
Department of Science and Technology Institutionen för teknik och naturvetenskap
Linköping University Linköpings universitet

gnipökrroN 47 106 nedewS ,gnipökrroN 47 106-ES

LIU-ITN-TEK-A--15/021--SE

Automated end-to-end user
testing on single page web

applications
Tobias Palmér

Markus Waltré

2015-06-10

LIU-ITN-TEK-A--15/021--SE

Automated end-to-end user
testing on single page web

applications
Examensarbete utfört i Medieteknik

vid Tekniska högskolan vid
Linköpings universitet

Tobias Palmér
Markus Waltré

Handledare Karljohan Lundin Palmerius
Examinator Stefan Gustavson

Norrköping 2015-06-10

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Tobias Palmér, Markus Waltré

Abstract

Competencer wants to be sure users experience their web product as it was designed.

With the help of tools for end-to-end user testing, interactions based on what a user

would do is simulated to test potential situations.

This thesis work is targeting four areas of end-to-end user testing with a major focus

on making it automatic. A study is conducted on test case methods to gain an under-

standing of how to approach writing tests. A coverage tool is researched and built to

present a measure of what is being tested of the product. To ease the use for developers

a solution for continuous integration is looked at. To make tests more automatic a way

to build mocks through automation is implemented.

These areas combined with the background of Competencers application architecture

creates a foundation for replacing manual testing sessions with automatic ones.

Contents

Abstract i

List of Figures v

List of Tables vi

Abbreviations vii

1 Introduction 1

1.1 Background . 1

1.2 Purpose . 2

1.3 Problem Definition . 2

1.4 Thesis Outline . 2

2 Background 4

2.1 Importance of Testing . 4

2.2 Value of Mocks . 5

2.2.1 Keeping Mocks up to Date . 5

2.3 Small, Medium, Large Tests . 6

2.4 Languages . 6

2.5 HTTP Request and Response . 7

2.6 Frameworks and Tools . 8

2.6.1 Selenium . 8

2.6.2 Protractor . 9

2.6.3 Mocha and Chai . 10

2.7 Architecture at Competencer . 12

2.7.1 Django . 12

2.7.2 Node . 13

2.7.3 Gulp . 13

2.7.4 Angular . 13

3 Related Work 14

3.1 Test Case Methods . 14

3.1.1 Equivalence Partitioning . 14

3.1.2 Boundary Value Analysis . 15

3.1.3 Decision Table . 16

3.1.4 State Transition Analysis . 16

ii

Contents iii

3.2 Test Case Design Guide . 17

3.3 Mocks . 17

3.3.1 Mocking Third Party APIs . 18

3.3.2 Prism . 18

3.3.3 ngMock and ngMockE2E . 19

3.4 Continuous Integration . 19

3.5 Coverage . 21

3.5.1 Code Instrumentation . 21

3.5.2 Data Gathering . 21

3.5.3 Coverage Analysis . 22

3.6 Complexity Factors . 22

3.6.1 Logical Lines of Code . 22

3.6.2 Parameter Count . 22

3.6.3 Cyclomatic Complexity . 22

3.6.4 Cyclomatic Complexity Density . 23

3.6.5 Halstead Complexity Measures . 23

3.6.6 Maintainability Index . 24

4 Theory 25

4.1 Test Case Design Guide . 25

4.2 Mocks . 25

4.2.1 Ways of Rigging Data for Tests . 25

4.2.2 Mocking Tool . 28

4.2.3 Unique Responses . 29

4.3 Coverage . 29

4.3.1 Elements . 30

4.3.2 Global and Local State URL’s . 31

4.3.3 Test Adequacy Criteria . 32

4.4 User Session Data . 32

5 Implementation 34

5.1 Setup and Execution . 34

5.2 Test Case Methods . 36

5.2.1 Decision Table . 36

5.2.2 State Transition Analysis . 37

5.2.3 Boundary Value Analysis . 38

5.3 Test Case Design Guide . 39

5.4 Building Mocks . 39

5.4.1 Automatic Mocks with Prism . 39

5.4.2 Manual Mocks with ngMockE2E 40

5.5 Building Mock Tool . 41

5.5.1 Empty Database . 42

5.5.2 Url Counter . 42

5.5.3 File Name Generator . 43

5.6 Coverage . 43

5.6.1 Code Instrumentation . 44

5.6.2 Data Gathering . 47

Contents iv

5.6.3 Coverage Analysis . 49

5.7 Continuous Integration . 53

6 Results 54

6.1 Tools . 54

6.2 Test Case Methods . 55

6.3 Test Case Design Guide . 55

6.4 Continuous Integration . 55

6.5 Mocks . 56

6.6 Coverage . 59

7 Discussion 60

8 Conclusion 65

Bibliography 67

A Implementation of URL Counter 70

B Config File for Protractor 71

C Setup Commands for Codeship 72

D Competencer Architecture 73

E Test Case Design Guide 74

F Protractor-E2E-Coverage Tool 77

List of Figures

2.1 HTTP request and response . 8

2.2 Selenium RC architecture, image is remake from [1] 9

2.3 Protractor architecture . 10

2.4 Example of a Mocha reporter with passing tests, image from [2] 11

2.5 Example of a Mocha reporter with a failed test, image from [2] 12

3.1 Equivalence partitioning example with hard limits 15 and 300 15

3.2 Boundary value analysis example with hard limits 15 and 300 15

3.3 State transition login example . 17

3.4 Prism mode records information flow . 19

3.5 Prism mode mocks information flow . 19

3.6 Overview structure of how continuous integration works, image from [3] . 20

4.1 Example flow over active database setup for testing 26

4.2 Example flow over populating a database for tests 27

4.3 Example flow over tests with manually created mocks 27

4.4 Example flow over automatically created mocks 28

4.5 Overview structure of using prism as a middleware 29

4.6 Overview structure of data flow for coverage 30

5.1 State transition analysis example for a login flow 37

5.2 Storing elements in session storage . 45

5.3 Overall statistics for end-to-end coverage 49

5.4 Coverage summation on a by type basis 50

5.5 Coverage summation on a by state basis 50

5.6 Coverage details for a single state . 51

5.7 Coverage information for an element and its events 51

5.8 Comparison of coverage reports visualized element (top) and web page
element (bottom) . 52

v

List of Tables

3.1 Example of decision table with conditions and results, F being false and
T being True . 16

3.2 Decision table example with three conditions, taken from [4] 16

4.1 Chosen HTML elements for coverage, from [5] 31

4.2 Chosen events for HTML elements, from [6] 31

5.1 Color indications based of coverage percentage 52

5.2 Color indications based of coverage percentage 52

6.1 Comparison of execution times for three test case methods 55

6.2 Time comparison for two tests between real backend and mocked backend 56

6.3 Complexity measures for a Prism setup file 57

6.4 Complexity measures for Prism functions where A: function proxyMid-
dleware, B: function setupPrism, C: function customMockFilename, D:
function connectInit, E: function middleware 57

6.5 Complexity measures for ngMockE2E mock file 57

6.6 Complexity measures for ngMockE2E mock file functions 58

6.7 Complexity measures for ngMockE2E mock file without injected JSON . . 58

6.8 Complexity measures for ngMockE2E mock file functions without injected
JSON . 58

6.9 Complexity measures for multiple ngMockE2E mock files A: file login-
Mock, B: file editProfileMock, C: file marketplaceMock, D: file changePass-
wordMock . 59

vi

Abbreviations

API Application Programming Interface

BVA Boundary Value Analysis

CI Continuous Integration

CSS Cascading Style Sheets

DT Decision Table

E2E End-to-End

EP Equivalence Partitioning

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

JS JavaScript

JSON JavaScript Object Notation

LOC Logic (lines) Of Code

MI Maintainability Index

NPM Node Package Manager

SPA Single Page Application

STA State Transition Analysis

vii

Chapter 1

Introduction

This masters thesis is carried out at Competencer and Linköping University department

of technology and science. The aim for this master thesis is to come up with a solution

for automatic testing on Competencers web application with focus on user interaction

tests. This chapter covers the background for the thesis along with the purpose and

problem definitions. It also covers information about Competencer and presents the

thesis outline.

1.1 Background

Testing is a practice to assure that a product works as intended. At Competencer

this is important because there is a possibility to lose costumers if the product doesn’t

behave as it’s suppose to. Testing on Competencers frontend is today only done with

manual testing and Competencer wants a way of knowing that their users will get the

same experience designed for them with more consistency. This can be accomplished

by covering their frontend with user interaction tests, referred to as end-to-end tests in

this thesis. These end-to-end tests would test different user interacting scenarios in the

same way as a user would interact with the web page. If these end-to-end tests passes

it assures that the interactions on the web page is doing what they are expected to do.

Competencer wants to have an automated testing process to save both time and re-

sources so that they can focus on developing the product, instead of maintaining tests.

They do not want to have an extra backend server to maintain either, meaning that

the tests should be able to run without a backend server. It can be hard to know what

parts of the product is best to test and to maintain a good structure of the written test

cases. Therefore Competencer desires an efficient way to keep track of their tests and

guidelines for writing test cases. They also want a way to see what parts of their product

have been tested and what would be recommended to test next.

1

Chapter 1. Introduction 2

About Competencer

Competencer is an online platform connecting clients and coaches with a digital video

tool. Competencer states this is in the following way:

”our mission is to make professional advice more accessible, as well as more efficient,

and flexible. Through our marketplace and online platform we connect advisors with

clients in an easy way and make it possible for them to meet in our digital meeting

room, no matter where they live.” [7]

1.2 Purpose

The purpose of this masters thesis is to build a foundation for testing web applications

in a fully automatic process with a focus on user interaction tests. This will be done to

ease the implementation of end-to-end user testing on Competencers application so that

Competencer will be able to completely replace their current manual testing sessions

with fully automated ones. The purpose is to also give Competencer the possibility to

measure and evaluate these tests, which is difficult today since they are performed by

hand. Furthermore the purpose is also to build an automatic process, enabling a tester

with direct feedback from the test suites.

1.3 Problem Definition

The following problems are the ones decided to investigate and answer in this thesis:

1. How can a comparison of different end-to-end testing methods lead to a more

effective way of writing test cases?

2. How can a coverage report be built for end-to-end tests without the knowledge of

source code and what information should be analyzed to help a tester?

3. How can end-to-end tests be automated and how can feedback from it improve a

development process?

4. How does automatic mock creation compare to manual mock creation and how

can an automatic process be achieved when mocking backend?

1.4 Thesis Outline

Chapter 1 includes an introduction, purpose and problem definition for this thesis. In

chapter 2 a background describing the situation for this project is presented. Chapter 3

highlights relevant work and chapter 4 covers theory developed from the relevant work.

Chapter 1. Introduction 3

Chapter 5 includes implementation of the testing tool, mocks and other areas. Chapter

6 presents this thesis results and findings. Chapter 7 discusses the results and the final

chapter 8 presents this thesis conclusions.

Chapter 2

Background

This background chapter explains why testing is important, how it supports developing

reliable software and the value of using mocks. Here the technical background for this

project is presented including the tools and frameworks used.

2.1 Importance of Testing

When developing software and writing code it’s inevitable for errors and bugs to be

included and situations to be missed. Requirements for a software program changes

over time and mistakes emerge during changes. In a typical program it is estimated that

around four to eight errors exist within 100 program statements [8]. Some companies

put down up to half of their time and resources to debug and test their product [8].

Testing applications has a base in a psychological perception of trust towards a product

or application. A user might be off-put to let a company handle its credit card details if

the same company have trouble handling a message, rendering an image or a link. When

working with web applications the attention span for a user is short and the expected

quality is exceedingly high, in comparison to desktop software. In order not to lose a

customer to a competitor it is vital to make sure the quality of the product is high, or

in other terms - well tested.

Definition of testing

“Testing is the process of executing a program with the intent of finding errors.” [8]

The cost of errors in software development follows the same principle as how expensive

it is to retract a product from the market. Detecting something early on is cheap, fast

and doesn’t hurt business reputation while a critical failure on a live version is vastly

more expensive.

4

Chapter 2. Background 5

When testing web applications there are multiple tiers, layers and approaches to take

for evaluating a system. It is possible to test the view-, business- or data tier on both a

system level and unit level 1.

2.2 Value of Mocks

Mocks is a practice to simulate an object and mimic its behaviour in a static way. In

this thesis they are used to mimic the database communication. Mocking for end-to-

end testing can be made in many different ways and which one that is best suited is

ultimately decided by the specified testing goal. If one aims at performing an integration

test of an application it’s important that the interaction and responses are generated

from the actual underlying architecture and in that case mocking isn’t an appropriate

method. In this thesis case mocking is good out of a few different reasons:

1. Decouple backend and frontend

2. Backend highly tested

3. Double environment handling for tests

4. Increased difficulty in maintaining tests

At Competencer the current single page application is built with high a decoupling be-

tween backend and frontend with only an API as a bridge in between. This architecture

combined with high code test coverage for the backend makes it redundant and expen-

sive to test both backend and frontend in end-to-end tests. Furthermore setting up an

environment that tracks states and requirements for both backend and frontend takes

additional time and effort and is harder to maintain. From these reasons it’s beneficial

to include mocks in end-to-end testing to exclude the interaction with the database.

Since the backend is already highly tested an assumption that the responses from the

databases are correct is made.

2.2.1 Keeping Mocks up to Date

One downside of mocking the backend is that if something gets updated, the mocks are

affected by this update and needs to be reviewed and updated. Once the mocks are

built they are static, meaning they will always act the same way. If the mocks are not

updated they can miss changes in the database and the tests will test old code.

1Unit Level: It refers to individual units of the source code

Chapter 2. Background 6

2.3 Small, Medium, Large Tests

According to Wittaker et. al [9] small test, such as unit testing, lead to code quality

where medium to large tests lead to product quality. Medium tests is on a higher order

than unit testing, such as a function calling another function, and large tests can test the

application as a whole. This thesis will focus on end-to-end tests, a higher order large

test, which is testing a product in a way that simulates the interactions an actual user

would perform. For instance this could simulate the user logging in to an application,

sending a message, checking the sent message and then log out. This enables a tester to

be sure that the product behaves in way that is to be expected from a users viewpoint.

A software solution only tested with unit testing might have perfect code coverage and

logic error identification but lack knowledge if all the pieces are put together correctly.

Even smaller end-to-end tests can give a lot of assurance that the product works in a

way that is expected by relatively small cost.

“Small tests lead to code quality. Medium and large tests lead to product quality” [9]

2.4 Languages

Common languages used in this thesis are described in the following paragraphs.

HyperText Markup Language

HTML tags are read by the browser and translated into a visible element on the web

page. When writing tests that interact with elements on the page, HTML is used to

target the correct element, then JavaScript is added to interact with the element.

Cascading Style Sheets

Cascading style sheets (CSS) is used to alter the appearance of HTML elements to give

a visual expression. CSS is utilized to make the coverage report more appealing, which

can be read more about in sections 3.5 and 5.6.

JavaScript

Chapman [10] describes JavaScript like this:

“JavaScript is a programming language used to make web pages interactive. It runs on

your visitor’s computer and doesn’t require constant downloads from your website.”

Lately it’s not only used to make web pages interactive but can also be used for client

logic and even as backend. The javascript frameworks used to write and run the actual

tests are Protractor see section 2.6.2, Mocha see section 2.6.3 and Chai see section 2.6.3.

JavaScript Object Notation

JavaScript Object Notation (JSON) is a text format for storing JavaScript objects. It

Chapter 2. Background 7

was developed for JavaScript but works well for many languages due to its simple and

intuitive structure. It is often used to represent configuration information or to imple-

ment communication protocll [11]. In this thesis JSON is used to represent configuration

information for Node Package Manager (NPM) so that Node knows what dependencies

and versions to install when setting up the environment. JSON is also used to store

requests from the client and responses from the backend when mocking it. An example

of a stored JSON is presented in the snippet below:

1 {

2 "requestUrl": "/api-token-auth/",

3 "contentType": "application/json",

4 "method": "POST",

5 "statusCode": 200,

6 "count": 1,

7 "payload": {

8 "username": "hello@competencer.com",

9 "password": "competencer"

10 },

11 "data": {

12 "token": "0d80b5b63fdf4100d652dfd61950e3b3330bb5b4"

13 }

14 }

Here the payload are sent with method POST to the requestUrl. The data and the

statusCode is a response from the server. More about requests and responses can be

read about in the following section.

2.5 HTTP Request and Response

HyperText Transfer Protocol (HTTP) is used to carry communication between a client

and a server, see figure 2.1. The server has endpoints that are like paths or addresses

that the client can call. These endpoints are called by sending a HTTP request to an

URL that represents the endpoint. The endpoints can be called with or without payload

depending on how the endpoint is designed. Payload is the attached data that is sent

together with the request. For example, in the code snippet in section 2.4, the call is a

request to log in a user. To log in, the user needs an authentication token from the server

that is unique for the user. The users name and password are sent as a payload to the

request url, where the server retrieves the payload and checks if the user is registered.

If the user is registered the server sends back a response with a status code of 200, this

particular status code means that everything is good. The server will also send back an

authentication token which will authorize the user. If the user isn’t registered the server

will instead respond with another status code of 400 that translates into ”bad request

from client”.

Chapter 2. Background 8

Figure 2.1: HTTP request and response

Where CRUD stands for the common database actions Create, Read, Update and Delete.

2.6 Frameworks and Tools

There are a lot of different testing frameworks and testing related frameworks available

to use. A testing framework provides functionality for writing tests. It can provide a

sea of different features depending on its scope.

A test runner is the environment that the tests are developed in and the tool that runs

the tests inside the browser. It can either run the tests directly in a browser that is

installed locally or it can use a server that has drivers for several different browsers.

2.6.1 Selenium

Seleniums founder Jason Higgins was working on a web application at ThoughtWorks [9],

this web application was targeting Internet Explorer which at that time was used by the

majority of the market. There was only one problem, he was getting bug reports from

early adopters of Firefox and when he fixed these bugs he would break the application

in IE. In 2004 he started developing what would become Selenium Remote Control

(Selenium RC), Selenium RC consists of a Java server that will start and kill the browser

and also works as a HTTP proxy see figure 2.2. This server uses JavaScript to control

the interactions in the browser [1].

Before selenium was stable Simon Stewart had started working on something called

WebDriver at Google. It was a different approach to web application testing than

Higgins Selenium. With the use of automation API’s the WebDriver was integrated into

the browser itself. This made it possible to do things that Selenium couldn’t handle

but on the other hand as it was integrated to the browser it wasn’t easy to make it

compatible with new browsers. This was also one of Seleniums strong sides, it could

adapt to new browsers with almost no effort. The two projects merged in 2009 and got

the official name Selenium WebDriver [12].

Today most end-to-end testing libraries is a wrapper for the Selenium WebDriver which

makes it possible to write end-to-end tests in many coding languages.

Chapter 2. Background 9

Figure 2.2: Selenium RC architecture, image is remake from [1]

Short explanation of what is happening in figure 2.2 from [1]:

1. A client connects to the remote control server

2. The launcher part of the RC server starts a Selenium core in the browser

3. The client can feed the selenium core with code which the core translates to JavaScript

4. The core runs JavaScript in the browser to interact with things on the page

5,6 and 7. When browser receives a request to load a page it will get the content from

the real page through the remote control server proxy and render it.

2.6.2 Protractor

Protractor is one of the wrappers for Selenium WebDriver written in JavaScript. It has

support for testing specific practices related to coding with Angular, such as repeaters

and bindings. It’s developed to perform high level testing like user interaction scenarios.

It can be viewed as tool for interacting with a website the same way as a user would.

Chapter 2. Background 10

The tests are written in a test-framework like Mocha, see 2.6.3, together with a test-

runner like Protractor. It’s possible to run the tests without Selenium on Chrome derived

browsers with a Chrome driver. However, if the test is going to be tested in multiple

browsers the easiest way is to use Selenium. Then the webdriver part of Selenium

converts the tests to JSON requests that then are sent to the Selenium server. The

server itself cannot interact with the page so it uses browser drivers to do that. When

a request for a specific test suite2 is completed a test-framework will cover the reports.

Figure 2.3: Protractor architecture

In figure 2.3 it is shown how protractor interacts with Selenium, Mocha and Chai that is

used together with the Angular application. The Mocha, Chai and Protractor are used

for writing the tests. The tests are sent by the WebDriver part of Protractor to either

the local Chrome driver or to a Selenium server that will use the browsers drivers to run

the tests inside the browser.

2.6.3 Mocha and Chai

Both Mocha [2] and Chai [13] are JavaScript testing related frameworks, Mocha is the

part of testing that actually triggers the tests and reports the results. In the second code

2Test Suite: It refers to a group of test cases that are related

Chapter 2. Background 11

snippet in section 5.1 describe and it calls are made. This is what mocha is used for

in the tests. Inside these it calls expect calls are made, these are from the Chai library

which is an assertion library. Mocha and Chai work very well together. In figure 2.4 an

example of how the Mocha reporter looks like when the tests are passing is displayed.

In figure 2.5 an example of how Mocha reports a failed test is presented.

Figure 2.4: Example of a Mocha reporter with passing tests, image from [2]

Chapter 2. Background 12

Figure 2.5: Example of a Mocha reporter with a failed test, image from [2]

2.7 Architecture at Competencer

This thesis is done at Competencer and testing is performed on their product. Part of

the technical background for this work is from the current architecture at Competencer,

which can be seen in appendix D.

From the architecture we can see that Competencer uses Angular as their frontend

framework and Django as their backend framework. They also rely on Node and Gulp

for other tasks, such as enhancing workflow. In the following sections these frameworks

will be described in more detail.

2.7.1 Django

Django is an open source web framework written in Python aimed at building scalable

web apps with ease [14]. The core of Django is a model-view-controller pattern where

the model is a relational database. The framework also includes tools for running a de-

velopment server, middleware functionality, site maps, admin interface and much more.

At Competencer Django is used in conjunction with the database PostgreSQL as their

backend.

Chapter 2. Background 13

2.7.2 Node

Node is an event driven framework designed for building network applications that scale

well [15]. Node creates an runtime environment on the server-side for running and

working with network applications. The framework is written in JavaScript, is open-

sourced and can be run on all major platforms. One important feature is the node

package manager (NPM) which enables easy install and updating of modules. Node

comes bundled with functionality for creating web servers, networking tools and file

system writing.

2.7.3 Gulp

Gulp is a streaming build system written in JavaScript as a Node module [16]. Gulp aims

at enhancing tasks such as building process and running certain types of environment

making development processes faster and more convenient. This tool can for instance

enable building of source files, minifying scripts, bundling files, compressing images,

running test suites and much more.

2.7.4 Angular

Angular is a web application framework for building dynamic views in HTML and works

by creating a single page application [17]. Angular interprets a HTML page and binds

specific tags and attributes to variables in controllers, allowing two way data binding.

At Competencer Angular is used as the primary frontend framework for building web

applications.

Chapter 3

Related Work

This chapter presents related work for this thesis. That includes different test case design

methods, test case design guide, mocking information, continuous integration, related

coverage information and complexity factors used for later evaluation.

3.1 Test Case Methods

Test cases are derived from requirements and specifications of the software application.

This is often described by an external specification of how the software is expected to

behave. A test designer would look at an isolated task, its related requirements and

decide its valid and invalid input and then what the correct output would be. When

testing software it is practically, and sometimes even theoretically, impossible to try all

cases. For instance an input field for text on your website can be entered in in a near

infinite number of combinations. Test case methods are good for breaking down large

number of possible test cases to a few cases. This way testing will be more efficient and

practical.

3.1.1 Equivalence Partitioning

Equivalence partitioning is a testing method that is suitable on inputs with hard limits.

Equivalence partitioning, also known as equivalence cases, is a way to group cases that

can be treated as the same. Then one case of each case group can be tested to ensure

that it would work for all cases in that section.

14

Chapter 3. Related Work 15

Figure 3.1: Equivalence partitioning example with hard limits 15 and 300

In figure 3.1 an example of input that has a valid input range of 15 through 300 is

illustrated. All possible inputs have here been divided into three equivalence cases.

Case 2 contains all valid inputs and choosing one inside the range will be enough. Case

1 and case 3 tests invalid inputs by looking at the lower and upper outside ranges. With

this method an unmanageable amount of test cases have been reduced to three, by for

instance testing 7, 123, 377.

3.1.2 Boundary Value Analysis

When testing input values it’s widely known that more errors occur close to the edges

of the domain. With boundary value analysis (BVA) test cases are built around the

boundary instead of an arbitrary point in the range. The BVA method is an improved

equivalence partitioning method since it captures more edge cases.

Figure 3.2: Boundary value analysis example with hard limits 15 and 300

Boundary value analysis on the example in figure 3.2 would generate six test cases. The

test cases are defined by testing the limits 15 and 300 and their closest values. Myers et

al. [8] says that

”if practiced correctly, [boundary value analysis] is one of the most useful test-casedesign

methods.”

He continues to say that the hard part of using it is to identify the boundaries correctly.

Chapter 3. Related Work 16

3.1.3 Decision Table

Decision table is a suitable testing method for multiple inputs that combined generates

specific outputs. Decision table testing is good for creating a structure for complex logic

and is intuitive for both testers and developers to work with. However the size of tables

grow very fast and can quickly become unmanageable, therefore it’s a good practice to

split into sub tables as much as possible.

Condition

Enter valid username F F T T

Enter valid password F T F T

Result

Error message X X X

Log in user X

Table 3.1: Example of decision table with conditions and results, F being false and
T being True

In table 3.1 an example of a decision table is displayed with two conditions that can

either be true or false. Each of these combinations will produce a result that should

be tested against. This example is easy to work with since it’s only four rules, but it

quickly becomes heavier by adding more conditions. Three conditions would give eight

rules; four would give 16 and so on following a 2x formula. Having a complete decision

table gives a good overview of cases one might have otherwise missed. It also gives the

opportunity to choose which ones to implement and which ones to disregard.

Conditions

New customer(15%) T T T T F F F F

Loyalty card(10%) T T F F T T F F

Coupon(20%) T F T F T F T F

Actions

Discount(%) X X 20 15 30 10 20 0

Table 3.2: Decision table example with three conditions, taken from [4]

Table 3.2 shows a decision table example with different outcomes dependent on different

combinations of discount offers.

3.1.4 State Transition Analysis

Most testing techniques involve finding errors in an isolated state. State transition anal-

ysis (STA) goes beyond this to find errors that might occur between different states.

Classic exhaustive testing over different states in a complex application is time consum-

ing and difficult to perform. By defining states and determining loops the amount of

test cases to design can be limited. STA can also be viewed as a finite state machine.

Chapter 3. Related Work 17

Figure 3.3: State transition login example

From a STA we can define a test condition for each state as well as for each state

transition. This normally isn’t very effective but with a state diagram it’s easier to

create useful test cases and detect most probable use cases.

3.2 Test Case Design Guide

Test case templates are widely used amongst companies that writes a lot of tests. This

is a document where the person writes what to test and how to test it before writing

actual code. This is done to keep track of the tests created and to make is easier to

write the actual test. An example of such a template is Dr. Assassas template [18]

where a tester can fill in description, pre-conditions, test steps, post-conditions and

some more information. This is a generally good template, however, there are some

missing information that would make it fit an end-to-end test better. Test case templates

especially created for end-to-end tests could not be found.

3.3 Mocks

In the process of writing tests the response is compared to an expected value. The

response form the database has an expectancy beforehand. This means that it’s possible

to isolate the test from the database by hijacking the request and storing the response

as a fake response. When a request goes out it doesn’t go to the database but instead

to a mock that returns what the database is supposed to return. This will decouple the

tests from requiring a backend.

Mackinnon et al. [19] explains mocks like this:

Chapter 3. Related Work 18

”Until a choice is made, we can write a mock class that provides the minimum behaviour

that we would expect from our database. This means that we can continue writing the

tests for our application code without waiting for a working database.”

3.3.1 Mocking Third Party APIs

Third party API’s are hard to test because the lack of control over sent requests. Ac-

cording to [20] and [21] mocks should only be built on parts that are owned. These third

party mocks often result in being more complex and hard to maintain than expected.

Freeman [21] says that

”Mock-based tests for external libraries often end up contorted and messy to get through

to the functionality that you want to exercise.”

When mocking an external API there is no assurance that the test actually works, or as

Kolsjö [22] says, it’s just a passing test. It will probably work when the test and mocks

are written but if the external API changes the mock will be wrong and the test will

continue to pass untill both the test and mock are updated.

3.3.2 Prism

The tool Prism [23] is inspired by the VCR project [24], which is a tool for recording

HTTP requests and responses 2.5. Prism is designed with the aim to help and speed up

the process of working with frontend development by recording and playing back HTTP

requests for testing or development [25].

Prism supports four different modes; proxy, record, mock and mockrecord. Here only

record and mock are going to be discussed as they are the primary features of an auto-

matic recording tool.

Prism works by adding a custom built middleware to the existing middleware setup.

This enables it to be in-between routing of API requests and adds functionality for

handling these requests. A normal use would be to set the tool in record mode, see

figure 3.4, and let all HTTP requests pass and on the requests return save the response

as a JSON file.

When the recorded mocks are completed it’s possible to enable the middleware Prism

to redirect HTTP requests to stored responses with the mode mock, see figure 3.5. This

mode will listen to the API request and then try to lookup a stored mocked version of

that specific API request. A prerequisite for this is that each request must have been

seen in the record mode, otherwise their is no mock to match the request. This makes

it possible to remove the backend altogether and in a sense can be seen as an HTTP

cache.

Chapter 3. Related Work 19

Figure 3.4: Prism mode records information flow

Figure 3.5: Prism mode mocks information flow

3.3.3 ngMock and ngMockE2E

The modules ngMock [26] and ngMockE2E [27] are modules developed for the frame-

work Angular. NgMock adds support for mocking Angular services and injects them as

dependencies to other services. They are created with the aim of supporting unit test-

ing, with the functionality that they can be inspected and controlled in a synchronous

manner. Mocks in ngMock works by simulating what the actual service would return

by injecting the faked service into test suites.

The other module, ngMockE2E, is very similar to ngMock in that it mocks services and

can be injected across test suites. The biggest difference is that it’s tailored for end-

to-end tests where it mocks HTTP requests by returning the expected responses over

and over again, like an actual server [28]. However both of these moduels requires the

developer to manually create each mock reponse.

3.4 Continuous Integration

Continuous Integration (CI) is one of the twelve foundation practices of extreme pro-

gramming and is a good way for continuously building and testing the code. According

to Martin Fowler [29] CI is

Chapter 3. Related Work 20

”a software development practice where members of a team integrate their work fre-

quently, usually each person integrates at least daily - leading to multiple integrations

per day. Each integration is verified by an automated build (including test) to detect

integration errors as quickly as possible”.

CI doesn’t have to run tests in order to be used. It can also be used to build code for

detecting compiling errors. However it’s a common practice to also have tests running

on the CI to be able to discover more bugs. The CI runs the tests and gives a report

back to the developers so that they can fix eventual bugs.

”As a result projects with Continuous Integration tend to have dramatically less bugs,

both in production and in process” [29].

Except for the increased chance of finding bugs, using a CI server allows the developers

to integrate their code every day. This enables them to detect integration errors every

time they have changed or built something. This frequent integration will save time

because developers spend less time integrating their code later on in the project. An

overview of how continuous integration works can be seen in figure 3.6.

Figure 3.6: Overview structure of how continuous integration works, image from [3]

By connecting a version control1 repository2 to the CI server, it will get notified by the

repository if there are any new commits3. The CI server will then sync the repository

1Version control: Is a system for tracking changes on files over time
2Repository: Is a project in version control system
3Commit: Is making changes permanent in version control system

Chapter 3. Related Work 21

and run a chain of commands, configured by the a user. This is done to set up a copy

of the deploy environment and run tests to detect as many errors or bugs as possible

before the code is deployed4.

3.5 Coverage

Code coverage is a tool for assisting in the assurance of well-tested code. By looking at

what code gets executed during the tests runtime a measurement of how much the tests

are covering can be retrieved. A program is not reliable if just all test are passing as it

might just touch on a portion of the code [30].

The purpose of code coverage is not to give a definitive statement if a program is finished

with testing or not. It merely gives an indication of the state of the codebase, extra low

coverage percentage means that a low amount of code have been tested. Coverage can

also help in tracking the state of an application over time as the percentage gives an

indication over the amount of tested parts. More importantly it gives a tool to narrow

down areas or parts of the code that dont get attention and are untested.

Building and using a coverage tool consists of three parts: code instrumentation, data

gathering and coverage analysis [31].

3.5.1 Code Instrumentation

Instrumenting a program give the possibility of being able to monitor a piece of software.

The process can be utilized to record performance, speed or error tracing in various ways.

These recorded features can then be used in a context outside of the software to give an

indication of its health, with different metrics.

Instrumentation of a piece of code will listen to what is being triggered and send that

data to a data hook5 for further processing. This practice will not detect any information

on parts the program never visited.

3.5.2 Data Gathering

Data gathering, also known as data collection, is the process of retrieving and measuring

data from a test. In relation to code coverage its goal is to listen on the outputs of the

code instrumentation and then build it into a usable structure. This gathered data

will then be the basis for answering the proposed questions in the tests and to decide

whether a hypothesis was successful. The gathered data for testing software would be

the information needed to answer if parts of the code are tested or not.

4Deploy: Is a process for releasing a certain version of a software
5Hook: It allows other modules or parts to react on changes

Chapter 3. Related Work 22

3.5.3 Coverage Analysis

With the provided data from a data gathering process a coverage analysis will perform

strategies to decide a softwares health and to give recommendations on areas that need

attention. Coverage analysis will analyze the given data and decide what items, objects

or functions that have a poor or good status.

3.6 Complexity Factors

Complexity factors are formulas to measure a perceived difficulty level of code. A rough

approach is to count the number of lines in the source code which then could express

a measure of time required to look through the program. Different complexity factors

give different hints on where attention should be focused. These complexity factors is

used to compare manual versus automatic mocks.

3.6.1 Logical Lines of Code

Logical Lines of Code (LOC) is a physical count of logical statements in a program.

This performance measure is often seen as a relatively poor one as the most compact

solution isn’t always the best one, making a pure count misleading.

3.6.2 Parameter Count

Parameter count looks at the number of parameters that go into a function and is

a way of measuring dependency injection. However this measure doesn’t account for

dependency within a parameter, making for instance a configuration object count as

only one. A low score is desirable.

3.6.3 Cyclomatic Complexity

Cyclomatic complexity is a quantitative measure of linearly independent paths through

a program. In 1976 Thomas J. McCabe developing this metric by evaluating paths and

nodes in a control flow graph. A low score is desirable.

Cyclomatic complexity = E −N + 2P (3.1)

Where E is the number of edges in the flow graph, N is the number of nodes in the flow

graph and P is the number of connected components.

Chapter 3. Related Work 23

3.6.4 Cyclomatic Complexity Density

Cyclomatic complexity density is an extension of cyclomatic complexity where a per-

centage score is retrieved by comparing to logical lines of code. A low score is desirable.

Cyclomatic complexity density = cyclomatic complexity/LOC (3.2)

3.6.5 Halstead Complexity Measures

Halstead complexity measures were developed in 1977 by Maurice Howard Halstead and

aims at measuring relationship between static code and results. Difficulty refers to the

difficulty to actually write, extend or understand the program. Effort is a combined

measure of volume, size of the program, and the difficulty that can be viewed as a mass

of work. Effort can be estimated to actual time to program and can also give an estimate

of expected bugs to detect.

The variables used in some of the following equations are: n1 = the number of distinct

operators, n2 = the number of distinct operands, N1 = the total number of operators

and N2 = the total number of operands

Program vocabulary: n = n1 + n2 (3.3)

Program length: N = N1 +N2 (3.4)

Calculated program length: Nc = n1 ∗ log2 n2 + n2 ∗ log2 n2 (3.5)

Volume: V = N ∗ log2 n (3.6)

Difficulty: D = n1/2 ∗N2/n2 (3.7)

Effort: E = D ∗ V (3.8)

Time required to program (s): T = E/18 (3.9)

Delivered bugs: B = E2/3/3000 (3.10)

Chapter 3. Related Work 24

Program level: L = 1/D (3.11)

3.6.6 Maintainability Index

Maintainability index (MI) is a metric to evaluate the entire module or program and

was designed by Paul Oman and Jack Hagemeister in 1991. Three other metrics; effort

3.8, cyclomatic complexity 3.1 and LOC are used in a weighted average to give the

entire program a score of how maintainable it is. A higher score is better where 171 is

maximum obtainable.

MI = 171− 3.42 lnE − 0.23 lnC − 16.2 lnL (3.12)

Where E is mean effort, C is mean cyclomatic complexity and L is mean logic lines of

code.

Chapter 4

Theory

This chapter covers information about the theories developed in this thesis from the

related work. It includes a concept for a test case design guide, usage of mocks, structure

of a coverage tool and potential usage of user session data.

4.1 Test Case Design Guide

The test case template Dr. Assassa [18] has written is missing information that is impor-

tant to know when writing a test case for an end-to-end test. Assassas template covers

most things that are generally good to know when writing a test. These are usually con-

ditions necessary for setup, performed actions during tests with their expected response

and conditions present after a completed test. With end-to-end tests it’s important to

know which states the tests are visiting. This is important to know where the elements

are interacted with and because some HTTP requests are page specific. This means that

if a test is failing because of the mocks or that the test is rewritten, it is easy to know

what test cases to rerun for recording the mocks that needs to be rerecorded. Another

thing that is good to know when writing a test is what method(s) to use, therefore this

is also added to the test case design guide.

4.2 Mocks

Mocks presented in 3.3 mention the definition of what mocks aim to achieve. Here the

related works are continued to present this thesis theory of how to utilize mocks.

4.2.1 Ways of Rigging Data for Tests

There are different ways that the data could be rigged to run the tests. These options

are to use an active database, populate a database with data or to mock the database,

25

Chapter 4. Theory 26

either manually or automatically. The following subsections explains the different meth-

ods in more detailed.

Active Database

One form of end-to-end testing is called acceptance test and it’s a way of testing all

components in a system without any faked responses. This is done to ensure that each

component actually works like it should in the live version. These tests costs more in

terms of time and effort in setup and execution but will generate a result that matches

the expected real user interactions more closely.

Figure 4.1: Example flow over active database setup for testing

It’s performed by setting up a frontend client and a backend server, see 4.1, running live

for the test suites. Each test on the platform is then run on the actual user interface and

interactions are sent to the backend server over the API. A benefit from this solution

is that test backend and frontend are tested simultaneously. There are however some

drawbacks which tends to make integration testing less useful. Setting up an environ-

ment that holds and supports both the backend and frontend takes more time and effort

than two separated environments. Usually, or hopefully, the backend and frontend are

two very isolated areas and tend to have little to none shared codebase.

Populate Database

This method is similar to active database setup where both a server and a frontend client

is created. Working with a live backend server can create problems when manipulating

data since the data is manipulated between testing cycles. Running a test suite that

manipulates data will then create a different state after the test suite, making reruns

impractical. To compensate for this problem preselected information is generated before

building tests.

This can be done either manually or automatically, where dumping data from a live

database is a common practice. When the data in the database is at a good state it

would be retrieved and saved by a so called data dump. Next time tests are started, a

new clean database is set up and populated by the dumped data, see 4.2. This enables

tests to be run multiple times as the data before executing tests suites is static.

Manual Mock Creation

Manual mock creation is most commonly used in unit testing but still contribute to other

areas such as end-to-end testing. This can be done in two different ways; by mocking

Chapter 4. Theory 27

Figure 4.2: Example flow over populating a database for tests

the actual database architecture and its corresponding tables, or by mocking responses

a user triggers in the product. For instance a test suite that tests a login page that

responds with an authentication token can be mocked into a static file.

Figure 4.3: Example flow over tests with manually created mocks

Using mocks for tests decouples the backend completely and isolates the frontend client

for tests. This gives a better performance and narrows down occurring errors into a more

controlled environment. It’s also one of the more common methods since it’s relatively

easy to build and yields a higher return than many of its counterparts. Problems asso-

ciated with mocking is a higher demand on initial time investment, see 4.3, for building

the mocks. Services with many dependency injections might require additional work to

mock all involved parts. Keeping these mocks up to date, see 2.2.1, is not a straightfor-

ward task and can take extra work.

Automatic Mock Creation

One way of creating mocks by automation is to record HTTP responses from HTTP

requests. The tool that is running the mock creation will listen to each HTTP request

Chapter 4. Theory 28

and save its header and response information. With this data it’s now possible to

playback what was recorded next time it’s called.

Figure 4.4: Example flow over automatically created mocks

With the tool up and running all tests are performed on a live setup. All requests are

saved into mocks for later reuse. So the next time tests are running it will first check if

it has a recorded version and then sends that one back, see 4.4. A recorded test suite

can then be run without any backend at all and makes it easier to maintain on a staging

environment. To add new tests a developer simply runs the tests locally which will build

the new unseen data.

A positive aspect of this approach is the extensive saving of time to build mocks for

test suites. It also matches the real image of responses very well since it records actual

responses. It can be harder to maintain since it’s an automatic solution where a recorded

suite is not intended to be updated manually.

4.2.2 Mocking Tool

Prism 3.3.2 is used to build mocks for end-to-end testing by the automatic mock creation

theory. Here the tool is extended to better suite the needs of current testing requirements

since the identification of unique mocks where insufficient in the original tool.

Building mocks is done through an automatic recording tool that is capturing HTTP

requests so it can be saved for later use. It’s automatic since it injects itself as a

middleware in the existing environment and listens, records and replays HTTP requests

and responses. These features eliminates the need for manual upkeep of mocks and

reduces the required time to manage mocks. A smaller drawback is the loss of control

in the details inside a mock request or response. For instance if a request is dependent

on a timestamp in its payload it would be hard to use it with an automatic tool.

Figure 4.5 illustrates the current setup of middlewares for relaying information to the

right targets at Competencer. Currently three ports are used to relay information and

calls to the frontend, backend and a realtime component. In this setup it’s the backend

that is going to be eliminated in testing so then Prism is attached onto that target port,

Chapter 4. Theory 29

Figure 4.5: Overview structure of using prism as a middleware

8000. Prism takes control if it should relay information forward to the backend or if it

should get information from mocks.

4.2.3 Unique Responses

When working with an automatic mock creation tool, Prism, it’s important to distinguish

each request as a unique one. Otherwise problems might arise with mocks being writing

over each other or new ones not being detected.

A mocking tool needs to be able to distinguish between a good API response and a bad

one, HTTP status 200 and 400 respectively. Both statuses can be produced on the same

endpoint and is therefore not enough to just look at an API endpoint. This is where the

current version of Prism is falling short and why an extension was necessary.

Proposed structure for unique endpoints

API endpoint + Payload + Headers => Unique response

Given an endpoint, its headers and a payload it should produce an unique response.

The reason behind this statement is that this is the exact information that the backend

receives, which it uses to perform a specific operation. Therefore it should be enough to

return a matching level of granularity in the response based on the same parameters.

4.3 Coverage

Section 3.5 describes the fundamentals of using coverage over a code base. The major

difference between standard practice methods for unit testing and end-to-end testing

is the access to source code. A test in end-to-end testing will not be able to give any

Chapter 4. Theory 30

indication whether a certain part or statement have been evaluated or tested from the

source code. Testing coverage of end-to-end tests is here defined as a measurement of

all elements that are possible to interact with.

The goal here is to locate what elements a user can interact with and then save which

one the user does interact with. This will create a coverage report that maps the areas

covered of possible user interactions, something that is closely related to the goal of

end-to-end testing. A form of state based approach is taken for building coverage over

end-to-end tests where the states are triggered by user interactions. Coverage will gather

information based on the visual interface presented to the user and data analyzing will

be done on the HTML.

Figure 4.6: Overview structure of data flow for coverage

Figure 4.6 displays the structure of the tool and the flow of information for building

coverage over an end-to-end solution. For each test case that is executed the browser is

instrumented and then a process for gathering data from the browser is performed. This

data is saved into a database and upon completion of all the test cases it’s analyzed for

presentation in a report.

The browser is created and hosted by Selenium and all interactions to and from the

browser are going through it. Protractor is used as the bridge between the frameworks

used for the web application and the web driver host Selenium. Protractor supports

hooks to perform operations on test setup, test case completion and test teardown.

With these hooks a Node plugin is built for Protractor to instrument and analyze the

tests.

4.3.1 Elements

To build a coverage report for end-to-end tests first elements and events that should be

used for the report needs to be defined.

Chapter 4. Theory 31

Detecting events on visual elements in the browser is done with help from the documen-

tation on HTML. HTML is a global standard [32] and all elements and their attached

events are already defined. From [5] all elements that are possible to interact with can

be determined, as well as their attached events [6]. In this process a selection is made

to not get an overflow of information for the coverage analysis. The selection is made to

include elements used for navigation and other elements that are primarily interacted

with. Only events that are triggered by a user here are taken into consideration.

Element Description

<button> represents a clickable button.

<form> represents a document section that contains
interactive controls to submit information to a web server.

<input> is used to create interactive controls for web-based forms
in order to accept data from the user.

<select> represents a control that presents a menu of options.

<textarea> represents a multi-line plain-text editing control.

<a> defines a hyperlink

Table 4.1: Chosen HTML elements for coverage, from [5]

Element Input Click Invalid Focus Blur Change Submit

<button> X

<form> X

<input> X X X X X X

<select> X X

<textarea> X X X X X

<a> X X X

Table 4.2: Chosen events for HTML elements, from [6]

In table 4.1 all elements used for coverage are displayed and in table 4.2 chosen related

events are presented.

4.3.2 Global and Local State URL’s

Working with HTML elements instead of source code introduces a few differences. For

instance a web page appears in multiple states when the actual HTML markup visible

to the user can be built on demand. Source code in contrast is often built beforehand

or visited upon runtime. This creates a problem where for instance a button can appear

on multiple pages. That button in itself is essentially the same one over multiple pages

even though it could have different actions tied to it.

A concept of local and global elements is therefore introduced. The definition of local is

related to the state URL of the current webpage. Global refers to all states encapsulated

under a webdomain, e.g. www.competencer.com.

Example of state URLs

Chapter 4. Theory 32

• /

• /login

• /account/profile

An element can have multiple coverage metrics since it can refer to its local state as well

as its global state. If it’s interacted on half of its available events on a state named /login

it has a 50% local coverage. The global coverage for that element can’t be lower but it

could be higher if other events for that element have been triggered on other states.

This concept works for an element on a specific state as well as on the aggregated state

itself. A single state have a local coverage and a global coverage since other states can

have shared elements that are tested.

4.3.3 Test Adequacy Criteria

For a coverage report to produce results that are usable it’s important to define when

and how a test is completed and if it passes. Since normal practices for testing can’t be

applied a custom criteria will be developed to better suit the environment.

The test adequacy criteria for this coverage tool is on two levels; events and elements.

The criteria for these levels are based on that an event is only triggered when a user

makes an interaction. A visual element is the starting point for triggering events and

the definition of accessible actions for a user.

Criteria for a passed event and a passed element

1. An event is considered a pass when an interaction has triggered it

2. An element is considered a pass when one of its own events have passed

4.4 User Session Data

Elbaum et al. [33] writes about how user session data can be used to create test suites

for unit tests in a more effective way. This could also transfer to end-to-end test if data

from user activity on the web page were to be collected. The data about what elements

are interacted with could be used to cover the most used parts of the web page with

tests. This could be combined with the coverage report to see what elements to prioritize

in the test cases to be written.

The data that should be withdrawn from user sessions to get a good representation of

what to test next could be things like:

• Number of interactions with an element

Chapter 4. Theory 33

• What type of element

• What type of interactions with the element (hover, click, etc.)

• How many times pages are visited

• What pages are visited

• Time spent on pages

• Time spent waiting on action

The coverage shows what is already tested and what is not. This together with the data

from users browsing the web page in the list above could be used to generate a list of

recommendations of user heavy elements or states that should be tested. This would

be done in order to make it easier for testers to decide what to test. Possible ways to

decide what to test next is to check what elements have the highest frequency of use or

check what pages are visited the longest time. It is the things users use most that needs

to be tested.

This recommendation list could give examples like This element have a high priority or

Users spend a long time on page X. A test case from this recommendation list could

easily be created and it would save time for the tester to figure out what to test next.

It would be like having an automatically generated backlog for the tester(s). There are

a lot of possibilities with a method like this.

Chapter 5

Implementation

This chapter covers how implementations of the various parts of this thesis is carried

out. The implementations are explained with figures and code snippets to make it easier

to understand and replicate.

5.1 Setup and Execution

To write tests with Protractor, Mocha and Chai a Protractor configuration file needs

to be written. In this configuration file a path to the Selenium server is defined, what

framework to use and what tests to run are also included. This configuration file is

included in appendix B.

When writing tests it’s a good practice to use page objects. This means creating an

object for a certain page that will have variables tied to the elements on that page. It

can also contain functions such as a login function. This makes the code reusable rather

than inlining it in the tests. An example of a page object can be seen in the snippet

below:

1 var LoginPage = function () {

2 this.usernameField = element(by.model(’auth.user.username ’));

3 this.passwordField = element(by.model(’auth.user.password ’));

4 this.loginButton = element.all(by.tagName(’form’)).get (0).element(

by.tagName(’button ’));

5 this.errorMessageBox = element(by.css(’[ng-show="auth.error "]’));

6 this.get = function () {

7 browser.get(browser.baseUrl + ’/login ’);

8 };

9 this.login = function(username , password) {

10 this.usernameField.sendKeys(username);

11 this.passwordField.sendKeys(password);

12 this.loginButton.click ();

13 };

14 };

15 module.exports = LoginPage;

34

Chapter 5. Implementation 35

The above snippet shows how a page object for a login page could look like. It inludes

variables for the username field, password field, login button, error message box, login

function and a function that navigates to the login page.

A testfile using the page object could begin like the snippet below:

1 ’use strict ’;

2 // Import chai framework

3 var chai = require(’chai’);

4 var chaiAsPromised = require(’chai-as-promised ’);

5 chai.use(chaiAsPromised);

6 var expect = chai.expect;

7 // Import login page object

8 var LoginPage = require(’../ pages/login.page.js ’);

9 var loginPage = new LoginPage ();

10

11 describe(’Login test’, function (){

12 it(’Should go to login page’, function (){

13 loginPage.get ();

14 expect(browser.getCurrentUrl ()).to.eventually.equal(

browser.baseUrl + ’/login’);

15 });

16 it(’Should be a username field ’, function (){

17 expect(loginPage.usernameField.isPresent ()).to.eventually.equal(

true);

18 });

19 ...

20 });

First the Chai assertion library is imported to enable expectations that checks if a test

passes or fails. The chai-as-promised adds promises to the Chai library, which enables

the tests to wait for a promise. If not the test would be faster than the page is loading

and all tests would fail.

The describe function is used to divide parts of tests and to get a more granular report.

The it functions is what is evaluated to true or false. In the code snippet above there

are two tests, first tests if the browser is on the correct page and the seconds tests if the

username input field is present.

After the tests have been written it can be executed with the following bash command,

assuming current folder contains the e2e.conf.js file, see B.

protractor e2e.conf.js --suite logintest

To prevent the need to start up the frontend server which needs to be done before running

tests like described in section 5.1, a gulp task is created. What this task simply does is

to start the frontend server and then run the tests with only one command needed. The

gulp task for running all tests looks like the snippet below.

Chapter 5. Implementation 36

1 ’use strict ’;

2 var gulp = require(’gulp’);

3 var $ = require(’gulp-load-plugins ’)();

4 var connect = require(’gulp-connect ’);

5 var browserSync = require(’browser-sync ’);

6 gulp.task(’protractor-only ’, function (done) {

7 var testFiles = [

8 ’test/e2e /**/*. js’

9];

10 gulp.src(testFiles)

11 .pipe($.protractor.protractor ({

12 configFile: ’test/e2e.conf.js ’

13 }))

14 .on(’error’, function (err) {

15 // Make sure failed tests cause gulp to exit non-zero

16 throw err;

17 })

18 .on(’end’, function () {

19 connect.serverClose ();

20 done();

21 });

22 });

23 gulp.task(’protractor ’, [’serve’, ’protractor-only ’]);

Now the only bash command needed to run all tests is the following:

gulp protractor

There are also tasks created to for running tests with mockrecord and for running tests

without backend against the recorded mocks.

5.2 Test Case Methods

In this section the implementation of the three methods DT, STA and BVA are shown

with code and figures. The full implementations are not presented, only the vital parts

are shown to understand how they would be implemented. The following subsections

shows an interpretation of how these methods could be implemented as there is no exact

way.

5.2.1 Decision Table

The first case where both username and password are invalid, from table 3.1, is imple-

mented in the following way:

1 describe(’Logintest , N = Not Valid , Y = Valid ’, function () {

2 it(’Username: N, password: N’, function () {

Chapter 5. Implementation 37

3 loginPage.usernameField.clear ();

4 loginPage.passwordField.clear ();

5 loginPage.login(wrongUsername ,wrongPassword);

6 expect(loginPage.errorMessageBox.getText ()).

to.eventually.not.equal("");

7 });

8

9 ...

10 });

First the username and password fields are cleared, then an attempt to login with wrong

username and password is made. After the login attempt, an error message box con-

taining an error message should not be empty.

5.2.2 State Transition Analysis

A login STA diagram is shown in 5.1 and the following code snippet is an implementation

of the first two states shown.

Figure 5.1: State transition analysis example for a login flow

1 describe(’Logintest , A = Action , S = State ’, function () {

2 it(’A: Go to login , S: S0 -> Empty fields ’, function () {

3 loginPage.get ();

4 expect(browser.getCurrentUrl ()).to.eventually.equal(

browser.baseUrl + ’/login’);

5 expect(loginPage.usernameField.getAttribute(’value ’)).

to.eventually.be.empty;

Chapter 5. Implementation 38

6 expect(loginPage.passwordField.getAttribute(’value ’)).

to.eventually.be.empty;

7 });

8 it(’A: Enter email , S: Empty fields -> Entered email ’, function () {

9 loginPage.usernameField.sendKeys(wrongUsername);

10 expect(browser.getCurrentUrl ()).to.eventually.equal(

browser.baseUrl + ’/login’);

11 expect(loginPage.usernameField.getAttribute(’value ’)).

to.not.eventually.be.empty;

12 });

13 ...

14 });

In the snippet above the first state gets the login page and checks that the browser is

on the correct page. After that it also checks that the input fields are empty. In the

state after that it inputs a wrong username and checks that it’s still on the login page

and that the field is not empty.

5.2.3 Boundary Value Analysis

The BVA method, from figure 3.2, is implemented in the following way:

1 var tryDuration = function(duration , shouldWork){

2 describe(’Trying duration: ’ + duration , function () {

3 editProfile.offerings.create.duration.sendKeys(duration);

4 if(shouldWork) {

5 it(’Should not be an error ’, function () {

6 expect(editProfile.offerings.create.error.getText ()).

to.eventually.equal("");

7 });

8 }

9 else {

10 it(’Should be an error ’, function () {

11 expect(editProfile.offerings.create.error.getText ()).

to.eventually.not.equal("");

12 });

13 }

14 });

15 }

16 describe(’Boundry value analysis duration test’, function (){

17 tryDuration (14, false);

18 tryDuration (15, true);

19 tryDuration (16, true);

20 tryDuration (299, true);

21 tryDuration (300, true);

22 tryDuration (301, false);

23 });

In the snippet above the tryDuration function tries the passed duration and then checks

if and if not there is an error message.

Chapter 5. Implementation 39

5.3 Test Case Design Guide

The test case design guide, see appendix E, is created to help testers keep track of what

is tested, how it’s tested and how to build a test. The guide has fields for name of the

test and a short description of what the test intends to test. Furthermore, the guide has

a field for dependencies, this is the field where test cases that needs to be run before

the test case that is being created are listed. The visited pages field is to keep track of

what pages different tests are going through, this can be used to optimize the testflow.

Tests can have preconditions, for example a user that has to be logged in to be able to

perform the test. In the methods field the methods to be used should be listed, these are

chosen from BVA, STA, DT or ad hoc 1 where the ad hoc method is a custom made test.

The test table is there to fill in everything that is being tested. The post-condition field

contains everything that has been changed after the test is completed. These guidelines

will help keep the testing structured and make it easier to create and build a test.

5.4 Building Mocks

This section presents different implementations for the tools Prism and ngMockE2E.

The included code snippets are there to help understand the structure and to ease

reproducing the approach.

5.4.1 Automatic Mocks with Prism

Building mocks with Prism, 3.3.2, requires focus on the setup rather than the individual

mocks. Since the mocks are built automatically the investment into a single mock is

negligible. It’s the surrounding setup for a single mock that is created demands time

and thought.

1 function setupPrism(mode , name) {

2 prism.create ({

3 name: name ,

4 context: ’/api’,

5 host: ’localhost ’,

6 mode: mode ,

7 mocksPath: ’./test/mocks’,

8 port: targets.backend.port ,

9 hashFullRequest: true ,

10 mockFilenameGenerator: customMockFilename ,

11 clearOnStart: false

12 });

13 }

1Ad Hoc: Is a method that doesn’t use either planning or structure

Chapter 5. Implementation 40

Above snippet shows a setup of Prism that takes a name and a mode as inputs. The

tool is targeted onto the backend port which is the area that is targeted for mocks. The

mocking context for Prism is the endpoint /api and the rest is ignored.

1 function connectInit(baseDir , args) {

2 setupPrism(args.mode , args.name);

3

4 connect.server ({

5 root: baseDir ,

6 port: targets.frontend.port ,

7 livereload: false ,

8 middleware: function(connect , opt) {

9 return [

10 prism.middleware ,

11 proxyMiddleware ,

12 modRewrite ([

13 ’!\\.\\w+$ /index.html [L]’

14])

15]

16 }

17 });

18 }

Function connectInit contains the setup for using a frontend server on localhost2. It’s

targeted against the frontend port and has a middleware functionality to redirect re-

quests. Prism is instantiated by setupPrism and is the first in a series of middlewares.

Prism will act as a proxy if the context is wrong or if the mode is not set to mock

requests.

5.4.2 Manual Mocks with ngMockE2E

The frameworks ngMock and ngMockE2E both rely on the angular service $httpbackend

[34]. The main difference is that ngMock is designed for unit tests and ngMockE2E is

designed for end-to-end tests. Unit testing only requires the response once but end-

to-end testing needs to keep getting the response continuously [35], for example an

authentication check can happen multiple times. NgMockE2E enables this feature which

makes it good for the end-to-end tests.

The mocks in ngMockE2E are created in an Angular module called run where the

$httpBackend is passed. This module is placed inside a function that is exported, so it

then can be required in a test file.

1 var httpBackendMock = function () {

2 angular.module(’httpBackendMock ’, [’ngMockE2E ’])

3 .run(function($httpBackend) {

4 //Mocks here

5 })

6 };

2Localhost: It’s a hostname that refers to the current machine

Chapter 5. Implementation 41

7 module.exports = httpBackendMock;

8

9 // importing the module

10 var MockedBackend = require(’../ utils/mockedBackend.js ’);

Through the MockedBackend it’s now possible to add the mock module to Protractor

which runs it with the mocks. This is done inside a test and can be viewed below.

1 describe(’A test’, function () {

2

3 //Add the mock

4 browser.addMockModule(’httpBackendMock ’, MockedBackend);

5

6 it(’Should test something ’, function () {

7 expect(something.getText ()).to.eventually.equal("something");

8 });

9 });

If a test requires a response from a backend to pass it’s now possible to mock that request.

The request that the test requires needs to be done manually so that the response can

be stored in a JavaScript object. This variable will then be used in the return response

of the mock, see snippet below.

1 var authToken = {

2 token: "26 b9fa-SOME-TOKEN-78681ff"

3 };

4

5 var correctLogin = {

6 username: ’theUsername ’,

7 password: ’thePassword ’

8 };

9

10 $httpBackend.whenPOST(’/api-token-auth/’, correctLogin)

11 .respond(function(method , url , data , headers) {

12 return [200, authToken , {}];

13 });

When a test makes a POST request to the url /api-token-auth/ with the correctLogin

details, it’s suppose to return 200 and an authentication token. This backend call is now

stored in a mock, so once the request goes out the method whenPOST catches it and

returns 200 and the token that is expected. It’s also possible to choose if some requests

are going to go through to the real backend, this is helpful when the mocks are under

development.

5.5 Building Mock Tool

This section contains the setup for the backend to run a mocking tool as well as the

extensions made to the tool Prism, such as an url counter and a mock file name generator.

Chapter 5. Implementation 42

5.5.1 Empty Database

With mocks in end-to-end testing it’s a requirement to have knowledge about the initial

state the data is in when running tests. This is necessary by the fact that an end-to-end

test can modify information during testing. Running two tests in a row could break the

tests since the first one can change the data.

Setup for running an empty database

#!/bin/sh

FRONTEND_TEST=true python manage.py flush --noinput

FRONTEND_TEST=true python manage.py syncdb --noinput

FRONTEND_TEST=true python manage.py runserver

The approach used is to start all tests from a clean slate since it’s easy to grasp. The

benefits from this approach is that it’s easier to maintain and easier for other people to

get started with. Some actions might take longer to test through this practice since some

features aren’t present in the initial state. Before starting to record mocks a backend

server is setup that will first flush all data and then sync the database for migration

purposes.

5.5.2 Url Counter

Something that rose during testing when using stored mocks for replay is that it’s a static

method. A database is a dynamic organism and will give different responses depending

on where in the queue it’s called. This became a problem when the previous statement

about unique responses held true, but still made tests crash. A unique response might

be unique under that timestamp but since a mock is static it does not reflect changes

over time.

For instance if a user first updates the profile and then reverts that profile back to its

original state, the intermediary state is lost. The endpoint for retrieving that users

profile is the same but the content inside is changed over time.

The solution to this was to add an internal tracker of how many times an endpoint had

been called. This url count tracker then updates the formula for an unique response.

Structure for unique endpoints with url counter

API endpoint + UrlCounter + Payload + Headers => Unique response

Implementation of the url counter can be found in appendix A.

Chapter 5. Implementation 43

5.5.3 File Name Generator

The recorded response result is stored in a JSON file that later on is used by the mock

mode. For this interaction to work seamlessly the storing and finding of files must match

identically to the uniqueness of a HTTP response. A custom file name generator is built

on the assumptions on what makes a request unique. This generator is used to first

store the file in record mode and to then look up files in mock mode.

The following snippet displays the implementation of the file name generator.

1 function customMockFilename(config , req , status , count) {

2 var maxLength = 255;

3

4 var fileName = req.url.replace("/\/|_|\?|\<|\>|\\|\:|*|\||\ ’/g

,’_’") + ’_’ + req.method + ’_’;

5 var payload = JSON.stringify(req.body);

6 var auth = !req.headers.authorization ? ’’ :

req.headers.authorization;

7

8 var shasum = crypto.createHash(’sha1’);

9 shasum.update(fileName + payload + auth + count);

10 var hash = shasum.digest(’hex’);

11

12 return fileName.substring (0, maxLength - hash.length) + hash + ’.

json’;

13 }

The file name generator takes the request url, request payload, authorization header and

count as parameters for building a hash. The hash is the unique key that maps each

request that is entered to the function. Using a hash as the file name is not very usable as

navigating between jumbled numbers and characters is far from intuitive. The relation

between a seemingly random string and the content it represents is indecipherable. The

file name is therefore built to first display what url was requested, then what method it

was requested with and at the end append the hash.

File name by hash

17464e8ebd541096ce02318baf267f7b0b1607f3.json

File name by hash and request

_api_users_1_set_password_POST_17464e8ebd541096ce02318baf267f7b0b1607f3.json

5.6 Coverage

This section presents the implementation of the coverage tool built for end-to-end tests.

It’s divided into parts of code instrumentation, data gathering and coverage analysis. A

coverage tool is a utility for measuring what is covered in the product by the test suites.

Chapter 5. Implementation 44

5.6.1 Code Instrumentation

Code instrumentation, see 3.5.1, for coverage is performed after each test case. It is nec-

essary to perform this operation often since a test can modify content and enable options

on a page that would go missed if code instrumentation were not updated. A web ap-

plication also updates its state, URL, throughout the tests and will display significantly

different content over time making it important to continuously update instrumentation.

Since a test case can be viewed as a user action the instrumentation will be updated

after each one.

Browser Injection

The coverage tool need to withdraw data about elements that are interacted with. To

do this a script is injected into the browser that queries all elements available, of the

types predefined in 4.3.1. These are then attached with event listeners to give an output

when they have been called.

Code snippet of the major parts in the browser injection:

1 browser.executeScript(function () {

2 ...

3

4 // Elements we want to investigate

5 DOMcomponents.forEach(function(DOMtype) {

6

7 // find all elements of the node type

8 var DOMitems = helper.getNodes(DOMtype.type);

9

10 DOMitems.forEach(function(item) {

11

12 // add one eventlistener for each event

13 DOMtype.events.forEach(function(event) {

14

15 item.addEventListener(event , function () {

16 // output information on triggered event

17 // needs to be info to be caught by the browserlogs

18 console.info(’CoverageE2E ’, event , item.outerHTML ,

window.location.pathname);

19 });

20

21 });

22 }

23 });

24 });

25

26 return DOMcomponents;

27 }, self.config.elements).then(function(DOMcomponents) {

28 ...

29 });

Chapter 5. Implementation 45

The above code steps through each specified element that is going to be analyzed and

gathers them from the browser. The nodes are gathered by querying all elements of that

type and then returns an array from the helper function. This element node then gets

an event attached for each associated event that is required. When one of these events

then has been triggered an output is sent to the browser logs. The output contains

information about what event triggered it, information about the element as well as

current state it was triggered on. After all elements have been attached with event

listeners the browser injection then returns the elements back from the browser to the

node module for storage.

This browser injection is running after each test case which can count up to be several

thousands, if not more. Appending event listeners over and over would clutter the logs

and make browser slow and hard to work with since the amount of event listeners would

implode. In order to account for this the session storage in the browser is utilized to

keep track of which elements and events that have previously been seen. Figure 5.2

shows the flow of using session storage in the browser.

Figure 5.2: Storing elements in session storage

Attaching event listeners in conjunction with session storage:

1 DOMitems.forEach(function(item) {

2 var hash = helper.hashCode(item.outerHTML + url);

3

4 // check if eventlistener exists

5 if(! window.sessionStorage.getItem(hash)) {

6

7 // if not , add one eventlistener for each event

8 DOMtype.events.forEach(function(event) {

9

10 item.addEventListener(event , function () {

11 // output information on triggered event

12 // needs to be info to be caught by the browserlogs

13 console.info(’CoverageE2E ’, event , item.outerHTML ,

window.location.pathname);

14 });

15

Chapter 5. Implementation 46

16 });

17

18 // store eventlistener in sessionstorage

19 window.sessionStorage.setItem(hash , ’CoverageE2E ’);

20 }

21

22 });

To keep track of elements seen, the outer HTML of an element is hashed to give a

comparison reference. This hash is then looked up in current session storage and if

undefined the injection will continue to add event listeners. These are then stored with

hash in session storage so further interactions won’t append new event listeners.

One caveat working with AngularJS as a framework is its use of CSS classes for looking

up states of elements. It uses specific classes for specifying if an input for example have

been visited or if it has been entered. This makes identifying elements harder as an

element, by its outer HTML, would be considered two separate ones after interacting

over it. To address for these changes an implementation of stripping out classes is

performed before hashing an element.

Regular Expression for stripping classes

/\s\bclass=("[^"]+")/g

Helper functions available for hashing and retrieving elements in the browser:

1 var helper = {

2 hashCode: function (s) {

3 var clean = helper.cleanElement(s);

4 return clean.split("").reduce(function(a,b){a=((a<<5)-a)+

b.charCodeAt (0);return a&a},0);

5 },

6 cleanElement: function(s) {

7 // remove html classes for hash

8 // so we don’t get duplicate on things like .ng-touched

9 var r = ’/\s\bclass= ("[^"]+")/g’;

10 return s.replace(r, ’ ’);

11 },

12 getNodes: function(type) {

13 // return NodeList

14 var arr_nodes = document.querySelectorAll(type);

15 // convert to array

16 return Array.prototype.slice.call(arr_nodes);

17 }

18 }

Chapter 5. Implementation 47

5.6.2 Data Gathering

From the browser injection in code instrumentation the elements that have been seen

can be returned back to the node module for storage. For speed improvements all

information about the element is built and calculated in the browser before returning it

to the module. The reason for it being a question about speed is the interaction with the

browser through a browser injection is dependent upon promises. Resolving promises

for multiple element would take a significantly longer time and initial testing showed a

near triple increase on test suites runtime.

When the elements are returned from the browser it is stored in an object acting as a

database:

1 CoveragePlugin.prototype.storeElement = function(element , type) {

2 var self = this;

3

4 var hash = self.hash(element.item);

5 var index = _.findIndex(self.DOMelements , {’url’: element.location

});

6

7 // element structure

8 function buildElement () {

9 return {

10 ’hash’: hash ,

11 ’element ’: element.item ,

12 ’css’: element.css ,

13 ’type’: type ,

14 ’tested ’: false ,

15 ’events ’: []

16 }

17 }

18

19 // if the url hasn’t been seen

20 if(index === -1) {

21 var urlObj = {

22 ’url’: element.location ,

23 ’elements ’: [buildElement ()]

24 }

25 self.DOMelements.push(urlObj);

26 }

27 // if the item on the location hasn’t been seen

28 else if(_.findIndex(self.DOMelements[index].elements , {’hash’: hash

}) === -1) {

29 self.DOMelements[index]. elements.push(buildElement ());

30 }

31 }

The above snippet shows that the element is here stored with hash as its unique key.

This part of data gathering is mainly storing the element itself into a structure with

persistent lookup on state and hash. The element stored here hasn’t yet been tested or

analyzed.

Chapter 5. Implementation 48

At the end of each completed test the logs from the browser is retrieved and saved. This

is done after each test since operations in the browser might clear the content of the

logs, such as navigation to a different domain and back, which would resolve in a loss of

data.

Storing logs into a stack for later parsing:

1 CoveragePlugin.prototype.saveLogs = function(config) {

2 var self = this;

3

4 if(this.browserLogAvailable) {

5 browser.manage ().logs().get(’browser ’).then(function(log) {

6 self.logs.push(log);

7 });

8 }

9 };

After all test suites have completed and the browser environment is completed the data is

updated in storage through parsing the logs. Parsing logs includes stepping through the

saved outputs from the browser and updating the existing data structure. Each relevant

entry in log contain information about the element, where it was seen and what type

of event triggered it. This makes it easy to hash the element and update the existing

structure to include the event that has been seen.

Parsing logs and updating element:

1 CoveragePlugin.prototype.parseLogs = function(config) {

2 var self = this;

3

4 if(this.browserLogAvailable) {

5 this.logs.forEach(function(log) {

6 var warnings = log.filter(function(node) {

7 return (node.level || {}).name === ’WARNING ’;

8 });

9

10 warnings.forEach(function(elem) {

11 var m = JSON.parse(elem.message);

12 if (m.message.hasOwnProperty(’parameters ’)) {

13

14 var p = m.message.parameters;

15

16 if(p[0]. value === self.name) {

17 self.updateElement(p[1]. value , p[2]. value , p[3]. value);

18 }

19 }

20 });

21 });

22 }

23 };

The information is then saved into a JSON file for further usage and presentation.

Chapter 5. Implementation 49

5.6.3 Coverage Analysis

Last step in building coverage is to analyze the gathered data and make a digestible

report. The raw data is available and to make it more usable and extra layer of inter-

polation is added on top.

Each element is extended with all the events that never was triggered so an element

in itself have a representation of all possible events. Then it calculates a coverage

percentage over that event coverage. It then proceeds to iterate over states to detect if

the same element on an another place have been seen. If it detects another occurrence it

compares that elements events with its own to generate a global status over seen events.

This then results in a global coverage percentage over events for that element.

Each state calculates how many elements have been tested both locally and global,

by the same manor as with events. A summation and calculation is based on type of

elements seen in the state.

Hierarchy

The report is divided into three parts: overall statistics, summation by type and pre-

sentation by state. The overall statistics conclude of the amount of elements seen, how

many were tested and that resulting coverage percentage as seen in figure 5.3.

Figure 5.3: Overall statistics for end-to-end coverage

Summation by type is a presentation of each type of element seen across the test suites.

The total count of the element type is presented along with how many were tested as

well as the coverage percentage, see figure 5.4.

The last section is a list of all states that the test suites were run across. The top level of

this section is presented in the order the states occurred in the tests. A state is named

by the URL and displays information about the amount of elements it saw on that state

as well as the local coverage percentage, see figure 5.5.

This last section contains more information as the states contains the elements as well.

Drilling down the section it is split into three sub parts. The sub parts, figure 5.6, have

the information about local and global coverage percentage for the aggregated elements

of that state. It also contains information about the coverage per a type by type basis.

The last sub part is a list of all elements found on that list sorted by element type.

Chapter 5. Implementation 50

Figure 5.4: Coverage summation on a by type basis

Figure 5.5: Coverage summation on a by state basis

Each element can then be further grained to show more detailed information. An element

shows if it was tested, its own hash, its own html markup and a visual representation

of that element. It also presents events that have been tested both locally and globally,

see 5.7.

This structure is built for easy access into the important information needed to make

good actions towards building and updating test cases. First level gives the user a grasp

of information about the state of the tests. The second will indicate if it’s any particular

type of object that is underrepresented during test suites.

Viewing test state by state will quickly narrow down where testing have been insufficient.

It quickly can be seen which elements that have been missed and can get an information

Chapter 5. Implementation 51

Figure 5.6: Coverage details for a single state

Figure 5.7: Coverage information for an element and its events

Chapter 5. Implementation 52

about markup and its visual representation. This makes for an efficient flow for a user

to go back and update tests to target that element, or event.

Indicators

Some indicators are added to the report to ease the use of it. Percentage counters are

given a color to give a direction towards the area where attention is needed. The actual

cutoffs for these percentages have no significant grounds for what is considered good or

not as they are only there to help point on areas of interests.

Coverage percentage Color

<25% Red

>= 25%, <75% Orange

>= 75% Green

Table 5.1: Color indications based of coverage percentage

Test status Indicator

Tested Check mark

Untested Cross mark

Table 5.2: Color indications based of coverage percentage

Visualizing Elements

To help users use the report in an effective manor a visual element is added into the

presentation. The visual element is a close representation of the tested element in the

application. It’s constructed by compiled all associated CSS classes attached to the

element. This works well for single elements but looses representation for nested types

such as forms.

Figure 5.8: Comparison of coverage reports visualized element (top) and web page
element (bottom)

Chapter 5. Implementation 53

5.7 Continuous Integration

Codeship [36] is the chosen CI server because it is free and has an intuitive and easy

interface on the web. The first thing to do is to connect the CI server with the Github

repository, this is easily done by logging in with Github credentials on Codeship. When

this is done and Codeship is allowed access to the repositories it is possible to choose

which repository to run on the CI server. Then the build commands can be set up to run

the environment needed for the project. These are the commands that will be run after

the CI server gets a new version of the repository. For the environment Competencer

uses, the commands seen in appendix C needs to be run. The hashtags are comments.

When this gulp protractor:mock command is run everything should be set up for it to run

the tests. It will connect to the selenium WebDriver server and run the protractor:mock

task that will run the test suites against the mocks. For this to work the tests must have

been run with the mock tool in record mode first so that the recorded mocks exists in

the repository.

Chapter 6

Results

This chapter covers the results from this thesis, which includes results from tools, test

case methods, continuous integration, mocks and coverage.

6.1 Tools

After looking at different testing frameworks to build end-to-end tests for an angular

built single page application the preferred and chosen frameworks and tools are:

• Mocha 2.6.3 which is a JavaScript framework for writing tests and reporting results

• Protractor 2.6.2 which is a JavaScript end-to-end testing framework that is built

especially for angular, it makes it easy to get and test elements in an Angular

single page application. Protractor also contains Selenium WebDriver 2.6.1 which

is a server that translates the tests and runs JavaScript in a browser to interact

with the page

• Chai 2.6.3 which is a JavaScript assertion library that works well together with

Mocha and Protractor

• Prism 3.3.2 which is a record and playback mocking tool that is used to mock

the backend. This tool is chosen because of its record and playback functionality

which makes the mocks more maintainable and easier to create than using manually

created mocks

• Custom built coverage tool 5.6 named Protractor-e2e-Coverage which is built be-

cause there were no tools that counted interactable elements during a test to build

an end-to-end coverage report

• Codeship which is a continuous integration 3.4 server used for automatically run-

ning tests when integrating new code

54

Chapter 6. Results 55

6.2 Test Case Methods

A decision table login test, a STA login test and a BVA test for two numerical input fields

is compared. The login tests for STA and DT contains an input field for a username

and an input field for a password. The BVA test contains two numerical input fields,

one for duration and one for price. This means that the three compared tests all contain

two input fields but the BVA test is more suited for BVA. In the table 6.1 the total

execution time for each test is presented, these times however does not include the time

it takes to navigate to the page where the test is going to be performed. The times are

only summed from the parts of the test that treats the actual method.

Method Decision table State transition BVA

Time to execute a test
with two input fields

11463 ms 12568 ms 13744 ms

Table 6.1: Comparison of execution times for three test case methods

As seen in table 6.1 the execution time for the three methods are marginal. There

are some limitations to this comparison as there is considerable difference between the

operating systems Windows and Mac. There is also a difference running tests on different

browsers and times will vary between repeated runs, even on the exact same setup.

6.3 Test Case Design Guide

To be able to keep a good structure of the tests created and a way to easer maintain

tests a test case design guide E was created for a test designer to fill in, one for each

test case. This will also make it easier to build and maintain tests.

6.4 Continuous Integration

Developers want to test their code often so that bugs and errors are detected early on

and a very good way to achieve this is to have the tests running on a CI server 3.4.

This way the code will be tested when a developer integrates it through git. This is the

preferred way to automatically run tests on the developers code and it’s described how

this was implemented in section 5.7.

When having the tests running on a CI server and the goal is to only test the frontend,

the backend server should not be hosted on the CI server aswell. This will mean that

developers have an extra copy of the backend server to maintain.

Chapter 6. Results 56

6.5 Mocks

This section covers results from evaluating mocks with complexity measures for the tools

ngMockE2E and Prism.

Live and Mocked Backend

A comparison was made to evaluate differences in time to run between a live backend

and a mocked one. The time comparison is marginal between running tests against a

live backend and running tests against a mocked backend as seen in the table 6.2 below.

Test suite Live backend Mocked backend Backend
requests

Change password test 32 tests passing (34s) 32 tests passing (32s) 19

Register test 15 tests passing (21s) 15 tests passing (19s) 9

Table 6.2: Time comparison for two tests between real backend and mocked backend

Comparing a live backend setup and a mocked backend with execution times generated

a very small difference, 6.2. The first test took 32 seconds for a mocked backend and

34 seconds for a live backend, which is a difference in 2 seconds or 6%. The second test

had the same time difference of 2 seconds but in this case it was a 10% difference. Since

the first test used 19 backend requests and the second just 9 it can be determined that

the difference in execution time lies in setup and not in request calls. The difference

in execution time between a live backend and a mocked one is therefore 2 seconds for

setup, which is negligible in this scenario. It’s not possible to make a preferred choice

from execution time between a live or mocked backend.

The tests in 6.2 are performed on a Macbook Air 13” mid 2013 with Selenium running

the tests in Chrome.

Complexity for Prism Setup

Since the complexity is non-linear for Prism the logic will only be on the actual setup

of the automatic mocking tool and its integration with the current flow, rather than on

the mocks themselves. The saved mocks through Prism is saved as JSON which doesn’t

contain any logic.

The setup file that is analyzed contains instructions for a frontend server, two proxy

servers, configuration for mocks and setup for Prism as a third proxy middleware. The

file also contains information about the taskrunners and a mock file name generator.

From table 6.3 the tool Prisms setup file has a high maintainability of 123. And from

table 6.4 the combined Halstead effort is 5 minutes and 26 seconds which is considered

low. This gives an indication that it’s easy to work with.

Chapter 6. Results 57

LOC 79

Mean parameter count 12

Cyclomatic complexity 7

Cyclomatic complexity density 9%

Maintainability index 123

Table 6.3: Complexity measures for a Prism setup file

In the setup file there are four anonymous 1 functions and five declared functions. The

four anonymous functions will be ignored for detailed presentation as they just make a

function call in this case, contributing a negligible complexity.

A B C D E

LOC 7 10 7 8 1

Parameter count 3 2 3 2 2

Cyclomatic complexity 3 1 1 5 1

Cyclomatic complexity density 43% 10% 14% 63% 100%

Halstead difficulty 6 3 5 8 2

Halstead volume 180 179 376 271 50

Halstead effort 1023 447 1952 2168 113

Time required to program 67s 25s 1m 48s 2m 6s

Delivered bugs 0.034 0.019 0.052 0.056 0.008

Program level 29.5 51.3 19.2 17.9 128.4

Table 6.4: Complexity measures for Prism functions where
A: function proxyMiddleware, B: function setupPrism, C: function customMockFile-

name, D: function connectInit, E: function middleware

Complexity for ngMockE2E Mock

First a mock for the login test is evaluated containing four different HTTP responses;

bad authentication, good authentication, booking list and current user response.

LOC 148

Mean parameter count 21

Cyclomatic complexity 1

Cyclomatic complexity density 1%

Maintainability index 93

Table 6.5: Complexity measures for ngMockE2E mock file

In the login test file there is one declared function: loginMock, and six anonymous

functions. Since five out of the six anonymous functions are defined in the exact same

way only one out of the identical ones will be included in the table.

Isolating data from functionality the estimated time to program drops from 29 minutes

and 28 seconds to 1 minute and 16 seconds which is the combined time from

loginMock and all anonymous functions in table 6.8.

1Anonymous: Is a function thats defined without an identifier or name

Chapter 6. Results 58

loginMock anonymous anonymous x5

LOC 1 140 1

Parameter count 0 1 4

Cyclomatic complexity 1 1 1

Cyclomatic complexity density 100% 1% 100%

Halstead difficulty 2 9 2

Halstead volume 43 3634 37

Halstead effort 101 31407 63

Time required to program 6s 29m 5s 4s

Delivered bugs 0.007 0.332 0.005

Program level 138.3 3.0 189.5

Table 6.6: Complexity measures for ngMockE2E mock file functions

LOC 14

Mean parameter count 21

Cyclomatic complexity 1

Cyclomatic complexity density 7%

Maintainability index 144

Table 6.7: Complexity measures for ngMockE2E mock file without injected JSON

loginMock anonymous anonymous 1-5

LOC 1 6 1

Parameter count 0 1 4

Cyclomatic complexity 1 1 1

Cyclomatic complexity density 100% 17% 100%

Halstead difficulty 2 4 2

Halstead volume 43 234 37

Halstead effort 101 908 63

Time required to program 6s 50s 4s

Delivered bugs 0.007 0.0313 0.005

Program level 138.3 32.0 189.5

Table 6.8: Complexity measures for ngMockE2E mock file functions without injected
JSON

From table 6.9 it’s evident that the lines of logic are very high for some test files as well

as time required. Since the mocks are test suite specific and not reusable the Halstead

effort needs for each test required to be summed. This leads to a total required time

for manual mocks to be high for large applications. One thing that isn’t possible to

tell from table 6.9 is that some of these mocks share the same requests, which creates

redundancy, duplication and a higher difficulty to update responses.

Chapter 6. Results 59

A B C D

Logical LOC 148 396 1600 335

Mean parameter count 21 17 17 17

Cyclomatic complexity 1 1 1 1

Cyclomatic complexity density 1% 0% 0% 0%

Maintainability index 93 67 38 71

Combined Halstead effort 31823 212376 1319293 150949

Combined Halstead time required 29m 28s 3h 16m 39s 20h 21m 34s 2h 19m 46s

Combined delivered bugs 0.335 1.187 4.010 0.945

Table 6.9: Complexity measures for multiple ngMockE2E mock files
A: file loginMock, B: file editProfileMock, C: file marketplaceMock, D: file changePass-

wordMock

6.6 Coverage

Coverage 3.5 is a tool or measurement of how much an application is covered from tests

in terms of how much is tested. In end-to-end testing interactable elements are tested

and there was no framework for this so a custom one was built, see section 5.6 of how.

This custom built end-to-end coverage tool counts all interactable elements on each page

the tests visit and calculate the coverage from the tests. The coverage report is shown

on a separate web page where the user can browse the pages and elements to see what

was tested and what was not.

The coverage tool could be extend to incorporate saved information from user session

data 4.4 gathered from the live product. With the help of this additional data the

coverage report could generate a priority list of elements and areas to improve on. This

would make it a lot easier for testers to know what to test.

Chapter 7

Discussion

This chapter discusses the result this thesis concluded in. It touches on the different

areas in results and adds reflections to the different sections.

Tools

The tools and frameworks used in this thesis are primarily chosen for their fit with the

existing setup that was available. For instance the testing tool Protractor works well

with the frontend framework Angular, which was used in advance. Although it’s possible

to use tools not built for this environment it would have required more time and overhead

to get it up and running. Frameworks with a bigger community where also thought of

as better suitable than those with a small amount of contributors. Community size was

however just a tipping point decision maker if two frameworks where considered near

equal.

Test Case Methods

The three methods, BVA, DT and STA take roughly the same amount of time to write.

The BVA method is the fastest one because it’s very straight forward. A field with a

numeric input and only two limits will generate six cases: min-, min, min+, max-, max,

max+, see 3.1.2.

It takes longer time to write a test with the STA method. The states of a process must

be defined and after that the transitions between the states must be drawn. This can be

hard, especially if the process has a lot of transitions and/or if it’s hard to find states.

The STA method can get out of hand if there are too many transitions since it will take

an unreasonable amount of time to test every combination of transitions.

The decision table method is intuitive to code when the decision table is complete but

it’s the making of the table that can require an investement of time. It doesn’t seem

that hard at first but choosing the conditions is a skill in order to keep the number of

60

Chapter 7. Discussion 61

conditions at a reasonable amount. Only the most basic conditions can be in a decision

table because it has 2x possible outcomes, where x=number of conditions.

The three methods evaluated are difficult to draw distinct conclusions on as they are

suited for different types of tests. The STA method takes some time to get started with

and is good for tests where there are clear states or processes, like a payment process

or a booking process. The DT method also takes some time to get started with and

it’s hard to decide which conditions to include. It can’t be too many conditions as the

number of outcomes quickly adds up to an unmanageable amount. For test that include

inputs that combined generate different outcomes the DT method is recommended. The

BVA method is suited for numerical inputs with limits. It’s very straight forward as

long as the limits of the inputs is known.

The errors that the methods detect differ between the methods since they don’t test for

the same things. The DT tests that different combination of inputs leads to the correct

outcome. The STA method explores different transitions between states and checks if

the transition taken led to the expected state. The BVA however is as mentioned before

suited for numerical inputs or inputs with hard limits and will detect errors that occur

near the limit boundaries, see section 3.1.2.

As seen in table 6.1 the difference in execution times are marginal. The test case methods

execution time only differs 17% from slowest to fastest, which isn’t a strong enough

indication that either one of them should be used based on execution time alone.

From the execution time comparison and the difference in errors that these methods

detect none of the methods are thought of as better than the other. These three methods

should be used together for best performance. When none of them are suited for the

test situation, an ad hoc model should be used.

Test Case Design Guide

After reworking Assassas test case template [18] to make it fit end-to-end tests in a

better way it became very handy. Even though the test case design guide E is only used

once when writing a test, that time it went a lot easier and quicker to actually write

the test following the written guide. The guide might still be missing some field that a

tester could find important, this could have been brought to attention if a user study

was made. The time for that was unfortunately not found within this thesis. Another

big plus is that the test cases written gets documented in a structured way. The choice

of adding more fields to the guide can be discussed but this guide is mainly created to

help the tester write the test. This means that if unnecessary fields were added it will

take longer time to fill in and it could be confusing for the person who will follow it and

create the test. The decision to keep it simple with only the most important fields was

made. The test case design guide succesfully fulfills the coveted goal.

Continuous Integration

Chapter 7. Discussion 62

Continuous integration helps developer to be more efficient through optimizing tasks

such as code building and testing. With the help of pushing code and testing automat-

ically onto a CI, bugs can be found faster. In comparison if a CI wasn’t utilized then

bugs would be found later on which then could have more impact on other new areas.

Integration of tests also helps finding building errors and gives developers a constant

feedback. This constant feedback is important as it notifies exactly when a bug or error

is introduced. Making it easier to find what part of the code that is creating this breaking

change. By taking care of testing automatically it becomes a more used practice instead

of relying on testers and developers to remember to constantly test their new versions.

Mocks

NgMockE2E is a very straight forward tool in the sense that it’s viewed as a static

file containing information about the mocked HTTP request. However its features are

limited and setting up multiple mocks stack up in terms of time, complexity and cost.

The isolation of information and reuse of components between mocks are practically

nonexistent and because of that the correlation between the amount of mocks and effort

required is near linear, as can be seen through Halstead metrics in 6.9.

A discovered drawback for ngMockE2E is that it’s served static to the frontend. This

makes the module limited since it cannot load external resources or wait on promises

inside the module. Not being able keep module functionality separated from mock

data creates a harder environment to work with. Some responses from the backend can

contain several thousands lines in JSON which is not suited for being inlined. Not having

the functionality to separate responses into self-contained files will generate duplicates.

If the tool could be used without having to inline responses inside the mocked module,

the result would be very different as seen in tables 6.5 and 6.6 compared with tables 6.7

and 6.8. The separation of concern is here very visible in measurements of complexity.

Prism is a more sophisticated tool that is well suited for larger scaled applications, as

the amount of mocks or HTTP requests to simulate isn’t a limitating factor. Working

with an automatic recording tool for mocks demands a higher precision on setup and

preconditions as each mock needs to be unique. Prism takes longer time to get a grasp of

but will demand significantly less upkeep in time, space and cost for future development

and extensions making it the preferred option.

One caveat of working with an automatic tool is the fact that the mocks are not de-

signed to be manipulated manually. This might not be necessary but the absence of

functionality to edit a mock could be troublesome. Some scenarios that might need a

different response than the actual one from the database is not possible to create.

Important thing to notice is that even though Prisms score on the maintainability index,

123 6.3, and Halstead effort, 5703 6.4, is very good it’s not a definitive score. According

to Paul Omand and Jack Hagemeister in ”Metrics for assessing a software systems

Chapter 7. Discussion 63

maintainability” the higher score the better, with 171 being max and then going to

negative infinity. They made the statement that below 65 on the maintainability index

is considered an indication of poor quality and above 85 to be of high quality.

However having a score below 65 is considered a clear sign that it’s going to be hard to

maintain. This can be seen from ngMockE2E tests scoring between 38 to 93 and the

experienced feeling that it’s difficult to work with, especially on a large scale.

Coverage

The coverage tool built in this thesis presents an intuitive way of finding elements that are

tested in a single page application. Elements are presented with overall statistics as well

as categorized into states to make navigation easy and structure similar to interaction

with the web page.

Currently the coverage tool will display nested elements without a proper visualized

element. The practice developed here will only calculate styled properties on the actual

element and not the nested ones, making a form appear visually significantly different

from the real version.

Elements presented across the web page might run into being counted as the same. Since

elements are hashed based on their outerHTML property some elements that are marked

up exactly the same but used differently will be viewed as the same. In the coverage

report the elements will still have a local and global property to determine where the

element was interacted with. However it’s possible for two elements to appear on the

same state and be viewed as the same, even if it’s unlikely.

When detecting unique elements all classes from an element is stripped, which is a rather

rough approach. This is utilized from the fact that the Angular framework append and

remove classes based on interactive states of an element. Therefore it could make sense

to just remove classes that are Angular specific instead of all classes presented. However

this isn’t necessarily beneficial since the tool is developed as a plugin for Protractor

which in itself is Angular specific.

One issue that this report didn’t have time to cover is the situation where a state is

never interacted with. If a state is never visited in a test suite it will not show in the

coverage report, which could give a false indication. A way to find all possible states

would give a better picture of test coverage of a product.

Test adequacy criterias current limitation is that doesn’t determined which events are

more important. If one event have been interacted with the element is considered tested

but it gives no indication if it missed to interact with one of its more important events.

A possible other approach is to define a tested element as if all possible events have been

triggered but this was considered to be a to strict restriction for the tool to be useful.

Combining user session data with a coverage report could help developers target impor-

tant sections. If an object from user session data has a high frequency in interaction and

Chapter 7. Discussion 64

is untested in the coverage report it could be utilized to give a strong indication of next

primary action to take. Trying out this concept was outside the scope of this thesis.

Chapter 8

Conclusion

This chapter covers the conclusions for this thesis and answers the problem definitions.

How can a comparison of different end-to-end testing methods lead to a more effective

way of writing test cases?

The comparison of the different testing methods does not directly lead to a more effec-

tive way of writing test cases. However the comparison lead to a knowledge of when to

use which method. This knowledge itself lead to the creation of a test case design guide

E. Following this test case design guide makes test case writing more effective.

How can a coverage report be built for end-to-end tests without the knowledge of source

code and what information should be analyzed to help a tester?

Exactly how a coverage report can be built for end-to-end testing can be read about in

section 5.6. This is done without the knowledge of the source code by adding eventlis-

teners to interactable elements during the tests to get information. This information

is later displayed to help the developer with information of what is tested and what

is not. Information from users interacting with the web page can be used to improve

the coverage with recommendations on what to test next. Information that could be

interesting to store is how many times an element is interacted with and how long time

users spend on a certain page. With this information a priority list of what should be

tested next could be generated inside the coverage tool. This would help testers to cover

the most important parts first. However, the implementation of such a thing was not

within the timeframe of this thesis.

How can end-to-end tests be automated and how can feedback from it improve a devel-

opment process?

End-to-end tests can be automated by running them on a continuous integration server.

This server will run the tests every time someone integrates their code. The server will

65

Bibliography 66

also give developers feedback on failing tests which helps the them to quickly narrow

down the error so it can be solved directly.

How does automatic mock creation compare to manual mock creation and how can an

automatic process be achieved?

Manual mock creation is a method that takes linear time to build as a tester needs

to create every mock that is going to be used. In manual mocking the responses from

requests needs to be inlined in the mocks since the tool can’t load external resources.

Automatic mock creation however has a longer time for setup but after that all the

mocks are created automatically when running the tests. An automatic mock process is

achieved by using the JavaScript framework Prism and building a custom middleware

proxy that handles redirection of requests. Other things that need to be customized are

file name for the mocks, structure for unique endpoints and an url counter. Exactly how

this mocking tool is built can be read about in section 5.5. Automatic mock creation is

preferred for end-to-end user testing to save time and for its ease of keeping the mocks

up to date.

Bibliography

[1] Selenium 1 (selenium rc). URL http://www.seleniumhq.org/docs/05_selenium_

rc.jsp. Accessed March 25th, 2015.

[2] Mocha, javascript testing framework. URL http://mochajs.org/. Accessed May

21th, 2015.

[3] Amit Agarwalla. Continuous integration (ci) stack, 2014. URL https://angraze.

wordpress.com/2014/02/09/continuous-integration-ci-stack/. Accessed

May 22th, 2015.

[4] What is decision table in software testing? URL http://

istqbexamcertification.com/what-is-decision-table-in-software-testing/.

Accessed March 24th, 2015.

[5] Html element reference, . URL https://developer.mozilla.org/en-US/docs/

Web/HTML/Element. Accessed May 12th, 2015.

[6] Event reference, . URL https://developer.mozilla.org/en-US/docs/Web/

Events. Accessed May 12th, 2015.

[7] Competencer about. URL https://www.competencer.com/aboutus. Accessed

May 25th, 2015.

[8] Glenford J Myers and Corey Sandler. The art of software testing. New Jersey.

John Wiley & Sons, 2004.

[9] James A Whittaker, Jason Arbon, and Jeff Carollo. How Google tests software.

Addison-Wesley, 2012.

[10] Stephen Chapman. What is javascript. URL

http://javascript.about.com/od/reference/p/javascript.htm, 2013.

[11] Sang Shin. Introduction to json (javascript object notation). Presentation

http://www.cse.iitd.ac.in/ cs5090250/JSON.pdf, 2010.

[12] Jev Zelenkov. Make the browsers test for you. part 1: Sele-

nium webdriver, 2014. URL http://www.jzelenkov.com/posts/

make-the-browsers-test-for-you-part1/. Accessed March 19th, 2015.

67

Bibliography 68

[13] Chai, javascript assertion library. URL http://chaijs.com/. Accessed May 21th,

2015.

[14] The web framework for perfectionists with deadlines. URL https://www.

djangoproject.com/. Accessed May 27th, 2015.

[15] Node.js. URL https://nodejs.org/. Accessed May 27th, 2015.

[16] gulp.js - the streaming build system. URL http://gulpjs.com/. Accessed May

27th, 2015.

[17] Angularjs - superheroic javascript mvw framework, . URL https://angularjs.

org/. Accessed May 27th, 2015.

[18] Ghazy Assassa. Software engineering, test case template and exam-

ples. URL http://faculty.ksu.edu.sa/ghazy/CSC342_Tools/Test%20Case%

20Template.pdf. Accessed May 27th, 2015.

[19] Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-testing: unit testing with

mock objects. Extreme programming examined, pages 287–301, 2000.

[20] Mike Lazer-Walker. Test doubles: Mocks, stubs, and more, 2014. URL http:

//www.objc.io/issue-15/mocking-stubbing.html. Accessed March 19th, 2015.

[21] Steve Freeman. Test smell: Everything is mocked, 2007. URL http://

www.mockobjects.com/2007/04/test-smell-everything-is-mocked.html. Ac-

cessed March 19th, 2015.

[22] Joakim Kolsj. Only mock the things you own, 2014. URL http://rubyblocks.

se/2014/03/02/only-mock-the-things-you-own/. Accessed March 19th, 2015.

[23] Connect-prism, . URL https://github.com/seglo/connect-prism. Accessed

March 19th, 2015.

[24] Vcr, . URL https://github.com/vcr/vcr. Accessed March 19th, 2015.

[25] Sean Glover. Record, mock, and proxy http requests with grunt-

connect-prism, 2014. URL http://randonom.com/blog/2014/06/

record-mock-and-proxy-http-requests-with-grunt-connect-prism/. Ac-

cessed March 19th, 2015.

[26] ngmock, . URL https://docs.angularjs.org/api/ngMock. Accessed March 19th,

2015.

[27] ngmocke2e, . URL https://docs.angularjs.org/api/ngMockE2E. Accessed

March 19th, 2015.

[28] Ken Rimple. Angularjs corner the ngmock and ngmocke2e li-

braries, 2014. URL http://chariotsolutions.com/blog/post/

angularjs-corner-ngmock-ngmocke2e-libraries/. Accessed March 19th,

2015.

Bibliography 69

[29] Martin Fowler. Continuous integration, 2006. URL http://martinfowler.com/

articles/continuousIntegration.html. Accessed May 12th, 2015.

[30] Brian Marick. How to misuse code coverage. In Proceedings of the 16th Interational

Conference on Testing Computer Software, pages 16–18, 1999.

[31] Elinda Kajo-Mece and Megi Tartari. An evaluation of java code coverage testing

tools. In BCI (Local), pages 72–75, 2012.

[32] Html5 a vocabulary and associated apis for html and xhtml. URL http://www.

w3.org/TR/html/. Accessed May 12th, 2015.

[33] Sebastian Elbaum, Gregg Rothermel, Srikanth Karre, and Marc Fisher. Leveraging

user-session data to support web application testing. Software Engineering, IEEE

Transactions on, 31(3):187–202, 2005.

[34] httpbackend, . URL https://docs.angularjs.org/api/ngMock/service/

%24httpBackend. Accessed May 18th, 2015.

[35] Ken Rimple. Angularjs corner the ngmock and ngmocke2e li-

braries, 2014. URL http://chariotsolutions.com/blog/post/

angularjs-corner-ngmock-ngmocke2e-libraries/. Accessed May 18th,

2015.

[36] Codeship. URL https://codeship.com/. Accessed May 12th, 2015.

Appendix A

Implementation of URL Counter

1 ’use strict ’;

2

3 var _ = require(’lodash ’);

4

5 function UrlCounter () {

6 // Structure { url: ’/api/’, count: 1}

7 var _db = [];

8

9 this.getCount = function(url) {

10 var item = getItem(url);

11

12 if(exists(item)) { // if it exists increment

13 item.count += 1;

14 return item.count;

15 }

16

17 else buildItem(url); // else create

18 return 1;

19 };

20

21 function getItem(url) {

22 return _.find(_db , {’url’: url});

23 };

24

25 function exists(obj) {

26 return typeof obj !== ’undefined ’;

27 };

28

29 function buildItem(url) {

30 var _obj = {

31 ’url’: url ,

32 ’count’: 1

33 }

34

35 _db.push(_obj);

36 };

37 }

38

39 module.exports = UrlCounter;

70

Appendix B

Config File for Protractor

1 exports.config = {

2 // Specify the path to the selenium standalone server

3 seleniumServerJar: ’../ path/selenium-server-standalone-2.45.0.jar ’,

4 // Specify the path to the chromedriver

5 chromeDriver: ’../ path/chromedriver ’,

6 // Base url

7 baseUrl: ’http: // localhost:3000 ’,

8 // Framework

9 framework: ’mocha ’,

10 // Capabilities to be passed to the webdriver instance.

11 capabilities: {

12 ’browserName ’: ’chrome ’

13 },

14

15 /**

16 * Suites

17 * these suites need a specific order

18 * as they create objects other depend on

19 */

20 suites: {

21 firstTest: [’e2e/firstTest /*.js’],

22 secondTest: [’e2e/secondTest /*.js’],

23 ...

24 },

25 // Before tests

26 onPrepare: function () {

27 browser.driver.manage ().window ().setSize (1440 , 900);

28 browser.driver.manage ().window ().setPosition (0, 0);

29 },

30 // Mocha options

31 mochaOpts: {

32 ui: ’bdd’,

33 reporter: ’spec’, //spec , tap , dot , progress , list , nyan , min

34 timeout: 100000

35 }

36 };

71

Appendix C

Setup Commands for Codeship

Install and use a version of the Node Version Manager

nvm install 0.10.25

nvm use 0.10.25

Choose where globally installed node packages gets cached

npm config set cache "${HOME}/cache/cache/npm/"

checkout frontend from repository root to enable Codeships cache control path

git subtree split --prefix=FRONTEND_FOLDER --branch=frontend

git checkout frontend

The node packages is installed

npm install

install bower and gulp globally to get access to environment variables

npm install -g bower gulp

The bower dependencies are installed

bower install

The webdriver gets updated

./node_modules/protractor/bin/webdriver-manager update

The webdriver server is started to run in the background

nohup bash -c "webdriver-manager start 2>&1 &" && sleep 9

The testsuites are run via a custom protractor task for gulp

gulp protractor:mock

72

Appendix D

Competencer Architecture

73

Appendix E

Test Case Design Guide

E.1 Introduction

This test case design guide is made for end-to-end tests on Competencers frontend but

works well for test cases in general on single page web applications. These guidelines are

made for the person creating the tests and for the person who will maintain the tests.

If these guidelines are followed it will help maintaining a good and clear structure that

makes tests easy create, work with and maintain.

E.2 Starting Conditions

The tests should be built for an empty database. The tests should also be run in a

specific order so that the first tests that are run are the tests that the later ones might

depend on. This means that as the tests are running it will gradually populate the

database but it should always start with and empty database so that every testrun runs

on the same conditions.

E.3 Choosing Test Method for Inputs

The choice of method depends on what the test does and what elements it is going to

test. The efficiency of these methods depend on what you apply them on. It is possible

to combine these methods in the same test, for best result follow the guidelines below:

For processes that spans over multiple states or views: State transition analysis

Inputs that gives different outcome depending on combination of inputs: Decision

table If the number of inputs are greater than 3, divide the inputs into subgroups.

Inputs with hard limits, for example numeric inputs: Boundary value analysis

74

Appendix E. Test case design guide 75

If it is vital that the input field does not break anything, for example credit card fields:

Ad hoc Test everything: numerics, non numerics, special characters, html, few charac-

ters, many characters etc.

E.4 Test Case Design Template

Test suite name:

Short description:

Dependencies:

Other test suites that your test depend on. For instance registering users as a depen-

dency for editing profile.

Visited pages:

Pre-conditions

1.

Method(s):

Tests

Action Expected system response

1.

2.

3.

Post-conditions

1.

Appendix E. Test case design guide 76

E.5 Text Case Design Template Example

Test suite name: Edit settings

Short description: A user should be able to enter settings and change password, up-

date country and similar items.

Dependencies: Register

Other test suites that your test depend on. For instance registering users as a depen-

dency for editing profile.

Visited pages: /settings/account, /settings/payments, /settings/payouts

Pre-conditions

1. User is logged in

2.

Method(s): Ad hoc

Tests

Action Expected system response

1. Enter Markus as new first name First name placeholder is updated to
Markus

2. Clicks Update Displays a message with confirmation of
updated information

3.

Post-conditions

1. Users first name is updated to Markus

2.

Appendix F

Protractor-E2E-Coverage Tool

1 var q = require(’q’),

2 crypto = require(’crypto ’),

3 fs = require(’fs’),

4 path = require(’path’),

5 _ = require(’underscore ’),

6 wrench = require(’wrench ’);

7

8

9 var CoveragePlugin = function () {

10 this.DOMelements = [];

11 this.logs = [];

12 this.browserLogAvailable = false;

13 this.name = ’CoverageE2E ’;

14 this.outdir;

15 this.config = {

16 elements: []

17 };

18 };

19

20 CoveragePlugin.prototype.hash = function(elem) {

21 var shasum = crypto.createHash(’sha1’);

22 // remove html classes for hash

23 // so we don’t get duplicate on things like .ng-touched

24 var r = ’/\s\bclass= ("[^"]+")/g’;

25 shasum.update(elem.replace(r, ’ ’));

26 return shasum.digest(’hex’);

27 }

28

29 CoveragePlugin.prototype.updateElement = function(event , obj , url) {

30 var self = this;

31

32 var hash = self.hash(obj);

33

34 var index = _.findIndex(self.DOMelements , {’url’: url});

35 var elem = _.findIndex(self.DOMelements[index].elements , {’hash’:

hash});

36

37 if(elem !== -1) {

38 var element = self.DOMelements[index]. elements[elem];

77

Appendix F. Protractor-E2E-Coverage Tool 78

39

40 element.tested = true;

41

42 if(element.events.indexOf(event) === -1) {

43 element.events.push(event);

44 }

45 }

46 }

47

48 CoveragePlugin.prototype.storeElement = function(element , type) {

49 var self = this;

50

51 var hash = self.hash(element.item);

52 var index = _.findIndex(self.DOMelements , {’url’: element.location

});

53

54 // element structure

55 function buildElement () {

56 return {

57 ’hash’: hash ,

58 ’element ’: element.item ,

59 ’css’: element.css ,

60 ’type’: type ,

61 ’tested ’: false ,

62 ’events ’: []

63 }

64 }

65

66 // if the url hasn’t been seen

67 if(index === -1) {

68 var urlObj = {

69 ’url’: element.location ,

70 ’elements ’: [buildElement ()]

71 }

72 self.DOMelements.push(urlObj);

73 }

74 // if the item on the location hasn’t been seen

75 else if(_.findIndex(self.DOMelements[index].elements , {’hash’: hash

}) === -1) {

76 self.DOMelements[index]. elements.push(buildElement ());

77 }

78 }

79

80 CoveragePlugin.prototype.parseLogs = function(config) {

81 var self = this;

82

83 if(this.browserLogAvailable) {

84 this.logs.forEach(function(log) {

85 var warnings = log.filter(function(node) {

86 return (node.level || {}).name === ’WARNING ’;

87 });

88

89 warnings.forEach(function(elem) {

90 var m = JSON.parse(elem.message);

Appendix F. Protractor-E2E-Coverage Tool 79

91 if (m.message.hasOwnProperty(’parameters ’)) {

92

93 var p = m.message.parameters;

94

95 if(p[0]. value === self.name) {

96 self.updateElement(p[1]. value , p[2]. value , p[3]. value);

97 }

98 }

99 });

100 });

101 }

102 };

103

104 CoveragePlugin.prototype.saveLogs = function(config) {

105 var self = this;

106

107 if(this.browserLogAvailable) {

108 browser.manage ().logs().get(’browser ’).then(function(log) {

109 self.logs.push(log);

110 });

111 }

112 };

113

114 CoveragePlugin.prototype.setup = function(config) {

115 var self = this;

116 self.outdir = path.resolve(process.cwd (), config.outdir);

117

118 if(config.elements) {

119 self.config.elements = config.elements;

120 }

121

122 browser.manage ().logs().getAvailableLogTypes ().then(function(res) {

123 self.browserLogAvailable = res.indexOf(’browser ’) > -1;

124 });

125 };

126

127 CoveragePlugin.prototype.postTest = function(config) {

128 var self = this;

129 var deferred = q.defer ();

130

131 browser.executeScript(function () {

132 var helper = {

133 hashCode: function (s) {

134 var clean = helper.cleanElement(s);

135 return clean.split("").reduce(function(a,b){a=((a<<5)-a)+

b.charCodeAt (0);return a&a},0);

136 },

137 cleanElement: function(s) {

138 // remove html classes for hash

139 // so we don’t get duplicate on things like .ng-touched

140 var r = /\s\bclass=([^]+)/ g ;

141 return s.replace(r, ’ ’);

142 },

143 getNodes: function(type) {

Appendix F. Protractor-E2E-Coverage Tool 80

144 // return NodeList

145 var arr_nodes = document.querySelectorAll(type);

146 // convert to array

147 return Array.prototype.slice.call(arr_nodes);

148 }

149 }

150

151 // Elements and events we want to investigate

152 var DOMcomponents = arguments [0];

153

154 var url = window.location.pathname;

155

156 DOMcomponents.forEach(function(DOMtype) {

157 var DOMitems = helper.getNodes(DOMtype.type);

158

159 DOMitems.forEach(function(item) {

160 var hash = helper.hashCode(item.outerHTML + url);

161

162 // check if eventlistener exists

163 if(! window.sessionStorage.getItem(hash)) {

164

165 // if not , add one eventlistener for each event

166 var events = DOMtype.events;

167 events.forEach(function(event) {

168 item.addEventListener(event , function () {

169 // needs to be info to be catched by the browserlogs

capture

170 console.info(’CoverageE2E ’, event , item.outerHTML ,

window.location.pathname);

171 });

172 });

173

174 // store eventlistener in sessionstorage

175 window.sessionStorage.setItem(hash , ’CoverageE2E ’);

176

177 // get computedCss on element , doesnt look at nested

178 var css = window.getComputedStyle(item).cssText;

179

180 DOMtype.elements.push ({’item’: item.outerHTML , ’css’: css ,

’location ’: url});

181 }

182 });

183 });

184

185 return DOMcomponents;

186 }, self.config.elements).then(function(DOMcomponents) {

187

188 DOMcomponents.forEach(function(DOMtype) {

189 var elements = DOMtype.elements;

190 elements.forEach(function(elem) {

191 self.storeElement(elem , DOMtype.type);

192 });

193 });

194

Appendix F. Protractor-E2E-Coverage Tool 81

195 self.saveLogs ();

196 deferred.resolve ();

197 });

198

199 return deferred.promise;

200 };

201

202 CoveragePlugin.prototype.outputResults = function(done) {

203 var self = this;

204

205 try {

206 fs.mkdirSync(self.outdir);

207 } catch (e) {

208 if (e.code != ’EEXIST ’) throw e;

209 }

210

211 // build coverage file

212 var outfileCoverage = path.join(self.outdir , ’coverage.json ’);

213 fs.writeFileSync(outfileCoverage , JSON.stringify(self.DOMelements))

;

214

215 // save config setting

216 var outfileConfig = path.join(self.outdir , ’config.json ’);

217 fs.writeFileSync(outfileConfig , JSON.stringify(self.config.elements

));

218

219 // copy report folder

220 wrench.copyDirRecursive(__dirname + ’/report ’, self.outdir + ’/

report ’, {forceDelete: true}, done);

221 };

222

223 CoveragePlugin.prototype.postResults = function(config) {

224 var self = this;

225 var deferred = q.defer ();

226

227 self.parseLogs ();

228 self.outputResults(deferred.resolve)

229

230 return deferred.promise;

231 };

232

233 var coveragePlugin = new CoveragePlugin ();

234

235 exports.setup = coveragePlugin.setup.bind(coveragePlugin);

236 exports.postTest = coveragePlugin.postTest.bind(coveragePlugin);

237 exports.postResults = coveragePlugin.postResults.bind(coveragePlugin)

;

238 exports.CoveragePlugin = CoveragePlugin;

