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Abstract
Electrocardiogram (ECG) serves as the gold standard for noninvasive diagnosis of several types of heart disorders. In this

study, a novel hybrid approach of deep neural network combined with linear and nonlinear features extracted from ECG

and heart rate variability (HRV) is proposed for ECG multi-class classification. The proposed system enhances the ECG

diagnosis performance by combining optimized deep learning features with an effective aggregation of ECG features and

HRV measures using chaos theory and fragmentation analysis. The constant-Q non-stationary Gabor transform technique is

employed to convert the 1-D ECG signal into 2-D image which is sent to a pre-trained convolutional neural network

structure, called AlexNet. The pair-wise feature proximity algorithm is employed to select the optimal features from the

AlexNet output feature vector to be concatenated with the ECG and HRV measures. The concatenated features are sent to

different types of classifiers to distinguish three distinct subjects, namely congestive heart failure, arrhythmia, and normal

sinus rhythm (NSR). The results reveal that the linear discriminant analysis classifier has the highest accuracy compared to

the other classifiers. The proposed system is investigated with real ECG data taken from well-known databases, and the

experimental results show that the proposed diagnosis system outperforms other recent state-of-the-art systems in terms of

accuracy 98.75%, specificity 99.00%, sensitivity of 98.18%, and computational time 0.15 s. This demonstrates that the

proposed system can be used to assist cardiologists in enhancing the accuracy of ECG diagnosis in real-time clinical

setting.

Keywords Convolutional Neural Network (CNN) � Deep Learning (DL) � Electrocardiogram (ECG) � And Heart Rate

Variability (HRV)

1 Introduction

As stated by the World Health Organization (WHO), heart

diseases are responsible of about 31% of deaths worldwide

[1]. The electrocardiogram (ECG) is a noninvasive test for

monitoring the heart function by detecting the electrical

activity of heart muscles. It provides cardiologists with all

needed information about heart conditions, and therefore,

ECG represents an efficient tool for identifying various

cardiac disorders. Congestive heart failure (CHF) is a

serious cardiac disorder and a major contributor to global

mortality rates. In CHF, the heart becomes unable to pump

sufficiently to maintain blood flow and supply the body

tissue’s needs for oxygen and metabolism. More than 26

million adults suffer from CHF all over the world, with an

increase rate of 3.6 million every year [2]. However, early

detection of CHF makes a significant contribution in

improving treatment choices and impeding the CHF pro-

gression. Another important heart disorder responsible for

several cases of sudden death is the arrhythmia (ARR).

ARR refers to abnormal heart rhythm resulted from irreg-

ular heart rate.

To provide an effective and accurate identification of

ARR and CHF, careful and uniform assessment via cardi-

ologists is necessary which is hard and time-consuming.

Therefore, a fully automated diagnosis system is urgently

needed for accurate identification of heart diseases.

Development of diagnosis systems can assist cardiologists

in making accurate and expeditious diagnosis of ECG
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recordings as well as reducing the consumed time and cost

associated with the clinical interpretation. Over the last

decades, several diagnosis systems based on machine

learning (ML) methods were proposed for distinguishing

distinct heart disorders [3, 4]. Recently, deep learning (DL)

has become one of the most essential subfields of ML in

signal processing studies especially in ECG interpretation.

DL architecture is structured to learn and pick-up distinct

characteristics automatically and then optimize the model

weights and gradients by back propagation algorithm

[5, 6]. There are various DL structures, including convo-

lutional neural networks (CNNs) and deep belief networks

(DBNs) [7, 8].

Heart rate variability (HRV) is one of the most impor-

tant tools to evaluate the overall cardiac health. It reflects

the cardiac system ability to adapt with any changes in

internal and external stimuli. HRV time series is the vari-

ation in period time between consecutive heartbeats (RR

intervals) [9]. Chaos theory allows better comprehension of

heart rate dynamics, taking that the electrical activity of

human heart is not a perfect oscillator, but it is slightly

irregular and can be considered as a chaotic system.

According to the chaos theory, chaos exists when there is a

substantial dependence on the initial conditions [10].

Several studies reported that certain cardiac ARRs are

instances of chaos [11]. In [12], several tests were applied

on ECG signal, and the results showed the existence of

deterministic chaos and nonlinear dynamics in the ECG

signal. In [13], a nonlinear prediction algorithm was pro-

posed to investigate the predictability and sensitivity to

initial conditions of ECG records during atrial fibrillation,

and the results confirmed the chaotic ventricular response

in atrial fibrillation. Two important chaotic system

parameters, namely the Lyapunov exponents (LEs) [14]

and correlation dimension (CD) [15], are utilized to model

the chaotic nature of ECG signals.

Several ML studies revealed that statistical, geometrical,

spectral, and nonlinear measures of HRV are very effective

for CHF diagnosis [16–26] and ARR discrimination

[27–29]. In [18], the standard time features are combined

with Renyi entropy exponents to classify CHF with better

accuracy than using only time domain features. The clas-

sification results with this approach are 80% sensitivity,

94.4% specificity, and 87.9% accuracy using KNN classi-

fier. A multistage risk evaluation approach for CHF

detection based on short-term HRV dynamic measures [19]

was proposed, and the experimental results showed an

accuracy of 96.61% using decision-tree-based support

vector machine (SVM) classifier. In [21], HRV fuzzy and

permutation entropies are extracted and sent to the least

squares SVM classifier for CHF diagnosis with an accuracy

of 98.21%. A new technique based on combining mor-

phological and statistical features of individual heartbeats

was proposed in [28] for classification of cardiac ARRs. In

[30], the fragmentation indices are combined with tradi-

tional linear and nonlinear analysis of HRV to enhance the

classification performance of cardiac diseases.

Despite the high ECG diagnosis results of HRV analysis

used in most of the feature-based ML techniques, their

robustness is not guaranteed. This is because the most

important HRV features are inevitably affected by spon-

taneous fluctuations, respiration, drug interferences, age,

and gender. As a result, HRV analysis should not form the

main backbone for cardiac diseases assessment. These

drawbacks can be avoided by developing new DL tech-

niques for cardiac diseases diagnosis [31–38]. Note that

training a deep CNN from scratch is hard because it

requires a huge amount of labeled training ECG data and it

may suffer from the problem of overfitting when using

small dataset [39]. Transfer learning represents an adapt-

able solution to avoid this issue as it allows utilizing

existing neural networks (NNs) that were trained with a

huge amount of data and move this knowledge to the tar-

geted classification system [40].

Different pre-trained CNNs [41–43] were trained on a

huge dataset, namely the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). Various ML techniques

and pre-trained CNN architectures were investigated for

medical imaging classification [44–46]. In contrast, few

DL models have reported robust performance for ECG

classification of cardiac diseases [47–51]. A pre-trained

CNN model with a distance distribution matrix in entropy

calculation was proposed in [48] for CHF diagnosis with an

accuracy of 81.9% and sensitivity of 80.99%. In [49], a DL

model based on simple convolutional units and time–fre-

quency characteristics was investigated to classify CHF

and ARR with an accuracy of 93.75%. In [51], an ensemble

approach based on short-term HRV data and deep NN was

developed for CHF detection.

The majority of exiting ECG classification systems

report the reasonable classification results of distinguishing

CHF and NSR cases. However, it is still very difficult to

build up an efficient automated framework that can dis-

tinguish accurately CHF, ARR, and NSR cases, while

running in real time with low hardware complexity. The

aim of this paper is to develop a novel automatic ECG

multi-class classification framework for differentiating

CHF, NSR, and ARR cases with high classification per-

formance and low hardware complexity. The proposed

framework is based on combining features from three

parallel channels: (1) HRV features representing the fun-

damental variations between CHF, ARR, and NSR, (2)

optimal selected DL features from a pre-trained CNN

model, AlexNet, allowing to capture more subtle differ-

ences between the three classes, and (3) dynamic features

of ECG signals using chaos theory. The concatenated
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features are sent to different ML classifiers to distinguish

CHF, ARR, and NSR cases.

The main contributions of this work can be summarized

as follows: (1) A new hybrid real-time automated system is

proposed for distinguishing CHF, ARR, and NSR cases

with high classification performance and low computa-

tional burden. (2) The proposed framework is based on a

new signal transformation technique, namely constant-Q

non-stationary Gabor transform (CQ-NSGT), for extracting

efficiently the changes in the ECG signal and transforming

it into 2-D image to be passed to the AlexNet structure. (3)

The proposed system investigates the pair-wise feature

proximity (PWFP) feature reduction technique for select-

ing the optimal subtle DL features and combining them

with both HRV measures and ECG features representing

the fundamental differences between CHF, ARR, and NSR

classes. (4) The computational efficiency of the proposed

structure is enhanced over the end-to-end AlexNet CNN

architecture by replacing the MLP classification layer with

ML classifier to differentiate the three classes. (5) Different

pre-trained CNNs, including VGGNet16, VGGNet19,

ResNet50, ResNet101, Inceptionv3, and DenseNet are

examined by replacing the AlexNet model and comparing

the classification results using the same techniques for all

other stages of the proposed framework. The performance

of the proposed system is examined using several evalua-

tion metrics, including accuracy, sensitivity, precision,

specificity, and computational time using fivefold cross-

validation. Extensive experiments have been performed to

examine the performance of the proposed framework, and

the experimental results reveal that the proposed approach

outperforms other exiting state-of-the-art diagnosis sys-

tems. This demonstrates that the proposed framework

represents an efficient tool to assist cardiologists in real-

time ECG multi-class classification.

The remaining parts of this paper are organized as fol-

lows. Section1 explains the structure of the proposed ECG

diagnosis system, including the extracted features from the

AlexNet CNN architecture, HRV, and ECG. Then, the

feature selection algorithm and the classification technique

are presented. In Sect. 3, the experimental results are

investigated in terms of several evaluation metrics for

different ML classifiers. In Sect. 4, the results are discussed

and compared with other recent state-of-the-art systems.

2 Methodology

The proposed ECG multi-class classification system con-

sists of three stages. The first stage includes the ECG data

acquisition, preprocessing, segmentation, peak detection,

and signal-to-image transformation. The second stage is

composed of feature extraction, feature selection, and

feature concatenation. Finally, the classification is

employed in the third stage. The structure of the proposed

approach is illustrated in Fig. 1. The work concerning each

part is explained in detail in the following subsections.

2.1 ECG data acquisition and preprocessing

To examine the effectiveness of the proposed approach,

162 ECG records of three different cases (ARR, CHF, and

NSR) were retrieved from the following public databases:

Massachusetts Institute of Technology–Beth Israel Dea-

coness Medical Center (MIT-BIH) ARR [52, 53], MIT-

BIH NSR [52], and Beth Israel Deaconess Medical Centre

(BIDMC) CHF [52, 54]. All the 162 ECG records were

measured from lead II and VI, and they are divided into 96

ARR, 30 CHF, and 36 NSR records. All retrieved records

were analyzed and labeled by several cardiologists. All

ECG signals were resampled to a fixed sampling frequency

of 128 Hz and normalized to eliminate the offset effect.

Note that ECG signals are frequently contaminated with

several artifacts and noise sources which affect the diag-

nosis efficiency [55, 56]. In this work, an automated

approach based on adaptive filtering [57] is employed to

suppress all unwanted artifact components from the input

raw ECG data, while keeping all essential characteristics of

the ECG signal. After eliminating all unwanted noises and

artifacts, each filtered ECG record is partitioned into 6

segments each with a particular length of 10,000 samples

(78 s), yielding a total number of 972 ECG segments. The

whole 972 segments are utilized in the training, validation,

and testing processes [58]. Figure 2 illustrates three ECG

records for ARR, CHF, and NSR subjects. Comparing

Fig. 2a and c, the difference between irregularity in RR

intervals for ARR subject and regular rhythm in the NSR

case can be clearly observed. Figure 2b shows the small

amplitudes of the R-peaks demonstrating the low pumping

power resulted from CHF in comparison with the normal

amplitudes of R-peaks for the NSR subject shown in

Fig. 2c.

2.2 QRS detection and ECG transformation

Three copies of the denoised ECG segments are sent to the

second stage which is composed of three parallel paths.

The first path delivers a copy of ECG segments directly to

the feature extraction stage. In the second path, the ECG

segments are processed by a Pan–Tompkins QRS detector

[59] to extract the HRV measures. The Pan–Tompkins

algorithm is employed to detect the QRS complexes

through three main steps: highlighting the frequency con-

tent of the QRS complexes with a band-pass filter, passing

the filtered ECG signal through a differentiator to search

the highest slopes that differentiate the QRS complexes
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from other ECG components, and finally amplifying the

QRS contribution and smoothing the ECG peaks. In the

third path, a copy of the denoised ECG segments should be

converted into images to be fed as input to the proposed

CNN architecture.

In the current study, the CQ-NSGT technique [60–62] is

proposed to extract the changes in the ECG signal and

transform it into time–frequency representation. Conven-

tional algorithms, including short-time Fourier transform

(STFT) and continuous wavelet transform (CWT) [63–66]

suffer from the fixed frequency resolution over the entire

operating frequency and the high computational time,

respectively. In contrast, the CQ-NSGT algorithm provides

a variable frequency resolution which is well suited for

capturing the ECG dynamic variations and frequency

changes over time. Also, the CQ-NSGT algorithm allows

tracking the non-stationarity of ECG signal containing low-

and high-frequency components, while requiring low

computational complexity. Moreover, the CQ-NSGT

algorithm overcomes the main drawbacks of traditional

constant-Q transforms [62], specifically invertibility issues

and computational burden problems. All mathematical

analyses of the CQ-NSGT algorithm can be found in our

work of [60].

Figure 3 illustrates the images of ARR, CHF, and NSR

subjects. The transformed 2-D time–frequency represen-

tation illustrates the ECG signal strength (normalized
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amplitude), represented by the color bar, over time at dis-

tinct frequencies. The difference between the three cases is

determined by comparing the normalized amplitude values

over time at distinct frequencies. Figure 3a shows the

irregular heart rate of the ARR subject, while Fig. 3c

illustrates the normal variation in both time and frequency

of the NSR case. Figure 3b demonstrates the low heart’s

pumping power of the CHF case, represented by the low

amplitude over most of the frequency range.

2.3 Feature extraction

Feature extraction is the most important phase in the

learning process. If the feature quality is low, it may lead to

low performance even with using a powerful classification

algorithm. Therefore, a primary goal of this work is to

achieve an effective hybrid combination of different

important features. The proposed methodology concate-

nates three groups of features. The first group of features,

including standard linear and nonlinear HRV measures and

fragmentation indices, is extracted to capture the funda-

mental differences between ARR, CHF, and NSR cases.

The subtle variations of ECG signals are captured in the

second group of features by selecting the optimal DL

features extracted from the pre-trained AlexNet CNN

model. Finally, the third group of features is extracted

directly from the ECG segments to track the ECG dynamic

changes using chaos theory. Other features requiring high

computational cost are avoided in the current work in order

not to affect the computational efficiency of the proposed

diagnosis system.

2.3.1 Linear and nonlinear HRV measures

Linear HRV analysis includes several measurements of

successive RR interval variations in both time and fre-

quency domains. Time domain measures are the simplest

indices for HRV analysis by representing the statistical

variability in the RR time series. In this work, the mean,

variance, and standard deviation of RR intervals are cal-

culated to measure the amount of dispersion in the RR

interval relative to its mean. Also, the higher-order statis-

tics such as kurtosis (Ku) and skewness (Sk) are obtained to

assess the probability distribution of each HRV series. Ku

indicates whether the RR intervals data is flat or peaked

distribution in comparison with the normal distribution,

while Sk measures the tails asymmetry of the RR data

distribution. Table 1 shows the HRV time domain mea-

sures for M successive RR intervals with interval length dj
and index j ¼ 1; 2; 3; . . .M.

Frequency domain measures of HRV, extracted from the

HRV power spectral density (PSD), are very important for

evaluating the risk of different cardiac diseases [67]. Fre-

quency domain analysis provides the power distribution of

RR intervals over the frequency. The PSD of HRV shows

two different peaks: one in the low-frequency (LF) band

(0.04–0.15 Hz) and another one in the high-frequency (HF)

band (0.15–0.4 Hz). Table 1 shows the total power in all

bands, the power in LF and HF bands, and all other fre-

quency domain measures.

Due to the non-stationary nature of ECG signals, con-

ventional linear methods of signal analysis are not suit-

able for robust feature extraction and accurate ECG

diagnosis. Linear HRV analysis cannot represent accu-

rately the complex dynamics of cardiovascular system.

Combining both linear and nonlinear HRV measures

allows enhancing the classification performance. The most

important nonlinear HRV measures are fractal scaling

exponent a measured by detrended fluctuation analysis

(DFA), approximate entropy (ApEn), Shannon entropy

(ShanEn), and Poincaré descriptors [68–71].

a is calculated using DFA, in which the input RR

interval time series, with N samples, is first integrated, and

then the integrated time series is segmented into windows

of equal length n. In each window, a least squares line

ynðkÞ is fit to the data representing the trend in that window.
The integrated time series y kð Þ is then detrended by sub-

tracting it from the local trend ynðkÞ in each window. The

root mean square fluctuation of the detrended time series,

F nð Þ, is calculated as follows: [68]

F nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

k¼1

y kð Þ � yn kð Þ½ �2
v

u

u

t ð1Þ

The calculation is repeated over all windows to inves-

tigate the relationship between FðnÞ and the window size n.

FðnÞ always increases with the window size increase. This

relationship is mapped onto a log–log plot to indicate the

presence of power law (fractal) scaling. a is the slope of the
line relating logF nð Þ to logðnÞ which characterizes the

fluctuations.

ApEn is a statistical metric for quantifying the regularity

and predictability in data series without any a priori

knowledge about the system generating them [69]. In the

current study, ApEn represents a model-independent mea-

sure for evaluating both dominant and subordinant patterns

Fig. 3 Time–frequency representations for a ARR, b CHF, and

c NSR using the CQ-NSGT algorithm
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in the HRV data, and hence quantifying their regularity and

predictability. ApEn sets a nonnegative number to the HRV

time series, with larger values corresponding to more

irregularity in the HRV data. The more regular and pre-

dictable the HRV series, the lower will be the ApEn

measure. The value of ApEn relies on three main param-

eters: the embedding dimension m, the tolerance value r,

and the data length N. ApEn measures the logarithmic

probability that runs of patterns that are close (within r) for

m adjoining observations stay close (within the same tol-

erance width r) on the next incremental comparisons.

Consider N data points from RR time series

x nð Þf g ¼ x 1ð Þ; x 2ð Þ; . . .; x Nð Þ. ApEn can be calculated

using the following steps [69]:

• A set of m-vectors X 1ð Þ;X 2ð Þ; . . .;X N � mþ 1ð Þ in

Rm is formed, where X ið Þ ¼ x ið Þ; x iþ 1ð Þ; . . .;½ xði�
mþ 1Þ�; i ¼ 1; . . .;N � mþ 1. These vectors represent

m consecutive x values, starting with the i th point.

• The distance between X ið Þ and X jð Þ, d X ið Þ;X jð Þ½ �, is
defined as the maximum absolute difference between

their respective scalar components:

d X ið Þ;X jð Þ½ � ¼ max
u¼1;2;3;...m

x iþ u� 1ð Þ � x jþ u� 1ð Þj j

ð2Þ

• Define NmðiÞ as the number of jðj ¼ 1; . . .;N � mþ
1; j 6¼ iÞ that satisfies the condition d X ið Þ � X jð Þj j\r

for a certain givenX ið Þ. Then, the frequency of patterns

like a given one of window length m within window

width r,Cm
r ið Þ, can be expressed as:

Cm
r ið Þ ¼ Nm ið Þ

N � mþ 1ð Þ ð3Þ

• Calculate the natural logarithm of each Cm
r ið Þ and

average it over i to obtain the mean of fraction patterns,

£
m rð Þ, as follows:

;m rð Þ ¼ 1

N � mþ 1

X

N�mþ1

i¼1

lnCm
r ið Þ ð4Þ

• After increasing the dimension to mþ 1, repeat the

previous steps to get Cmþ1
r ið Þ and £

mþ1 rð Þ.
• ApEn is defined as the difference between £

m rð Þ and

£
mþ1 rð Þ:

ApEn m; r;Nð Þ ¼ ;m rð Þ � ;mþ1 rð Þ ð5Þ

The two input parameters r and m should be chosen to

achieve good statistical reproducibility for ApEn. The

value of r can be selected as a fraction of the standard

deviation (SD) of RR time series x nð Þ [69]. In the current

study, the best reproducibility for ApEn is achieved using

the optimized values of m ¼ 2 and r ¼ 0:2SD.

Table 1 Linear HRV time-domain and frequency domain measures

Measure Description Equation

Statistical time domain measures

l Mean of RR intervals time series 1
M

PM
j¼1 dj

r2 Variance of the length of RR intervals time series 1
M

PM
j¼1 dj � l

� �2

r Standard deviation of the length of RR intervals time series
ffiffiffiffiffi

r2
p

Sk Skewness of the probability distribution of RR intervals time series 1
M

PM
j¼1

dj�l
r

h i3

Ku Kurtosis of the probability distribution of RR intervals time series 1
M

PM
j¼1

dj�l
r

h i4

Frequency domain measures

TP Total power in all bands

VLF P Power in the Very Low-Frequency (VLF) band (0.003–0.04 Hz): influence of thermoregulation on HRV

LF P Power in the LF band (0.04–0.15 Hz): marker for sympathetic nerve stimulation

HF P Power in the HF band (0.15–0.4 Hz): marker for vagal modulation of heart rate

VLFNorm Ratio between VLFP and TP

LFNorm Ratio between LFP and TP

HFNorm Ratio between HFP and TP

LFP=HFP Ratio between LFP and HFP

HFPeak Frequency of highest peak in the HF band

LFPeak Frequency of highest peak in the LF band
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ShanEn is another important measure for the complexity

of the RRI series distribution based on information theory

[70]. ShanEn becomes large when the distribution is flat

(the patterns are uniformly distributed) and the series

contains the maximum amount of information. In contrast,

ShanEn becomes small when some patterns are more

likely, while others are missing (the patterns are normally

distributed).

Consider HRV time seriesRR ¼ fRRi; i ¼ 1; 2; . . .;Ng.
Each sample of the series RR is normalized to obtain the

seriesrr ¼ frri; i ¼ 1; 2; . . .;Ng. The dynamic range

(rrmax � rrmin) is divided into a fixed number of quantiza-

tion levels n by performing a coarse graining of the

dynamics with a resolution ofðrrmax � rrminÞ=n. The

quantization levels are labeled with numbers ranging from

0 to n� 1 to form a quantized

seriesrrn ¼ rrni ; i ¼ 1; 2; . . .N
n o

. Using the quantized

seriesrrn, patterns of L delayed samples are formed

asrrnL;i ¼ rrni ; rr
n
i�1; . . .; rr

n
i�Lþ1

� �

, where rrnL ¼ frrnL;i; i ¼
1; 2; ::; N � Lþ 1g. The ShanEn can be defined as:

ShanEn L; nð Þ ¼ �
X

N�Lþ1

i¼1

p rrnL;i

� �

log p rrnL;i

� �� �

ð6Þ

where p rrnL;i

� �

is the probability of the pattern rrnL;i

approximated by its sample frequency and the sum is taken

over all different patterns. In this work, n and L are set to 6

and 3, respectively, to achieve the best results.

Poincaré plot is another commonly nonlinear method

that illustrates graphically the correlation between succes-

sive RR intervals, i.e., plot of RRn versus RRnþ1. Each pair

of consecutive RR intervals is represented as one point in

the Poincaré plot. The plot shape represents an important

feature, and it can be parametrized by fitting an ellipse to

the plot (see Fig. 4). The ellipse orientation is identified

based on the line-of-identity (RRn ¼ RRnþ1). The points

above the line-of-identity represent all prolongations

(RRn\RRnþ1), and the points below this line correspond

to all shortenings of the interval between 2 consecutive RR

intervals (RRn [RRnþ1). The standard deviation measur-

ing the dispersion of points across the identity line of the

Poincaré plot, denoted by SD1, identifies the width of the

Poincaré cloud, and therefore determines the level of short-

term HRV [71]. In contrast, the standard deviation mea-

suring the dispersion of points along the line-of-identity,

denoted by SD2, indicates the length of the Poincaré cloud

and therefore describes the long-term HRV. Both SD1 and

SD2 represent the axes of the fitted ellipse as shown in

Fig. 4a.

Figure 4 shows the Poincaré plot for three cases: NSR,

ARR, and CHF. It can be noted from Fig. 4a that the

dominant Poincaré pattern of NSR subject contains cluster

of RR intervals lying between 0.6 and 1.1 s with accepted

deviation along the line-of-identity axis. This demonstrates

the ability of heart to adapt with different stimulations.

Figure 4b shows the scattered RR intervals of ARR case

with higher deviation than the NSR case, showing the

irregular heart rate of ARR. Figure 4c illustrates the lim-

ited RR intervals of the CHF case lying between 0.2 and

0.8 s.

Short-term HRV analysis can be enhanced using a group

of indices that assess the fragmentation of HRV, defined by

frequent changes in heart rate acceleration sign [30]. From

the ECG signal, two time series are constructed: (1) HRV

time series with length N, RRif g ¼ tRi � tRi�1f g;
1� i�N, where tRi is the time of occurrence of the ith beat,

and (2) increment time series DRRif g ¼ RRi � RRi�1f g
(differences between consecutive RR intervals). Four

fragmentation indices can be calculated from those time

series as follows [30]:

• The percentage of inflection points in the time series

RRif g, where a time instant tRi is said to be an

inflection point if DRRiDRRiþ1 � 0.

• The inverse of average segment length (IALS) for both

acceleration and deceleration segments. The accelera-

tion segment length is calculated by counting the

number of intervals between consecutive inflection

points when the difference between two RR intervals is

less than 0. The deceleration segment length is calcu-

lated using the same way but when the difference

between two RR intervals is greater than 0.

• The percentage of short segments (PSS). It is the

complement of the percentage of RR intervals in

acceleration and deceleration segments with three or

more RR intervals.Fig. 4 Poincaré plot for three subjects: a NSR, b ARR, and c CHF.

Length and width are shown graphically on the plot
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• The percentage of RR intervals in alternation segments

(PAS), where an alternation segment is defined as a

sequence of at least four RR intervals on condition that

the sign of heart rate acceleration is changed every beat.

Detailed analysis of HRV fragmentation indices can be

found in [30].

2.3.2 ECG features from chaotic analysis

The electrical activity of human heart can be considered as

a chaotic system [11, 12]. Note that the available infor-

mation about the heart as a dynamical system is a group of

ECG measurements from skin-mounted sensors. There is

no mathematical formulation of the heart dynamics and

only some observables whose total number of state vari-

ables is not known can be investigated. To study the

chaotic behavior of such system, two important parameters,

namely the Lyapunov exponents (LEs) and correlation

dimension (CD), are investigated. The importance of the

two parameters in modeling the chaotic nature of ECG

signals can be summarized as follows:

• Lyapunov exponents (LEs): they are important mea-

sures for the sensitive dependence of nonlinear system

variables on the initial conditions [14]. Note that for

m-dimensional system, there are always m values of

LEs. It is common to refer to the largest one as the

Largest Lyapunov Exponent (LLE). The chaotic be-

havior of ECG signal can be identified based on the

value of LLE which is estimated from the ECG time

series. If the value of LLE of an ECG signal is positive,

then the ECG signal is said to have chaotic character-

istics [10]. For strict periodic activity, the LLE value is

zero, and its value is infinite for pure noise. Note that

LLE is a nonlinear metric that calculates the exponen-

tial rate of divergence of contiguous trajectories of the

state space built by the ECG data, and it shows the

overall characteristics of the instantaneous heart

rhythm. The two common methods of calculating LEs

are Rosenstein [72] and Wolf [73]. Both techniques

have been reported to be appropriate for short time

series [74]. Although neither of the two methods is

robust enough to the noise [74], several studies reported

that Rosenstein’s method achieved better performance

than Wolf’s method under different noise conditions

[75]. Also, Rosenstein’s method is more appropriate for

estimating the LLE than the Wolf’s algorithm, espe-

cially for small datasets, because it avoids approxima-

tions by disregarding the procedure of neighbor

replacement [72]. Moreover, estimates from the Rosen-

stein’s method are less influenced by changing the

embedding dimension and the reconstruction delay than

the Wolf’s method. This reveals that Rosenstein’s

method is quite robust to changes in these quantities in

comparison with Wolf’s algorithm. Rosenstein’s

method is more appropriate for estimating the LLE,

yielding stable results for several applications [76].

Note that the instability of calculating LEs arises

mainly from the noise sensitivity of the used algorithm.

In the current study, all noise sources are eliminated

automatically before extracting any features, allowing

for stable estimates of LLE. In this work, the LLE of

each ECG segment is estimated using the efficient

method of Rosenstein [72]. Rosenstein’s method is

simple in realization and it is characterized by high

computational efficiency.

• Correlation dimension (CD): it is one the most impor-

tant parameters in the chaos theory which can be

utilized to determine the number of primary controls of

the variable and thus estimates the degree of freedom of

the underlying process. CD is considered as a measure

of the attractor size, and it is derived from the

correlation integral, describing the spatial arrangement

of points on the chaotic attractor. Although it is not

possible to find the direct correlation between the

pattern of phase space plots of ECG data and the

cardiac status, there is a unique CD range for each

cardiac condition. Therefore, the CD of each ECG

signal represents a characteristic parameter for diag-

nosing different heart disorders. Several techniques

were developed for calculating the CD, among which

the Grassberger and Procaccia algorithm [15] has been

employed most and is also implemented in this work

with some adaptation. The Grassberger and Procaccia

method utilizes the basic idea of phase space recon-

struction and the embedding theorem to calculate the

CD, which requires choosing an appropriate scaling

region. The original Grassberger and Procaccia method

is not adaptive and relies heavily on visual inspections

for selecting the scaling regions, which is prone to

human errors and thus not objective. In the current

study, a simple automated method is utilized for

identifying the linear scaling region without the need

for visual inspection. To explain this method, assume

that the dimension D of an object is the exponent that

scales the bulk b of an object with linear distance r (i.e.,

b / rD). In the Grassberger–Procaccia method, the

correlation integral CðrÞ is utilized to represent the bulk

[77]. The CD is obtained by calculating the slope of the

linear region of the plot of logðC rð ÞÞ against logðrÞ for
low values of r. In this work, a simple automated

method for identifying the linear region is employed by

computing the second derivative of the logðC rð ÞÞ
against logðrÞ plot and looking for the longest plateau

with values lower than a predefined threshold (set here
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as 0.1). If several linear regions are found to have the

same length, the one that provides the maximum CD

value is chosen.

Several studies reported the importance of both CD and

LEs in different ECG classification problems [78, 79]. In

[78], the CD and LLE are utilized to distinguish five dif-

ferent arrhythmia classes of ECG signals, and the results

revealed the usefulness of both features in arrhythmia

classification. In this work, the CD and LLE are calculated

to model the chaotic behavior of ECG signals and hence

provide additional features for enhancing the ECG classi-

fication performance. Note that the two chaotic parameters

are not sufficient alone to make an accurate ECG diagnosis

so that they are used in conjunction with other ECG fea-

tures, HRV measures, and DL features.

2.3.3 ECG Transferred DL features

The AlexNet model is investigated to automatically capture

the ECG characteristics, instead of training a CNN from

the beginning, which would require a huge amount of

labeled data and high computational time along with the

problem of overfitting. Although there are many

improvements on top of the AlexNet model [41] emerged

from VGGNet [42] and GoogleNet [43] such as

VGGNet16, VGGNet19, ResNet50, ResNet101, Incep-

tionv3, and DenseNet, the experimental results showed that

the AlexNet architecture achieved superior performance

over all other models. The AlexNet model comprises of

two major parts: (1) feature extraction for the input image,

and (2) fully connected multi-layer perceptron (MLP)

which executes the classification operation. In the current

work, the fully connected MLP is not used for classification

due to its high computational cost, and instead a feature

selection technique is used first to choose the optimal

features from the AlexNet output feature vector to be

concatenated with ECG and HRV features. Then, the

concatenated features are sent to a ML classifier. Figure 1

shows the structure of the proposed framework. All details

of the AlexNet architecture can be found in [41].

The AlexNet architecture is employed to extract auto-

matically the important subtle features by constructing

hierarchical representations of the transformed 2-D time–

frequency representation of the ECG signal. After trans-

forming the input ECG signal into image using the CQ-

NSGT technique, the resultant 2-D image is sent to the

AlexNet network. The AlexNet network consists of eight

layers, the first five are convolutional layers, some of them

followed by max-pooling layers, and the last three are fully

connected layers. Each layer of the convolution layers is

followed by a Rectified Linear Unit (ReLU) except the

output layer. In comparison with the used ReLU function,

new activation functions like the scaled polynomial con-

stant unit activation function (SPOCU) [80] may increase

the gradient flow of sparse training and avoid the vanishing

gradient problem. The SPOCU function has a finite range,

allowing more stability for gradient-based training meth-

ods. Also, the continuous differentiability of SPOCU

enables identity approximation near the origin and allows

the use of gradient-based optimization methods which is

not the case for ReLU function. Despite the sophisticated

structure of the SPOCU function, some recent studies have

reported similar classification performance for both

SPOCU and ReLU activation functions [81]. In compar-

ison with SPOCU, the computation of the ReLU function is

much simpler and easier which reduces the computational

burden. Also, the ReLU function speeds up the training

process when using different parameter initialization

methods and accelerates the forward propagation process

with low computational cost. SPOCU may achieve better

performance than ReLU in image classification problems

with a large database of complex images. However, in the

current ECG classification, it is more efficient to use the

ReLU function of the AlexNet architecture to avoid any

computational complexity, while achieving real-time ECG

diagnosis with high performance.

Compared with other common pre-trained CNNs,

AlexNet has the following privileges: (i) The overfitting

issue is alleviated with the use of a dropout layer that

discards randomly some neurons in the training process;

(ii) the richness of features is improved with the use of

max-pooling layers; (iii) the nonlinear activation function

ReLU is used to accelerate the forward propagation pro-

cess. AlexNet is chosen for this study as it is a proper trade-

off between speed and accuracy. The first layers of the

AlexNet network extract the basic image features, which

are then processed by deeper network layers. The deeper

layers capture the higher-level features, which are created

using the simple features of the first layers. These higher-

level features transform all basic features into a richer

image representation that is appropriate for classification.

This means that early layers determine the common fea-

tures, while subsequent layers identify the more subtle

features. Weights of the AlexNet network were trained on

approximately 1.2 million images from ImageNet dataset

in order to fit the training ECG images and fine-tune the

model and hence alleviate the overfitting problems, while

improving the accuracy of ECG classification. Note that

fine-tuning makes the pre-trained CNN model learn new

task faster and easier than train network from scratch using

randomly initialized weight.

In total, 4096 features were extracted from the pre-

trained AlexNet architecture, and a feature reduction

technique is employed to reduce the number of features by

selecting the optimal subset of features. The main
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disadvantage of AlexNet architecture is the discriminative

ability of the learned features, especially in the latter layers

of the network, which can significantly influence the per-

formance. This problem can be solved by replacing the

MLP classification layer of AlexNet architecture with other

ML classification algorithms. The training parameters are

tuned to get the best performance. This yields a batch size

of 15, learning rate of 10�4, and maximum epochs of 20.

To reduce overfitting problems, the AlexNet architecture is

modified by changing the default 0.5 dropout probability of

the FC6 layer to be 0.6. Also, the MLP classification layers

(FC7 and FC8) are removed and instead the output features

are sent to a feature selection technique (see Fig. 1).

2.3.4 Feature selection

Since the number of output features extracted from the

AlexNet is 4096, the pair-wise feature proximity (PWFP)

feature reduction technique [82] is investigated to reduce

the number of features by selecting the optimal subset of

features. The resultant selected optimal DL features are

500, discarding 3596 features. In the PWFP method, the

feature dimension closeness among a pair of samples from

the same (or different) class is used to choose the important

features for class differentiation. Unlike other techniques

which use all feature vector for distance measurement, the

PWFP technique utilizes only a subset of the feature vec-

tor. Therefore, optimal features, which minimize the

within-class distance and maximize the between-class

distances for each pair of samples, should bring the points

of the same class closer and maintain a far distance from

the other class instances. The PWFP technique allows

selecting the optimal features based on the pair-wise

proximity in feature values, while reducing the computa-

tional burden using a heuristic search approach for feature

ranking. In the current study, the output features from the

AlexNet are sent to the PWFP algorithm to reduce the

feature vector dimension by selecting the optimal features

and hence reducing the computational load, avoiding the

risk of overfitting, and improving the feature vector quality.

Assume the data contains n number of d-dimensional

points ðxi ¼ x1i ; x
2
i ; . . .x

d
i

� �

2 RdÞ, given by fðxi; yiÞg
n
i¼1,

where yi 2 f1; 2; . . .; cg is the class label of the corre-

sponding data. Assume X ¼ ½x1; x2; . . .xn� 2 Rd�n is the

total data matrix and f i ¼ ½f i1; f i2; . . .; f in� is the ith row of

the matrix X. The feature selection process can be formu-

lated as obtaining m features from d dimensions, which

will achieve the optimum classification performance.

Heuristic strategies are usually employed to find the best

features by examining each feature independently from the

d features and choosing the top m features.

The PWFP algorithm employs a naive way of selecting

features based on pair-wise feature similarity with Fisher

Score (FS) computation. In FS, the evaluation criterion

maximizes the between-class variance while minimizing

the within-class variance. The FS formulation can be

expressed as [82]:

Fðf iÞ ¼
Pc

k¼1 nk lik � li
� �2

Pc
k¼1 nk rik

� �2
ð7Þ

where li denotes the overall mean of ith feature and nk
denotes the number of samples of kth class. lik and rik are

the ith feature mean and variance of kth class, respectively.

In PWFP, the pair-wise feature similarity is employed to

select the appropriate features, in which a feature is said to

be an important feature if it conserves the samples of the

same class very close, while retaining the points from

distinct classes very far [82]. This means that for a pair of

points, the feature selection process is performed based on

the point pairs which are very close for the same class and

very far for distinct classes.

Define pjk ¼ ½b1; b2; . . .; bd�T , bi 2 f0; 1g, with bi ¼ 1 as

the features along which the points pair xi; xkð Þ; yj ¼ yk are

close to each other (the pair-wise within-variance is mini-

mum). These features can be selected by sorting the dis-

tance between individual features in ascending order and

choosing the first few features satisfying the following

optimization problem

max
pjk

pTjkpjk; s:t: xj � xk
	

	

	

	

T
pjk \s ð8Þ

where s is a threshold. In the PWFP algorithm, we use the

Manhattan distance between xi and xk, defined as
Pd

i¼1 xij � xik

	

	

	

	

	

	
¼ xj � xk

	

	

	

	

T
1, where 1 is a vector of ones.

Assume that we need to keep b number of features, which

are close for the pair xi; xkð Þ, out of d features. This allows

representing the selection process as follows:

min
pjk

xj � xk
	

	

	

	

T
pjk; s:t: p

T
jkpjk ¼ b ð9Þ

where the term xj � xk
	

	

	

	

T
pjk can be interpreted as a distance

measure with a subset of features for which bi ¼ 1.

Similarly, let qjk ¼ ½b1; b2; . . .; bd�T ; bi 2 f0; 1g be the

features along which the pair xi; xkð Þ; yj 6¼ yk are farthest if

bi ¼ 1. A similar way of finding the features that differ-

entiate the points from distinct classes can be formulated as

follows:

max
qjk

xj � xk
	

	

	

	

T
qjk; s:t: q

T
jkqjk ¼ b ð10Þ

The PWFP algorithm gathers the information from all

possible pairs which are represented by P ¼ ½p1; p2; . . .pd�
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and Q ¼ ½q1; q2; . . .qd�. P and Q denote, respectively, the

normalized histogram of features based on their contribu-

tion toward closeness/discriminating power between dif-

ferent classes. The reduced feature dimensions are

identified based on the existence in both P and Q. An

important feature should be capable of differentiating

points from distinct classes while bringing the points of

same class closer. Therefore, an important feature is the

one which has higher probability of occurrence in both P

and Q.

2.4 ECG classification

Since the computational time using an end-to-end CNN is

relatively high, the MLP classification part of the AlexNet

architecture is replaced in the current study with another

classification methodology (see Fig. 1). After using the

PWFP feature selection algorithm, the optimized DL fea-

tures are concatenated with both HRV measures and ECG

features.

Note that the total number of linear features is 18

classified as follows: 15 linear HRV features, including 10

frequency domain features and 5 statistical time domain

features (see Table 1), along with 3 linear ECG features

(mean, variance, and standard deviation). The total number

of nonlinear features is 11 classified as follows: 9 nonlinear

HRV features, including a, ApEn, ShanEn, Poincaré de-

scriptors (SD1 and SD2), and the four fragmentation indi-

ces, beside 2 nonlinear ECG features (LLE and CD). The

optimized selected 500 DL features are concatenated with

both HRV measures and ECG features (18 linear features

and 11 nonlinear features). Then, the resulted concatenated

features are fed to a ML classifier to distinguish CHF,

ARR, and NSR subjects. In this work, the linear discrim-

inant analysis (LDA) classifier [83] is investigated for ECG

multi-class classification, and its performance is compared

with different ML classifiers such as kernel SVM,

K-nearest neighbor (KNN), and decision tree [84, 85].

The selection of ML classifier depends on many factors,

including the data size, number of features, accuracy, and

computational time. Some ML classifiers perform better

with larger datasets than others. For small datasets, clas-

sifiers with high bias/ low variance such as LDA and lin-

ear SVM work better than low bias/ high variance

classifiers such as KNN and decision trees. Algorithms

such as SVM and decision tree, which involve tough tuning

of learning parameters, require higher computational time

to process and train the data, while algorithms such as

logistic regression (LR) and LDA are easy to understand

and implement, and hence they have fast execution. To

achieve the best classification performance, different ML

classifiers (LDA, kernel SVM, KNN, and decision tree)

spanning all classes were investigated. All learning

parameters of the selected classifiers are optimized using

the well-known grid search technique. Grid search is the

most basic hyperparameter tuning method, which builds a

model for each possible combination of all learning

parameters of the classifier, evaluating each model, and

choosing the architecture which achieves the best classifi-

cation results.

LDA is a generalization of the statistical model of

Fisher’s linear discriminant [83]. It is used to find a linear

combination of features that separates two or more classes

in a dataset. The classes of the labelled patterns are used

calculate the discriminant functions f 1; f 2; . . .; f cf g, where
c is the number of classes. Then, these discriminant func-

tions are utilized to specify the decision boundaries

between classes and the region of each class. A comparison

between the c different discriminant functions is made to

assign the class label with the maximum score to the

unknown pattern.

Note that LR and LDA are multivariate statistical

techniques that can be utilized to investigate the same

research studies. The two methods do not differ in their

functional forms, a combination of the independent vari-

ables and a base for classification. However, they differ in

the way of the coefficient estimation. The sample size has a

significant influence on the difference between the two

approaches. The main difference between the two methods

is very clear for small sample size, as the difference

between the distribution of the training sample and that of

the test sample can be essential for the LR to be able to

achieve high classification performance [86]. In contrast,

LDA assumes normality, and the errors occurred in pre-

diction are caused by the errors in estimation of the mean

and the variance on the sample. The differences between

the two methods are negligible when the sample size is

adequately large. LDA outperforms LR for small sample

size, while the results of the two methods are getting closer

for large sample size. Since the data size under investiga-

tion is not very large, the LDA is chosen for the current

multi-class classification problem.

In comparison with LDA, LR has some limitations.

When classes are well-separated, the estimation process for

the parameters of LR is surprisingly unstable, which is not

the case for LDA. LR uses maximum likelihood estimation

(MLE) technique to derive all parameters [87]. Note that

MLE depends on the large-sample asymptotic normality

which may cause a degradation in the estimation perfor-

mance when there are few cases for each observed col-

lection of independent variables. LR requires a large

number of cases to achieve reliable estimates for the

logistic coefficients [87]. The more unequal groups are

constructed from the dependent variable, the more cases

are required. This reveals that for a small number of cases,
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the LDA is more stable than the LR. Also, several studies

showed that LDA achieves better performance than LR in

multi-class classification problems, while both methods

have nearly the same performance for binary classification

problems [86]. The LDA has high bias/low variance, and

hence, it outperforms other ML classifiers for rela-

tively small datasets. Unlike other algorithms which

require difficult tuning of learning parameters, the LDA

classifier is easy to understand and implement, and hence it

has high computational efficiency. It is very critical to

reduce the computational cost and hence achieve real-time

diagnosis. Therefore, the LDA is employed in the current

ECG multi-class classification problem as it represents a

perfect compromise by achieving high classification per-

formance with low computational requirements. The

experimental results showed that the LDA algorithm

achieves maximum separation among the classes in the

feature set and consequently has superior performance over

all other classifiers.

3 Results

To examine the effectiveness of the proposed framework in

distinguishing CHF, ARR, and NSR cases, all the available

ECG records are investigated. Table 2 shows the distribu-

tion of ECG signals retrieved from all databases under

investigation. It can be noted that the ECG records utilized

in the current work include distinct subjects of patient age

and sex. To assess the usefulness of the current ECG multi-

classification framework, various evaluation metrics,

including accuracy ðAccÞ, sensitivity (Se), precision (Pr),

and specificity (Sp) are calculated based on four main

parameters: the number of true positives (TP), true nega-

tives (TN), false negatives (FN), and false positives (FP).

Acc is a measure of true predictions, while Pr is the pos-

itive predictive value or the fraction of TP among the

positive predictions. Se is the proportion of positives that

are correctly identified, while the Sp is the proportion of

negatives that are correctly identified. Those evaluation

metrics are given by [88]:

Se ¼ TP= TPþ FNð Þ ð11Þ
Sp ¼ TN= TN þ FPð Þ ð12Þ

Table 2 Distribution of ECG signals retrieved from the three data-

bases under investigation

Class Segments Cases Cases Age (years)

Male Female Male Female

ARR 576 47 25 22 32–89 23–89

CHF 180 15 11 4 22–71 54–63

NSR 216 18 5 13 26–45 20–50

Table 3 Average classification

results of the proposed ECG

multi-class classification system

using fivefold cross-validation

Fold Type Evaluation metric

Se % Sp% Pr% Acc%

Fold-1 ARR 100.00 97.22 98.00 98.82

CHF 93.75 100.00 100.00 98.82

NSR 100.00 100.00 100.00 100.00

Fold-2 ARR 98.02 98.55 99.00 98.24

CHF 96.55 98.58 93.33 98.24

NSR 100.00 100.00 100.00 100.00

Fold-3 ARR 97.03 97.10 98.00 97.06

CHF 93.10 97.87 90.00 97.06

NSR 100.00 100.00 100.00 100.00

Fold-4 ARR 98.04 100.00 100.00 98.82

CHF 100.00 98.59 93.33 98.82

NSR 100.00 100.00 100.00 100.00

Fold-5 ARR 96.15 100.00 100.00 97.65

CHF 100.00 97.90 90.00 98.24

NSR 100.00 99.24 97.50 99.41

Average ARR 97.85 ± 1.44 98.57 ± 1.42 99.00 ± 1.00 98.12 ± 0.77

CHF 96.68 ± 3.30 98.59 ± 0.86 93.33 ± 4.08 98.24 ± 0.72

NSR 100.00 ± 0.0 99.85 ± 0.34 99.00 ± 1.12 99.88 ± 0.26

Overall average performance 98.18 99.00 97.11 98.75
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Pr ¼ TP= TPþ FPð Þ ð13Þ
Acc ¼ TPþ TNð Þ= TPþ FPþ TN þ FNð Þ ð14Þ

Separate ECG signals are used in the training and testing

phases as follows: 802 ECG segments taken from 79 ARR,

24 CHF, and 30 NSR records are utilized for training and

validation, while 170 ECG segments taken from the

remaining 17 ARR, 6 CHF, and 6 NSR records are kept for

the test phase. To authenticate the diagnosis results and

tackle deviation issues, the k-fold cross-validation tech-

nique is utilized [58]. In this method, the training and

validation data are randomly partitioned into k equal sized

groups, each group is utilized once for validation, and (k-1)

times for training. In this work, the fivefold cross-valida-

tion is utilized, where the 802 ECG segments, kept for

training and validation, are randomly partitioned into five

equal sized groups, each time one group is retained as a

validation set and the remaining four groups are retained as

a training set. The 170 ECG segments, reserved for testing,

are examined to obtain a fair assessment of the final model.

Table 3 summarizes the fivefold evaluation metrics and

standard deviation of the five rounds for the CHF, ARR,

and NSR classes. For each fold, the evaluation metrics

(Acc, Se, Sp, and Pr) are calculated for the test data. The

average Acc, Se, Sp, and Pr are calculated by averaging the

results of the 5-rounds (see Table 3). The standard devia-

tion is calculated for each metric relevant to the three

categories. It can be noted that the proposed approach

provides very accurate diagnosis results in terms of average

Se (97.85%, 96.68%, and 100%), Acc (98.12%, 98.24%,

and 99.88%),Pr (99.00%, 93.33%, and 99.00%) and Sp

(98.57%, 98.59%, and 99.85%) for ARR, CHF, and NSR,

respectively.

As mentioned before, the concatenated features (opti-

mized DL features, ECG features, and HRV measures) are

sent to a ML classifier to distinguish CHF, ARR, and NSR

subjects. Different ML classifiers including LDA, kernel

SVM, KNN, and decision tree are investigated, and the

classification results are summarized in Table 4 and Fig. 5.

A detailed comparison between the proposed LDA classi-

fier and other classification methods is performed by

investigating the average of all evaluation metrics (Acc, Se,

Sp, and Pr) for each fold using all classifiers. Figure 5

illustrates the average Acc, Se, Sp, and Pr of the proposed

system for each fold using LDA, kernel SVM, KNN, and

decision tree classifiers.

The average classification results and standard deviation

for each evaluation metric are calculated for all classifiers

as shown in Table 4. Note that the comparison between all

the classifiers is made using the same techniques in all

other steps of the proposed system shown in Fig. 1. Table 4

and Fig. 5 show that the kernel SVM outperforms both

KNN and decision tree classifiers. However, the LDA

achieves better performance than kernel SVM in terms of

the average Acc (98.75% versus 97.41%), Se (98.18%

versus 95.19%), Sp (99.00% versus 97.45%), and Pr

(97.11% versus 95.96%). The LDA algorithm achieves

maximum separation among the classes in the feature set

and consequently has superior performance over all other

classifiers. Figure 6 shows the overall classification results

of the proposed system using LDA, kernel SVM, KNN, and

decision tree classifiers. It can be noted that the LDA

Table 4 The classification

results of the proposed ECG

multi-class classification system

using different ML classifiers

Classifier Type Evaluation metric

Se % Sp% Pr% Acc%

KNN ARR 83.56 ± 0.79 80.56 ± 3.29 87.40 ± 2.79 82.47 ± 1.49

CHF 63.02 ± 5.63 89.40 ± 0.87 48.00 ± 5.06 85.76 ± 1.28

NSR 89.74 ± 4.42 98.43 ± 0.56 87.40 ± 1.77 96.24 ± 1.48

Overall performance 78.77 89.56 74.27 88.16

Decision tree ARR 91.93 ± 0.36 90.42 ± 2.64 93.40 ± 2.07 91.29 ± 1.13

CHF 76.65 ± 4.76 94.34 ± 0.46 73.33 ± 2.36 91.29 ± 1.13

NSR 100.00 ± 0.0 99.70 ± 0.68 93.4 ± 2.24 99.76 ± 0.53

Overall performance 89.53 94.82 86.71 94.12

Kernel SVM ARR 97.79 ± 1.73 93.97 ± 2.04 95.60 ± 1.67 96.12 ± 0.79

CHF 91.21 ± 6.20 99.30 ± 1.20 96.67 ± 5.77 97.65 ± 0.72

NSR 95.56 ± 2.07 99.08 ± 0.34 95.60 ± 1.12 98.47 ± 0.53

Overall performance 95.19 97.45 95.96 97.41

Proposed LDA ARR 97.85 ± 1.44 98.57 ± 1.42 99.00 ± 1.00 98.12 ± 0.77

CHF 96.68 ± 3.30 98.59 ± 0.86 93.33 ± 4.08 98.24 ± 0.72

NSR 100.00 ± 0.0 99.85 ± 0.34 99.00 ± 1.12 99.88 ± 0.26

Overall performance 98.18 99.00 97.11 98.75
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method is more efficient than other ML classifiers with

nearly the same consumed time. This elucidates the use-

fulness of the LDA classifier in boosting the ECG multi-

class classification performance over other ML classifiers.

The overall average ECG multi-class classification

performance is investigated for different combinations of

DL, linear, and nonlinear features (before and after feature

selection, with and without linear/nonlinear features). The

results are summarized in Table 5. It can be noted that

combining the optimized selected DL features with both

linear and nonlinear HRV/ECG features achieves superior

performance over other combinations. This means that

applying the PWFP feature selection algorithm on the

extracted features from the AlexNet model allows reducing

the feature vector dimension by selecting the optimal DL

features and hence significantly reducing the computational

complexity. Moreover, combining the optimized DL fea-

tures with both HRV measures and ECG features succeeds

to improve the feature vector quality and enhance the

classification performance without high computational

cost. This reveals the usefulness of the proposed ECG

multi-class classification approach in real-time clinical

setting.

4 Discussion and conclusions

This work proposes a novel hybrid automatic diagnosis

system of pre-trained CNN model combined with HRV

measures and ECG features for distinguishing CHF, ARR,

and NSR cases with high classification performance and

low hardware complexity. The proposed system investi-

gates the PWFP technique for selecting the optimal subtle

DL features from the output features of the AlexNet model.

The optimized DL features are then combined with both

HRV measures and ECG features representing the funda-

mental differences between CHF, ARR, and NSR classes.

The resulted concatenated features are sent to the LDA

classifier to differentiate the three classes. An important

contribution of the proposed technique is to overcome the

high computational cost of the end-to-end CNN by

replacing the MLP classification layer with the DLA

classifier. Different ML classifiers including kernel SVM,

Fig. 5 The average a Acc, b Se, c Sp, and d Pr of the proposed

diagnosis system for each fold using different ML classifiers
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LDA Decision
Trees
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Overall Classification Performance
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Fig. 6 The average evaluation metrics of the proposed framework

using different classification algorithms
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KNN, and decision tree are compared with the LDA

algorithm, and the classification results show the superior

performance of the LDA method. To the best of the au-

thors’ knowledge, it is the first time to merge optimized

subtle DL features with both HRV measures and ECG

features in one multi-class classification system that results

in very accurate classification performance using reason-

able hardware and software requirements. The proposed

approach is applied to real ECG records, and the perfor-

mance is evaluated in terms of Acc, Se, Sp, Pr, and com-

putational time. The experimental results demonstrate that

the proposed method provides very accurate multi-class

classification results with overall average Acc of 98.74%,

Se of 98.17%, Sp of 99.00%, and consumed time of

0.154 s.

The proposed ECG multi-class classification system is

compared with other recent state-of-the-art systems

[18, 19, 21–24, 48–51, 89–93], and the results are sum-

marized in Table 6. To validate this comparison, all results

of the systems under comparison were obtained using the

same databases investigated in the current study (MIT-BIH

and BIDMC databases). Also, we examined all the avail-

able 162 ECG records from the databases under investi-

gation to avoid any selectivity of the subjects and to

authenticate the classification results. Moreover, the five-

fold cross-validation technique is employed to get all

classification results so that overfitting and bias problems

are avoided, and the model generalization on different

dataset is achieved. Table 6 shows that the proposed

framework provides the highest Acc of 98.74% utilizing

shorter ECG segments than all state-of-the-art systems

under comparison. Also, Table 6 demonstrates that the

proposed method outperforms most of the systems under

comparison [18, 19, 21–23, 48–51, 89, 90, 93] in reducing

the FN, and consequently providing the highest Se of

98.17%. It can be observed that the Acc of the proposed

approach is better than the methods of

[18, 19, 21–23, 48–51, 89–93] and is nearly the same as the

technique of [24]. Also, the Sp of the proposed approach is

better than the systems of [18, 21–24, 48–50], and com-

parable with the methods of [19, 51].

Unlike other systems which distinguish only patients

diagnosed with CHF from NSR [18, 19, 21–24, 48, 50, 51],

the proposed system provides multi-class classification for

CHF, ARR, and NSR with average Acc of 98.74%, Se of

98.17%, and Sp of 99.00%. This is more challenging than

classifying only CHF cases from NSR subjects but very

useful in several clinical applications. Few studies

[49, 89–93] focused on the three-class ECG classification

problem and reported classification results for the three

classes (CHF, ARR, and NSR). The proposed approach

outperforms all these techniques. The two-class ECG

classification problem of distinguishing only patients

diagnosed with CHF from NSR is investigated by com-

paring the classification results of the proposed approach

with the techniques in [18, 21, 50] using 18 NSR and 15

CHF records. The experimental results reveal that the

proposed approach provides accurate diagnosis results in

terms of average Acc (98.83% and 99.82%), Se (97.78%

and 99.98%), and Sp (98.92%, and 99.76%) for CHF and

NSR, respectively. This yields an average Acc of 99.33%,

Se of 98.88%, and Sp of 99.34% for the two-class classi-

fication of CHF and NSR. It can be noted that the proposed

approach achieves superior performance over the studies

reported in [18, 21, 50]. This reveals the effectiveness of

the proposed approach in both two-class and three-class

ECG classification problems.

The proposed method requires shorter ECG segments

(1.3 min) than other exiting systems [18, 19, 21–24,

48–51, 89–93], revealing its robustness in real-time clinical

setting. Although the proposed approach could not achieve

the highest diagnosis results in comparison with very few

studies in Table 6, it achieved automatic real-time diag-

nosis with accurate classification performance and without

any dependency on the cardiologists using shorter ECG

segments than all other systems under comparison. Note

that some ECG diagnosis systems are sensitive to artifacts,

and their classification results were produced after

removing all artifacts manually. For automated ECG

classification framework, either the artifacts are suppressed

with an automatic technique or the system should be

evaluated on unprocessed data. In the current study, an

automated adaptive filter method [57] was utilized to

suppress all unwanted artifacts from the raw ECG signal.

Also, some studies reported very high diagnosis results

without any cross-validation techniques (classification

results without standard deviation values). Moreover, some

studies are not suitable for real-time applications due to

time-consuming preprocessing steps. This reveals that the

Table 5 Average fivefold

classification results of the

proposed ECG multi-class

classification system for

different combinations of DL,

linear, and nonlinear features

using LDA classifier

Features Se % Sp% Acc%

DL features without feature selection, linear features, and nonlinear features 95.43 97.57 96.35

Selected DL features and linear features 97.29 96.76 96.36

Selected DL features and nonlinear features 97.71 98.21 96.87

Selected DL features, linear features, and nonlinear features 98.17 99.00 98.74
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proposed approach can be used to assist cardiologists in

real-time ECG classification with high efficiency.

In [24], a diagnosis system was proposed for discrimi-

nating CHF subjects from NSR cases using short-term

HRV analysis. The HRV time-domain, frequency-domain

features are calculated and combined with nonlinear HRV

measures, including ShanE, ApEn, DFA, and Poincaré plot.

A three-stage classifier comprising of simple percep-

tron algorithms in the initial two stages, and a more com-

plex ML classifier algorithm in the last stage is employed

for classification with Acc of 98.8%, Sp of 98.1%, and Se of

100%. In comparison with the proposed approach, the work

of [24] reported high classification results of discriminating

only CHF patients from NSR cases without any validation

techniques. This means that the system of [24] was

proposed for a binary classification problem which is much

easier than the ECG multi-class classification under

investigation. Unlike the proposed approach which

employs fivefold cross-validation, the classification results

of [24] were obtained without any cross-validation analysis

which may lead to bias problems and the lack of model

generalization on different datasets. This may explain the

very high Se of 100% which may not be obtained for any

other datasets. Also, the study of [24] did not report any

computational time analysis of the complicated three-stage

classifier system which may prevent its application in real-

time setting. In contrast, the proposed approach represents

an efficient automated ECG multi-class classification sys-

tem that can distinguish accurately CHF, ARR, and NSR

Table 6 Comparison between the proposed ECG multi-class classification system and other recent state-of-the-art systems

Reference,

Year

Subjects from MIT-BIH NSR,

MIT-BIH ARR, and BIDMC

CHF Databases

Time Scale Approach Performance

Se Sp Acc

[18], 2016 18 NSR 15 CHF 1000 RR intervals

(13 min)

Renyi entropy combined with conventional HRV

features using K-NN classifier

80.0 94.4 87.9

[19], 2016 54 NSR RR

18 NSR

29 CHF RR

15 CHF

5 min Multistage CHF detection system using short-term

HRV dynamic measures and decision-tree-based

SVM classifier

95.39 100 96.91

[21], 2017 18 NSR 15 CHF 500 samples HRV fuzzy and permutation entropies at different

frequency scales with the least squares SVM

classifier

98.07 98.33 98.21

[22], 2018 52 NSR RR 18 CHF RR 5 min ECG handcrafted features with SVM classifier 91.31 90.04 90.95

[23], 2019 54 NSR RR 29 CHF RR From 5 min to

10 h

Multiple time scales HRV analysis with SVM

classifier

93.33 98.33 94.44

[24], 2019 54 NSR RR 29 CHF RR 5 min Multi-stage classification based on short-term HRV

measures and nonlinear (ShanE, ApEn, DFA, and
Poincaré plot) features

100 98.1 98.80

[48], 2018 54 NSR RR 29 CHF RR 5 min Pre-trained CNN combined with distance

distribution matrix in entropy calculation

80.99 – 81.34

[49], 2019 18 NSR 15 CHF 47 ARR 8 min CNN with CWT algorithm – – 93.75

[50], 2019 18 NSR 15 CHF 2 s 11-layer deep CNN for CHF diagnosis 96.52 95.75 95.98

[51], 2019 54 NSR RR 29 CHF RR 500 sample Short-term HRV analysis and deep CNN 76.71 99.22 87.54

[89], 2021 18 NSR 15 CHF 47 ARR 771 samples Hybrid AlexNet-SVM deep neural networks and

STFT

95.00 – 96.77

[90], 2021 18 NSR 15 CHF 47 ARR 8 min DWT features with SVM classifier 92.59 – 95.92

[91], 2020 15 NSR 15 CHF 30 ARR 8 min Feature fusion with wavelet and classification using

SVM

– – 93.33

[92], 2020 18 NSR 15 CHF 47 ARR 8 min CNN architecture with CWT algorithm – – 96.00

[93], 2020 18 NSR 15 CHF 47 ARR 8 min Feature extraction using CWT algorithm and

classification with SVM

92.59 – 95.92

Proposed

System

18 NSR 15 CHF 47 ARR Very short

segments 10,000

samples

(1.3 min)

Hybrid deep CNN approach combined with HRV

and ECG features using PTWF feature selection

algorithm and LDA classifier

98.17 99.00 98.74
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cases, while running in real-time with low hardware and

software requirements.

Different pre-trained CNN architectures are investigated

by replacing the AlexNet model and comparing the results

using the same techniques for all other stages of the pro-

posed framework shown in Fig. 1. Table 7 shows the

overall average multi-class classification results of the

AlexNet architecture and other pre-trained CNN models.

For all these CNN architectures, the classification results

are examined, and the results reveal that AlexNet model

achieves the best classification results with the lowest

consumed time. The superior performance of AlexNet

model results from the simplicity of the input ECG images

which do not require a depth layer in the CNN structure. In

ECG diagnosis systems, the data variability is significantly

lower than image classification applications, and hence,

sophisticated deep CNN architectures with a huge number

of free parameters may cause overfitting problems and low

performance for ECG classification, while requiring more

computational burden. The AlexNet architecture succeeds

not only to provide better classification results than other

CNN models, but also to achieve the highest computational

efficiency.

Further insight requires investigating the proposed sys-

tem in different ECG multi-class diagnosis systems. An

important ECG classification system for distinguishing

multiple heart rhythm classes, including 10 ARR abnor-

malities, NSR, and noise, can be a goal for future inves-

tigation using the proposed approach. In [94], a novel end-

to-end DL algorithm with residual block was proposed to

take raw ECG as input without signal processing and

classify 12 rhythm categories (10 ARR abnormalities,

NSR, and noise) using 30-s single-lead ECG rhythms. This

model was trained on a huge dataset, comprising of 91,232

single-lead ECG records from 53,549 patients in an

ambulatory setting. When validated against a test dataset of

328 records from 328 unique patients annotated by expert

cardiologists, the Se of this model outperforms the average

cardiologist Se for all rhythm categories when fixing the Sp

at the average Sp obtained by cardiologists. Despite the

high diagnostic performance of this DL approach [94], it

may require high computational time due to the sophisti-

cated structure of the end-to-end CNN architecture. Also,

this approach focuses only on heartbeat features extracted

by the end-to-end CNN model, while ignoring the HRV

features and ECG measures. Several studies reported

improved diagnosis performance for multiple heart rhythm

classes when integrating DL features with RR interval

features [95, 96]. This lends further support for examining

the proposed hybrid approach of combining DL features

with both HRV features and ECG measures for classifying

the 12 rhythm classes. This will be investigated in the near

future and the results will be reported elsewhere.

The proposed hybrid approach can be also investigated

for EEG multi-class classification problems by converting

the input EEG signals into 2-D images with the CQ-NSGT

technique and feeding the resulted images to the pre-

trained ALexNet CNN model. Then, the optimal DL fea-

tures extracted from the AlexNet model can be combined

with the essential features of EEG signals, including time-

domain, frequency-domain, and nonlinear dynamics mea-

sures which distinguish distinct brain diseases like epileptic

seizure [97] or identify specific characteristics in the EEG

signals such as motor movement/imagery tasks. Recently,

few end-to-end CNN models were proposed for EEG

multi-class classification of epileptic seizure type [98] and

for distinguishing the five classes of EEG motor movement

(4 motor imagery tasks and one rest) [99]. On the other

hand, combining the optimal DL features from pre-trained

CNN models with the important EEG handcrafted features

is still largely unexplored research area for EEG multi-

class classification. A goal of future investigation is to

compare the performance of proposed hybrid approach

with other recent state-of-the-art systems in such EEG

multi-class applications.

The overall consumed time of the ECG multi-class

classification system is around 364.52 s for training and

0.154 s for testing on a laptop with the following charac-

teristics: Intel core i7-4600 M CPU, 2.9 GHz, 8 GB RAM,

and windows 10 operating system. The computational

efficiency of the proposed hybrid approach is demonstrated

by comparing it with the end-to-end AlexNet architecture.

In the end-to-end structure, the ECG image is fed to the

AlexNet model, and the output features are the only rele-

vant features to be classified by the MLP. The results

reveal that the diagnosis time of the proposed hybrid

Table 7 Average evaluation metrics of the AlexNet model and other CNN structures using the same methods for all other stages of the proposed

framework

Performance AlexNet VGG-16 VGG-19 ResNet-50 ResNet-101 Inception-v3 DenseNet

Se % 98.17 97.13 97.67 94.88 96.34 94.39 95.41

Sp% 99.00 98.26 96.12 96.36 96.24 95.16 96.20

Acc% 98.74 97.42 95.23 95.63 96.17 95.88 95.97
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approach outperforms the end-to-end AlexNet model in

terms of training time (364.52 s versus 10,440 s) and

testing time (0.154 s versus 61 s). This means that applying

the PWFP feature selection algorithm on the extracted

features from the AlexNet model allows reducing the fea-

ture vector dimension by selecting the optimal DL features

and hence significantly reducing the computational com-

plexity. Moreover, combining the optimized DL features

with both HRV measures and ECG features succeeds to

improve the feature vector quality and enhance the clas-

sification performance without high computational cost.

This reveals the usefulness of the proposed ECG multi-

class classification approach in real-time clinical setting.

Medical diagnosis systems based on ML, including the

current ECG multi-class classification problem may need

some sort of explainability and interpretability to trust the

model’s predictions. Explainability techniques can be

generally categorized into two classes, intrinsic and post

hoc. Intrinsic techniques are obtained by developing

interpretable prediction models like all white-box models.

In the current study, the whole framework can be only

intrinsic explainable when discarding all features from the

AlexNet CNN model as they are considered as black box

features. Future work may involve investigating the pos-

sible model’s performance degradation when the AlexNet

features are missing. Unlink intrinsic explainability

frameworks, post hoc techniques use secondary models to

interpret the predictions of a black box model without any

access to the model’s inner architecture like its weights. In

the future, the proposed approach can be modified by

incorporating post hoc explainability methods on the

CNN’s final feature’s map output and producing a visual

map highlighting the sub regions of the input images which

can contribute significantly to the model’s predictions.

Although the proposed approach has been proven to be a

promising tool for ECG multi-class classification, it should

be widely examined by investigating larger ECG datasets

with many more patients for identifying different classes of

heart diseases such as rhythm classes and myocardial

infarction classes. Despite the high performance of the

proposed approach, there are few limitations that can be

investigated in the future. First, the proposed system

requires an automated approach for eliminating all noise

and artifact sources from the ECG signals before extracting

the ECG features and HRV measures or passing the ECG

signals to the CNN model. Second, relationship among

different ECG components in adjacent heartbeats may be

useful indicators for different heart diseases. Future work

on this point may involve combining the inter-beat features

with ECG features, HRV measures, and optimal DL fea-

tures to investigate their effect on the classification per-

formance. Third, more recent and advanced pre-trained

CNN architectures can be investigated to enhance the

classification accuracy. However, the implementation of

such recent CNNs is very challenging on low-power

embedded devices or wearable devices for long-term

mobile monitoring due to the huge computational

requirements. The hardware design and implementation of

the proposed ECG multi-class classification system can be

a goal for future investigation. These points are challenges

that will be explored and reported in the near feature.
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