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Glaucoma is one of the most common causes of blindness. Robust mass screening may
help to extend the symptom-free life for affected patients. To realize mass screening
requires a cost effective glaucoma detection method which integrates well with digital
medical and administrative processes. To address these requirements, we propose a novel
low cost automated glaucoma diagnosis system based on hybrid feature extraction from
digital fundus images. The paper discusses a system for the automated identification of
normal and glaucoma classes using Higher Order Spectra (HOS), Trace Transform (TT)
and Discrete Wavelet Transform (DWT) features. The extracted features are fed to a
Support Vector Machine (SVM) classifier with linear, polynomial order 1, 2, 3 and Radial
Basis Function (RBF) in order to select the best kernel for automated decision making.
In this work, the SVM classifier, with a polynomial order 2 kernel function, was able
to identify glaucoma and normal images with an accuracy of 91.67%, sensitivity and
specificity of 90% and 93.33% respectively. Furthermore, we propose a novel integrated
index called Glaucoma Risk Index (GRI) which is composed from HOS, TT and DWT
features, to diagnose the unknown class using a single feature. We hope that this GRI

will aid clinicians to make a faster glaucoma diagnosis during mass screening of nor-
mal/glaucoma images.

keywords Glaucoma; Retina imaging; Computer aided diagnosis; Higher order

spectra; Trace transform, Texture; Wavelet; Support vector machine.
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1. Introduction

Glaucoma is one of the most common causes of blindness. The disease has a mean

prevalence of 2.4% for all ages and 4.7% for those aged 75 and above 1. It is esti-

mated that more than 4 million Americans suffer from glaucoma, and half of them

are unaware that they have the disease. Approximately 120000 Americans are blind

as a result of glaucoma, thus it is responsible for 9%–12% of all cases of blindness

in the U.S 2. Much of this suffering is preventable, because preventive medicine and

1
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surgical treatment, such as mean trabeculectomy, laser surgery, drainage implants,

is available. Unfortunately, glaucoma symptoms are painless and the brain compen-

sates gradual vision impairment to considerable extend. Therefore, early diagnosis

is so important to stop or slow down disease progression. However, due to the high

mean prevalence of glaucoma, a significant reduction of end stage glaucoma and

blindness requires mass screening 3.

Glaucoma leads to (i) structural changes of the Optic Nerve Head (ONH) and the

nerve fibre layer and (ii) simultaneous functional failure of the visual field. The dis-

ease is diagnosed based on Intraocular Pressure (IOP), visual field loss tests 4,5 and

the manual assessment of the ONH via ophthalmoscopy 3 or stereo fundus imaging
6. Various algorithms have been used to identify typical features such as abnormal-

ity of blood vessels 7 and ONH 8,9, location and quantification of microaneurisms

or drusen 10,11,12. State of the art glaucoma diagnosis is based on Heidelberg Reti-

nal Tomography (HRT) images. Swindale et al. and Adler et al. have modeled a

smooth two-dimensional surface that fitted to the ONH of topography images 13,14.

Damages in the glaucomatous eye were detected using optic disc measures (cup

and disc area, height variation using HRT images) 15. This global shape approach

was compared with a sector-based analysis by Iester et al. 16. Zangwill et al. have

automatically diagnosed glaucoma using optic disc parameters, additional parapap-

illary parameters and Support Vector Machine (SVM) classifier 17. Most of these

shape approaches assumed a valid segmentation of the optic disc. However, a small

error in these segmentation based techniques may result in significant changes in

the measurements and errors in the diagnosis. Furthermore, HRT imaging is an ex-

pensive measurement, because both manpower and equipment cost are high. Now,

state of the art glaucoma detection requires mass screening. Hence, the number of

measurements is potentially very high and a small cost reduction per measurement

will make a large difference.

We attempt to achieve such a small cost reduction by proposing a glaucoma di-

agnosis system based hybrid feature extraction from digital fundus images. The cost

reduction comes from the fact that digital fundus images are less expensive when

compared to HRT and the feature extraction is done with inexpensive general pur-

pose computing machines. Furthermore, both processes, image taking and feature

extraction, happen in the digital domain, therefore the proposed glaucoma diagnosis

system can be easily incorporated into existing medical and administrative work-

flows. These advantages do not constrain the reliability of the diagnosis support

system. To be specific, we show that the proposed system is able to differentiate

fundus images from glaucoma patients from those of a normal control group with

an accuracy of 91.67%. Furthermore, we propose a novel integrated index, called

Glaucoma Risk Index (GRI), which is made up of Higher Order Spectra (HOS),

Trace Transform (TT) and Discrete Wavelet Transform (DWT) features, to diag-

nose the unknown class using a single feature.

The layout of the paper is as follows. Section 2 explains the materials and meth-
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ods used for this study. Section 3 of the paper presents the hybrid feature extraction

methods. Section 4 of the paper presents the SVM classification. The Glaucoma Risk

Index is explained in Section 5. The results of the proposed method presents in Sec-

tion 6. The results are discussed in Section 7 and finally, the paper concludes in

Section 8.

2. Materials and methods

Figure 1 shows a block diagram of the proposed system. During the pre-processing

stage, colored images are converted to grayscale images and the image contrast

is increased with histogram equalization. The radon transformation converts 2D

images into 1D signals. After these preprocessing steps, important features namely,

phase entropy, bispectrum entropy using HOS, triple feature using TT, and average

energy of wavelet coefficients are extracted from the image.

The statistical significance of these features is evaluated with the independent

sample t-test. To evaluate the discriminative powers of these features in a practical

setting, they were fed to a SVM classifiers for automated diagnosis support.

2.1. Retinal fundus image acquisition

The digital retinal images were collected from the Kasturba Medical College, Mani-

pal, India. We have used 60 fundus images: 30 normal and 30 open-angle glaucoma

images from male and female participants which were between 20 and 70 years old.

The doctors in the hospitals Ophthalmology Department certified both image qual-

ity and usability. The ethics committee, consisting of senior doctors, approved the

images for this research. All images were taken with a resolution of 560×720 pixels

and stored in the uncompressed bitmap format. Figure 2 shows representative nor-

mal and glaucoma sample images to highlight texture variations between the two

groups (column-(a): Normal; column-(b): Glaucoma).

2.2. Pre-processing

Pre-processing involves two major steps: (i) histogram equalization, and (ii) Radon

transformation.

2.2.1. Histogram Equalization

Enhancing the fundus image contrast will aid the feature extraction process. In this

work, colored (RGB) eye images are converted to gray scale image by forming a

weighted sum of the R, G, and B components using Equation 1.

Igray = 0.2989×R+ 0.5870×G+ 0.1140×B (1)

Then the contrast is improved by increasing the dynamic range of the image

histogram 18. This technique assigns pixel intensity values from an input image
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Normal

fundus image

Glaucoma fun-

dus image

– Histogram Equalization,

– Radon transform.

– HOS Phase entropy: Ph,

– Bispectrum entropies:

– P1, P2, P3

– Trace Transform: Π,

– Wavelet features: Ah, Ad, Ev.

Statistical Analysis

Classification

Normal Glaucoma

Fig. 1. Block diagram of the proposed automated glaucoma detection system

such that the output image contains a uniform distribution of intensities. As a

result, the image contrast is increased. We have used image with good contrast to

model a histogram (Figure 3a). This modelled histogram (Figure 3c) is considered

as standard and given as an input to the histogram equalization procedure. Finally

we have obtained histogram equalized image (Figure 3g).

2.2.2. Radon transform

TT methods, such as the Radon transform, yield many useful features with mini-

mal computational requirements 19. These features may be devoid of any physical

meaning according to human perception, but they can have the right Mathematical

properties which distinguish objects.
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(a) (b)

Fig. 2. Representative images: Column-(a): Normal; Column-(b): Glaucoma

The Radon transform is widely used in computed tomography to create an image

from scattering data which is associated with cross-sectional scans of an object.

It transforms two dimensional images with lines into a domain of possible line

parameters, where each line in the image will give a peak positioned to reflect the

corresponding line parameters 20. Hence, lines in the original image are transformed

into the points in the Radon domain. The glaucoma image (Figure 3g) is subjected

to radon transform with angles varying from 0◦ −−180◦ (with 5◦ interval). Figure

4 shows the results of the Radon transform for 30◦, 90◦ and 150◦.

3. Feature Extraction

Texture is an important and widely used feature for analyzing medical images
21,22,23. In ultrasound medical images 4,24,25 peripapillary chorioretinal atrophy is

considered as one of the glaucoma risk factors. It can be identified as bright regions

in retinal fundus images, and therefore, incorrectly included as the part of the optic

disc regions during the automated disc detection scheme.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3. (a) Standard reference image for histogram equalization; (b) Gray scale image of (a); (c)
Histogram of image (b); (d) Original glaucoma image; (e) Gray scale image of (d); (f) Histogram
of image (e); (g) Histogram equalized image of (e); (h) Histogram of image (g)

(a) (b) (c)

Fig. 4. (a) Radon transform image with angle 30◦; (b) Radon transform image with angle 90◦;
(c) Radon transform image with angle 150◦
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3.1. Higher Order Spectra based features

HOS techniques were first applied to signal processing problems in 1970, sub-

sequently they were used in economics, speech, seismic data processing, plasma

physics, optics and biomedical applications 20,26. Recent studies show that HOS

can be used to diagnose epilepsy using Electroencephalogrphy (EEG) signals and

cardiac abnormalities using heart rate signals 27,28. HOS invariants have been used

for shape recognition 29 and to identify different kinds of eye diseases 20,4.

HOS is a nonlinear method which captures subtle changes in image pixels. The

algorithm discussion starts with second order statistics which evaluate both mean

value (m) and variance
(

σ2
)

. They are defined by expectation operation as follows:

“a” is the result of a random process.

ma = E{A}

σ2
A = E

{

(A−ma)
2
} (2)

If a is a time discrete signal, the second order moment autocorrelation function

is defined as:

m2
a(i) = E {(A(n)×A(n+ 1)} (3)

In addition to these moments, HOS provides higher order moments, i.e. m3,

m4, . . . and nonlinear combinations of the higher order moments called cumulants,

i.e. c1, c2, c3, . . .. Thus, HOS consists of both moment and cumulant spectra 27,28.

The technique can be used for deterministic and random signals. The so called

bispectrum, which is a third order statistic, was used in this work. It is obtained by

calculating the Fourier transform of the third order correlation of the data:

B(f1, f2) = E {A(f1)A(f2)A
∗(f1 + f2)} (4)

where A(f) is the Fourier is transform of the signal a(nT ) and E{.} is an average over

an ensemble of random signal realizations. For deterministic signals, the relationship

holds without an expectation operation. In this case, the third order correlation is

a time-average. For deterministic sampled signals, A(f) is the discrete-time Fourier

transform, which, in practice, is computed using the Fast Fourier Transform (FFT)

algorithm. The frequency (f) may be normalized by the Nyquist frequency to be

between 0 and 1 (Figure 5).

In this work, we derived the bispectral phase entropy (Ph), entropy 1 (P1),

entropy 2 (P2) and entropy 3 (P3). These entropies are similar to the spectral

entropy 27,28. The equations, which govern the phase entropy extraction from HOS

parameters, are given below 20:

Ph =
∑

〈n〉

p(Ψn) log(p(Ψn)) (5)

p(Ψn) =
1

L

∑

〈Ω〉

l (Φ (B(f1f2)) ∈ Ψn) (6)
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Ω

Fig. 5. Non-redundant region of computation of the bispectrum for real signals. Features are
calculated by integrating the bispectrum along the dashed line with slope = a. Frequencies are
shown normalized by the Nyquist frequency

Ψn = {Φ| − π + 2πn/N ≤ Φ < −π + 2π(n+ 1)/N} with n = 0, 1, . . . , N − 1 (7)

where B indicates the bispectrum of the signal, L is the number of points within the

regian Ω, Φ is the phase angle of the bispectrum, and l(.) is an indicator function

which gives a value of 1 when the phase angle is within the range of Ψn, as depicted

by in Equation 6. The three bispectrum entropies are defined as:

P1 = −
∑

〈k〉

pk log(pk) (8)

where pk = |B(f1,f2)|∑
〈Ω〉 |B(f1,f2)|

.

P2 = −
∑

〈i〉

pi log(pi) (9)

where pi =
|B(f1,f2)|

2

∑
〈Ω〉 |B(f1,f2)|2

.

P3 = −
∑

〈n〉

pn log(pn) (10)

where pn = |B(f1,f2)|
3

∑
〈Ω〉 |B(f1,f2)|3

.

In this work, we have extracted the four bispectrum invariants, described above,

for each radon-transformed fundus image.

3.2. Trace Transform (TT)

TT is a generalized approach to the Radon transform, and consists of tracing an

image with straight lines along which certain functionals of the so called image

function. The purpose of a functional is to characterize a function by a number.
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Different functionals are used to represent rotation, translation and scaling invariant

features of an image. In many cases these features correlate well with the visual

textures 19.

The TT can then be defined as a function g based on ∆ with the help of T ,

which is some functional of the image function with variable t. T is called the trace

functional. In order to define a triple feature, two more functionals have been defined

and they are designated by P and Φ 19. P is known as the diametrical functional,

which is a functional of the TT function when it is considered as a function of the

length of the normal to the line only. Φ, called the circus functional, is a functional

operating on the orientation variable, after the previous two operations (T and P )

have been performed. Thus, the triple feature can be defined as:

Π = (F,C1) = Φ(P (T (F (C1,Φ, p, t)))) (11)

where F (C1,Φ, p, t) indicates the values of the image function along the chosen line.

C1 is the coordinate system which is parameterized by (Φ, p, t). We calculate two

triple features using the invariant functionals. They are as follows:

Π1 = T → IF1, P → IF2, Φ → IF3

Π2 = T → IF3, P → IF2, Φ → IF1
(12)

where Π1 is the normalized version of the triple feature formed by using IF1, IF2

and IF3 as functionals T , P , and Φ respectively in Equation 11. Π2 is the normalized

version of the triple feature formed by IF3, IF2, and IF1 as functionals T , P , and

Φ respectively in Equation 11. Π1 and Π2 are the rotation, scale and translation

invariant texture features that are used to quantify a visual texture measure in our

application.

3.3. Discrete Wavelet Transform Energy Features

Wavelets are mathematical functions that decompose data into different frequency

components and subsequently study each component with a resolution which is

matched to its scale. The Fourier transform decomposes a signal into a spectrum

of frequencies whereas the wavelet analysis decomposes a signal into a hierarchy

of scales starting from the coarsest scale 30. This ability to represent an image at

various resolutions makes the Wavelet transform a better tool for extracting features

from images than the Fourier transform 31,32. Multiresolution analysis can be done

using Continuous Wavelet Transforms (CWT) and DWT. In our work, we have used

DWT for feature extraction, which is explained below.

The DWT transform of a 2D signal x(n) is evaluated by sending it through a

sequence of down-sampling high and low pass filters 33. The low pass filter is defined

by the transfer function L(n) and the high pass filter is defined by the transfer

function H(n). The output of the high pass filter D(n) is known as the detailed
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coefficients. The following equation shows how these coefficients are obtained:

D(n) =

∞
∑

k=−∞

x(k)H(2n− k) (13)

The low pass filter output is know as the approximation coefficients. These

coefficients are found by using the following equation:

A(n) =
∞
∑

k=−∞

x(k)L(2n− k) (14)

The frequency resolution is further increased by cascading the two basic filter

operations. To be specific, the output of the first level low pass filter is fed into

the same low and high pass filter combination. The detailed coefficients are output

at each level and they form the level coefficients. In general, each level halves the

number of samples and doubles the frequency resolution. Consequently, in the final

level, both detailed and approximation coefficients are obtained as level coefficients.

In our work, the digital fundus images are represented as an m × n gray scale

matrix I(i, j) where each element of the matrix represents the intensity of one pixel.

All non-border pixels I(i, j), where i /∈ {0,m} and j /∈ {0, n}, have eight immediate

neighboring pixels. These eight neighbors can be used to traverse through the matrix
34. However, changing the direction with which the matrix is traversed just inverts

the sequence of pixels and the 2D DWT coefficients are the same. For example, the

Wavelet Packet (WP) result is the same when the matrix is traversed from left to

right as from right to left. Therefore, we are left with four possible directions, which

are known as decomposition corresponding to 0◦ (horizontal, Dh), 90◦ (vertical,

Dv) and 45◦ or 135◦ (diagonal, Dd) orientations.

In this work level 1 decomposition was sufficient to obtain significant features.

We have evaluated 54 wavelet functions. Each of these wavelet functions has a

unique low pass filter transfer function L(n) and a unique high pass filter transfer

function H(n) 33. We found that Biorthogonal 3.1 (bior3.1) outperforms all other

tested wavelet functions. Biorthogonal is the name of a wavelet where the associated

wavelet transform is invertible but not necessarily orthogonal. Biorthogonal wavelets

allow more degrees of freedom than orthogonal wavelets.

The first level 2D DWT yields four resultant matrices, namely Dh1, Dv1, Dd1
and A1, whose elements are intensity values. The following average and mean value
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equations were used to extract features from the resultant DWT matrices:

Average Dh1 (Ah) = 1
N×M

∑

x=〈N〉

∑

y=〈M〉

|Dh1(x, y)|

Average Dv1 (Av) = 1
N×M

∑

x=〈N〉

∑

y=〈M〉

|Dv1(x, y)|

Average Dd1 (Ad) = 1
N×M

∑

x=〈N〉

∑

y=〈M〉

|Dd1(x, y)|

Energy (Ed) = 1
N2×M2

∑

x=〈N〉

∑

y=〈M〉

(Dd1(x, y))
2

Energy (Ev) = 1
N2×M2

∑

x=〈N〉

∑

y=〈M〉

(Dv1(x, y))
2

(15)

4. Support vector machine

The number of medical diagnosis systems, which use automated classification, is

increasing gradually 35. The evaluation of patient data and decisions by medical

experts are the most important factors in diagnosis. Classification systems can help

to minimize possible errors and they can provide examination results in a shorter

time and in a more detailed manner. In this study, the diagnostic problem is designed

based on fourteen features of retinal fundus images, which may be treated as a two-

class pattern classification problem.

The SVM algorithm is based on the idea of margin maximization 35,36,37. The

maximum margin can be found by solving the following optimization problem:

min
{

1
2w

Tw + C
∑l

i=1 ξ
2
i

}

s.t.yi
(

wTxi + b
)

≥ 1− ξ, where i = 1, ξ ≥ 0
(16)

Support vector

H1

Margin

H2

−b
|w|

Origin

Fig. 6. Optimal separating hyperplanes

The decision function for linear SVMs is given as g(x) = wTx + b. In this

formulation; we have the training data set {xi, yi}, i = 1, ..., l, where xi ∈ Rn are

the training data points, are the class labels, l is the number of samples and n is the

number of features in each sample. By solving the optimization problem presented
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in Equation 16, i.e. by finding the parameters w and b for a given training set, we are

effectively designing a decision hyperplane (Figure 6) over an n dimensional input

space that produces the maximal margin in the space. Generally, the optimization

problem, defined in Equation 16, is solved by changing it into the dual problem, as

given below:

max {Ld(α)} =

l
∑

i=1

αi −
1

2

l
∑

i=j=1

yiyjαiαjx
Txj (17)

Subject to 0 ≤ αi ≤ Ci, where i = 1, ..., l:

l
∑

i=1

αiyi = 0 (18)

In this setting, one needs to maximize the dual objective function Ld(α) with respect

to the dual variables αi only subject to the box constraints 0 ≤ αi ≤ C. The

optimization problem can be solved by various established techniques which solve

general quadratic programming problems with inequality constraints. The original

optimal hyperplane algorithm was a linear classifier. This linear algorithm can be

made nonlinear by replacing every dot product by a nonlinear kernel function, such

as the Radial Basis Function (RBF).

5. Glaucoma Risk Index

We have formulated the GRI based on the significant features listed in Table 1.

Our approach follows Acharya et al. who have proposed to combine features in

such a way that the resulting number or index discriminates normal and disease

classes 24. It is difficult keep track of the individual feature variations. Therefore,

we have empirically determined a single integrated index (also called as Glaucoma

Risk index) that is a unique combination of the respective features that results in

a unique range for both the classes. The utility of such indices is that they can

be more comprehendible to the ophthalmologist than the classifiers which are most

times black boxes that directly output the class label. Moreover, it is faster and

easier to compute and keep track of these indices. When continuously monitored,

the variations in the indices can throw light on how the normal become glaucoma

over time. In our case, the GRI discriminates fundus images which show glaucoma

symptoms from normal fundus images.

Equation 19 describes how the features were combined to form the GRI.

GRI =
α

β × γ
(19)
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with

α = e1res0 × epres70 × epres75 × epres80
× epres85 × epres90 × e1res90
× e2res90 × e3res90 × e1res180

β = dh1norm × dd1norm × cvenergy
γ = TT1

(20)

α – indicates the combination of HOS features; β – indicates the combination of

wavelet features; γ – indicates the combination of trace transform features.

6. Results

In this study, we have used TT, HOS and DWT methods to extract 14 features

from digital fundus images. The independent sample t-test was used to establish

the statistical significance of these features. Table 1 shows mean, standard deviation

and p-value of the extracted features. All features, with the exception of P1, showed

significantly greater values in images taken from glaucomatous participants when

compared to the normal control set (Table 1, p < 0.01). The low p-values indicate

that all features are extremely useful in differentiating normal images from retinal

images with glaucomatous appearance. In the case of HOS-based features, bispectral

entropy based features which, were obtained from Radon transform angles Θ =

0◦, 70◦, 75◦, 80◦, 85◦, 90◦, 100◦, were found to be statistically significant. Among the

TT features, Π1 was found to statistically significant. Finally, the DWT features

Ad, Av, and Ev, based on bior3.1, were found to be statistically significant.

Table 1. Summary of features used in this work

Features Normal Glaucoma p-value

P1 (0◦) 0.5022± 0.1874 0.3834± 0.0851 0.002502
Ph (70◦) 1.5415± 0.7583 2.2898± 1.0185 0.002055
Ph (75◦) 1.5768± 0.7353 2.187± 0.778 0.002797
Ph (80◦) 1.7648± 0.7481 2.3864± 0.7448 0.002069
Ph (85◦) 1.9665± 0.6708 2.5781± 0.6274 0.000569
Ph (90◦) 0.5675± 0.2007 0.4495± 0.0607 0.003134
P1 (90◦) 0.1222± 0.0768 0.0743± 0.0309 0.00244
P2 (90◦) 0.0405± 0.0257 0.0212± 0.0153 0.000781
P3 (90◦) 2.9489± 0.4061 3.273± 0.3483 0.001572
P1 (180◦) 0.5129± 0.1995 0.3757± 0.0801 0.000912
TT1 2.6728± 0.5147 2.4491± 0.2142 0.031949
Ah 2.6243± 0.9351 1.8899± 0.1584 8.10E-05
Ad 2.068± 0.7291 1.6534± 0.1454 3.40E-03
Ev 0.0001± 0.0002 0.0007± 0.0003 1.06E-14

Table 2 shows that the GRI is a highly efficient indicator of the difference be-

tween normal and glaucomatous cases. The index can also be employed as an adjunct
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tool to cross check the diagnosis of clinicians using just one number. Figure 7 shows

the distribution plot of the GRI for normal and glaucoma. This plot graphically

documents how well this integrated index separates the normal control group from

patients with glaucoma.

Table 2. Range of glaucoma risk index for normal and glaucoma dataset

Feature Normal Glaucoma p-value

GRI 12.41± 0.024 1.92± 0.017 < 0.0001

The computation of GRI is performed using phase entropy (Ph), bispectrum

entropies (P1, P2, P3) and wavelet energy features (Ah, Ad and Ev). The wavelet

energy values of glaucoma are low, this effect may indicate a degeneration of the

optic nerve (Table 1), which are expressed as β. The phase entropy values of HOS

are high in case of glaucoma, which are expressed as α. The higher values of HOS

features and lower values of wavelet energy features suggest that glaucoma fundus

images with glaucoma symptoms have a more coarse textural variation than normal

ones. In case of optic nerve hemorrhages, the blood typically collects along the

individual nerve fibres that radiate outward from the nerve. Such physiological

changes are manifested in fundus images and our experiments show that HOS and

DWT features are able to detect and quantify such differences in the eye physiology
4.

Fig. 7. Plot of GRI for normal and glaucoma classes.

In this work, the so called three-fold stratified cross validation method was used

to test the classifiers. Two parts of the data (training set) were used for classifier

development and one part (test set) is used to test the classifier (i.e. 40 images are
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used for training and 20 images were used for testing). This procedure is repeated

three times using a different part as the test set in each case. Average of the Accuracy

(Acc), Sensitivity (Sn), Specificity (Sp), and Positive Predictive Value (PPV) is

calculated for all three trials to obtain the overall performance measures. Table 3

presents the classification results obtained using significant HOS, TT and DWT

features from the retinal fundus images. The accuracy registered by SVM with

polynomial and linear kernel was 91.67%.

Table 3. Results of SVM classification

SVM kernels TN FN TP FP Acc PPV Sn Sp

Linear 10 1 9 0 91.67% 96.67% 86.67% 96.67%
Polynomial
degree 2

9 1 9 1 91.67% 93.94% 90% 93.33%

Polynomial
degree 3

9 1 9 1 88.33% 88.6% 90% 86.67%

RBF 9 1 9 1 90% 92.96% 86.67% 93.33%

7. Discussion

Table 4 presents a summary of the automated glaucoma detection studies which

were mentioned in this paper. Many studies have been conducted to develop com-

puter aided decision support systems for the early detection of glaucoma. An

Artificial Neural Network (ANN) model, using multifocal visual evoked potential

(M-VEP) data, was able to detect glaucoma with a high sensitivity and specificity

of 95% and 94%, respectively 38.

The performance of an ANN, to recognize glaucomatous visual field defects, was

studied and its diagnostic accuracy was compared with that of other algorithms

which were proposed for the detection of visual field loss 39. The ANN method

showed a sensitivity of 93%, specificity of 94% and an Area under the Receiver Op-

erating Curve (AROC) curve of 0.984. The cluster algorithm achieved a sensitivity

of 95% and specificity of 82%.

Nayak et al. have proposed a morphological image processing algorithm based

on fundus images to detect glaucoma symptoms. The authors used the cup-to-disc

(c/d) ratio, which indicates the distance between the cup portion of the ONH to the

diameter of the optic disc, and the ratio of blood vessels area in inferior-superior

side to area of blood vessel in the nasal-temporal side considered as features to

design a neural network 40. Their system was able to identify glaucoma with a

sensitivity and specificity of 100% and 80%, respectively. A new framework for

the detection of glaucoma based on the changes in the ONH, using the method

of proper orthogonal decomposition, was proposed 41. Any glaucomatous changes

present in the ONH, during follow-up examinations, were estimated by comparing
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follow-up ONH topography with its baseline topograph subspace representation

that was constructed earlier. The changes in the ONH were quantified using the

following image correspondence measures: L1-norm and L2-norm, correlation, and

Image Euclidean Distance (IMED). By using both L2-norm and IMED in the new

framework, a AROC of 0.94 was achieved at 10◦ field of imaging, and 0.91 at 15◦

field of imaging 41.

Linear Discriminant Analysis (LDA) and an ANN were used to improve the dif-

ferentiation between glaucomatous and normal eyes in a Taiwan Chinese population

based on the retinal nerve fibre layer thickness measurement data from the Scanning

Laser Polarimetry (SLP) with variable corneal compensation 42. The results showed

that the Nerve Fibre Thickness (NFT) parameter produced the highest AROC of

0.932 in differentiating between normal and glaucomatous eyes. The AROCs for the

LDA and ANN methods were 0.950 and 0.970, respectively. Hence, the NFT, ANN,

and LDF methods demonstrated equal diagnostic power in glaucoma detection.

Principal Component Analysis (PCA) was performed on pixel intensity values.

Subsequently, FFT coefficients and spline interpolation data of digital fundus images

were used to detect the glaucoma 43. With an SVM classifier, the investigators

obtained an accuracy of 86%.

The Gray Level Co-occurrence Matrix (GLCM) was used for computerized detec-

tion of moderate to severe Peripapillary Chorioretinal Atrophy (PPA). Maramatsu

et al. obtained a sensitivity and specificity of 73% and 95% respectively 44.

The gradual loss of the Retinal Nerve Fibres (RNF) is a glaucoma symptom

with high diagnostic value. The texture changes in color or grayscale retinal pho-

tographs indicate the RNF atrophy 45. The automated system using fractal and

power spectral features coupled with SVM classifier was able to classify the normal

and glaucoma groups with an accuracy of 74%.

Nyúl proposed automated glaucoma detection using fundus image features. Ini-

tially, variations, such as non-uniform illumination, size differences, and blood ves-

sels were eliminated from the images. Then, PCA was applied in the combined

features (Pixel intensities, FFT coefficients and B-Spline coefficients) 3. These PCA

coefficients, combined with a classifier, were able to achieve an accuracy of 80% for

detecting glaucomatous retina fundus images.

Acharya et al. 4 proposed a method for glaucoma detection using a combination

of texture and HOS features from digital fundus images. Support vector machine,

sequential minimal optimization, naive Bayesian, and random-forest classifiers are

used to perform supervised classification. The author demonstrated that the tex-

ture and HOS features after z-score normalization and feature selection, and when

combined with a Random-Forest Classifier (RFC), performs better than the other

classifiers and correctly identifies the glaucoma images with an accuracy of more

than 91%.

Dua et al. 33 proposed a technique to extract energy signatures obtained using

2-D discrete wavelet transform, and subject these signatures to different feature
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ranking and feature selection strategies. The authors gauged the effectiveness of the

resultant ranked and selected subsets of features using SVM, sequential minimal

optimization, random forest, and naive Bayes classification strategies. The authors

obtained an accuracy of around 93% using tenfold cross validations.

Mookiah et al. 5 proposed the system for the automated identification of normal

and glaucoma classes using HOS and DWT features. The automated system using

HOS and DWT features with SVM classifier was able to identify the glaucoma and

normal images automatically with an accuracy of 95%, sensitivity and specificity of

93.33% and 96.67% respectively.

In our present work, we are able to detect the normal and glaucoma classes

with accuracy of 91.67%, sensitivity of 90% and specificity of 93.33% using an SVM

classifier with polynomial kernel order 2. Furthermore, we show that the GRI (Table

3) is a highly effective and accurate tool to differentiate images taken from patients

with glaucoma and normal participants. The index can also be employed to assess

the efficacy of glaucoma medication.

Table 4. Summary of automated glaucoma detection techniques used in this study.

Authors Features Classifier Performance

Classification using morphological features of the retinal fundus images
Nagarajan et al.
(2002) 38

Multi focal visual
evoked potential

ANN Sensitivity-95%

Bizios et al. (2007) 39 ONH parameters
ANN Sensitivity-93%

Specificity-94%
Cluster
algorithm

Sensitivity-95%
Specificity-82%

Nayak et al. (2009) 40 Optic disk parameters
Blood vessel parameters

ANN Sensitivity-100%
Specificity-80%

Balasubramanian et al.
(2009) 41

ONH parameters Proper
orthogonal
decomposition

AROC-0.94

Huang et al. (2010) 42 Retinal nerve fibre thickness
LDA AROC-0.95
ANN AROC-0.97

Classification using texture features of the retinal fundus images
Bock et al. (2007) 43 PCA, FFT, Spline inter-

polation data
SVM Accuracy-86%

Kolar and Jan (2008)
45

Fractal dimension of
RNF

SVM Accuracy-74%

Nyul (2009) 3 Pixel intensities, FFT
and B-Spline

SVM Accuracy-80%

Acharya et al. (2011) 4 Texture and HOS RFC Accuracy-91%
Muramatsu et al.
(2011) 44

GLCM features LDA Sensitivity-73%
Specificity-95%

Dua et al. (2012) 33 Wavelet RFC Accuracy-93%
Mookiah et al. (2012)
5

HOS and DWT SVM Accuracy-95%

This study HOS, TT, DWT and En-
ergy features

SVM Sensitivity-90%
Specificity-93.33%
Accuracy-91.67%
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8. Conclusion

In this work, we have presented a new automated glaucoma diagnosis system us-

ing a combination of HOS, TT and DWT features extracted from digital fundus

images. Our system, using SVM classifier (with Polynomial kernel order 2), is able

to detect glaucoma and normal classes with an accuracy of 91.67%, sensitivity of

90% and specificity of 93.33%. This classification efficiency may even be further

improved using images with a broader range of disease progression, better features

and robust data mining algorithms. In addition, we propose an integrated index,

which is composed of HOS, TT and DWT features. The GRI is a single feature

which distinguishes normal and glaucoma fundus images, as shown in Table 3 and

Figure 7. Hence, it is a highly effective diagnostic tool which may help clinicians to

make faster decisions during mass screening of retinal images.

The proposed system is cost effective, because it integrates seamlessly with dig-

ital medical and administrative processes and it incorporates inexpensive general

processing components. Therefore, the glaucoma detection system can be used in

mass screening where even a modest cost reduction, in the individual diagnosis,

amounts to considerable cost savings. Such cost savings help to eliminate suffering,

because the money can be used to increase the pervasiveness of glaucoma screening

or it can be used anywhere else in the health service where it is even more effective.

Appendix A. Acronyms

Acc Accuracy

ANN Artificial Neural Network

AROC Area under the Receiver Operating Curve

CWT Continuous Wavelet Transforms

DWT Discrete Wavelet Transform

EEG Electroencephalogrphy

FFT Fast Fourier Transform

GLCM Gray Level Co-occurrence Matrix

GRI Glaucoma Risk Index

HRT Heidelberg Retina Tomography

HOS Higher Order Spectra

HRT Heidelberg Retinal Tomography

IMED Image Euclidean Distance

IOP Intraocular Pressure

LDA Linear Discriminant Analysis

NFT Nerve Fibre Thickness

ONH Optic Nerve Head

PCA Principal Component Analysis

PPA Peripapillary Chorioretinal Atrophy

PPV Positive Predictive Value
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RBF Radial Basis Function

RFC Random-Forest Classifier

RNF Retinal Nerve Fibres

SLP Scanning Laser Polarimetry

Sn Sensitivity

Sp Specificity

SVM Support Vector Machine

TT Trace Transform

WP Wavelet Packet
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