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ABSTRACT
A chip that is required to meet strict operating criteria in terms of speed,
power, or area is commonly custom designed at the switch level. Tradi-
tional techniques for verifying these designs, based on simulation, are ex-
pensive in terms of resources and cannot completely guarantee correct op-
eration. Formal verification methods, on the other hand, provide for a
complete proof of correctness, and require less effort to setup. This paper
presents Motorola’s Switch Level Verification (SLV) tool, which employs
detailed switch level analysis to model the behavior of MOS transistors
and obtain an equivalent RTL model. This tool has been used for equiva-
lence checking at the switch level for several years within Motorola for
the PowerPC, M*Core and DSP custom blocks. We focus on the novel
techniques employed in SLV, particularly in the areas of pre-charged and
sequential logic analysis, and provide details on the automated and inte-
grated equivalence checking flow in which the tool is used.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided Design.

General Terms
Algorithms, Design, Verification.

Keywords
Custom design, switch level analysis, equivalence checking, formal verifi-
cation, MOS circuits, VLSI design.

1. INTRODUCTION
To keep up with the challenges poised by the constantly increasing digital
circuit complexity, several levels of abstraction in circuit representation
are typically utilized. Register-Transfer Level (RTL) describes a circuit at
a high level of Boolean functions and data flow within the circuit. Gate
level representation provides a structural (schematic) description of a cir-
cuit as an interconnection of basic blocks having a known and relatively
simple Boolean functionality. Switch level representation contains an in-
terconnection of switches (transistors) and gates that implement the de-
sired functionality of a circuit.
RTL is often the preferred abstraction level for most functional design ac-
tivities because it provides the highest level of productivity. RTL models
serve as a reference for design implementation. However, any RTL design
has to be translated into an equivalent switch level design as a necessary
step prior to the fabrication of a physical chip. This translation can be per-
formed using synthesis flows and tools such as Synopsys Design Compiler
[17]. When a chip has to meet stringent operating requirements (e.g.
speed or power) certain parts of the chip may be manually implemented

and carefully tuned at the switch level. This practice is commonly referred
to as custom design.
When the reference RTL view and the switch level view of the same digi-
tal circuit is created independently, there is a clear verification problem: it
has to be ascertained that the two views have the same functionality. Tra-
ditional verification techniques such as simulation or emulation do not
provide a complete guarantee of correctness and can be very expensive in
terms of necessary resources. Formal methods such as combinational
equivalence checking [12] can be applied to complement traditional ap-
proaches and provide a proof of equivalence between two functional de-
scriptions of a circuit. RTL and gate level models are both suitable func-
tional representations and thus equivalence checking tools can operate di-
rectly on them. A switch level model, however, is a purely structural rep-
resentation. Therefore, to enable the use of equivalence checking at the
switch level, the actual functionality of the circuit has to be obtained first.
This is achieved by applying switch level analysis techniques [2][3].
A novel switch level analysis platform called the SLV (Switch Level Veri-
fication) tool has been developed at Motorola over the last four years and
used within an automated formal equivalence checking flow. Given a
switch level model, SLV can produce an equivalent RTL model in a
hardware description language such as Verilog [9] suitable as an input to
an equivalence-checking tool. SLV has been successfully applied to other
flows, e.g. in the automated generation of test models from switch level
designs [16].
The design of the algorithms behind SLV has been driven by a number of
design goals and constraints. Firstly, the algorithms of choice had to cover
the unique blend of design styles in use at Motorola. Secondly, a switch
level model had to be analyzed with the bare minimum of additional de-
sign annotation by verification engineers. Thirdly, the analysis had to be
as rigorous as possible—deriving a wrong RTL model is, in practice,
worse than not completing the analysis at all. Finally, the generated RTL
had to be a compact, human-friendly functional representation that pre-
serves the original structure of the circuit. Satisfying these requirements in
a practical tool requires a number of novel techniques. Two key contribu-
tions to switch level analysis—handling pre-charged logic and structural
loops—are the main subjects of this paper.

2. PRELIMINARIES
The choice of semantics for the components in a switch level model af-
fects the range of circuit behaviors that can be accurately modeled. SLV
employs the semantics of the Verilog hardware description language
(HDL) which was chosen as the primary language for the tool. There are,
however, several significant characteristics that can be modeled in the
Verilog HDL that are ignored by SLV. In the absence of complete for-
mally specified semantics for Verilog, semantics have been implied from
a reference HDL simulator.
At the switch level, a MOS transistor is represented as a switch. Switches
usually have two switched terminals and a control terminal that corre-
spond respectively to transistor source, drain and gate terminals. SLV
models numerous refinements to this switch model, with the most funda-
mental distinction being between NMOS and PMOS device models.
PMOS switches close when logical 0 is applied to the control terminal,
and NMOS switches close when logical 1 is applied to the control termi-
nal. Other refinements include variations on the number of controlling
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terminals and resistance between the channel terminals. The flow of a sig-
nal between the switched terminals is always assumed to be bi-directional
and of zero delay.
Gates are devices that model logic relationships between signals. Gates
have a set of input and output terminals and define a mapping from the
logic value at each input terminal to the logic value at each output termi-
nal. The set of gate types modeled by SLV and the driving strength of the
signal output by gates is defined in [9]. In SLV, gates have zero delay.
Nets serve as interconnection points in a circuit. They are assumed to
have no resistance, inductance or delay associated with them.  Nets are
also assumed to have no associated capacitance, except in the analysis of
pre-charge logic. Three classes of nets serve special purposes in a circuit:
• Supplies: Circuits are connected to a power supply with two terminals.

In the switch level model, these terminals provide a source of constant
logical level 0 and 1.

• Ports: Circuits have an interface that is comprised of input, output and
inout port connections. It is assumed that the inputs are Boolean and
that they are stable through each period of clocks.

• Clocks: Clocks are a special kind of input port periodically alternating
their value. There are two types of clocks: pre-charge clocks are used in
the analysis of pre-charge logic; master clocks are used in the analysis
of sequential behavior.

The channel terminals of switches in a circuit form closely connected par-
titions called channel-connected components (CCC) [2]. A CCC com-
prises of a set of switches, a set of gates and a corresponding set of nets
that are used to connect these components. The gate terminals of CCC
switches and the input nets of CCC gates form the set of input nets that
belong to a CCC (called controlling nets in [12]). According to basic laws
of electronics, the logic values of all nets in a CCC can be determined
from the logic values of the inputs of that CCC.
The input nets of a CCC are further divided into two distinct sub-sets. In-
ternal CCC input nets are driven by the CCC itself and represent feedback
(self-dependencies) within a CCC. External CCC input nets are either
driven by another CCC or are top-level input ports. CCC outputs are a set
of nets belonging to a CCC which serve as external inputs to other CCCs
or as circuit output or inout ports.
Each net in the circuit can assume one of the following logic values:
• 0, when there is a path of conducting switches from this net to a source

of 0, and no path of conducting switches from this net to a source of 1
that has a greater or equal driving strength than this path. Under these
conditions, it is said that this net is pulled down.

• 1, when there is a path of conducting switches from this net to a source
of 1 and no path of conducting switches from this net to a source of 0
that has a greater or equal driving strength than this path. Under these
conditions, it is said that this net is pulled up.

• X, when there is a path of conducting switches from this net to both a
source of 0 and a source of 1 that have equal driving strengths. Under
these conditions, it is said that the net is pulled up and down simulta-
neously. A net in state X is a part of a short-circuit (DC) path.

• Z, when there is no path of conducting switches to either a source of 0
or a source of 1. We call such nets floating.

The primary function of the SLV tool is to determine the logic values of
circuit output and inout ports as functions of the logic values applied at
the circuit input and inout ports. The evaluation processes result in the
logic functions of a net being determined and stored in the following
forms:
• The global pull-up and pull-down functions are in terms of the circuit

input and inout ports and any state-storing nets in the circuit. These
Boolean functions describe the conditions under which paths of switch
devices drive the net to a source of logic 1 or 0 respectively. This form
is used for many electrical design checks.

• The local pull-up and pull-down functions are in terms of the external
inputs to the Channel Connected Component (CCC) containing the net.
These Boolean functions describe the conditions under which the net is
driven by a path of switch devices to a source of logic 1 or 0 respec-
tively within the CCC. This form is generally used in the production of
output.

3. OUR EQUIVALENCE CHECKING FLOW
3.1 Basic Switch Level Analysis
The computation of the pull-up and pull-down functions of a net (referred
to as net evaluation) is based on an explicit path enumeration technique
[12] that operates within a CCC. It is well known that the evaluation of a
net in a CCC using explicit path enumeration can potentially require the
exploration of a number of paths exponential with the number of switches
in the CCC [2] [12]. SLV avoids this problem by utilizing a series parallel
CCC compression algorithm that reduces the circuit graph of the CCC
switch network by alternatively applying parallel and then serial compres-
sion to the network until no further compression is possible [13]. The ex-
plicit path enumeration is also accompanied by the identification of false
and self-dependent paths as identified by Brzozowski and Yoeli [6].
The semantics of Verilog discrete signal strengths [9] are incorporated
into the evaluation of pull-up and pull-down functions for nets in a two
step process:
1. A driving strength is calculated for each path of switches during ex-

plicit path enumeration. This driving strength is a function of the driv-
ing strength of the net driving the path and the number of resistive
switches in the path. Separate pull-up and pull-down functions are
maintained for each driving strength during this phase of the analysis.

2. The pull-up and pull-down functions for each driving strength are
combined to create single pull-up and pull-down functions for the net.

Supplies are defined to have a driving strength of Supply0/1. Circuit input
and inout ports have a driving strength of Strong0/1. The driving strengths
associated with a gate output are Strong0/1, unless otherwise specified for
a particular gate instance in the input model.
The strength of a signal arriving at a net via a path of switch devices from
a supply net, an input port, an inout port, or gate output is calculated by
applying the following rules for strength reduction for each of the
switches in the path:
1. A non-resistive switch device in the path of switches passes a strength

through its channel unchanged, except that a Supply strength is re-
duced to a Strong strength.

2. A resistive switch device reduces the strength of the signal passing
through its channel in accordance with the rules in [9].

For each path that SLV identifies during explicit path enumeration, its
driving strength is calculated according to these rules. Separate pull-up
and pull-down function pairs are maintained for each of the defined signal
strengths. At the completion of explicit path enumeration in the CCC,
these functions are combined to form single pull-up and pull-down func-
tions. For simplicity, consider a system with functions of three driving
strengths, where a1, b1, and c1 represent the pull-up functions with de-
creasing strength, and a0, b0, and c0 represent the pull-down functions
with decreasing strength. The combined pull-up and pull-down functions
of a net ‘out’ are then given by:

out.pull-up = a1 | (~a0.~a1).b1 | (~a0.~a1.~b0.~b1).c1
out.pull-down = a0 | (~a0.~a1).b0 | (~a0.~a1.~b0.~b1).c0

which simplifies to:
out.pull-up = a1 | ~a0.b1 | ~a0.~b0.c1
out.pull-down = a0 | ~a1.b0 | ~a1.~b1.c0

3.2 Analysis of Pre-charged Logic
A pre-charge (or dynamic) net has two distinct phases of operation: the
pre-charge phase and the evaluate phase. The pre-charge phase is assumed
to be the first phase of the dynamic clocking scheme, during which the
pre-charge net is unconditionally charged to either logical 1 or logical 0.
The evaluate phase is assumed to be the last phase of the dynamic clock-
ing scheme, during which the pre-charge net is conditionally discharged,
so that it maintains its pre-charge logic level if the required conditions for
discharge are not satisfied. Any dynamic clock phases between the pre-
charge and evaluate phases are assumed to be transient, and do not con-
tribute to the required output model.
Figure 1 illustrates a typical example of pre-charge logic in which the net
labeled ‘out’ is a pre-charge net. During the pre-charge phase, the dynamic
clock input ‘clk’ is logical 0. The capacitor ‘C’ is pre-charged to logical 1
since there are no conducting paths to a supply of logical 0 and there is a



conducting path to a supply of logical 1. In the evaluate phase, the dy-
namic clock input is logical 1. If ‘a’ and ‘b’ are both logical 1, then there
is a path to a supply of logical 0 and ‘C’ is discharged. Otherwise ‘C’
maintains a logical 1. This implements a NAND logic gate.
The presence of logic that is dependent on dynamic clocks in the dis-
charging network, and which prevents discharge paths from conducting in
the pre-charge phase of the clocking scheme is referred to as ‘footed’ pre-
charge logic. The example shown in Figure 1 illustrates footed pre-charge
logic due to the NMOS transistor that prevents the discharge path in the
pre-charge phase when ‘clk’ is logical 0. The absence of footing logic is
referred to as ‘non-footed’ pre-charge logic.

out
C

clk

a

b

vdd

Figure 1 Example of a dynamic nand gate

The major tasks in the analysis of pre-charge logic are to identify nets that
are pre-charged and analyzed under a dynamic clocking scheme (termed
‘pre-charge nets’), and, for each pre-charge net, to derive the pre-charge
functionality and obtain the static behavior.

3.2.1 Identifying Pre-charge Nets
There are two elements of the switch level model that are specific to the
analysis of pre-charge logic, being net capacitance and dynamic clock
waveforms. All nets that are connected to a transistor gate or the input to a
logic gate are assumed to have a capacitance and are capable of holding a
logical value. An alternative to capacitors are weak state-holding struc-
tural loops that maintain the logical level of a net while it is not driven by
a stronger signal.
A dynamic clock waveform defines the clocking scheme for the circuit
and is specified by the user. SLV only requires the user to define the dy-
namic clock inputs of the top-level block in the design hierarchy as it is
capable of handling gated clock designs and propagates the clocking
scheme throughout the logic in the clock tree during the circuit analysis.
In the initial stages of CCC evaluation, a CCC is marked as being dy-
namic if it has one or more dynamic clock external inputs. The depend-
ence of this CCC on a dynamic clock input is used to suggest the presence
of pre-charge logic. The nets within a dynamic CCC are subsequently ex-
amined and can be classified as either a pre-charge net, or a dynamic
clock (indicating presence of gated clock logic in this CCC).
A net is labeled as a dynamic clock if either the net is specified as such
and associated with a waveform by the user, or if a dynamic CCC drives
the net and it is not a pre-charge net and its global functions are depend-
ent on a dynamic clock BDD variable (see Table 1).
A net in a dynamic CCC is labeled as a pre-charge net if the net may float
(i.e. it is not driven to a logical 1 or 0) in the evaluate phase of the dy-
namic clocking scheme and:
1. The net has level restoring logic indicated by a sequential loop; or
2. The local functions of the net are dependent on the capacitance of the

net (see Table 1).
The SLV tool has a user selectable ability to ignore net capacitance and
only classify pre-charge nets based on condition 1 above, which is useful
in the analysis of a particular design style.
In order to model net capacitance in a dynamic CCC, each capacitor Ci in
the CCC is associated with two new independent local variables, VCi

1 and
VCi

0 respectively, representing the pull-up and pull-down drive of the ca-
pacitor. The subsequent analysis of each dynamic CCC output derives lo-
cal pull-up and local pull-down functions that may be dependent on both
CCC inputs and any VCi of the CCC. Immediately after explicit path
enumeration the type of a net can be inferred from the dependence of the
local functions on VCi, and the dependence of the global functions on dy-
namic clock input variables, as shown in Table 1. In this table Ca repre-

sents the capacitor variables of the net that is currently being evaluated.
Note that bad charge sharing is defined to occur when a net with capaci-
tance is locally dependent on the capacitance of any other net in the same
CCC, and the two nets are pre-charged to opposing values.

Table 1 Net Classification in Dynamic CCCs
Local func-
tions depend
on VCa

Local functions
depend on VCi

other than VCa

Net can float in
the evaluate
phase

Net Classification

Yes Yes Yes This is a pre-charge net. There is the
potential for bad charge sharing if ca-
pacitors in the local functions are pre-
charged to opposite values.

Yes No Yes This is a pre-charge net.
All other combinations The net is a dynamic clock if its global

functions are dependent on a dynamic
clock BDD variable.

In order to avoid interfering with subsequent processing steps, once this
net classification is complete, logical 0 is substituted for each VCi in the
local pull-up and pull-down functions. Following this, the local pull-up
and pull-down functions become what they would be for a non-dynamic
CCC. If the net has not been marked as a pre-charge net then no further
processing is required, otherwise the local and global functions of the pre-
charge net are modified to model the static behavior.

3.2.2 Modifying the Functions of a Pre-charge Net
One of two distinct modifications is made to a pre-charge net’s local and
global functions, depending on whether the net is pre-charged to logical 1
or logical 0. Therefore, as a first step in modifying the functions of a pre-
charge net, its global functions are used to determine if it is pre-charged to
logical 1 or logical 0. This is achieved by substituting the actual value of
all dynamic clock inputs in the pre-charge phase into the net’s global
functions. This result indicates either pull-up or pull-down pre-charge as
shown in Table 2.
The heuristic presented in Table 2 determines the pre-charge behavior for
a wide variety of dynamic design styles including gated clocks, footed or
non-footed pre-charge logic, pre-charge paths containing resistive tran-
sistors or logic gates with weak driving strengths, and pre-charge level re-
storing logic.

Table 2 Heuristic for Determining Pre-charge Behavior
Resulting
global pull-up

Resulting global
pull-down

Additional Conditions Interpretation

Constant 1 Not constant 1 N/A Pull-up pre-charge
Not constant 0 Constant 0 N/A Pull-up pre-charge
Constant 0 Not constant 0 N/A Pull-down pre-

charge
Not Constant
1

Constant 1 N/A Pull-down pre-
charge

Modified Unchanged Resulting global pull-up and
pull-down are complementary

Resistive
pull-up pre-charge

Unchanged Modified Resulting global pull-up and
pull-down are complementary

Resistive pull-down
pre-charge

Modified Modified Resulting global pull-up and
pull-down are complementary
and the strongest driving path
is a pull-up path

Resistive pull-down
pre-charge

Modified Modified Resulting global pull-up and
pull-down are complementary
and the strongest driving path
is a pull-down path

Resistive pull-up
pre-charge

All other combinations The net is not a
pre-charge net.

Based on the pre-charge behavior, the local and global functions of a pre-
charge net are modified to model the static footed behavior of the net. The
first step in this process is the determination of the global pre-charging
function, which is the Boolean function representing the global variable
condition that results in the pre-charge behavior of the net. The technique
for determining the global pre-charging function uses the pre-charge be-
havior from Table 2 and is shown in Table 3. In Table 3 ‘gpu’ and ‘gpd’



respectively represent the global pull-up and pull-down functions of the
pre-charge net, ‘Universal’ represents the universal quantification opera-
tion, and ‘Constrain’ represents the BDD constraining function. The local
pre-charging function is determined by translation from the global pre-
charging function.

Table 3 Determining the Global Pre-charging Function
Pre-charge
Value

Resistively
Pre-charged

Global Pre-charging Function

1 Yes gpu.Constrain(~gpd).Universal(<All BDD variables not rep-
resenting dynamic clocks>)

1 No gpu.Universal(<All BDD variables not representing dynamic
clocks>)

0 Yes gpd.Constrain(~gpu).Universal(<All BDD variables not rep-
resenting dynamic clocks>)

0 No gpd.Universal(<All BDD variables not representing dynamic
clocks>)

The functionality of footing logic is added to the local and global func-
tions of the pre-charge net by the following operations:

Pre-charged to logic 1: pull-dn=pull-dn&~(pre-charging-function)
Pre-charged to logic 0: pull-up=pull-up&~(pre-charging-function)

The footing logic is first added to the global functions of the pre-charge
net, and non-footed dynamic logic is implemented if this translation modi-
fies the global functions of the pre-charge net. A similar translation is only
applied to the local pull-down function of the pre-charge net if non-footed
logic is being modeled.
The final step in modeling the footed static behavior of the pre-charge net
is to apply a translation that represents the level-restoring behavior of the
net when no discharge paths conduct. If the pre-charge net is pre-charged
to logical 1, then its local and global functions are modified according to
the following scheme:

pull-up = pull-up | ~(pull-down function)
pull-down = ~(pull-up function)

Similarly, if this net is pre-charged to 0, then its local and global functions
are modified as follows:

pull-down = pull-down | ~(pull-up function)
pull-up = ~(pull-down function)

SLV provides two modes of modes of output representation for pre-charge
nets, the first includes explicit references to the dynamic clocks in the be-
havior of pre-charge nets, and the second makes no reference to dynamic
clocks. This allows users to select the mode that suits their design style.

3.3 Analysis of Structural Loops
Current generation equivalence checking tools rely on a close structural
correspondence between the circuits being compared. In practice, a one-
to-one mapping between the state points (latches) of the two circuits is re-
quired to identify the cones of logic that need to be compared. To apply
these tools to a switch level block, one has to determine its sequential be-
havior by reliably identifying the state points as intended by the logic de-
signer and not introducing any additional ones.
Traditional switch level symbolic analysis derives a gate level model that
contains fine-grained sequential behavior introduced by a special simula-
tion clock that is not part of the original design, and associated unit-delay
gates [2][4]. Therefore, this gate level model is not suitable for compari-
son with an RTL model as is; further processing is required to abstract the
detailed timing information and obtain an FSM representation suitable for
formal verification [10][11]. However, the algorithms performing this ab-
straction rely on symbolic reachability analysis, which is likely to limit
their capacity. Thus, some commercial tool vendors are relying on pattern-
matching techniques to identify the latches in a design [7][14], while oth-
ers require users to pinpoint the state points in the input design [12].
From a practical point of view, sequential behavior in circuits is imple-
mented either by structural loops (latches, keepers and half-keepers), or by
storing electrical charge (dynamic logic, dynamic memory arrays). Since
the verification of dynamic memory arrays is not an application SLV is
currently targeted at, this section focuses on the analysis of structural
loops in the switch level circuit.

The primary objective of structural loop analysis is to determine whether a
loop is combinational, sequential, or oscillatory. A secondary requirement
is the ability to produce an RTL description for the loop in case it is not
found to be oscillatory. Our approach to this  extends [12][15].
Firstly, we consider structural loops involving two or more CCCs (called
external CCC loops). Graph-based algorithms are used to traverse the
connectivity of the CCCs in the switch level circuit from the outputs to
the inputs. Any closed loops are broken by inserting two new independent
boolean variables v0 and v1 representing, correspondingly, the pull-down
and pull-up functions of the net N closing the loop (referred to as a
shadow net) [12][15]. Note that selecting, as a shadow net, any of the nets
on the boundaries between CCCs that form it will break a loop. To aid in
the subsequent equivalence-checking step, SLV employs a set of heuris-
tics guiding the choice of a shadow net.
During the analysis of the logic cone driving a shadow net, the variables
v0 and v1 are used to resolve the circular dependencies in the logic and the
global pull-down function F0 and pull-up function F1 are computed. Ex-
amining the dependencies of F0 and F1 on v0 and v1 performs the loop
analysis. We introduce a function depend(F, v) that evaluates to 0 when
F|v=1=F|v=0 and to 1 otherwise. Then, a so-called loop signature LS is com-
puted as follows:

LS = depend(F1, v1)*8 + depend(F1, v0)*4 +
depend(F0, v1)*2 + depend(F0, v0)

By definition, LS has an integer value between 0 and 15 characterizing
the self-dependencies in the corresponding structural loop. For example,
LS=0 implies that the loop is purely combinational (this has been previ-
ously noted in [12]). Similarly, LS=9 implies that the loop is likely to be
sequential, although a further check is required to ensure that there is no
risk of uncontrolled oscillation of that loop (see below).

Table 4 Loop Signature Interpretation
LS Inferred type of loop / Action
0 Combinational loop; the pair of boolean functions does not depend on either

of the temporary boolean variables.
1 Sequential loop implementing a half-latch that can keep a value of 0 but not a

value of 1.
8 Sequential loop implementing a half-latch that can keep a value of 1 but not a

value of 0.
9 Sequential loop implementing a latch.
other F0 and F1 are simplified under the assumption that the shadow net can only

take boolean values; LS is re-computed.

The complete set of LS values and their interpretations are provided in
Table 4. In some cases, the value of LS does not uniquely identify the na-
ture of the structural loop. To avoid that, the value of LS is re-computed
after F0 and F1 are simplified under the assumption that the shadow net
can only take Boolean values. This is achieved by substituting any occur-
rence of v0 in F1 by ~v1, and any occurrence of v1 in F0 by ~v0.
This step is, of course, based on an assumption that is later discharged by
verifying that the net cannot have X or Z value. Note that the re-computed
loop signature is guaranteed to have a value of 0, 1, 8, or 9.
When the structural loop under analysis is found to be combinational, the
only remaining task is to substitute v0 with F0 and v1 with F1 in the global
functions of all nets that depend on the temporary Boolean variables.
However, if the loop is inferred to be of sequential nature, the extra steps
of functional decomposition and a check for oscillatory behavior are re-
quired. The functions F0 and F1 are decomposed into sub-functions as
follows:

F0 = X0 | Y0.v0 | Z0.~v0

F1 = X1 | Y1.v1 | Z1.~v1

where functions X0, Y0, Z0 do not depend on v0 and do not share common
cubes, and, similarly, functions X1, Y1, Z1 do not depend on v1 and do not
share common cubes. These functions have the following interpretations:
• X0 (X1) covers the case when F0 (F1) is independent of v0 (v1). Since

the loop is sequential, this is the condition under which the loop’s envi-
ronment “writes” a value into the loop’s latch;

• Y0 (Y1) covers the case when F0 (F1) take their previous value v0 (v1).
In terms of structural loop behavior this is the condition under which
the loop’s latch maintains its stored value;



• Z0 (Z1) covers the case when F0 (F1) take the negation of their previous
values ~v0 (~v1). Thus, if Z0≠0 or Z1≠0 the structural loop exhibits os-
cillatory (unstable) behavior. This clearly points to a design error and
prevents the algorithm from obtaining a functionally equivalent RTL
description of the input switch level circuit.

The above decomposition of F0 and F1 not only allows us to identify un-
wanted oscillatory loops, but also provides input to the final step of RTL
output generation for the loop. One way of describing the loop behavior in
the Verilog language (assuming X0 and X1 do not share common cubes)
is:

reg N;
always @(<list of nets that X0 and X1 depend on>)

If (X0 | X1)
N = X1;

In practice, further analysis is applied to identify asynchronous and syn-
chronous set/reset signals, clocks and data inputs and produce a much
more detailed and human-friendly style of RTL description. Loops that
implement latches are distinguished from loops that implement keepers
based on a functional dependence of X0 and X1 on one or more of the
master clock inputs defined by the user, and different styles of output are
generated. Other types of loop behavior analysis on the decomposed F0

and F1 are possible and actually employed in SLV. For example, X0=0 and
X1=0 implies the presence of a latch that cannot be written to and, there-
fore, can be regarded as a source of unknown value (logical X). Such con-
ditions are reported to the user.
A separate technique has been developed for the analysis of structural
loops that occur within a single CCC (internal CCC loops). Although
some specific but common cases such as Brzozowski-Yoeli loops [6] can
be dealt with using rather simple techniques, the design goals of SLV and
the requirements of its user community required a more general solution
to this problem. In our presentation of the internal CCC loop resolution
technique, we consider a CCC with m external inputs with functions
e1,e2,…,em, and n>0 internal inputs. Again, we notionally break the loops
at the internal inputs by introducing a pair of temporary variables—uk for
the local pull-up function and dk for the local pull-down function at the k-
th input—one for each internal input.
Next, a system of boolean equations B is formed. The actual local pull-up
(Uk) and pull-down (Dk) functions for all internal inputs are obtained in
terms of ei, ui, and di. Then, for any given internal input k, the following
equations must hold when the signals at the inputs of the CCC are stable:

uk = Uk

dk = Dk

The 2n equations obtained in this way form the system of equations B. In
essence, B captures the conditions under which all nets in the CCC hold a
stable value. Solving B with respect to uk and dk using a method such as
Gaussian elimination can lead to one of the following results:
• If B has no solutions, then the CCC cannot reach a stable state, and it is

therefore established that at least one of the internal CCC loops results
in oscillation. This is a design error and no RTL output is produced;

• If B has exactly one solution, then uk and dk are uniquely determined in
terms of ei. Therefore, all structural loops in the CCC are of combina-
tional nature and the local functions of all nets inside the CCC can be
obtained by substituting the temporary boolean variables uk and dk with
their solutions in B;

• If B has more than one solution, then at least one of the internal CCC
loops is sequential. Further analysis is required to handle this case.

Two observations are important in order to understand our approach to
handling the latter of the three cases above. Firstly, even if B does not
have a unique solution, it is quite possible that uk and dk do have a unique
solution for a given k. Thus, we can rule out the possibility of a certain
internal input being a state storing net without having to solve B. Sec-
ondly, uk and dk not having a unique solution for a given k implies that
either (1) the k-th internal input is a state storing net, or (2) the k-th inter-
nal input is combinationally dependent on at least one state storing point
inside the CCC.
The analysis of the case when B has more than one solution proceeds in
an iterative fashion:

1. The set of pairs of temporary boolean variables uk and dk that have
unique solutions are identified, and their nets are marked as non-state
storing ones. Substituting the identified pairs of boolean variables with
their unique solutions modifies the system of equations B. This step re-
duces the number of the remaining free temporary variables in B.

2. If there are no more free variables in B, all internal inputs have been
categorized, and there is no more work to do.

3. One of the remaining unresolved nets is picked up and selected as a
state storing one. The system of equations B is modified to make the
corresponding temporary boolean variables be parameters rather than
unknown entities in B. This step makes B more constrained with re-
spect to the remaining free temporary variables. The three steps above
are repeated starting with point 1. above.

3.4 Tool Integration and Flow Automation
The compareS2RTL tool encapsulates an automated flow for performing
formal equivalence checks between two designs, each design being at the
switch, gate, or RTL abstraction level. The compareS2RTL tool controls
the flow of data between each tool that it employs, providing a single ge-
neric interface to the user that allows different back-end tools or modules
to be plugged-in with minimal impact to the development environment.
Typically the compareS2RTL tool is applied to a switch level design and
an RTL design; the compareS2RTL flow for this is illustrated in Figure 2.
The compareS2RTL tool employs SLV to create an RTL model from the
switch level design. The equivalence check is subsequently performed
between the extracted RTL model and the RTL design using a functional
equivalence checker such as Tuxedo-LEC [18]. A sequential model
checker is applied if the equivalence checker did not determine that the
two designs are equivalent, which can often be a result of differences by
the tool in mapping sequential elements between the designs.

compareS2RTL

SLV

Sequential 
Model 

Checker

Equivalence 
Checker

RTL Reference 
Design

Switch Level 
Design

?
Sequential 
Equivalence 
Result

Extracted RTL 
Design

?
Structural 
Equivalence 
Result

Figure 2 Equivalence Checking using compareS2RTL

The compareS2RTL tool is very versatile, allowing the user full control of
which tools and options are used. It provides a single interface for the user
to become familiar with and automatically controls the passage of infor-
mation between tools. Another benefit is that the compareS2RTL tool
automatically passes BDD variable ordering information between tools,
resulting in fewer reordering operations and improved performance.

4. CONTRIBUTIONS AND RELATED WORK
The main contribution of this paper is the description of two novel switch
level analysis algorithms. The first algorithm provides automated identifi-
cation and analysis of pre-charge logic in the presence of complex logic
structures such as gated clocks, non-footed logic, and charge sharing. The
other algorithm is concerned with structural loop analysis and classifies
loops as combinational, sequential, or oscillatory (unstable).
Many of the fundamental technologies for symbolic analysis of switch
level circuits grew out of efforts to increase the speed and capacity of
switch level simulation. Bryant pioneered several important techniques in
this field, including novel methods for switch level modeling [2], CCC
analysis [3][4] and the representation of boolean logic with reduced or-
dered binary decision diagrams [5]. While this research clearly demon-
strated the utility of switch level analysis, the development of software to



generate an output model suitable for formal equivalence checking was
not its primary objective.
A tool called Anamos reads a switch level model in a Spice-like language
and generates an equivalent gate level model [2][4]. The gate level mod-
eling style employs fine-grained sequential behavior introduced by a spe-
cial simulation clock that is not part of the original design and unit-delay
gates to represent sequential behavior. This gate level model is suitable for
simulation but not appropriate for comparison with an RTL model as is.
In contrast to this, the techniques for dynamic logic and structural loop
analysis in SLV ensure the preservation of the original state storing points
in the input design and produce a netlist that is suitable as input to
equivalence checking tools.
Several commercial and academic tools and tool flows are based on the
switch level analysis engine implemented in Anamos. Significantly, ex-
periments have attempted to implement algorithms that process the output
of Anamos with the objective of transforming it into a more usable form
of HDL [10][11]. These algorithms rely on symbolic reachability analysis,
which is likely to limit their capacity. A major advantage of our approach
to structural loop analysis is the fact that each loop is analyzed in isolation
avoiding such computationally intensive. This has a positive effect on the
size of circuits that can be handled. This increase in tool capacity with re-
spect to the background art has been achieved without a compromise in
accuracy or rigor of analysis, and these algorithms have exposed subtle
custom design problems on a regular basis.
Verity [12] implements efficient algorithms for verifying the behavior of
switch level models with static combinational and simple dynamic logic.
This has seen the tool used with great success in commercial custom VLSI
design settings. However, Verity cannot perform analysis of structural
loops and depends on user input to resolve these. Unlike SLV, Verity can-
not generate an RTL representation of a switch level design, which limits
this tool’s utility to formal verification flows only.
Pattern matching techniques have also been used for switch level circuit
extraction [7][14]. Tools employing this approach repetitively attempt to
match parts of the input design and replace them with RTL components
from the library. Unfortunately, there is no guarantee that the component
library is both correct and complete. The switch level analysis in SLV, on
the other hand, is purely functional and does not rely on pre-defined
structures and patterns, which translates in an ability to handle a wide va-
riety of design styles.

5. EXPERIMENTAL RESULTS
SLV has been in production use across Motorola for several years and has
been applied to the verification of key PowerPC, M*Core and DSP cus-
tom blocks. As a generic switch level analysis platform, SLV has also
successfully targeted a number of additional applications—library char-
acterization, legacy design re-engineering, and generation of gate level test
views from switch level logic [16].

Table 5 Benchmark Results from Running SLV
Design Transistors Loops Latches Dyn. Cells CPU Time (s) Memory (MB)
1 18 2 2 0 0.1 3.5
2 157 0 0 12 0.1 3.5
3 5615 174 158 16 0.7 9.3
4 5814 395 0 395 11.7 19
5 7329 557 0 557 21.0 47
6 37549 1304 1270 0 11.7 35
7 89667 3771 3456 0 111.0 35

Experimental results for SLV are presented in Table 5. SLV was executed
for all benchmarks on a Sun Blade 1000 with 1024 MB of RAM. The
benchmarks range from simple flip-flops and adders to complex Motorola
proprietary designs. Table 5 demonstrates the ability of SLV to analyze a
representative set of switch-level designs including a mixture of structural
loops, dynamic, and sequential logic.

6. CONCLUSIONS
This paper presented a complete framework for formal verification of de-
signs at the switch level. The algorithms that make SLV include novel
contributions to the state of the art in the areas of pre-charged logic analy-

sis and structural loop and sequential logic analysis. These improvements
made possible the satisfaction of all high-level requirements set for SLV
from the very beginning of the project—coverage of a wide set of design
styles, minimal change and added overhead for established custom design
practices, robustness, and user-friendly RTL output comparable to manu-
ally written models.
One area for improvement in SLV is increasing the size of the blocks that
can be handled in a single run. One approach that looks particularly
promising is utilizing a non-canonical representation for boolean func-
tions such as Boolean Expression Diagrams [1], coupled with a joint use
of BDD- and SAT-based [8] decision techniques.
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