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IMPORTANCE Age-related macular degeneration (AMD) affects millions of people throughout
the world. The intermediate stage may go undetected, as it typically is asymptomatic.
However, the preferred practice patterns for AMD recommend identifying individuals with
this stage of the disease to educate how to monitor for the early detection of the choroidal
neovascular stage before substantial vision loss has occurred and to consider dietary
supplements that might reduce the risk of the disease progressing from the intermediate to
the advanced stage. Identification, though, can be time-intensive and requires expertly
trained individuals.

OBJECTIVE To develop methods for automatically detecting AMD from fundus images using a
novel application of deep learning methods to the automated assessment of these images
and to leverage artificial intelligence advances.

DESIGN, SETTING, AND PARTICIPANTS Deep convolutional neural networks that are explicitly
trained for performing automated AMD grading were compared with an alternate deep
learning method that used transfer learning and universal features and with a trained clinical
grader. Age-related macular degeneration automated detection was applied to a 2-class
classification problem in which the task was to distinguish the disease-free/early stages from
the referable intermediate/advanced stages. Using several experiments that entailed
different data partitioning, the performance of the machine algorithms and human graders in
evaluating more than 130 000 images that were deidentified with respect to age, sex, and
race/ethnicity from 4613 patients against a gold standard included in the National Institutes of
Health Age-Related Eye Disease Study data set was evaluated.

MAIN OUTCOMES AND MEASURES Accuracy, receiver operating characteristics and area under
the curve, and κ score.

RESULTS The deep convolutional neural network method yielded accuracy that ranged
between 88.4% (SD, 0.5%) and 91.6% (SD, 0.1%), the area under the receiver operating
characteristic curve was between 0.94 and 0.96, and κ (SD) between 0.764 (0.010) and
0.829 (0.003), which indicated a substantial agreement with the gold standard Age-Related
Eye Disease Study data set.

CONCLUSIONS AND RELEVANCE Applying a deep learning–based automated assessment of
AMD from fundus images can produce results that are similar to human performance levels.
This study demonstrates that automated algorithms could play a role that is independent of
expert human graders in the current management of AMD and could address the costs of
screening or monitoring, access to health care, and the assessment of novel treatments that
address the development or progression of AMD.
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A ge-related macular degeneration (AMD) is associated
with the presence of drusen, long-spacing collagen, and
phospholipid vesicles between the basement mem-

brane of the retinal pigment epithelium and the remainder of
the Bruch membrane.1 The intermediate stage of AMD, which
often causes no visual deficit, includes eyes with many me-
dium-sized drusen (the greatest linear dimension ranging from
63 μm-125 μm) or at least 1 large druse (greater than 125 μm)
or geographic atrophy (GA) of the retinal pigment epithelium
that does not involve the fovea.1

The intermediate stage often leads to the advanced stage,
in which substantial damage to the macula can occur from cho-
roidal neovascularization, also termed the wet advanced form,
or GA that involve the center of the macula, which is termed
the dry advanced form. Choroidal neovascularization, when
not treated, often leads to the loss of central visual acuity,2

which affects daily activities like reading, driving, or recog-
nizing objects. Consequently, the advanced stage can pose a
substantial socioeconomic burden on society.3 Age-related
macular degeneration is the leading cause of central vision loss
among people older than 50 years in the United States; ap-
proximately 1.75 million to 3 million individuals have the ad-
vanced stage.3-5

While AMD currently has no definite cure, the Age-
Related Eye Disease Study (AREDS) has suggested benefits of
specific dietary supplements for slowing AMD progression
among individuals with the intermediate stage in at least 1 eye
or the advanced stage only in 1 eye.6 Additionally, vision loss
because of choroidal neovascularization can be reversed,
stopped, or slowed by administering antivascular endothe-
lial growth factor intravitreous injections.7 Ideally, individu-
als with the intermediate stage of AMD should be identified,
even if asymptomatic, and referred to an ophthalmologist who
can monitor for the development and subsequent treatment
of choroidal neovascularization. Manual screenings of the en-
tire at-risk population of individuals older than 50 years for
the development of the intermediate stage of AMD in the
United States is not realistic because the at-risk population is
large (more than 110 million).8 It also is not feasible in all US
health care environments to screen if there is poor access to
experts who can identify the development of the intermedi-
ate stage of AMD. These same issues may be more pro-
nounced in low- and middle-income countries. Therefore, au-
tomated AMD diagnostic algorithms, which identify the
intermediate stage of AMD, are a worthy goal for future auto-
mated screening solutions for major eye diseases.

While no treatment comparable with antivascular endo-
thelial growth factor currently exists for GA, numerous clini-
cal trials are being conducted to identify treatments for slow-
ing GA growth.9-12 Automated algorithms may play a role in
assessing treatment efficacy, in which it is critical to quantify
disease worsening objectively under therapy; careful manual
grading of this by clinicians can be costly and subjective.

Past algorithms for automated retinal image analysis gen-
erally relied on traditional approaches that consisted of manu-
ally selecting engineered image features (eg, wavelets, scale-
invariant feature transform13-15) that were then used in a
classifier13-20 (eg, support vector machines [SVM]15,16 or ran-

dom forests14). By contrast, deep learning (DL) methods17,21-29

learn task-specific image features with multiple levels of ab-
straction without relying on manual feature selection. Re-
cent advances in DL have improved performance levels dra-
matically for numerous image analysis tasks. This progress was
enabled by many factors (eg, novel methods to train very deep
networks or using graphic processing units).22-26 Recently, DL
has been used for conducting retinal image analyses, includ-
ing tasks such as classifying referable diabetic retinopathy.27,28

A previous study17,21 reported on the use of deep universal fea-
tures/transfer learning for automated AMD grading. The new
study expanded on the previous study by using a data set that
is approximately 10 to 20 times larger, using the full scope of
deep convolutional neural networks (DCNN).

Methods
Overview
This study aimed to solve a 2-class AMD classification prob-
lem, classifying fundus images of individuals that have either
no or early stage AMD (for which dietary supplements and
monitoring for progression to advanced AMD is not consid-
ered) vs those with the intermediate or advanced stage AMD,
for which supplements, monitoring, or both is considered. It
leveraged DL and DCNN. The goals of this study were to mea-
sure and compare the performance of the proposed DL vs a hu-
man clinician, and a secondary goal was to compare the per-
formance between 2 DL approaches that entailed different
levels of computational effort regarding training.

Data
Our study used the National Institutes of Health AREDS data
set collected over a 12-year period. AREDS originally was de-
signed to improve understanding of AMD worsening, treat-
ment, and risk factors for worsening. It includes more than
130 000 color fundus images from 4613 patients that were
taken with written informed consent obtained at each of the
clinical sites (Table 1). Color fundus photographs were cap-
tured of each patient at baseline and follow-up visits and were
subsequently digitized. These images included stereo pairs

Key Points
Question When applying deep learning methods to the
automated assessment of fundus images, what is the accuracy for
detecting age-related macular degeneration?

Finding This study found that the deep convolutional neural
network method ranged in accuracy between 88.4% (SD, 0.7%)
and 91.6% (SD, 0.1%), with κ scores close to or greater than 0.8,
which is comparable with human expert performance levels.

Meaning The results suggest that deep learning–based machine
grading can be leveraged successfully to automatically assess
age-related macular degeneration from fundus images in a way
that is comparable with the human ability to grade age-related
macular degeneration from these images.
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taken from both eyes. Images were carefully and quantita-
tively graded by experts for identifying AMD at a US fundus
photograph-reading center.2 Graders used graduated circles to
measure the location and area of drusen and other retinal ab-
normalities (eg, retinal elevation and pigment abnormalities)
in the fundus images to determine the AMD severity level.2

Each image was then assigned by graders to a category reflect-
ing AMD severity that ranged from 1 to 4, with 1 = no AMD,
2 = early stage, 3 = intermediate stage, and 4 = advanced stage
(Figure 1). These severity grades were used as a “gold stan-
dard” in our study for performing a 2-class classification of no
or early stage AMD (here referred to as class 0) vs potentially

referable (intermediate or advanced) stage (class 1). AREDS is
a public data set that can be made available on request to the
National Insitutes of Health.

DCNN Approach
This study used DCNNs. A DCNN is a deep neural network that
consists of many repeated processing layers that take as in-
put fundus images that are processed via a cascade of opera-
tions with the goal of producing an output class label for each
image.23,25,26 One way to think about DCNNs is that they match
the input image with successive convolutional filters to gen-
erate low-, mid-, and high-level representations (ie, features)
of the input image. Deep convolutional neural networks also
include layers that pool features together spatially, perform
nonlinear operations at various levels, combine these via fully
connected layers, and output a final probability value for the
class label (here the AMD-referable vs not referable classifica-
tion). A DCNN is trained to discover and optimize the weights
of the convolutional filters that produce these image features
via a backpropagation process. This optimization is done di-
rectly by using the training images. Therefore, this process is
considered to be a data-driven approach and contrasts with past
approaches to processing and analyzing fundus imagery that
have used engineered features that resulted from an ad hoc,
manual, and therefore possibly suboptimal algorithmic de-
sign and selection of such features. While the workings of
DCNNs are simple to grasp at a notional level, there is cur-
rently extensive research being conducted to understand, im-
prove, and extend the current state of the art.

We used the AlexNet (University of Toronto) DCNN model
(here called DCNN-A)23 in which the weights of all layers of the
network are optimized via training to solve the referable AMD
classification problem. This training process involved opti-
mizing more than 61 million convolutional filter weights. In
addition to the layers mentioned above, this network in-
cluded dropout, rectified linear unit activation, and contrast
normalization steps.23 The dropout step consisted of arbi-
trarily setting to 0 some of the neuron outputs (chosen ran-
domly) with the effect of encouraging functional redun-
dancy in the network and acting as a regularization. Our
implementation incorporated the Keras and TensorFlow DL
frameworks. It used a stochastic gradient descent with a Nes-
terov momentum, with an initial learning rate that was set to

Figure 1. Examples of Fundus Images Showing Age-Related Macular
Degeneration (AMD).

Category 1A Category 2B

Category 3C Category 4D

A, Category 1 or no AMD; B, category 2 or early AMD; C, category 3,
intermediate AMD; and D, category 4 or advanced AMD.

Table 1. Summary of Data Sets Used

Data Set Ha WSb NSGc NSd

No. of images

Class 0 2779 74 401 37 101 37 418

Class 1 2221 59 420 29 842 29 983

Abbreviations: AREDS, Age-Related Eye Disease Study; DCNN, deep
convolutional neural networks; H, human; NS, no stereo; NSG, no stereo
gradable; WS, with stereo pairs.
a For comparing DCNN algorithms with human performance, a physician

independently and manually graded a subset (n = 5000) of the AREDS
images.

b This is the full set of all AREDS images (n = 133 821) including stereo pairs
(taking care that stereo pair images from the same eye did not appear in the
training and testing data sets).

c Because AREDS images are collected under a variety of environmental
conditions (eg, lighting, patient eye orientation, etc) and therefore are not of
uniform quality, an ophthalmologist was tasked to annotate a subset
(n = 7775) of images for “gradability” as a basic measure of fundus image
quality. This metric was extended via machine learning over the entire data set
and 458 of the poorest-quality images were removed from NS to form NSG.

d Only 1 of the stereo pair is kept from each eye resulting in a set comprising
67 401 images.
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0.001. The training scheme used an early stopping mecha-
nism that terminated training after 50 epochs of no improve-
ment of the validation accuracy.23

Universal Features/Transfer Learning Approach
For comparison, this study also used another DL approach that
focused on reusing a pretrained DCNN and performing trans-
fer learning.21,30 The idea behind transfer learning is to ex-
ploit knowledge that is learned from one source task that has
a relative abundance of training data (general images of ani-
mals, food, etc.) to allow for learning in an alternative target
task (AMD classification on fundus images). Here, universal fea-
tures were computed by using a pretrained DCNN to solve a
general classification problem on a large set of images and re-
use these features for the AMD task. Our approach17,21 used the
pretrained OverFeat (New York University)24 DCNN, which was
pretrained on more than a million natural images to produce
a 4096 dimension feature vector, which was then used to re-
train a linear SVM (LSVM)17,21,24 for our specific AMD classifi-
cation problem from fundus images. We call this method
DCNN-U.

The 2 methods (DCNN-A and DCNN-U) used a preprocess-
ing of the input fundus image by detecting the outer bound-
aries of the retina, cropping images to the square that was in-
scribed within the retinal boundary, and resizing the square
to fit the expected input size of AlexNet or OverFeat DCNNs.
Additionally, DCNN-U used a multigrid approach in which the
cropped image was coupled with 2 concentric square subim-
ages that were centered in the middle of the inscribed image.
The resulting 3 images (the cropped image plus 2 centered sub-
images) were then fed to the OverFeat DCNN to produce 2 ad-
ditional 4096-long feature vectors. The 3 feature vectors for
the image were then concatenated to generate a single 12 288-
sized feature vector as input to the LSVM. This method is fur-
ther detailed in previous reports.17,21

Data Partitioning
This study considered several experiments that used the en-
tire AREDS fundus image data set as well as different subsets
of AREDS. It also used different partitionings and groupings
of the AREDS image data set. The different subsets of AREDS
used are described here. The set of all AREDS images (133 821)
was used, including stereo pairs (ensuring that stereo pairs from
the same eye did not appear in the training and testing data
sets). We called this set WS for “with stereo pairs.” We called
the next set NS for “no stereo.” In this data set, only 1 of the
stereo images was kept from each eye, which resulted in 67 401
images. We called the next set NSG for “no stereo, gradable.”
Because AREDS images are collected under a variety of con-
ditions (eg, lighting or eye orientation) and therefore are not
of uniform quality, an ophthalmologist (K.D.P.) was tasked to
annotate a subset of images (n = 7775, 5.8%) for “gradability”
as a basic measure of fundus image quality. Subsequently, a
machine learning method was used to extend the index of grad-
ability over the entire image data set NS to exclude automati-
cally the most egregious low-quality images. The NSG was de-
rived from NS by removing 458 images (0.34%) with the
smallest “gradability” index. The final set was called H for hu-

man. For comparison with human performance levels, we
tasked a physician to independently and manually grade a sub-
set of AREDS images (n = 5000, 3.7%). The grades that were
generated by the physician and the machine were compared
with the AREDS gold standard AMD scores. The number of im-
ages that were used in each set, broken down by class, is re-
ported in Table 1.

These data sets were further subdivided into training and
testing subsets. We used a conventional K-fold crossvalida-
tion performance evaluation method, with K = 5, in which 4
folds were used for training and 1 was used for testing (with a
rotation of the folds). Additionally, because images from pa-
tients were collected over multiple visits, and because DCNN
performance depends on having as large a number as pos-
sible of patient examples, we considered 2 types of experi-
ments that corresponded to 2 types of data grouping and par-
titioning. In the baseline partitioning method (termed standard
partitioning [SP]) images taken at each patient visit (occur-
ring approximately every 2 years) were considered unique. For
SP, when both stereo pairs were used (WS), care was taken that
they always appeared together in the same fold. In a second
partitioning method (termed patient partitioning [PP]), we en-
sured that all images of the same patient appeared in the same
fold. Standard partitioning views patient visit as a unique en-
tity, while PP considers that each patient (not each visit) forms
a unique entity. Therefore, PP is a more stringent partitioning
method that provides fewer patients to the classifier to train
on; any patient with a highly abnormal or atypical retina will
be represented in only 1 of the folds.

Performance Metrics
The performance metrics used included accuracy, sensitiv-
ity, specificity, positive predicted value, negative predicted
value, and κ score, which accounts for the possibility of agree-
ment by chance.1,31 Because any classifier trades off between
sensitivity and specificity, to compare methods we used re-
ceiver operating characteristic (ROC) curves that plot the de-
tection probability, ie, sensitivity vs false alarm rate (ie, 100%
minus specificity) for each algorithm/experiment. To com-
pare with human performance levels, we also showed the op-
erating point that demonstrated the human clinician operat-
ing performance level. We also computed the area under the
curve for each algorithm/experiment.

Results
The experiments used the AREDS fundus images with the dif-
ferent subsets and partitioning that were previously ex-
plained. Performance levels are reported in Table 2 (SP) and
Table 3 (PP) for sets H, WS, NS, and NSG, and for the 2 algo-
rithms (DCNN-A and DCNN-U) and the human performance
levels. Receiver operating characteristic curves and areas un-
der the curve are reported in Figure 2.

In aggregate, performance results for both DL approaches
show promising outcomes when considering all metrics. Ac-
curacy ranged from 90.0% (SD, 0.6%) to 91.6% (SD, 0.1%) for
DCNN-A (Table 2) and 88.4% (SD, 0.5%) to 88.8% (SD, 0.7%)
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(Table 3); for DCNN-U, it ranged from 83.2% (SD, 0.2%) to 83.9%
(SD, 0.4%) (Table 2) and 82.4% (SD, 0.5%) to 83.1% (SD, 0.5%)
(Table 3). As seen in Table 2, Table 3, and the ROCs, DCNN-A
consistently outperformed DCNN-U. This can be explained by
the fact that DCNN-A was specifically trained to solve the AMD
classification problem by optimizing all of the DCNN weights

over all layers of the network, while for DCNN-U, with its sim-
pler training requirement, the training only affected the final
(LSVM) classification stage.

Table 2 and Table 3 also suggest that the DCNN-A results
are comparable with human performance levels. Based on ac-
curacy and κ scores, in Table 3, DCNN-A performance (accu-

Table 2. Performance Levels for Human and Machine Experiments Using Standard Partitioned Dataa

Method/Data Set
Human
H

DCNN-A
WS

DCNN-U
WS

DCNN-A
NSG

DCNN-U
NSG

DCNN-A
NS

DCNN-U
NS

Accuracy 90.2 91.6 (0.1) 83.7 (0.5) 90.7 (0.5) 83.9 (0.4) 90.0 (0.6) 83.2 (0.2)

Sensitivity 86.4 88.4 (0.7) 73.5 (0.9) 87.2 (0.8) 73.8 (0.7) 85.7 (2.3) 72.8 (0.2)

Specificity 93.2 94.1 (0.6) 91.8 (0.3) 93.4 (1.0) 92.1 (0.5) 93.4 (1.0) 91.5 (0.2)

PPV 91.0 92.3 (0.7) 87.7 (0.2) 91.5 (1.2) 88.3 (0.7) 91.3 (1.0) 87.3 (0.3)

NPV 89.6 91.1 (0.4) 81.2 (0.7) 90.1 (0.4) 81.4 (0.4) 89.1 (1.4) 80.8 (0.1)

κ 0.800 0.829 (0.003) 0.663 (0.010) 0.810 (0.011) 0.700 (0.008) 0.796 (0.013) 0.654 (0.003)

Abbreviations: DCCN-A, deep convolutional neural network, algorithm A;
DCCN-U, deep convolutional neural network, algorithm U; H, human; NS, no
stereo; NSG, no stereo gradable; NPV, negative predicted value; PPV, positive
predicted value; WS, with stereo pairs.

a All values indicate percentages, except for κ. Values in parentheses indicate
standard deviations.

Figure 2. Receiver Operating Characteristic Curves

DCNN_A_WS_SP  (AUC = 0.96)
DCNN_A_NSG_SP  (AUC = 0.96)
DCNN_A_NS_SP  (AUC = 0.95)
DCNN_U_WS_SP  (AUC = 0.90)
DCNN_U_NSG_SP  (AUC = 0.90)
DCNN_U_NS_SP  (AUC = 0.89)
DCNN_A_WS_PP  (AUC = 0.94)
DCNN_A_NSG_PP  (AUC = 0.95)
DCNN_A_NS_PP  (AUC = 0.94)
DCNN_U_WS_PP  (AUC = 0.89)
DCNN_U_NSG_PP  (AUC = 0.89)
DCNN_U_NS_PP  (AUC = 0.88)
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Receiver operating characteristic
curves for all experiments and
algorithms showing also the
corresponding area under the curve
values. A indicates algorithm A;
AUC, area under the curve;
DCNN, deep convolutional neural
networks; NS, no stereo; NSG, no
stereo gradable; PP, patient
partitioning; SP, standard
partitioning; WS, with stereo pairs;
U, algorithm U.

Table 3. Performance Levels for Human and Machine Experiments Using Patient Partitioned Dataa

Method/Data Set
Human
H

DCNN-A
WS

DCNN-U
WS

DCNN-A
NSG

DCNN-U
NSG

DCNN-A
NS

DCNN-U
NS

Accuracy 90.2 88.7 (0.7) 83.1 (0.9) 88.8 (0.7) 83.1 (0.5) 88.4 (0.5) 82.4 (0.5)

Sensitivity 86.4 84.6 (0.9) 72.3 (2.2) 85.3 (1.6) 71.7 (1.4) 84.5 (0.9) 71.0 (1.3)

Specificity 93.2 92.0 (0.7) 91.8 (0.6) 91.6 (1.2) 92.2 (0.5) 91.5 (0.7) 91.4 (0.3)

PPV 91.0 89.4 (1.1) 87.5 (1.1) 89.2 (1.1) 88.0 (0.7) 88.9 (1.0) 86.9 (0.5)

NPV 89.6 88.2 (1.0) 80.6 (1.4) 88.6 (1.1) 80.2 (1.1) 88.0 (0.5) 79.8 (0.5)

Kappa 0.800 0.770 (0.013) 0.652 (0.020) 0.773 (0.014) 0.651 (0.010) 0.764 (0.010) 0.636 (0.011)

Abbreviations: DCCN-A, deep convolutional neural network, algorithm A;
DCCN-U, deep convolutional neural network, algorithm U; H, human;
NS, no stereo; NSG, no stereo gradable; NPV, negative predicted value;
PPV, positive predicted value; WS, with stereo pairs.

a All values indicate percentages, except for the κ. Values in parentheses
indicate standard deviations.
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racy = 88.7% [0.7]; κ = 0.770 [0.013]) is close or comparable
with human performance levels (accuracy = 90.2% and
κ = 0.800), and in Table 2 it exceeds slightly the human per-
formance levels (accuracy = 91.6% [0.1], κ = 0.829 [0.003]). In
Table 2 and 3, the κ scores for DCNN-A (κ = 0.764 [0.010]-
0.829 [0.003]) and the human grader (κ = 0.800) show sub-
stantial to near perfect agreement with the AREDS AMD gold
standard grading, while DCNN-U exhibits substantial agree-
ment (κ = 0.636 [0.011]-0.700 [0.008]). Receiver operating
characteristic curves also show similar human and machine
performance levels. The other metrics in Table 2 and Table 3
also echo these observations.

To test algorithms on images that are representative of the
quality that one would expect in actual practice, we did not
perform extensive eliminations of images based on their qual-
ity. In particular, data sets WS and NS used all images while
data set NSG removed only 458 (approximately 0.68%) of the
worst-quality images. When looking at the performance of NSG
vs NS, there was a small but measurable decrease in perfor-
mance levels, as seen when comparing the accuracy of DCNN-A
of 90.7% for NSG vs 90.0% for NS (Table 2).

Experiments that used PP showed a small degradation in
performance levels when compared with experiments that
used SP. This is because, for patient partitioning, the classi-
fier was trained on 923 fewer patients (20%). The perfor-
mance in SP was reflective of a scenario in which training would
take advantage of knowledge that was gained during a longi-
tudinal study, vs PP experiments that take a strict view on
grouping to remove any possible correlation between fundus
images across visits. In aggregate, after accounting for net-
work and partition differences, the results that were ob-
tained for WS, NSG, and NS were close, with a preference for
WS (since there were more data to train from) and NSG (be-
cause some low-quality images were removed) over NS. For ex-
ample, DCNN-A accuracies are 91.6% (SD, 0.1%) (WS), 90.7%
(SD, 0.5%) (NSG), and 90.0% (SD, 0.6%) (NS) (Table 2).

Discussion
We described using DL methods for the automated assess-
ment of AMD from color fundus images. These experimental
results show promising performance levels in which deep con-
volutional neural networks appear to perform a screening func-
tion that has clinical relevance with performance levels that
are comparable with physicians. Specifically, the AREDS data
set is, to our knowledge, the largest annotated fundus image

data set that is currently available for AMD. Therefore, this
study may constitute a useful baseline for future machine-
learning methods to be applied to AMD.

Limitations
One limitation of this data set is a mild class imbalance regard-
ing the number of fundus images in class 1 vs 0, which may
have a moderate effect on performance levels. Another po-
tential limitation is that this data set uses digitized images that
were taken from analog photographs. This possibly can nega-
tively affect quality and machine performance when com-
pared with digital fundus acquisition, but this possibility can-
not be determined from this investigation because none of the
images were digital.

Another limitation of this study is that it relies exclu-
sively on AREDS and does not make use of a separately col-
lected clinical data set for performance evaluation, as was done
in the diabetic retinopathy studies27 (eg, training a model on
EyePACS [EyePACS LLC] and testing on Methods to Evaluate
Segmentation and Indexing Techniques in the Field of Reti-
nal Ophtalmology [MESSIDOR]). The situation is different, how-
ever, for AMD in which there is currently no large reference
clinical data set for use other than AREDS.

Future clinical translation of DL approaches would
require validation on separate clinical data sets and using
more human clinicians for comparison. While this study
offers a promising foray into using DL for automated AMD
analysis, future work could involve using more sophisticated
networks to improve performance, expanding to lesion delin-
eation and exploiting other modalities (eg, optical coherence
tomography).

Conclusions
This study showed that automated algorithms can play a role
in addressing several clinically relevant challenges in the man-
agement of AMD, including cost of screening, access to health
care, and the assessment of novel treatments. The results of
this study, using more than 130 000 images from AREDS, sug-
gest that new DL algorithms can perform a screening func-
tion that has clinical relevance with results similar to human
performance levels to help find individuals that likely should
be referred to an ophthalmologist in the management of AMD.
This approach could be used to distinguish among various reti-
nal pathologies and subsequently classify the severity level
within the identified pathology.
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