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Abstract

Modern ultrasonic inspections utilize ever-richer data-sets made possible by phased array equipment. A typical inspection

may include tens of channels with different refraction angle, that are acquired at high speed. These rich data sets allow highly

reliable and efficient inspection in complex cases, such as dissimilar metal or austenitic stainless steel welds. The rich data

sets allow human inspectors to detect cracks with low signal-to-noise ratio from the wider signal patterns. There’s a clear trend

in the industry to even richer data sets with full matrix capture (FMC) and related techniques. Convolutional neural networks

have recently shown capability to detect flaws with human level accuracy in ultrasonic signals at the B-scan level. To enable

automated flaw detection at human-level accuracy for critical applications, these neural networks need be developed to take

advantage of today’s rich phased array data-sets. In the present paper, we extend previous work and develop convolutional

neural networks that perform highly reliable flaw detection on typical multi-channel phased array data on austenitic welds.

The results show, that the modern neural networks can accommodate the rich ultrasonic data and display high flaw detection

performance.
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1 Introduction

Conventional ultrasonic weld inspection requires multiple

physical probes with different angles to achieve satisfying

results. Phased array systems can be used to reduce the

amount of required probes. Phased array probes consist of

a transducer system of multiple elements that can be con-

trolled, pulsed and received, separately. By controlling the

transducer elements through focal laws one probe can be used

to produce different beam angles, beam steering and focus

depths. For weld inspections, mechanised scanning allows

for the inspection data to be recorded consistently and more

importantly allow more thorough data analysis possibilities

afterwards. Although this is also possible for conventional

probes, it requires multiple individual scans and probe angles

making it more time consuming. A system of multiple con-

B Tuomas Koskinen

tuomas.koskinen@vtt.fi

Oskar Siljama

oskar.siljama@aalto.fi

1 Aalto University, PL 14200, 00076 Aalto, Finland

2 VTT Research Centre of Finland, Espoo, Finland

ventional probes could be used to limit the amount of required

scans, but such systems are too large in size to be utilized

in inspections. Phased array systems limit the amount of

required scans with transducers small enough for inspection.

While phased array system have been around for medical sys-

tems for decades, they have become more common in NDT

in the late 00’s and their use has been steadily increasing

[5,10,12,30].

Developments in the phased array systems allow increas-

ing amounts of data to be captured in the inspections with

similar time frame. This means systems like full matrix cap-

ture (FMC) or total focusing method (TFM), which record

every transmit-receive combination possible by the trans-

ducer producing a fully focused and comprehensible image,

have become available. Modern phased array system allow

data interpretation in a way that is more generally understand-

able [17,18,30]. Using the same data format for the inspectors

and machine learning (ML) models enables direct compari-

son between the ML system and an inspector.

In nuclear power plants (NPPs) NDT methods are used to

verify the structural integrity of critical components. Inspec-

tions are carried out during maintenance outages making the

access to the inspection targets limited. Mechanical scan-
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ning systems are used to gather ultrasonic inspection data

from primary circuit components reliably and consistently.

After monitoring the data collection the inspector will go

through the ultrasonic data and look for flaw indications.

This data analysis is a tedious and time consuming task with

a possibility to human errors. According to Ali et al. [3]

most of the human errors are caused by poor instructions and

fatigue. Bato et al. [4] studied the environmental factors on

human inspectors and humans performed worse in the field

than in the laboratory. Moreover, there are differences on

the performance of different inspectors, conducting the same

inspection [33,39]. Automated systems are not susceptible

to such errors. Thus, automation has been used for ultrasonic

testing for decades in areas where data interpretation is clear

and the amount has been high [16]. The major drawback of

traditional automated systems has been the inability to handle

noisy and complex ultrasonic data.

ML models have proven their effectiveness in various

image recognition tasks Aggarwal [1], Chowdhury et al. [9],

Munir et al. [25,26], Virkkunen et al. [40] thus ML models

could be employed to remove the bulk of the repetitiveness

of NDT data analysis, even in the noisy and complex cases.

Since the majority of the inspection data is usually without

flaws, the ML model could be used to look for flawed areas.

After identifying the locations of the possible flaw indications

via a ML system, the inspector could verify the results and

apply expert judgement in flaw evaluation. In high reliability

industries like the nuclear industry the use of best practices is

mandated. The ability to utilize increasing amount of inspec-

tion data allows for flaw detection at an earlier stage as well

as more effective monitoring of the system and the flaws.

The ML approaches for image classification have been

also developed in increasing speed. State of the art DCNN

for image classification tasks can be considered the YOLO

networks. YOLO networks. [32] introduced a very deep con-

volutional network VGG, comprising of 16 to 19 weight

layers with small convolutional filters suited for large-scale

image recognition tasks with vectorized output for classifi-

cation. The VGG network performed outstandingly well as

it achieved first and second place in ImageNet Large-Scale

Visual Recognition Challenge 2014 (ILSVRC-2014) image

recognition and localization tasks, respectively. Redmon and

Farhadi [27,28] introduced the YOLO deep neural network

for object detection tasks, with very high speed real-time

image processing that is continuously improving. Compared

to VGG, YOLO outputs a tensor representing a grid of the

input image, containing both classification labels and coor-

dinates for the bounding boxes for each grid.

The recent developments in machine learning have also

found their way into non-destructive testing (NDT). The

areas where the NDT data is natively image-like can often

take almost direct advantage of the recent advances in ML

for image detection. These areas include, visual testing Chen

and Jahanshahi [6,7], Tang and Chen [35], radiographic Du

et al. [14] testing and eddy current testing Zhu et al. [42].

ML powered ultrasonic inspection operates under the

same principles and constraints as any other form of machine

vision and image recognition. However, modern ultrasonic

inspection differs slightly from the traditional image recog-

nition case as data gathering enables large variety of different

options in terms of angles, focus and scan plans. Hence, the

same scan location produces multiple images and depending

on the index location, some parts of the scanned information

are essential for flaw detection while other parts are com-

pletely irrelevant. This increased amount of images might

needlessy consume computing resources or lead to missing of

the flaws if scanned data would need to be constrained. In this

paper, we study how a machine learning model can handle

ultrasonic phased array data and how this type of data should

be handled most efficiently and fully utilizing the gathered

scan data. In addition, the model is trained with flaws that

are scanned in base material and virtually implanted to the

weld scan data. The model performance is tested with real

thermal fatigue cracks in similar weld geometries as used in

training and compared to the results of a human inspector.

1.1 Machine Learning for UT Data

Ultrasonic data has been interpreted before with simple and

shallow neural networks, usually for A-scan classification.

[8,22,41] Support-vector machines (SVMs) have been an

effective way to classify ultrasonic signals as demonstrated

by Fei et al. [15], Matz et al. [23]. For both the shallow

neural networks and SVMs have reported high classification

accuracy for A-scan, these methods have been unfeasible for

wider use due to feature engineering. In feature engineering

the models require feature extraction by hand, which deteri-

orates the scalability. While the number of extracted features

were only 12 for Sambath et al. [29] and 5 for Cruz et al. [11]

using SVMs, the deep neural networks can be trained with

much higher efficiency as the feature engineering is left for

the model.

More recent approaches have been used with the PAUT

data. Luo et al. [20] were able to construct an algorithm which

utilized spatial clustering and segmentation to detect flaws

from the S-scan data in TKY welded joints. While the algo-

rithm used multiple angles, the algorithm relied only to the

2D data obatained from the S-scan. Shukla et al. [31] utilized

a physics-informed neural network to detect surface breaking

cracks in ultrasonic data. The model based the detection on

the decrease in the speed of sound recorded from the signal.

The DCNN for NDT purposes have been shallow when

comparing to the modern deep networks. The DCNN

Virkkunen et al. [40] utilized had less than 100,000 param-

eters. The ultrasonic data can be considered simple as there

are a lot of similarities within the data, which enable the use
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of simpler mathematical approaches as for Luo et al. [20] to

a certain point. Moreover, the number of required extracted

features for high classification accuracy has been low for

shallower networks and SVMs. Thus, the shallower DCNN

and simpler approaches have been successful in classification

tasks.

The recent advances in convolutional networks have

enabled the use of machine learning also for automated flaw

detection in complex UT signals—a task that was consid-

ered infeasible for a long time. Munir et al. [25,26] used

convolutional neural networks to analyze single A-scans and

reported impressive results for flaw detection in weldments.

However, the information contained within a single A-scan

is limited and also human inspectors typically move the

probe interactively during inspection to sample multiple A-

scans and to get information from the echo dynamics of the

reflector. For mechanized inspection, this probe movement

is done by mechanical or electronic (phased array) scan-

ning, and the information can be obtained by analyzing a

set of related (adjacent) A-scans, i.e. B-scans. Virkkunen

et al. [40] used convolutional networks to analyze B-scan

level data and obtained human-level performance in flaw

detection. For many NDT systems, there is a requirement to

use best-available techniques and so obtaining human-level

performance is a significant milestone that enables wider

application of ML systems in practice.

Despite these advances, the ever richer data sets acquired

in modern phased array UT inspections provide a significant

challenge for the ML networks. As the data size increases,

the computational burden of training also rapidly increases.

Thus, the key challenge remains to adapt the rich UT signals

so, that the computational burden remains feasible without

significant loss of signal data.

1.2 Training Data for NDT

The use of richer ML networks for flaw detection and also

the widening of the field-of-view from separate A-scans

to B-scans and beyond is necessary to obtain human-level

performance. However, it also significantly increases the

amount of data needed for training. In NDT, we typically

have copious data for un-flawed inspection but flawed data

sets are scarce. The lack of representative flawed data sets is

a common problem even for training humans, which require

substantially less data than ML systems.

A common technique in ML to work with limited train-

ing data is to use data augmentation. By applying different

transformations to the training data, variation that should be

inconsequential to the classification but is not well repre-

sented in the training data can be artificially introduced and

the models can be made to generalize much better. Tradition-

ally, these augmentations include image manipulations like

shear, rotation and scaling. For NDT data, the signals are

simple, in comparison to typical image detection tasks. In

contrast, the issue is typically to find signals with very low

signal-to-noise ratio. Thus, the extent that such traditional

data augmentation can provide improvement is limited [14].

A more sophisticated augmentation scheme can be obtained

using the so called virtual flaws [34,36–38]. The cen-

tral idea with the virtual flaws is, that the flaw signal can

be extracted from the background and then re-introduced

to different backgrounds and separately augmented to pro-

vide additional variation. This approach allows significantly

richer augmented data. It has been successfully used in train-

ing and qualification of human inspectors and even in POD

evaluation of humans in [39]. It’s also been used for training

machine learning networks for various techniques [40].

In addition to data augmentation, generating the data

through simulation has been used for eddy current inspec-

tions. Miorelli et al. [24] used Output Space Filling (OSF)

to generate teaching data and Ahmed et al. [2] used simi-

lar approach by adding Partial Leas Squares (PLS) feature

extraction to OSF. These approaches were able to train

machine learning models within efficient computational

time. Ahmed et al. [2] speculated that this approach could

be plausible for ultrasonic and thermographic methods as

well.

2 Materials andMethods

2.1 Ultrasonic Set-Up

Ultrasonic data was acquired with the same procedure as

used for normal pre-service ultrasonic inspection in NPPs

and what is normally recommended for austenitic welds [13].

The original data was scanned using a dual matrix phased

array probe with 2.25 MHz frequency in transmit-receive

longitudinal (TRL) setup. There were total of 28 elements

per probe with the arrangement of 7 × 4 elements and active

aperture of 19×12 mm. The probes were placed in a rexolite

wedge with an angle of 18.9◦ and 0◦ roof angle with 6 mm

separation between the probes. Focal laws were set up for 40◦

to 70◦ angles with 1◦ step. Scan resolution was 1 mm and the

sound path was set from 3.46 to 27.75 µs with sound path

resolution of 0.01 µs, thus total data size for single scan step

was 2429×31 samples. Focus point was set to the bottom of

the weld, middle of the probe with no skew angle. The probe

was positioned such that 55◦ angle would be centered at the

weld root as only one scan line was recorded. The schematic

for the probe and wedge setup can be seen in Fig. 1.

Probe movement was recorded by a single encoder while a

single scan line was manually scanned along the weld. Probe

deviation from the said line was prevented by a stationary rail

in front of the scan line. Sensitivity calibration was done to a

standard austenitic stainless steel block with 1 mm machined
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Fig. 1 Schematic of the probe

and wedge setup. The phased

array focal laws were focused to

the bottom of the plate with

azimuthal scan from 40◦ to 70◦

Crack

Focus point

notch. Gain was adjusted so the 55◦ angle would reach 80%

of the maximum amplitude on the notch. The scan was made

by a certified level 3 inspector with Zetec TOPAZ64 phased

array equipment. Contact medium used was water applied by

hand from a spray canister.

2.2 Physical Samples for ML Training

For the raw UT data, two set of simplified plate samples

were used. Three plate samples with weld in the middle was

scanned to provide flaw-free UT data. The samples differed

in thickness and roughly represented the range of thicknesses

expected in the final application. All the samples are shown

in Table 1. The material for all the samples was AISI 316L

stainless steel and welded with Gas tungsten arc welding

(GTAW) or Shielded metal arc welding (SMAW) . The weld

samples (1–3) were scanned from both sizes. In addition, sep-

arate flawed samples were scanned to acquire flawed data.

The flawed samples did not contain any welds and thus pro-

vided noise free flaw signals. The flaw sizes are shown in

Table 2. The flaw samples were scanned from both sides

and with three scan distances each side (focused at root, + 5

mm and + 10 mm). As is characteristic of all natural flaws,

the cracks exhibit variation as they find their way through

the local microstructure. Thus, the flaws are expected to give

somewhat different UT signal when scanned from different

sides (and with different distance and angle).

This scan set-up maximized the amount information

obtained from each sample and yielded 6 distinct flawless

weld backgrounds and 80 distinct flaw signals from 16 phys-

ical flaws.

The present set-up where un-flawed weld-data and scans

from flaws introduced in base material provides a flexible

arrangement and allows insertion of flaw signals to various

locations in the weld. Some of the flaws were so small as to

be at the limit of detection, if manufactured directly in the

noisy weld. The present set-up allows extraction of clean flaw

signal from relatively low-noise samples and embedding it

Table 1 The scanned samples included flaw-free weld samples and

flawed base material samples detailed here

# Type Thickness Notes

1 Weld 30 mm Mechanized SMAW

2 Weld 30 mm Narrow-gap GTAW

3 Weld 20 mm Narrow-gap GTAW

4 Base material 20 mm Flaw 1

5 Base material 20 mm Flaw 2

6 Base material 20 mm Flaw 3

7 Base material 20 mm Flaw 4

8 Base material 20 mm Flaw 5

9 Base material 20 mm Flaw 6

10 Base material 20 mm Flaw 7

11 Base material 20 mm Flaw 8

12 Base material 20 mm Flaw 9

13 Base material 20 mm Flaws 10–12

14 Base material 20 mm Flaws 13–16

into the noisy environment where detection is uncertain or

even impossible.

While the set up has significant advantages, it also misses

the possible interaction with weld microstructure and flaw

growth. It is conceivable, that flaws grown directly to, e.g.,

weld fusion line, would be affected by the local microstruc-

ture and display different characteristics than flaws grown in

base materials. Previous studies by Svahn et al. [34] indi-

cate, that such variation is negligible for the present case

of mechanized butt-welds in austenitic stainless steel. Thus,

separate final validation flaws were manufactured with flaws

produced directly into the weld fusion line.

2.3 Physical Samples for Validation

A completely separate sample set was created for the final

validation of the trained machine learning network and to

evaluate its performance against human inspectors. In con-
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Table 2 The flawed samples included altogether 16 defects detailed in

the following table

# Flaw id Length (mm) Depth (mm)

1 058CAB6775 1.6 0.6

2 060CAB6780 2.3 0.9

3 061CAB6781 3.5 1.3

4 045CAB6750 3.9 1.4

5 057CAB6774 6.0 1.4

6 160BCB1672 3.9 1.4

7 185BCB1709 3.5 1.8

8 220BAB1152 3.7 1.8

9 049CAB6759 5.4 2.0

10 045CAB6749 8.8 3.3

11 230BCB1740 10.3 4.9

12 013BFB2687 13.8 5.9

13 222BAB1153 24.2 6.8

14 251BBB1399 23.9 7.1

15 188BCB1715 28.4 7.6

16 173BCB1697 18.9 9.0

All defects were true thermal fatigue cracks, grown in-situ to the base

material samples (i.e. not weld implanted) by Trueflaw Ltd. The man-

ufacturer’s flaw id is provided for traceability

Table 3 The scanned validation samples included flawed weld samples

# Type Thickness Notes

1 W2685 20 mm Narrow-gap GTAW

2 W2686 20 mm Narrow-gap GTAW

3 W2690 30 mm Mechanized SMAW

trast to the samples used in training the network, in this

validation set real flaws were manufactured directly to the

interesting weld fusion line locations. The sample geome-

tries similar to those described in Sect. 2.2 and are listed in

Table 3. All defects were in-situ produced thermal fatigue

flaws manufactured by Trueflaw Ltd. The validation flaw

sizes are shown in Table 4. The true depth of these flaws is

not validated, and can be roughly estimated from the surface

length and the expected aspect ratio. The validation samples

were scanned from both sides yielding 6 data files, with 16

theoretical flaw indications with 8 on the near-side (easier)

and 8 in the far side (more difficult). The data for the sepa-

rate validation samples was gathered on a separate occasion,

on a separate (but compatible) machine and by a different

inspector, following the same procedure as the training data.

This disconnection between the data gathering is expected

to minimize any possibility for overly-homogeneous train-

ing/validation data that would limit generalisation of the

model on later acquired data.

Table 4 The flaws in the validation set included altogether 8 flaws

# Flaw id Length (mm) Depth (mm)

1 346CAB7300 7.5 (2.0)

2 346CAB7301 11.5 (3.5)

3 349CAB7306 5.0 (1.5)

4 346CAB7302 9.0 (2.5)

5 346CAB7303 9.0 (2.5)

6 349CAB7307 5.0 (1.5)

7 349CAB7308 5.0 (1.5)

8 350CAB7315 3.5 (1.0)

All defects were true thermal fatigue cracks, grown in-situ to the weld

fusion line (i.e. not weld implanted) by Trueflaw Ltd. The manufac-

turer’s flaw id is provided for traceability. The depth values are not

validated, and should be considered rough estimates

The criterion for ML model was to find flaws as small

as possible, while avoiding false calls in the process. For

human inspector the instructions were similar and to follow

traditional inspection protocol for austenitic stainless steel

welds. Thus, no hard amplitude limit was set for detection,

but the inspector looked for deviations in the geometrical

indications and to detect unique signal inconsistencies from

the data. The inspector was highly familiar with austenitic

weld inspection.

2.4 Data Development and Augmentation

The flaw signals were extracted from the acquired data files

to facilitate eFlaw data augmentation With 16 cracks and 5

scans for each crack, the raw data contained altogether 80

extracted flaw signals. Similarly, the multiple scans of welds

resulted in altogether 6 flawless canvases for data augmenta-

tion, one of which was designated unusable due to differing

acquisition set-up. Since the flawed samples did not contain

the characteristic weld noise, they could not be used as aug-

mentation canvases.

Moreover, the signal was gated for the longitudinal wave

and the shear wave component was left out from the signal

shown to the model.

The designated unit of analysis was a partial scan with 48

A-scans clipped to 1020 samples from the interesting weld

region for each of the 31 channels. The clipping to 1020 sam-

ples left only the longitudinal component in the data. While

the shear wave component can be used for flaw detection in

some cases, for these austenitic welds the noise was so high

the focus on just longitudinal component was justified. Thus,

a single data sample was 48 × 1020 × 31 ≈ 1.5M samples

in size.

A balanced, augmented data set was generated as follows:
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1. Each weld file was used as a flawless canvas. The full

acquired A-scans were clipped to the interesting region

around the weld to minimize excessive data.

2. For each canvas, a set of 500,000 samples were generated

(divided in 50 batches of 10,000 samples each):

(a) A random number was picked to select flawless or

flawed sample.

(b) If the sample was designated as non-flawed:

i. random window of 48 A-scans was selected and

added to the result data.

ii. The data was further augmented by shifting each

A-scan by a random-walk offset that mimics pos-

sible probe jitter during scanning.

(c) If the sample was designated as flawed:

i. A random flaw was picked from population and

embedded to random location in the file.

ii. The flaw amplitude was decreased by random

factor in the range 0.5…1.0.

iii. The flaw was augmented by shifting each A-scan

by a random-walk offset that mimics possible

probe jitter during scanning.

iv. After embedding, a random window of 48 scans

were selected such, that the flaw was wholly con-

tained within the window.

v. The data was further augmented by shifting each

A-scan by a random-walk offset that mimics pos-

sible probe jitter during scanning.

In addition to the raw data, the corresponding labeling data

was recorded as a text file, that included the flaw location

rectangle in the sample, flaw original size, computed equiv-

alent size (based on the amplitude fraction) and location in

the original canvas.

Data augmentation through virtual flaws resulted in alto-

gether of 500,000 samples with approximately 50% flawed.

The data was stored in compressed binary form and took

roughly 500 GB of storage. For efficiency, the data prepro-

cessing described in Sect. 2.5 was integrated in the data

augmentation. Thus in addition to the full raw embedded

data, a reduced preprocessed data was generated. The pre-

processed data was used for the actual training, while the

full data was used to confirm data quality and preprocessing

efficiency.

The available flaws and canvases were divided between

and training, validation and test set (excluding the separate

samples for final validation). A separate validation set was

also used during development, but due to limited number of

flaw-free canvases, the separate validation set was reduced

the training set excessively. Thus the final models were

trained with all the available non-test flaws and backgrounds.

Due to these reasons, validation set containing 10,000 sam-

ples was separated from the training data and the validation

set contained the same physical flaws and backgrounds that

were used in training. The physical flaws or canvases selected

for the test set were excluded from the training/validation set

and the reported performance is achieved from the test set,

which contained a total of 1000 samples. All the data sets

contained 50% flawed images and 50% un-flawed images.

In addition, the smaller flaws (1–10) proved impossible to

discern when embedded in the weld noise. Thus, the training

data set was also divided to “big” and “all” flaws and training

was tried with both. The test set included the designated small

flaws in both cases.

2.5 Machine LearningModel

Before the data was submitted to the model, it was pre-

processed in a following way. The multiple angle channels

contain a significant amount of redundant data. Further-

more, significant portion of the A-scan samples are needed

to acquire the waveform and to avoid anti-aliasing effects

with the ultrasonic waveform. However, the signal is already

significantly frequency filtered due to resonance of the used

probes (often accompanied by further electronic filtering to

reduce noise). Thus, the frequency data contains little sig-

nificant information for flaw detection for this case. Human

inspectors also do not usually make use of the phase or fre-

quency information: they typically look at the data rectified

and merged, which covers any phase and frequency related

information in the raw data. Thus, the ML process can be

made more efficient by preprocessing the data in a way that

reduces sampling while still retaining the significant sig-

nal information. In principle, the pre-processing could have

been implemented as part of the neural network as a train-

able layer, however separating the simple pre-processing step

improved the data augmentation efficiency significantly. Var-

ious preprocessing methods were tried and the following

preprocessing pipeline was chosen:

1. Each of the 31 full waveform channels are considered

separately

2. Eeach frame is rectified (i.e. absolute value of the signal

taken).

3. The frame is max-pooled with window that matches the
1
2
λ. This has the effect of taking a computationally effi-

cient envelope of the data. The data size is reduced from

48 × 1020 to 48 × 34 (=1632) samples.

This preprocessing enhanced the data efficiency of the pro-

cess significantly and also facilitated generalization of the

model, since small differences in scan parameters (number of

channels, channel angles, A-scan lenght, Scan length) can be

accommodated in the preprocessing stage. The data was then

stored to compressed binary files to facilitate file transfer and

accelerate learning. For training, the data was decompressed,
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Fig. 2 Preprocessing pipeline of the ultrasonic data. First the data from

homogenous material, containing the flaw data, and the weld is obtained.

The flaw was then embedded to the weld and necessary augmentation

was conducted to enrichen the data set. Each channel of the sample was

then clipped to the area of interest. The single channels were then rec-

tified and max pooled according to the 1
2
λ and evaluated individually

and converted from the original 16 bit integers to 32 bit float-

ing point numbers and scaled to 0…2.0 (with most data in

range 0…1.0).

In addition to the selected model, the following alternate

schemes were tried:

1. Full 31 channels used as input to the network (rectified

and max-pooled)

2. 31 channels summed and used as a single channel, then

(rectified and max-pooled)

Network

The used DCNN architecture resembles VGG16 [32]

network with 3 convolutional blocks. Each block contained

two consecutive convolution layers with rectified linear unit

(ReLU) activations. This was followed by a batch normal-

ization (BN) layer to normalize the input distribution to the

following block to increase robustness of the network by

reducing the internal covariate shift [19]. The convolutional

blocks were followed by vectorization and a densely con-

nected layer with ReLU activation and units corresponding

to the number filters of the last convolution. Finally, the dense

connected layers weights converged to a single classification

unit with sigmoid activation, indicating if a crack is present.

The loss function applied was binary cross-entropy. For com-

puting the new weights during backpropagation, adaptive

moment estimation (ADAM) was used. The used network is

visualized in Fig. 3. Computations were conducted utilizing

TensorFlow library for data flow in preprocessing and filter-

ing, and Keras high-level API for constructing the DCNN.

2.6 Validation Data Evaluation

The data from the separate flawed validation samples was run

through the trained machine learning model as follows: each

file was split to a set of individually evaluated data-frames

corresponding to the chosen trained model input data size

(96 rows). The frames were construed by moving a window

of the said size with 50% overlap throughout the data, i.e.

the first frame contained lines 1–96, the second lines 49–

144 and so forth. For each frame, all the 31 channels were

separately evaluated. If any (even one) of these frames were

designated as flawed, the frame location was considered as

flawed. If a frame containing a flaw was identified as flawed,

this was considered a true hit and if identified as un-flawed

it was considered a miss. If a frame was indicated as flawed

but did not contain a flaw, it was considered a false call. The

data did not contain any cases, where a flaw would partially

fall on a frame. Altogether, the data so divided contained 32

separate data frames with 11 opportunities for hit/miss on the

near side, 11 opportunities for hit/miss on the far side and 10

opportunities for false calls.

The data files were also given to a human inspector for

a blind evaluation. The inspector remained oblivious to the

flaw location, but did have information regarding the pair-

iwise arrangement of the data files (i.e. new which files were

acquired from different sides of the same weld and thus con-
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Fig. 3 Used deep convolutional

neural network for estimating

flaws in ultrasonic scans

tained the same flaws). This may have helped the inspector

to identify unclear flaws from the far side.

3 Results

3.1 Ultrasonic Results

The austenitic stainless steel blocks scanned with flaws pro-

duced a clear ultrasonic image. Even the smaller flaws were

easily detectable as the material is low noise and homoge-

neous. The empty weld canvas represents a typical austenitic

stainless steel weld. Since the base material is homogeneous

the section is easily interpreted. However, the anisotropic

weld produces a lot of noise and attenuates the sound con-

siderably. When the flaws were implanted to the austenitic

weld through the eFlaw process it rendered the smallest flaws

virtually undetectable. Even some of the flaws in the medium

size range were difficult to detect if they vere implanted on

an especially noisy location. In general this shows that the

welds behave as expected and the eFlaw flaw implantation

from a surrogate flaw sample has worked as expected.

3.2 ML Performance

Initial ML model performance was measured by estimating

previously unseen testing data set, extracted from the data

set containing all the available flaw sizes, with roughly 50 %

scans with cracks and 50 % without to measure the true per-

formance of the model and observe possible overfitting. The

results were evaluated based on false call rate and probability

of detection (POD) metrics, which are also used to evalu-

ate human inspectors. With data augmentation, the number

of data points in the POD computation is very high (500)

compared to a traditional POD exercise (typically around

60). However, the augmented flawed images are, of course,

much less independent than in a traditional POD exercise and

display more limited variability than actual inspection data

would.

From the three channel combination modes, shown in

Sect. 2.5, the other modes tested exhibited some adverse

behaviours described in the following. Using the full 31

channels was expected perform well, but it had severe over-

fitting issues that proved unresolvable. These may be caused

by the limited amount of different flaw-free canvases, that

allowed the network to preferentially memorize the flaw-free

canvases. Thus, with additional variation in the free canvas

data, the full 31 channel model may prove superior. When

all 31 channels were pre-combined before ML-evaluation,

the overall results were good, but showed persistent misses

of unacceptably big cracks. It appears that for some small

percentage of the cracks, the combination tended to conceal

the crack signals.
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Fig. 4 POD curve for the model

trained only with the bigger

flaws. The small flaws in the

POD estimation were

completely new for the model.

Flaw size represents the flaw

depth in mm. Solid black line

represents the POD value and

the dashed grey line the lower

95% confidence bound, a90/95 =

2.1 mm with false call rate of

2.3%

When the model was trained with all the cracks, including

the small indication that are expected to be impossible to find,

the model showed excessive false call rate of 14%. When

the model was trained with bigger cracks only, the model

exhibited a better false call rate of 2.3%. When the smallest

cracks were removed, the model found all the big cracks

and also indicated some small cracks to offer quite good

POD values (a90/95=2.1 mm). Thus, the models showed good

generalization, as the small cracks were completely new flaw

type for the model. The achieved POD curve can be seen in

Fig. 4.

The final evaluation was completed with the separate final

validation data described in Sect. 2.3. The model performed

consistently with the training data: all > 5mm surface length

flaws were found from the near side, while all < 5mm

flaws were missed. This is consistent with the selected train-

ing flaws. From the far side, the model found 3 out of the

4 > 5mm flaws, but missed one 9 mm flaw (flaw 5 in

Table 4, designation 346CAB7303). The far side scan image

showing the missed flaw 346CAB7303 and detected flaw

346CAB7302 can be seen in Fig. 5. Both of the flaw indi-

cations are difficult to distinguish from the noise. The flaws

from the far side were detected with different channels (larger

angles) than the near side, and showed markedly less salient

indications. Also, the far side indications exhibited larger

variability due to the sound path passing through the inho-

mogeneous weld, which explains why one of the cracks were

missed as the flaw was situated in the middle of the flaw in

the training data and not on the far side. While the missed

crack was not the smallest, it was the one of the smallest indi-

cations. The model made two false calls, both corresponding

to somewhat crack-like signal pattern associated with scan-

ning extending over the sample end; a condition which was

not included in the original training data due to different

sample arrangement. The human inspector showed perfor-

mance similar to the machine learning network: The human

inspector found all the flaws the ML found, and in addition

found one flaw from both sides whereas the ML only found

it from the other side. In addition, the human found one very

small crack, which can also be a lucky false call. The human

inspector made four false calls, in total. The full performance

comparison is shown in Table 5.

4 Discussion

As previously stated, the current ML models are rich enough

to handle complex ultrasonic data and to reach very high

detection capability on noisy data. The present results

indicate, that the models also extend well to the rich multi-

channel data provided by the modern phased array ultrasonic

equipment. The scan data was considerably noisy and it is

clear no static amplitude threshould could have been used.

Figure 6 highlights the areas which exceed noise threshold

of 6 and 12 dB. A mean amplitude of the whole image was

calculated and set as the noise level. Only the B7300 and

B7301 could be detect with these thresholds, while making

considerable amount of false calls in the process.

For the present case, the channels were considered indi-

vidually and flaw indicated if any of the channels indicated

a flaw. A priori, it was expected that training on the full data

with all the 31 channels concurrently would provide better

results, since it could learn to combine the information in the

various channels. For the present data, this potential opportu-
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Fig. 5 Weld W2686 B-scan image at 59◦ from the far side and the flaw

B7303 found by the human inspector but missed by the ML model

nity was shadowed by the tendency to overfit on the limited

background data. In the future, the overfitting issue could

be alleviated by increasing the amount of flawless data in

the data set. Flawless weld data is normally available and

so acquiring additional flawless data is not expected to be

problematic. Similarly, although the achieved false call rate

(2.3%) can be considered acceptable, as for human inspec-

tors this can be around 1 - 9 % in noisy inspection cases

Maier et al. [21], Virkkunen et al. [39] . However, this false

call rate could be easily improved by increasing the amount

of flawless data and variation within the flawless welds.

The present study indicated, that the selection of the train-

ing flaws has significant impact to the ML performance. In

particular, including very difficult or impossible to find cracks

can easily result in excessive false call rate, which is not unex-

pected. For this study, the small flaws were removed from the

training set to avoid that issue, but were still detected to cer-

tain extent by the trained models. In many applications, the

inspector is expected to follow a clear detection limit and

to only report flaws above a certain size. From this perspec-

tive, the indicated small flaws could be seen as false calls

(even if they are indications of a real flaw). In this case, the

small flaws could be included in the training set as non-flaws

to omit these indications. However, this was not done in the

present study, since the primary interest was to find true limits

of detection.

The present network may seem excessive for the fairly

simple detection of UT indications in the pre-processed data.

In fact, we tested with significantly lighter networks (as low

as ≈ 60,000 parameters) and they exhibited good flaw detec-

tion accuracy. However, to reach stable and low false call

rate, it was necessary to utilize a larger network. This effect

may be related to the limited set of un-flawed canvases.

While the validation set with the human inspector was

lacking the flaw amount for proper statistical evaluation, the

result is highly promising. The model almost managed to

match the inspecor’s performance, missing two cracks of

which one might have been found due to extraordinary cir-

cumstances and the other due to lacking far side training data.

Main reason for the ML model to miss the one larger far side

Table 5 Final validation blind

result comparison from the

machine learning network and

from a human inspector

Sample Flaw Side ML Human Notes

W2686 346CAB7302 Far side Hit Hit

W2686 346CAB7303 Far side Hit

W2686 349CAB7307 Far side

W2686 349CAB7308 Far side

W2686 346CAB7302 Near side Hit Hit

W2686 346CAB7303 Near side Hit Hit

W2686 349CAB7307 Near side

W2686 349CAB7308 Near side

W2685 346CAB7300 Far side Hit Hit

W2685 346CAB7301 Far side Hit Hit

W2685 349CAB7306 Far side

W2685 346CAB7300 Near side Hit Hit

W2685 346CAB7301 Near side Hit Hit

W2685 349CAB7306 Near side

W2690 350CAB7315 Far side

W2690 350CAB7315 Near side (Hit) Likely lucky false call
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Fig. 6 Scan images of the validation welds from the near side. On the left the scan image and flaw sample numbers in their locations along the

scan axis. On the middle indications above 6 dB noise threshold and on the right indications above 12 dB noise threshold

crack may have been due to lacking training data for the far

side cases. However, the human inspector made more false

calls in total than the ML model. On the other hand, the larger

amount of false calls for the human inspector might related

to the instructions given to the inspector. While the inspector

was guided to avoid false calls, no minimum detection limit

was set to determine the highest possible accuracy.

5 Conclusions

The following conclusions can be drawn from this study:

1. Rich multi-channel phased array ultrasonic data can be

successfully used in automated flaw detection with mod-

ern machine learning network.

2. The machine learning networks can reach detection levels

and a90/95 values that are in line with what is expected

from human inspectors.

3. Training data needs to represent the inspection case for

reliable results.
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