
Automated Generation of Test Cases Using Model-Driven Architecture 
 
 

A. Z. Javed, P. A. Strooper and G. N. Watson 
School of ITEE, The University of Queensland, Australia 

{abuzafer, pstroop, gwat}@itee.uq.edu.au 
 

 
Abstract 

 
In this paper, we demonstrate a  method that uses 

the model transformation technology of MDA to 
generate unit test cases from a platform-independent 
model of the system. The method we propose is based 
on sequence diagrams. First we model the sequence 
diagram and then this model is automatically 
transformed into a general unit test case model (an 
xUnit model which is independent of a particular unit 
testing framework), using model-to-model 
transformations. Then model-to-text transformations 
are applied on the xUnit model to generate platform-
specific (JUnit, SUnit etc.) test cases that are 
concrete and executable.  

We have implemented the transformations in a 
prototype tool based on the Tefkat transformation 
tool and MOFScript. The paper gives details of the 
tool and the transformations that we have developed.  
We have applied the method to a small example 
(ATM Simulation). 
 
1. Introduction 
 

This paper presents an application of Model-
Driven Architecture (MDA) in the context of 
software verification and validation (V&V). 

MDA is an initiative by the OMG (the Object 
Management Group) to support the development of 
interoperable, portable and reusable software systems 
[1]. In MDA, models at various levels of abstraction 
are the central software design artifact. They are used 
to facilitate both abstraction and automated 
development. A simple use of MDA is to model an 
application in a platform-independent modeling 
language (e.g. UML). The platform-independent 
model (PIM) can then be translated into a platform-
specific model (PSM) by writing transformation 
specifications that are mappings between the PIM 
and some implementation language (e.g. Java) [2]. 
MDA tools can partially automate the development 

process by generating most of the code from models 
resulting in less code to hand-craft [3]. 

Software V&V is an important quality assurance 
activity of the software development process. It 
emerged in the late 1960s as the use of software in 
military and nuclear-power systems increased [4]. It 
can play its part throughout the software development 
life cycle, from requirement specification to actual 
delivery of the product. An important aspect of V&V 
is to test the behaviour of a system. 

Traditionally software products were verified and 
validated based upon their specifications [5] or their 
implemented source code. More recently, model-
based testing has become popular [6]. Researchers 
are investigating the use of software models to 
support V&V activities. A major advantage of model-
based V&V is that it can be easily automated, saving 
time and resources. Other advantages are shifting the 
testing activities to an earlier part of the software 
development process and generating test cases that 
are independent of any particular implementation of 
the design. 

Not all model-based testing uses MDA. “Model-
driven testing” is a form of model-based testing that 
uses model-transformation technology using models, 
their meta-models and a set of transformation rules 
(that are defined in terms of mappings between the 
elements of meta-models) [7]. The tools based on the 
model-driven approach automate V&V activities by 
specifying and executing transformation rules, which 
reduces the development time and makes their 
maintenance easier. 

We propose a model-driven approach to test 
software applications using sequence diagrams. 
Sequence diagrams are behavioural elements of a 
UML design [8] that describe dynamic interactions 
among the components of a system. They play an 
important role in the software development processes 
that are use-case driven, such as in the Rational 
Unified Process [9]. Since these descriptions of 
behaviour are constructed at an early stage, testing 
based on them can start V&V activities early in the 
life cycle. An overview of our model-driven approach 

Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00  © 2007



is shown in Figure 1. The generation of test cases is 
performed in two steps. In the first step, a UML 
sequence diagram is translated into a testing model 
using a horizontal transformation (the transformation 
that maintains the abstraction level, i.e., PIM to PIM 
transformation). In the second step, the testing model 
is converted into a concrete and executable test case 
using a vertical transformation (PIM to PSM 
transformation). 

 
Figure 1:  Overall Process 

 
2. Background 
 

The process we propose for the test code 
generation involves the following tools and 
technologies: Eclipse Modeling Framework [10], 
Tefkat [11], MOFScript [12], xUnit [13], JUnit [14] 
and SUnit [15]. We discuss each of these briefly 
below. 
 
2.1. Eclipse Modeling Framework 

 
The Eclipse Modeling Framework (EMF) is an 

MDA tool that facilitates developing model-based 
applications in Java. It provides an integrated 
environment for model development, model 
transformation, and Java code generation, for 
applications that are based on a structured model. In 
our method, we use EMF-based transformation 
engines for generating test cases from a model of 
UML sequence diagrams. 

 
2.2. Tefkat 

 
Tefkat is an EMF-based model transformation 

engine which is available as an Eclipse plug-in. It is 
an implementation of a declarative language which 
uses meta-models to execute transformation rules that 
convert a source model into a target model. These 
rules are mappings between the source meta-model 
and the target meta-model. The Tefkat transformation 
engine requires as input the source model, the source 
meta-model, the target meta-model and a set of rules. 
It triggers the rules one-by-one on instance(s) of the 
source meta-model (i.e. source models) and generates 

instance(s) of the target meta-model (i.e. target 
models). 

Tefkat rules are named and consist of the 
following parts: FORALL, MAKE, SET and 
WHERE. The FORALL keyword selects all the 
objects of a particular type in the source model for 
which this rule has to be triggered. The MAKE 
keyword creates an object in the target model for 
each element of the source model selected. The SET 
keyword assigns the values to these objects in the 
target model. The WHERE clause is used in 
conjunction with the FORALL keyword to filter or 
refine the selection made by the FORALL keyword. 
The concrete syntax of the Tefkat transformation 
language is specified on the Tefkat website [11]. 
 
2.3. MOFScript 

 
MOFScript is a model-to-text transformation 

language generating textual outputs from models 
based on meta-models, and is available as an Eclipse 
plug-in. The MOFScript transformation tool requires 
a source model, a source meta-model and a set of 
rules that are mappings between the source meta-
model and the text to be generated. It executes the 
rules one-by-one on the input model and generates 
tailored text from that model. 

MOFScript rules add and manipulate text in order 
to produce the desired textual output. These rules can 
declare variables, have logical expressions and 
iterators, and can invoke Java methods. The 
specification of the MOFScript transformation 
language is provided on its website [12]. 

 
2.4. xUnit, JUnit and SUnit 

 
xUnit is a family of unit-testing frameworks used 

to write and run repeatable tests for software 
applications. Developers use these frameworks for 
developing and executing unit test cases, and for 
regression testing. Amongst the most popular family 
members of xUnit are JUnit and SUnit which are unit 
testing frameworks used for testing Java and 
Smalltalk applications respectively. 

In this paper, we describe a method to generate 
unit test cases for xUnit family members in general. 
We then apply our method to generate concrete test 
cases for JUnit and SUnit in particular. 

 
3. The Methodology 

 
We propose a method to test an application, using 

a sequence diagram. We do this at two levels. The 
first is to generate test cases from a sequence of 

Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00  © 2007



method calls that are part of the sequence diagram 
and selected by the tester. Typically, the selected 
method calls originate from a particular lifeline in the 
sequence diagram and they appear as method 
invocations in the generated test case. Note that 
method invocations that originate from subsequent 
lifelines are invoked indirectly by the selected 
method calls. To test that this happens as specified in 
the sequence diagram, we capture traces during the 
execution of test cases.  

Test results are checked by comparing expected 
and actual return values of the selected method calls, 
and by comparing the execution traces with the calls 
in the sequence diagram. We have two versions of its 
implementation (for JUnit and SUnit) to show one of 
the advantages of using a model-driven approach. 
The JUnit implementation is discussed in this paper.  

 
3.1. Generating Test Cases using MDA 

 
The model-driven approach that we use for 

generating unit test cases consists of two steps. In the 
first step, we model a sequence diagram as a 
sequence of methods calls (SMC) which is then 
automatically transformed into an xUnit model by 
applying model-to-model transformations using 
Tefkat. In the second step, JUnit test cases are 
generated from the xUnit model by applying model-
to-text transformations using MOFScript. This 
process is shown in Figure 2.  

Artifacts 1 and 2 in Figure 2 are the meta-models 
for a sequence of method calls and xUnit 
respectively, discussed in Sections 3.1.3 and 3.1.4. 
The artifacts 3 and 4 are transformation rules, 
discussed in Sections 3.1.1 and 3.1.2. Artifacts 5 and 
6 are the two MDA-tools that we use in our 

methodology to execute horizontal and vertical 
transformations (Figure 1). Artifact 7 is the source 
model of the application from which we generate test 
cases. Artifact 8 is the xUnit model which is an 
intermediate output. Tefkat executes horizontal 
(model-to-model) transformations on the source 
model (7) to generate this xUnit model (8). Artifact 9 
is the test data for the SMC model which specifies 
parameter values and expected return values of 
method calls in the sequence diagram. By changing 
the contents of the test data file, different test cases 
can be generated for the same sequence diagram. 
Artifact 10 is a simple text file containing code which 
is copied at the top of the test case. It can be used to 
define packages, import classes, etc. which is needed 
for compiling and executing the generated test cases. 
Artifact 11 is the final output, produced by 
MOFScript, which is a concrete and executable unit 
test case. MOFScript reads the test data (9) and code 
header (10) while executing the vertical (model-to-
text) transformations (4) on the xUnit model (8) to 
generate the unit test case (11). 

These artifacts are generic at different levels. 
Artifacts 1, 2 and 3 are independent of platform, 
application and sequence diagrams. Artifact 4 is 
specific to a platform but independent of application 
and sequence diagram. All these artifacts do not need 
to be modified when testing different applications on 
the same platform. 

To test an application from a sequence diagram, 
the tester must provide the SMC model (7), test data 
(9) and the code header (10) file. Note that by 
altering the test data, the same testing scenario can be 
executed with different test data. 

Finally, the intermediate output (8) and the final 
output (11) are produced by the MDA tool. 

 
Figure 2: Overview of Methodology 

 

Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00  © 2007



3.1.1. Transforming SMC into xUnit. We 
transform the SMC model into an xUnit model by 
using Tefkat transformation rules. As an example, 
the rule in Figure 3 creates a test case in the xUnit 
model for every SMC in the SMC model. The test 
case is given the same name as the SMC. All the 
Tefkat rules that are used in the transformation are 
available online [16]. 

 
Figure 3: An Example Tefkat Rule 

 
3.1.2. Generating JUnit from xUnit. MOFScript 
transformation rules are used to generate JUnit test 
cases from the xUnit model. Two example 
MOFScript rules are presented in Figure 4. 

 
Figure 4: Example MOFScript Rules 

 
The rule model.TestSuite::main is the entry-point 

rule where the transformation starts. The expression 
self.name is the name of the object on which the rule 
is being executed, i.e. the name of the test suite in this 
case. The forEach keyword iterates over the 
collection of test cases in the test suite and invokes 
the rule model.TestCase::mapTestCase to process 
them. This rule creates a JUnit test case and invokes 
other rules (that are not discussed in detail) to 
complete the body of the test case. Together 3.1.1 and 
3.1.2 produce a test case for each SMC. So far we 
have defined MOFScript transformation rules for 
generating JUnit and SUnit test cases, from the xUnit 
model. All these rules are available online [16]. 
 
3.1.3. SMC Meta-model. As we are using UML 
sequence diagrams only for generating test cases, we 
confine our implementation to a meta-model of 
sequences of method calls, ignoring more complex 
aspects of sequence diagrams [17] such as 
connectors, message-occurrence-specifications, 
message-ends and message-events. 

Our simplified meta-model for sequences of 
method calls is shown in Figure 5. It consists of 
interactions, messages, classes, parameters, expected 
values and literal strings. In this model, an Interaction 
represents part of a sequence diagram. The Messages 
contained in the interaction are a subset of the 
method calls of the sequence diagram selected by the 
tester. The messages can have Parameters and an 
optional ExpectedValue in them. The parameter and 
the expected value are of type ScalarValue or 
ComplexValue. The Scalar Values are atomic data 
values that do not contain any other data values. 
Instances of ScalarValues in Java are integer, float, 
String, etc. The ComplexValues are the values that 
contain other values i.e. they act as data structures. 
The examples of ComplexValues in Java are all 
classes except Strings. Moreover every message is 
associated with an OwnerClass (that owns the 
methods being called), which is a class that receives 
the message. The owner class has parameters for its 
constructors that are required to create an instance of 
the class in the generated test case. 

Interaction

Message

Literal String

OwnerClass

ordered

*

Parameter

Named Element

ExpectedValue

DataValue

Scalar Value

Complex Value

*

*

*

*

*

*
*

*

 
Figure 5: SMC Meta-model 

 
3.1.4. xUnit Meta-model. The meta-model for xUnit 
test cases is shown in Figure 6. No meta-model for 
xUnit was available, so we derived it by studying the 
architecture of test cases written in different unit 
testing frameworks such as JUnit and SUnit. In this 
model, the Test Suite acts as a container for Test 
Case(s). A test case can have Assertions in it. An 
assertion is a condition that should hold true after 
executing the test case. An assertion can be of 
different types which are specified by its attribute 
type, e.g. the JUnit framework has Equal, Not Equal, 
Same, Not Same, True and False assertions. For 
testing of sequence diagrams, an assertion has an 
expected value and a method call, i.e. the code to be 
tested.  

Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00  © 2007



After executing a test case, the unit testing 
framework compares the actual value (the value 
returned after executing the code) with the expected 
value to decide on the success or failure of the test 
case. As an example, the JUnit’s Equal assertion 
compares the actual value and the expected value. If 
both values are equal, the assertion holds. 
Conversely, the Not Equal assertion holds if the 
values are not equal. Moreover, the method can have 
parameters that are either scalar values or complex 
values as discussed in the meta-model of sequence 
diagrams. The elements Message, OwnerClass, 
ComplexValue, ScalarValue and DataValue are the 
same as in the SMC meta-model. 

Figure 6: xUnit Meta-model 
 
3.2. Tracing 
 

During the execution of test cases, we monitor the 
method invocation chain by means of the Daikon [18] 
tracing tool. We compare the observed method 
execution chain with the expected method execution 
chain in the sequence diagram. Currently, we 
compare the actual traces of the program with the 
expected traces manually, but this activity can be 
automated in the future. 
 
4. An Example – ATM Simulation  
 

The tool described in section 3 has been 
implemented under Eclipse 3.1 on a PC. It has been 
validated on an ATM simulation [19]. The ATM 
application simulates an automated teller machine 
(ATM). An ATM allows its users to perform basic 
banking operations like withdrawal, deposit, transfer 
and checking the balance, without having to go to the 
bank. 

We have generated test cases using the tool from 
the following sequence diagrams: withdrawal, 
deposit, transfer and balance inquiry. We have 
executed the generated test cases to test the system. 
The captured traces were then compared with method 
invocations in the sequence diagrams. Due to space 

constraints, we cannot present the details of the 
example here, but all inputs and outputs (intermediate 
and final) for the example are available online [16]. 
 
5. Discussion  
 

We have described a method for automatic test 
case generation from UML sequence diagrams. The 
sequence diagrams are useful for testing because they 
can initiate software-testing activities in an early 
stage of the software development process. The 
method uses model transformation technology that 
has its own advantages of portability, interoperability, 
quick development, maintainability, etc. Thus it is an 
advance over other model-based testing approaches 
from sequence diagrams, which are based on more 
traditional technology. 

The genericity of our method is extended by 
targeting xUnit testing frameworks and incorporating 
an intermediate phase which generates test cases in a 
platform-independent xUnit format. Thus, 
potentially, the method can be used to generate test 
cases for any of the xUnit family members by 
varying the backend (Artifact 4 in Figure 2). This 
distinguishes our tool from other tools that generate 
test cases for a particular platform [20, 21]. 

Most of the vertical transformation rules (xUnit-
SUnit and xUnit-JUnit) have similar logical structure 
that makes them reusable. They differ in the text 
which is embedded as language syntax, e.g. for 
SmallTalk the statement terminator is dot (.) whereas 
in Java it is semi-colon (;). For the rules having 
similar structure, the implementer only needs to copy 
and change the syntax-related text in these rules. 
Figure 7 shows the reusability in terms of non-
commented lines of code that are the same. This 
reusability is obtained at minimal cost due to the 
intermediate xUnit model. The structural mapping 
between SMC and xUnit is addressed during the 
horizontal transformations leaving the vertical 
transformations linear and almost identical except for 
language-related syntax. 

The implementation of the tool is cost-effective as 
the SMC meta-model, the xUnit meta-model and the 
horizontal transformation are created only once and 
do not change for different platforms, systems and 
sequence diagrams (as discussed in Section 3). The 
implementer needs to provide vertical 
transformations for the new platform that this tool 
needs to support. The user (the tester) needs to 
provide the SMC model, the test data file and the 
code header to generate test cases using this tool. To 
generate different test cases for the same SMC, only 
the test data file needs to be changed. 

Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00  © 2007



 
Figure 7: Code Reusability Matrix 

 
We have implemented the method using Eclipse, 

Tefkat, MOFScript, JUnit and SUnit. This 
demonstrates the versatility and utility of the MDA 
approach to software development and tool 
construction. 

We test applications by checking return values of 
method calls and the method invocation trace. While 
executing the generated test case, the return values of 
the methods that are invoked from our test case are 
checked using assertions. The method calls that these 
methods make are monitored by examining the trace 
that is captured during the execution of the test case. 

 
6. Related Work 
 

Model-based testing is gaining support in the 
software industry [22]. We discuss the related work 
for generating test case using sequence diagrams in 
general and using a model-driven approach in 
particular.  

Abdurazik and Offutt [23] propose test criteria 
based on collaboration diagrams for static and 
dynamic testing of software systems. Briand and 
Labiche [24] propose the TOTEM (Testing 
ObjectorienTed systEms with the unified Modelling 
language) methodology to derive system test 
requirements. They derive test requirements by 
analyzing UML artifacts such as class, use case, and 
sequence diagrams and OCL constraints across these 
artifacts but do not generate test cases from these 
requirements. Wittevrongel and Maurer [20] develop 
a model-based tool, SCENTOR, which creates 
functional test drivers for e-business applications 
from sequence diagrams that have test data 
(parameters and expected values of method calls) 
embedded in them. Fraikin and Leonhardt [21] 
develop another model-based tool, SeDiTeC, which 
generates test stubs using sequence diagrams that are 
augmented with test data. These stubs enable testing 
even before the completion of the system 
implementation. However, the tools and techniques 

discussed above do not take advantage of MDA 
technology.  

Pilskalns et al. [25] present an approach to 
generate test cases from sequence diagrams. They 
convert a sequence diagram into object method 
directed acyclic graph (OMDAG) such that its 
objects become the nodes and its method calls 
become the edges of the graph. The paths in the 
OMDAG are augmented with test information 
(different attribute values and parameter values of 
methods) that is used to generate cases. Dinh-Trong 
et al. [26] present another approach and implement a 
prototype tool, named EPTUD (Eclipse Plug-in for 
Testing UML Designs) that generates and executes 
test cases using sequence diagrams. It transforms a 
UML design model (DUT, design under test) into an 
executable form (EDUT, executable design under 
test), adds test scaffolding (TDUT, testable design 
under test), executes tests and reports failures. 
However, both these approaches generate test cases 
that validate the software model, whereas the test 
cases we generate verify the system implementation. 

The OMG itself has standardised UML testing by 
issuing the UML Testing Profile Specification 
(U2TP) [27] that defines a language for designing, 
visualizing, specifying, analysing, constructing and 
documenting the artifacts of test systems. The U2TP 
specification also defines a mapping from the UML 
Testing Profile to JUnit. These mappings are just 
explanations of U2TP elements in the context of 
JUnit. For example, U2TP has a Test Case and in 
JUnit the Test Case is realised as an operation 
defined in a class inheriting from the JUnit TestCase 
class. These mapping are not explicit transformation 
rules from U2TP to JUnit. The work we present 
provides the actual transformation rules and uses 
xUnit, which makes the transformation independent 
of any particular platform. 

The work closest to ours is by Dai [28], who 
discusses the transformation of a UML model into a 
U2TP model that is a platform-independent test 
model (PIT). She proposes to generate test cases 
using three layers of transformations (one horizontal 
and two vertical) that are UML-PIT (horizontal), PIT-
PSM (vertical) and PSM-Test_Case (vertical). 
However, no tool support is provided for the 
proposed method. 
 
7. Conclusion 
 

We have proposed a method that generates test 
cases from the platform-independent model of an 
application using MDA tools. We devised two sets of 

Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00  © 2007



transformations: horizontal transformations using 
Tefkat and vertical transformations using MOFScript. 

We have implemented a prototype tool for 
generating test cases from sequences of method calls 
to realise the method. During execution of the test 
cases, the return values of methods are checked and 
the method invocation chain is monitored using a 
tracing tool. Currently, we have two versions of its 
implementation that are for JUnit and SUnit, but the 
proposed method is general and can be used to 
generate test cases for any other xUnit testing 
framework. The method was applied to an example 
(ATM Simulation).  

In future, the method can be integrated with a 
UML modelling tool like Rational Rose to read the 
sequence diagrams to generate test cases. The 
comparing of the actual trace with the sequence 
diagram can also be automated. We shall extend our 
approach to generate integration tests for component-
based software using interactions among components 
of a system as recorded in sequence diagrams. 
 
Acknowledgments 
This research is funded by an ARC Discovery grant, 
DP0557972: Enhancing MDA with support for 
verification and validation. We would also like to 
thank Mr. Keith Duddy for various discussion 
sessions. 
 
References 
 
[1] OMG, "MDA Guide Version 1.0.1," 2004. 
[2] J. Poole, "Model-Driven Architecture: Vision, 

Standards And Emerging Technologies," in 
Workshop on Metamodeling and Adaptive Object 
Models, ECOOP 2001. 

[3] R. Soley and OMG, "Model driven architecture 
(2000)," ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf, 
accessed on 28/2/2007. 

[4] R. Dolores and U. Roger, "Software Verification and 
Validation: An Overview," IEEE Softw., vol. 6, 1989, 
pp. 10-17. 

[5] R. Poston, Automating Specification Based Software 
Testing. IEEE Computer Society Press, 1996. 

[6] M. Utting and B. Legeard, Practical Model-Based 
Testing: A Tools Approach. Elsevier Inc., 2007. 

[7] R. Heckel and M. Lohmann, "Towards Model-Driven 
Testing," in Electronic Notes in Theoretical 
Computer Science, vol. 82, 2003. 

[8] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified 
Modeling Language User Guide. Addison-Wesley, 
1999. 

[9] P. Kruchten, The Rational Unified Process – An 
Introduction. Addison-Wesley, 2000. 

[10] EMF: http://www.eclipse.org/emf/, accessed on 
28/2/2007. 

[11] Tefkat: http://tefkat.sourceforge.net/, accessed on 
28/2/2007. 

[12] MOFScript: http://www.eclipse.org/gmt/mofscript/, 
accessed on 28/2/2007. 

[13] P. Hamill, Unit Test Frameworks. O’Reilly Media, 
2004. 

[14] J. Rainsberger, JUnit Recepies : practical methods 
for programmer testing. Manning Publications Co., 
2005. 

[15] SUnit: http://sunit.sourceforge.net/, accessed on 
28/2/2007. 

[16] A. Javed: http://www.itee.uq.edu.au/~abuzafer/ast07, 
accessed on 28/2/2007. 

[17] R. France, S. Ghosh, T. Dinh-Trong, and A. Solberg, 
"Model-driven development using UML 2.0: 
promises and pitfalls," Computer, vol. 39, 2006, pp. 
59-66. 

[18] Daikon: http://pag.csail.mit.edu/daikon/, accessed on 
28/2/2007. 

[19] ATM System: http://www.math-
cs.gordon.edu/courses/cs211/ATMExample/, 
accessed on 28/2/2007. 

[20] J. Wittevrongel and F. Maurer, "SCENTOR: 
scenario-based testing of e-business applications," in 
Proc. of the 10th IEEE International Workshop on 
Enabling Technologies: Infrastructure for 
Collaborative Enterprises, 2001, pp. 41-46. 

[21] F. Fraikin and T. Leonhardt, "SeDiTeC-testing based 
on sequence diagrams,"  in Proc. of the 17th IEEE 
International Conference on Automated Software 
Engineering, 2002, pp. 261-266. 

[22] S. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. Lott, 
G. Patton, and B. Horowitz, "Model-based testing in 
practice,"  in Proc. of the 21st International 
Conference on Software Engineering, 1999, pp. 285-
294. 

[23] A. Abdurazik and J. Offutt, "Using UML 
Collaboration Diagrams for Static Checking and Test 
Generation," in Proc. of the 3rd International 
Conference on UML, 2000, pp. 383-395. 

[24] L. Briand and Y. Labiche, "A UML-Based Approach 
to System Testing," Softw Syst Model, vol. 1, 2002, 
pp. 10–42. 

[25] O. Pilskalns, A. Andrews, R. France, and S. Ghosh, 
"Rigorous Testing by Merging Structural and 
Behavioral UML Representations,"in Proc. of the 6th 
International Conference on the UML, 2003, pp. 234-
248. 

[26] T. Dinh-Trong, N. Kawane, S. Ghosh, R. France, and 
A. Andrews, "A tool-supported approach to testing 
UML design models,"  in Proc. of the 10th IEEE 
International Conference on Engineering of Complex 
Computer Systems, 2005, pp. 519-528. 

[27] OMG ptc/04-04-02: "UML 2.0 Testing Profile." 
[28] Z. Dai, "Model-Driven Testing with UML 2.0," in 

Proc. of the 2nd European Workshop on Model 
Driven Architecture, 2004. 

Second International Workshop on Automation of Software Test (AST'07)
0-7695-2971-2/07 $20.00  © 2007


