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ABSTRACT

Automated detection and segmentation of nuclear and glandular

structures is critical for classification and grading of prostate and

breast cancer histopathology. In this paper, we present a method-

ology for automated detection and segmentation of structures of

interest in digitized histopathology images. The scheme integrates

image information from across three different scales: (1) low-

level information based on pixel values, (2) high-level information

based on relationships between pixels for object detection, and (3)

domain-specific information based on relationships between histo-

logical structures. Low-level information is utilized by a Bayesian

classifier to generate a likelihood that each pixel belongs to an ob-

ject of interest. High-level information is extracted in two ways: (i)

by a level-set algorithm, where a contour is evolved in the likeli-

hood scenes generated by the Bayesian classifier to identify object

boundaries, and (ii) by a template matching algorithm, where shape

models are used to identify glands and nuclei from the low-level

likelihood scenes. Structural constraints are imposed via domain-

specific knowledge in order to verify whether the detected objects do

indeed belong to structures of interest. In this paper we demonstrate

the utility of our glandular and nuclear segmentation algorithm in

accurate extraction of various morphological and nuclear features

for automated grading of (a) prostate cancer, (b) breast cancer, and

(c) distinguishing between cancerous and benign breast histology

specimens. The efficacy of our segmentation algorithm is evalu-

ated by comparing breast and prostate cancer grading and benign

vs. cancer discrimination accuracies with corresponding accura-

cies obtained via manual detection and segmentation of glands and

nuclei.

Index Terms— Prostate cancer, Breast cancer, Segmentation,

Detection, Grading

1. INTRODUCTION

Over 200,000 new cases of prostate cancer and close to 200,000

new cases of breast cancer are predicted in the United States in 2008

(American Cancer Society). Currently, the diagnosis of prostate and

breast cancer is done manually by visual analysis of tissue samples

that have been obtained from a patient via biopsy. For prostate
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cancer, the Gleason grading scheme is used to quantify the degree of

malignancy. In the case of breast cancer, the most popular grading

scheme is Bloom-Richardson [1] for distinguishing between low-,

high-, and intermediate grade cancers. Cancer grade is a key feature

used to predict patient prognosis and in prescribing a treatment.

Manual grading is time consuming and on account of its qualitative

nature can lead to inter- and intra-observer variability [2], leading in

turn to variable prognosis and suboptimal treatment.

In order to address the issues arising from manual cancer grad-

ing, our group has developed computer aided diagnosis (CAD)

systems for automated grading of prostate and breast histology [3].

Our CAD methodology involves extraction of several hundred archi-

tectural, and morphological features derived from glands and nuclei

which are manually segmented, a laborious and time-consuming

process. Classification accuracies in discriminating intermediate

grades of prostate and breast cancer were, however, above 90%.

In the interest of obtaining a fully automated grading scheme, it

is imperative to be able to first automatically identify and segment

histological structures. Nuclei segmentation has been attempted

using basic fuzzy c-means clustering [4] and adaptive thresholding

[5]. Other thresholding algorithms were investigated by Korde, et

al. [6] for bladder and skin cell nuclear segmentation. However,

thresholding leads to poor results when there is large variability in

the histology staining. Other algorithms have been proposed using

more complex techniques, such as an active contour scheme for pap-

stained cervical cell images [7]. These techniques lead to successful

results only when nuclei are non-overlapping.

In this work, we present an automated gland and nuclei seg-

mentation scheme for prostate and breast histopathology which

utilizes a combination of low-level, high-level, and domain-specific

information. A Bayesian classifier is used to generate likelihood

scenes of structures of interest in the image based on image intensity

and textural information. These scenes are combined with domain

knowledge regarding arrangement of histological structures through

which structural constraints are imposed. A level set algorithm

and template matching scheme are then used for gland boundary

and nuclear segmentation, respectively. Using the extracted gland

boundary, multiple morphological features including area, smooth-

ness, and compactness are extracted. Nuclear centroids are used

to extract architectural features via three different graph algorithms

including Voronoi, Delaunay triangulation, and minimum spanning

tree (MST). Our segmentation algorithm is employed for three dif-

ferent applications: (a) classifying intermediate grades (3 and 4)

of prostate cancer, (b) discriminating cancer from non-cancer in

breast histology images, and (c) distinguishing Bloom-Richardson
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low grade (5, 6) breast cancer from high grade (7, 8) breast cancer.

Evaluation of the algorithm is done by comparing the classifica-

tion accuracies obtained for breast and prostate cancer grading and

benign versus cancer discrimination with corresponding classifica-

tion accuracies obtained via manual detection and segmentation of

glands and nuclei.

The rest of this paper is organized as follows. Our segmentation

algorithm is described in Section 2, and the evaluation results of

the algorithm in three different applications (breast and prostate

cancer grading and benign versus breast cancer discrimination) are

presented in Section 3. Concluding remarks are presented in Section

4.

2. INTEGRATED LOW-, HIGH-LEVEL AND

CONTEXTUAL SEGMENTATION MODEL

2.1. System Overview

A flowchart describing our segmentation algorithm and its applica-

tions in breast and prostate cancer detection and grading is shown in

Figure 1.
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Fig. 1. Flowchart illustrating the system overview.

2.2. Low-level Information

We denote a tissue region by a digital image C = (C, f) where C
is a 2D grid of image pixels c ∈ C and f is a function that assigns

a pixel value (representing the red, blue, and green channels of the

RGB space) to c. A training set Sv of pixels representing a struc-

ture of interest v (lumen (L), cytoplasm (S), nuclei (N ), etc.) is

obtained. The color values f(c) of pixels c ∈ Sv are used to gen-

erate probability density functions p(c, f(c)|v), where v represents

the image class. For each image C, Bayes Theorem is used to obtain

a pixel-wise likelihood for each pixel c ∈ C, where P (v|c, f(c)) is

the probability that c belongs to class v given image pixel value f(c)
and obtained as,

P (v|c, f(c)) =
P (v)p(c, f(c)|v)

�
u∈{L,N,S} P (u)p(c, f(c)|u)

, (1)

where v ∈ {L, N, S}, p(c, f(c))|v) is the a priori conditional

probability obtained during training for class v, and P (v) is the

prior probability of occurrence for each class v (assumed as non-

informative priors). These pixel-wise likelihoods generate a likeli-

hood scene Lv , where the intensity in the likelihood image is the

probability of pixel c belonging to class v.

2.3. High-level Information

We consider two shape based approaches for segmentation includ-

ing: (a) level set and (b) template maching.

2.3.1. Level Set Segmentation

Boundary segmentation is performed using level-sets which makes

use of neighboring pixels during evolution of the contour to find the

target boundary. A boundary B evolving in time t and in the 2D

space defined by the grid of pixels C is represented by the zero level

set B = {(x, y)|φ(t, x, y) = 0} of a level set function φ, where

c = (x, y). The evolution of φ is then described by a level-set for-

mulation adopted from [8]:

∂φ

∂t
+ F |∇φ| = 0 (2)

where the function F defines the speed of the evolution. The

curve evolution is driven by the likelihood image Lv , where

v ∈ {L, N, S}. The initial contour φ0 = φ(0, x, y) is automat-

ically initialized using low-level information via Bayesian classifier.

The algorithm is run until the difference in the contours of one iter-

ation to the next is below an empirically determined threshold.

2.3.2. Template matching

Template matching [9] is done on a binary image (IB) converted

from the likelihood scene Lv . Correlation between the selected tem-

plate and IB is computed at each of the pixels c ∈ C. The choice of

template is motivated by the size and shape of the structure of inter-

est. For our application to detection of nuclei, we have chosen four

binary elliptical templates with different major and minor axes.

2.4. Incorporating Domain-specific Constraints

Our segmentation algorithm exploits domain-specific information

in the form of specific arrangement and relationships between his-

tological structures. For instance, a gland (Fig.2) comprises three

main structures of interest: lumen, cytoplasm, and nuclei. The

structures are arranged in a specific fashion (lumen is surrounded by

cytoplasm, which is surrounded by a ring of nuclei). We exploit the

fact that a lumen area needs to be surrounded by cytoplasm, which

is then surrounded by a ring of nuclei to constitute a gland.

(a) (b) (c) (d)

Fig. 2. Illustration of different regions of interest within a gland (a)

Shown outlined in black are the (b) lumen area, (c) cytoplasm, and

(d) nuclei.

2.5. Gland Segmentation

A. Low-level Information

Step 1: Bayesian classification of lumen, stroma, nuclei: Low-level

image intensity information is used to generate the likelihood scenes

LL, LS , and LN for the lumen, cytoplasm and the nuclei, respec-

tively.

Step 2: Detection of lumen objects: Once the likelihood scenes

are generated, we focus on LL. We define an object O as a
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set of contiguous pixels in the lumen likelihood image above an

empirically determined threshold. The probability that any ob-

ject O actually does correspond to lumen is computed as PB =
1

|O|

�
c∈O

P (l|c, f(c)), where |O| is the cardinality of set O.

Step 3: Removal of false lumen regions based on area: A priori

knowledge of gland sizes (learnt during offline training phase) is

used to identify and remove potential false positives. The a priori

distribution for the lumen area (P (O →֒ l|A)) is used to assign

each object a posterior probability PS that O corresponds to lumen,

where A = |O|.
B. Structural Constraints

Step 4: Remove false lumen regions based on surrounding structure:

Non-gland regions are eliminated by ensuring that the structure of

the gland is as shown in Figure 2. The likelihood scene generated

for cytoplasm is used to check for presence of the epithelial cyto-

plasm surrounding detected lumen regions. The percentage of pixels

surrounding the lumen that are above an empirically determined

probability within LS is calculated as PG.

Step 5: Finding true lumen objects: The joint probability that the

object O identified as lumen actually belongs to a gland is given

as the product of the independent probabilities PB , PS , and PG:

P(O →֒ l|PB , PS , PG) =
◗

α∈{B,S,G} Pα, where →֒ l denotes

membership in class l. Only those objects with a joint conditional

probability over a pre-determined threshold are considered.

C. High-level Information

Step 6: Boundary segmentation: Once the gland lumen has been

detected, gland boundary segmentation is performed using level-

sets. Curve evolution is driven by LN and the initial contour

φ0 = φ(0, x, y) is initialized automatically using O found in step 5

above. The curve is evolved outward from O within LN . Finally, the

lumen and nuclear boundaries are extracted from true gland regions.

2.6. Nuclear Segmentation

A. Low-level Information

Step 1: Bayesian classification of nuclei: Low-level image intensity

information is used to generate likelihood scene LN .

Step 2: Convert LN to binary image: LN is thresholded to a binary

image IB = (C, h), where h(c) ∈ {0, 1} . Let B denote the set

of pixels in the background, so that h(b) = 0 for all b ∈ B and

h(c) = 1 for all c ∈ C, c /∈ B.

B. Structural Constraints

Step 3: Euclidean distance transform (EDT): EDT operation [10] is

applied on IB , which transforms into a grey level image DB =
(C, fB) where for c ∈ C, fB(c) is the Euclidean disance to the

nearest b ∈ B. The EDT for all pixels c ∈ C is defined as:

fB(c) = min
b∈B

[d(c, b)] (3)

where d(c, b) is the Euclidean distance betweeen pixels c, b ∈ C. By

limiting the template matching to only those pixels c ∈ C for which

fB(c) > λ, where λ is some pre-defined threshold, significantly in-

creases the computational speed and efficiency of our algorithm.

C. High-level Information

Step 4: Template matching to detect nuclei: For each c ∈ DB for

which fB > λ, template matching with 4 templates T1, T2, T3, T4

is done. The idea is to focus on pixels c ∈ DB for which fB is

high since these are the points that lie close to medial axis of ob-

ject of interest. At c ∈ C, where fB(c) > λ, maxj [corr(c, Tj)] is

computed where corr(c, Tj) is correlation obtained by placing cen-

troid of Tj on c, for j ∈ {1, 2, 3, 4}. Thus we obtain a new scene

ϕn = (C, fT ) where for each c ∈ C, fT (c) = maxj [corr(c, Tj ].
Nuclear centroids are determined as those for which fT (c) > δ.

3. PROSTATE AND BREAST CANCER GRADING

3.1. Feature Extraction

Following gland and nuclear segmentation, we calculate 8 boundary

features from the interior nuclear and lumen boundaries, giving a to-

tal of 16 morphological features which quantify the size and shape

of the glands [11]. We also calculate 51 graph-based features from

Voronoi diagrams, minimum spanning tree, and Delaunay triangula-

tion using the centroids of the nuclei to quantify the spatial relation-

ships of nuclei [3]. The features were chosen based on features used

by pathologists in detecting and grading cancer in practice. The goal

of our segmentation algorithm is high classification accuracy in dis-

tinguishing cancer grades and cancer detection, so to compare our

algorithm with manual segmentations, we extract each set of fea-

tures twice using manual and automatic segmentation. These two

feature sets were used in a support vector machine classifier to com-

pare manual and automated segmentations in terms of classifier ac-

curacy. Experiments using our algorithm are described in the next

three sub-sections.

3.2. Application A: Prostate Cancer Grading

We seek to classify a database of prostate images containing 16 Glea-

son grade 3 images, 11 grade 4 images, and 17 benign epithelial

images of biopsy tissue. We ran experiments to discriminate be-

tween (a) benign epithelium and grade 3, (b)benign epithelium and

grade 4, and (c) grade 3 and grade 4 using gland morphology fea-

tures. The feature set is first reduced using graph embedding, a

non-linear dimensionality reduction method, and a support vector

machine (SVM) classifier is used for classification in the reduced di-

mensional space. Accuracies are listed in Table 1, where similar per-

formance between manual and automatic segmentation is observed.

Sample results from gland segmentation are shown in Fig. 3(a-e).

Fig. 3(e) shows a scatter plot of benign and Gleason grade 4 tis-

sue represented in a three dimensional space obtained through graph

embedding.

3.3. Application B: Breast Cancer Detection

We discriminate cancer from non-cancer in breast histology images

using architectural features. The dataset contains a total of 18 be-

nign images and 36 cancer images. The feature set is reduced using

principal component analysis (PCA) and a SVM classifier is used

for classification. We obtain an accuracy of 81.91% using automatic

segmentation and 77.10% with manually segmented structures (Ta-

ble 1), indicating comparable performace between manual and auto-

matic segmentation. A sample cancer image is shown in Fig. 3(f).

Graphs are constructed from nuclear centroids identified automati-

cally by our algorithm (Fig.3(i) shows the Voronoi Diagram as an

example). A scatter plot representing the cancer and non-cancer im-

ages is shown in Fig. 3(j).

3.4. Application C: Breast Cancer Grading

We seek to distinguish 21 images of low-grade breast cancer (grades

5 and 6 on the Bloom-Richardson scale) from 9 images of high-

grade cancer (7 and 8). As in the prostate cancer grading example,

graph-based features are used to classify high grade vs. low grade

cancer. The feature set is reduced using PCA and classification is

done using a SVM classifier. The classification accuracies are shown

in Table 1 and figures as those for Application B are shown in Fig. 3

(k-o) for a tissue image with a grade 8 breast cancer.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 3. Tissue images corresponding to (a) Gleason grade 3 prostate cancer, (f) Bloom-Richardson grade 5 and (k) grade 8 cancer. LN for

(a), (f), (k) are shown in (b), (g), and (l). Segmented gland boundaries and nuclei centroids are shown in (c), (h), and (m). Voronoi diagrams

used to generate architectural features are shown in (d), (i), and (n). Distinction between benign tissue (black squares) and grade 4 prostate

cancer tissue (red stars) is shown in the reduced 3 dimensional space in the scatter plot in (e). Scatter plots in (j) and (o) show clusterings from

cancer(red diamonds) vs. non-cancer(black crosses), and high grade(black circles) vs. low-grade(red triangles) breast cancer, respectively.

Tissue Type Task Automated Manual

Prostate

Grade 3 vs. Grade 4 95.19% 80.76%

Grade 3 vs. Benign 86.35% 95.14%

Grade 4 vs. Benign 92.90% 95.14%

Breast Cancer vs. Non-cancer 81.91% 77.10%

Breast High vs. Low Grade 80.52% 93.33%

Table 1. SVM classification accuracy for the three applications us-

ing the automatically and manually extracted feature sets. Accura-

cies are averaged over 10 trials using randomized cross-validation.

4. CONCLUDING REMARKS

In this paper, we have demonstrated an integrated nuclear and gland

segmentation and detection scheme. The strength of the model is de-

rived from the fact that it incorporates low-, high-level knowledge,

and structural constraints imposed via domain knowledge. Morpho-

logical and architectural attributes derived from the segmented nu-

clei and glands were used for (a) grading of prostate cancer, (b)

discriminating cancer from non-cancer in breast histology, and (c)

discriminating low grade from high grade breast cancer. The corre-

sponding classification accuracies obtained for case (a) were 95.19%

for grade 3 vs. grade 4, 86.35% for grade 3 vs. benign, and 92.90%

for grade 4 vs. benign; for case (b) was 81.91% and for case (c)

was 80.52%. These accuracies compare favourably with the cor-

responding results obtained via manual segmentation. Future work

will focus on evaluating our methods on a larger cohort of images.
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