forces of discrete complexes of strepta-
vidin with biotin analogs were proportional to the
enthalpy change of the complex formation but
independent of changes in the free energy, which
indicates that the unbinding process is adiabatic
and that entropic changes occur after unbinding.
This may help to explain why the predicted bind-
ing free energy of the streptavidin�biotin complex
Ž . �1�G �10.14 kcal mol , underestimated thepred

Ž .magnitude of the observed value �G �18.27obs
�1 Ž .kcal mol Table VII .

( )HIV-1 Protease / XK263 1hvr

HIV-1 protease inhibitors prevent the matura-
tion of virions of HIV, and are a major target for
computer-assisted drug design in the development
of AIDS therapies. Substrates and inhibitors of
HIV-1 protease are typically extended peptides or
peptidomimetics, with a dozen or more freely ro-
tatable bonds and, as such, they present a chal-
lenging target for automated docking techniques.
In addition, considerable protein motion is ex-
pected in the flaps upon binding, to allow the
continuous polypeptide to reach the active site.
However, most docking methods use a rigid pro-
tein target, and explicit modeling of the opening
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and closing of the flaps is not performed: thus, the
ligand must ‘‘thread’’ its way into the active site.
The cyclic urea HIV-protease inhibitor, XK-263,
has 10 rotatable bonds, excluding the cyclic urea’s
flexibility. All three search methods found solu-
tions near to the crystal structure75: interestingly,
the lowest docking energy found by SA was

�1 ˚�11.77 kcal mol and had an rmsd of 1.15 A
from the crystal structure, whereas GA and LGA
found much lower energies but were still near to
the active site, having crystallographic rmsd val-

˚ ˚ues of 0.82 A and 0.76 A, respectively. The lowest
docking energy found overall was �21.41 kcal
mol�1, and was found using GA, although that
found by LGA was practically the same. The pre-
dicted binding free energy, �G , of the lowestpred

energy structure was �16.85 kcal mol�1 using
LGA, whereas the observed value, �G , wasobs
�12.96 kcal mol�1. The larger discrepancy be-
tween the predicted and observed values may be
due to the entropic contributions of protein side
chain and flap conformational rearrangements, or
may be due to other low-energy conformational
states of the cyclic urea moiety of XK-263, which
are neglected in our calculations.

( )Influenza Hemagglutinin / Sialic Acid 4hmg

The recognition of sialic acid by influenza
hemagglutinin is chiefly mediated through hydro-
gen bonding: sialic acid has five hydroxyls, three
in the glycerol group, one carboxylate, a cyclic
ether oxygen, and an acetamido group, with a total
of 11 rotatable acyclic bonds. We used the crystal
structure of Weis et al.,76 although the low resolu-
tion meant that the overall coordinate error was

˚approximately 0.35�0.40 A, which, in itself, pre-
sents a potential challenge in the docking tests. We
modeled an isopropylated derivative of sialic acid
to mimic part of an adjacent six-membered ring
that would normally be present in this complex,
but was not seen due to disorder: this introduced
an extra rotatable bond, giving a total of 11 tor-
sions. Furthermore, in these tests, we used the
crystal conformation of the six-membered ring,
although normally we would use several of the
lowest energy conformations of the ring system
and dock these separately.

This was one of two cases where simulated
annealing failed to find a docking that was near
the crystal structure: the lowest energy structure

˚found had an rmsd of 3.77 A from the crystallo-
graphic structure, and the docking with the lowest

˚crystallographic rmsd was 2.36 A. The mean en-
Žergy of all 10 SA dockings was very high 6.99 �

4 �1.10 kcal mol ; only 4 of the 10 SA dockings
found negative energies. Both GA and LGA, how-
ever, succeeded in finding conformations near

˚Ž .� 1.5 A rmsd the crystal conformation. The low-
est energy found was by LGA, and was �7.72 kcal
mol�1. This structure had a crystallographic rmsd

˚of 1.14 A, and had a predicted binding free energy,
�G , of �6.75 kcal mol�1 ; the observed bindingpred
free energy, �G , for the sialic acid�hemagg-obs
lutinin complex was �3.48 kcal mol�1. The differ-
ence in predicted and observed binding free ener-
gies may be due to the structural differences
between the isopropylated derivative that was
docked and sialic acid itself.

Dihydrofolate Reductase / Methotrexate
( )4dgr

Methotrexate is an antimetabolite that attacks
proliferating tissue selectively induces remissions
in certain acute leukemias77; however, dangerous
side effects of methotrexate in normal cells con-
tinue to make DHFR an important target in com-
puter-assisted anticancer drug design.78 We used
the crystal structure of E. coli dihydrofolate reduc-
tase complexed with methotrexate79 to investigate
a more challenging docking problem. We assumed
that waters 603, 604, and 639, which mediate hy-
drogen bonding between the inhibitor and the
protein, were conserved biowaters, and included
them in the protein structure in our grid calcula-
tions. Ideally, these should be predicted, and re-
cently a method based on a k-nearest-neighbors
classifier and a genetic algorithm called Consolv
was reported to do just this.80

This is one of the two test cases where simu-
lated annealing failed: the lowest energy structure

˚that it found had an rmsd of 4.83 A from the
crystal structure. This could be because the final
docked conformation in simulated annealing is
arrived at after a series of continuous steps, and if
the route to the active site is blocked, the docking
will tend to fail before the ligand reaches the
active site. Note that, in the case of the camphor�
cytochrome P-450 docking, the random initial-cam
ization loop was able to find initial states that were
inside the binding pocket, but in this case the
dockings failed to start near the active site.

The lowest energy found was �16.98 kcal
mol�1, and was found using LGA: this structure

˚had an rmsd from the crystal structure of 1.03 A.
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The predicted binding free energy, �G , of thepred
lowest docked energy structure was �14.39 kcal
mol�1 using LGA, whereas the observed value,
�G , was �13.22 kcal mol�1. This finding wasobs
within the estimated error of the model.

JUDGING SEARCH METHODS

To evaluate the new search methods, and to
compare them with the earlier search method of
simulated annealing, we addressed the following
questions: Which search method is most efficient?
That is, which finds the lowest energy in a given
number of energy evaluations? Which search
method is most reliable? That is, which method
finds the most conformations similar to that of the
lowest energy? Finally, which search method is
most successful? That is, which finds the crystallo-
graphic conformation most often after a given
number of dockings? Furthermore, because these
comparisons were carried out using the new, em-
pirical free energy force field, these tests also rep-
resent an evaluation of the force field itself, and, if
the global minimum of the force field is unable to
reproduce observed crystallographic structures, its
usefulness will be limited. Because it is very diffi-
cult to determine the global minimum of such a
complex function, we cannot answer this question
definitively; however, we can report the lowest
energy found by any of the methods and its struc-
tural similarity to that of the crystal structure.

If we calculate statistics across all seven pro-
tein�ligand test systems for each search method,
we obtain a quantitative estimate of relative per-

Ž .formance of each search method see Table VIII .
If, in each of the seven test systems, we assume
that the lowest docked energy found by any
method is the effective global minimum energy,
and then calculate the difference between this en-
ergy and all of the docked energies found by each
search method, we can then calculate the mean
and standard deviation of this difference energy
for each search method. Ideally, the mean and
standard deviation of this value would be zero.
The mean of this difference energy was lowest for

Ž �1 . ŽLGA 0.40 kcal mol , followed by GA 3.41 kcal
�1 . Ž 5 �1.mol , and finally SA 2.62 � 10 kcal mol :

the very high mean difference energy for SA is
indicative of the cases in which this method failed
to escape a local minimum, where the ligand
was partially or wholly trapped within the pro-
tein. Hence, in answer to the first question, the
Lamarckian genetic algorithm, LGA, is the most
efficient search method.

In terms of how often the structure with lowest
energy was found, LGA performed best: the mean
of the number of docked structures in rank 1 was
78% for LGA, 40% for GA, and 24% for SA. The
mean of the number of clusters found was lowest

Ž . Ž .for LGA 2.29 , followed by GA 7.00 , and finally
Ž .SA 8.43 . Hence, the most reliable search method

was LGA.
In comparing the relative success of each search

method in reproducing the crystallographic struc-
ture, considering the crystallographic rmsd across
all 10 dockings in each of the 7 test systems, the

˚Žmean rmsd was lowest for LGA 0.88 A, standard

TABLE VIII.
Statistical Comparison of Three Search Methods in AUTODOCK 3.0 Across all Seven Test Systems.a

� 1 ˚( ) ( )Energy kcal mol and rmsd A

rmsd
Number Number Difference from of Number of

Search of in effective global lowest Mean Mean energy
method Statistic clusters rank 1 minimum energy energy energy rmsd evaluations

5 5 6SA Mean 8.43 2.43 2.62 � 10 1.85 2.61 � 10 3.63 1.75 � 10
5 4 5SD 2.70 2.44 1.40 � 10 1.74 4.60 � 10 2.61 4.15 � 10

6GA Mean 7.00 4.00 3.41 0.82 �7.64 3.06 1.35 � 10
SD 3.06 3.06 5.31 0.25 2.59 1.32 0.00

6LGA Mean 2.29 7.86 0.40 0.86 �10.47 0.88 1.50 � 10
SD 1.80 2.91 2.62 0.24 5.47 0.25 0.00

a ( ) ( ) ( )The search methods are simulated annealing SA , genetic algorithm GA , and Lamarckian genetic algorithm LGA . The mean
( )and standard deviation SD for each criterion is shown. The effective global minimum energy for each of the seven test systems is

the lowest docked energy found by any method for that test system. For each of the 10 dockings, the difference between the final
docked energy and this effective global minimum energy was calculated; the mean and standard deviation was calculated across
all 7 test systems, which was repeated for each search method.
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TABLE IX.
Results of Cross-Validation of Free Energy
Function Using Local Search on 20 HIV-1
Protease-Inhibitor Complexes.

Experimental Calculated
PDB �G �Gbinding binding

( ) ( )code kcal / mol kcal / mol

1hvs �14.04 �10.95
1hvk �13.79 �11.60
1hvi �13.74 �12.39
7hvp �13.11 �12.19
1hps �12.57 �11.80
1hpv �12.57 �8.24
4phv �12.51 �14.36
1hef �12.27 �9.52
1hiv �12.27 �13.02
1hvl �12.27 �10.35
8hvp �12.27 �9.36
1aaq �11.62 �9.68
1htg �11.58 �13.13
9hvp �11.38 �10.54
1hih �10.97 �11.43
1heg �10.56 �8.60
1sbg �10.56 �10.35
1htf �9.31 �8.21
1hbv �8.68 �9.75
1hte �7.69 �7.28

˚ ˚. Ždeviation 0.25 A , followed by GA 3.06 A, stan-
˚ ˚. Ždard deviation 1.32 A , and finally SA 3.63 A,

˚.standard deviation 2.61 A . These average results
indicate that, of the three search methods, LGA
will find the crystallographic structure most often.
Thus, the answer to the last question, ‘‘Which
method is most successful?,’’ is LGA.

In two different cases, 4hmg and 4dfr, the simu-
lated annealing method failed to reproduce the
corresponding crystal structure, although it suc-

Ž .ceeded with 1hvr see Fig. 4 . This is important
because methotrexate has 7 rotatable bonds, and
would be expected to be solvable using our rule-
of-thumb that SA succeeds in problems with 8
torsions or less; however, the HIV-1 protease in-
hibitor XK-263, has 10 rotatable bonds, and was
successfully docked using SA. Thus, the degree of
difficulty of a docking problem is not as simple as
how many rotatable bonds there are; other factors,
such as the nature of the energy landscape, clearly
play an important role.

It could be said that the crystallographic rmsd
of the lowest energy structure found by any of the

search methods is an estimate of the quality of the
force field, although this is complicated by the fact
that the search method itself must determine a
docking near to the global minimum, an unknown
state. We can calculate the energy of the ligand in

Žthe crystal structure using the new force field see
.Table II , which we assume to be near the global

minimum, but, unfortunately, the crystal structure
may contain frustrations and bad contacts. This
appears to be the case in 2mcp, where a close
contact between C2 and O1 causes a positive total
energy to be calculated for the crystal structure. In
all cases, the lowest energy found, considering all
the search methods, was lower than that of the
corresponding crystal structure.

The crystallographic rmsd of the lowest energy
Ž .found by any search method for each of the

˚protein�ligand test systems were all within 1.14 A,
or less, of the crystal structure. This suggests that
the force field’s global minimum in each of the
protein�ligand cases was near to the crystal struc-
ture, if we accept the assumption that the crystal
structure was near to or at the global minimum,
and that the lowest energy found was near to the
global minimum. In some cases, dockings were
found that had lower crystallographic rmsd values
but slightly higher energies than the lowest energy
found. All of the lowest crystallographic rmsd

˚values were 0.89 A or less, indicating that low-en-
ergy structures found by the force field were very
similar to the corresponding crystal structure.

Conclusion

AUTODOCK is a software package of general
applicability for automated docking of small
molecules, such as peptides, enzyme inhibitors,
and drugs, to macromolecules, such as proteins,
enzymes, antibodies, DNA, and RNA. New search
methods have been introduced and tested here,
using a new, empirical binding free energy func-
tion for calculating ligand�receptor binding affini-
ties.

We have shown that, of the three search meth-
Žods tested in AUTODOCK simulated annealing,

genetic algorithm, and Lamarckian genetic algo-
.rithm , the most efficient, reliable, and successful

is the Lamarckian genetic algorithm LGA. We de-
fined efficiency of search in terms of lowest energy
found in a given number of energy evaluations;
reliability in terms of reproducibility of finding the

JOURNAL OF COMPUTATIONAL CHEMISTRY 1659



MORRIS ET AL.

lowest energy structure in independent dockings,
as measured by the number of conformations in
the top ranked cluster; and success in terms of
reproducing the known crystal structure. Simu-
lated annealing failed to reproduce the crystal
structures for the influenza hemagglutin�sialic acid

Ž .complex 4hmg and the dihydrofolate reductase�
Ž .methotrexate complex 4dfr . However, both the

genetic algorithm and the Lamarckian genetic al-
gorithm methods succeeded. Thus, the introduc-
tion of the LGA search method extends the power
and applicability of AUTODOCK to docking prob-
lems with more degrees of freedom than could be
handled by earlier versions.

The predicted binding affinities of the lowest
energy docked conformations, using the LGA
method and the new empirical free energy func-
tion, were within the standard residual error of the

Žforce field in four of the seven cases 3ptb, 2cpp,
.2mcp, and 4dfr , and reasonably close in two other

Ž .cases 1hvr and 4hmg . The large discrepancy be-
tween the predicted and the observed binding

Ž .affinity of biotin for streptavidin 1stp , even
though the crystal structure was successfully re-
produced, may be due to the large free energy
change that accompanies conformational changes
in the protein upon binding, in particular the sur-
face loops. This remains a limitation of the method,
because protein motion is not modeled and suc-
cessfully predicting such large-scale protein con-
formational changes is difficult. The AUTODOCK

method works well when there is little change
between the apo and ligand-bound forms of the
protein, even if the protein undergoes significant
conformational changes during binding.

AUTODOCK predicts the binding affinity using
one conformation of the ligand�protein complex.
A new class of models for predicting receptor�lig-
and binding affinities has been reported recently
that considers not just the lowest energy state of
the complex, but the predominant states of the bind-
ing molecules.81 These approaches are grounded in
statistical thermodynamics, and combine a modest
set of degrees of freedom with aggressive confor-
mational sampling to identify the low-energy con-
formations of the complex and the free molecules.
AUTODOCK version 3.0 currently performs exten-
sive conformational sampling, information that
could be incorporated into the calculation of the
binding affinity. We are studying how the search
methods can be modified such that statistical ther-
modynamics calculations can be performed while

the docking proceeds, to improve the calculation
of the binding affinity.

Availability

More information about AUTODOCK and how to
obtain it can be found on the World Wide Web
at: http:��www.scripps.edu�pub�olson-web�
doc�autodock.
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