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Automated Graph-Based Analysis and Correction of
Cortical Volume Topology

David W. Shattuck* and Richard M. Leahy

Abstract—The human cerebral cortex is topologically equiva-
lent to a sheet and can be considered topologically spherical if it is
closed at the brain stem. Low-level segmentation of magnetic res-
onance (MR) imagery typically produces cerebral volumes whose
tessellations are not topologically spherical. We present a novel al-
gorithm that analyzes and constrains the topology of a volumetric
object. Graphs are formed that represent the connectivity of voxel
segments in the foreground and background of the image. These
graphs are analyzed and minimal corrections to the volume are
made prior to tessellation. We apply the algorithm to a simple test
object and to cerebral white matter masks generated by a low-level
tissue identification sequence. We tessellate the resulting objects
using the marching cubes algorithm and verify their topology by
computing their Euler characteristics. A key benefit of the algo-
rithm is that it localizes the change to a volume to the specific areas
of its topological defects.

Index Terms—Magnetic resonance imaging, topological correc-
tion, topology, segmentation.

I. INTRODUCTION

GEOMETRIC information about the cerebral cortex is im-
portant in various neuroimaging applications including

intersubject registration and comparison, image reconstruction,
and visualization techniques. The field of brain mapping has
focused much attention on producing flat and other two-dimen-
sional (2-D) representations of the cerebral cortical surface in
order to produce coordinate systems in which brain geometries
and other properties may be compared [1]–[9]. These methods
inherently rely on an important topological property of the
cerebral cortex—that it is a single sheet of connected tissue
enclosing the telencephalon. By closing the cortical surface at
the brainstem we can describe the cerebral cortex as having
the topology of a sphere. This topology provides us with an
important ability—it guarantees the existence of invertible
one-to-one maps between cortical surfaces of different subjects
and each other, or between these surfaces and a geometric prim-
itive such as the sphere. With such maps, intersubject studies
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of cortical surface variation are possible using surface warping
methods [3], [5]–[9]. Two-dimensional brain surface topology
is frequently assumed for cortical flattening approaches, such
as those described in [1], [2], [4], and [5]. The cortical mapping
methods presented by Druryet al.and Fischlet al. require 2-D
surfaces for flattening; such surfaces can be obtained by cutting
a spherical surface [2], [5]. Topologically correct brain surfaces
can also be used to constrain the location of neural current
sources to the cerebral cortex when solving inverse problems in
magnetoencephalography (MEG) and electroencephalography
(EEG) [1], [10]. Applications such as these motivate the devel-
opment of automated methods for generating cerebral cortex
surface representations that have the appropriate topology.

Magnetic resonance (MR) imaging is the typical modality
from which neuroanatomical surfaces are obtained because of
its ability to provide high resolution, high contrast images of the
soft tissues of the human brain. The task of identifying struc-
tures in MR imagery is typically approached from one of a
few directions. Registration techniques can be used to deform
a labeled atlas to a subject to identify neuroanatomy [11]–[13].
These methods typically perform well in subcortical structures
such as the basal ganglia but have difficulty matching the cortex
due to the variability found among different subjects. For this
reason, Collinset al. incorporated a low-level tissue classifica-
tion scheme with a deformable atlas in order to label regions of
the cortex [13].

Another technique for identifying anatomical structures is the
use of deformable surface methods, several of which have been
surveyed by McInerney and Terzopoulous [14]. These methods
can be implemented such that the topology of the final surface
matches that of an initial template. However, this can be compu-
tationally intensive compared to low-level processing, and the
deforming surface must be prevented from intersecting itself.
Also, these methods do not always deform well into cortical
structures due to other attractors in the image. Accurate seg-
mentation using deformable surfaces often depends upon a rea-
sonably accurate initialization [15].

Low-level tissue classification approaches, in which indi-
vidual voxels in the MR image are labeled according to tissue
types, can provide high-resolution detail of the cortical surface
and are often used to initialize active contour models. These
techniques are susceptible to inhomogeneity artifacts, partial
voluming, and other noise, which will result in mislabeled
voxels. Additionally, the low resolution of the scanning system,
as compared to the true fine scale of the neuroanatomy, will
often obscure the boundaries between neighboring gyri. For
these reasons, tessellations made from low-level labelings
of the cerebral cortex typically exhibit numerous topological

0278–0062/01$10.00 © 2001 IEEE



1168 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 11, NOVEMBER 2001

Fig. 1. Topological errors in a cortical surface. Two close-up views of the grey matter/white matter cerebral boundary surface generated from a low-level tissue
classification of an MR image. Several topological handles are clearly visible, including bridges between the cerebral hemispheres.

defects in the form of small handles or tunnels on the surface
or even false connections between the hemispheres, as seen in
Fig. 1.

The method presented by Teoet al.provides for identification
of potential topological defects which can then be corrected
by hand; verification of the Euler characteristic on the volume
ensures that the corrected volume will have the appropriate
topology [16]. The cortical surface-based analysis methods
presented by Dale, Fischl, and Sereno [4], [5] addressed this
problem using hand editing for larger topological defects
while ignoring smaller ones that do not impact their flattening
methods. Identification of the topological errors was performed
by viewing an inflating cortical surface, and correction was
achieved by editing the surface or the data. Interactive correc-
tion of surface meshes, or the volumes from which they are
generated, can be difficult and time consuming, particularly for
errors involving only a few voxels. More recently, Fischlet al.
presented a method to perform automated topological surgery
on the initial cortical surface [17]. This method inflates the
cortex to a sphere and identifies overlapping triangles in the
spherical surface. These areas occur due to topological handles,
and are retessellated to correct the topological defects.

The cortical identification method presented by Xuet al.also
addresses the issue of automatically correcting surface topology
[18], [19]. Their method makes use of fuzzy classification to
produce an initial isocontour representing the boundary between
white matter and grey matter. If this surface is not homeomor-
phic to a sphere the fuzzy membership set is median-filtered
spatially and the isocontour surface is recomputed. This proce-
dure is iterated until a surface with the appropriate topology is
found. The topologically correct isocontour surface is then used
as an initial condition for an active contour model that finds the
medial grey matter cortical surface using a gradient vector flow
method [20]. While this approach has been shown to produce
topologically spherical surfaces, the use of median filtering on
the membership set affects the entire volume and can smooth
certain aspects of the cortex. A second drawback to this ap-
proach is that the use of a 33 3 median filter does not guar-
antee a topologically spherical result. An example of this is a
configuration of voxels with two-voxel-thick sheets connected

by a number of 2 2 bridges. The structure will not have spher-
ical topology, but will be invariant under the median filter.

In this paper, we present a method designed to take a binary
volumetric object with an arbitrary topology and automatically
edit its membership such that a marching cubes [21] tessellation
of the edited object will be homeomorphic to a sphere. The
method identifies topological problems in the volume prior to
tessellation and makes minimal changes in the volume. This
method is suitable for use in cortical surface identification
because of its ability to find and then break or fill the small
topological defects that occur during classification. Most
significantly, the method identifies specific locations within the
volume where topological defects form and can be corrected
with changes to the membership set that are local to the area
of the proposed defect. In most cases, these changes are on the
order of one or two voxels. In this way, the algorithm respects
the geometry of the cerebral cortex when making its changes to
the volume. We demonstrate the method on a simple test object
and on several white matter volumes generated from MR brain
images.

II. M ETHOD

Our method analyzes and corrects the topology of volumetric
binary objects. We assume the object input to our algorithm is
a single, wholly connected foreground object with no internal
cavities. In this context, we mean connected in the six-neighbor
sense, where two voxels are neighbors if and only if they share
a common face. Because the object has no internal cavities, the
background is a single connected region. For background con-
nectivity, we use the D18 rule, where any two voxels are neigh-
bors if and only if they share a common face or edge. Illustra-
tions of connectivity rules are shown in Fig. 2.

A. Graph Based Topological Analysis of Volumetric Data

The topological genus of a surface represents the number of
nonintersecting closed curves that can be inscribed on the sur-
face without separating the set of surface points into disjoint
sets. In more common terminology, the genus represents the
number of holes in the object. For simple polyhedra, which are
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Fig. 2. Examples of connectivity rules. A (shaded) voxel and its D6, D18, and D26 neighbors.

homeomorphic to a sphere, the genus is zero. The genus of an
object can be determined from its Euler characteristic, which
can be computed from a tessellation of the object according to
the Euler–Poincaré formula

(1)

where
Euler characteristic;
number of vertices;
number of edges;
number of faces;
topological genus [22].

For an object with the topology of a sphere, 2. The genus
may also be computed as a summation of the object’s local Euler
characteristics [16]. However, these computations provide no
spatial information regarding the position or size of the topo-
logical handles present in the volume since, from a topological
viewpoint, such information is irrelevant. For this reason, we an-
alyze the topology of the object while also analyzing its geom-
etry. We form two weighted graphs, one for foreground voxels
and one for background voxels, that contain information about
the volume. Based on a conjecture described below, this allows
us to determine if the foreground object is topologically equiva-
lent to a sphere by counting the number of cycles in the graphs.
The cycles also provide information about the size and location
of handles or holes.

1) Foreground Connectivity Graph:We create a foreground
connectivity graph that captures important information about
the structure of the binary image foreground. We examine the
object along a selected cardinal axis, identifying the connected
components within each slice. Each in-slice connected compo-
nent, which we call a node, corresponds to a vertex in the graph.

We next analyze how each of the nodes is connected to the
nodes in the slices above and below it. We define a connection
between two nodes as a contiguous collection of voxels in one
node that share a face with a contiguous collection of voxels
in a node in an adjacent slice. Each connection in the object is
represented by an edge in the graph. Importantly, two nodes may
be connected in more than one place. In such a case, they will
have multiple edges connecting their vertices in the foreground
connectivity graph. Such an occurrence is the simplest form of
a topological handle existing in the object.

The strength of the connection between two nodes in the ob-
ject is represented in the graph by a weight associated with the
edge. In this paper, we use a weight function that measures the
number of voxels in a connection between nodes in adjacent
slices. In this way, nodes that are very strongly connected will
have large weights, while nodes that touch at only a few voxels
will have small weights. A simple example of a foreground con-
nectivity graph, computed for a toroidal object, is shown in
Fig. 3. The cycle in this graph corresponds to the handle (or
hole) in the object.

We base our connectivity rules for the connections in the fore-
ground graph on the D6 rule, with a slight modification that
makes our method appropriate for the marching cubes algo-
rithm. We start by taking the intersection of two adjacent slices
and consider each D6 connected component within this inter-
section to be a single connection between nodes. However, as
shown in Fig. 4, a 2 2 2 cube of foreground voxels with op-
posite corners removed will produce two distinct connections
using D6 connectivity, implying a topological hole according to
our algorithm. This is contrary to a marching cubes tessellation
of this object, which will not have a hole. Our algorithm exam-
ines connected regions that have a voxel sharing an edge with a
voxel in another connected region to see if voxels in that region
are in the configuration shown in Fig. 4. If so, the two connec-
tions are merged. This reduces the number of corrections made
to the object, improving its fidelity to the initial classification
[23].

2) Background Connectivity Graph:Though cycles in the
foreground connectivity graph represent the possible presence
of a topological handle or hole, the foreground graph itself is
not sufficient for testing the topology of the object. If the torus
of Fig. 3 is rotated 90such that its hole is vertical relative to the
slicing axis, also shown in the figure, then it will not generate
a cycle in its foreground connectivity graph. Because of such
discrepancies, we also form a background connectivity graph.
Once again, we find each of the connected background compo-
nents, which we describe as background nodes, in each slice
of the object. These are represented by vertices in the back-
ground graph. Here, we use D18 connectivity rules to identify
the connected components. This means that within a slice, con-
nected components will share a face or edge. Connections be-
tween adjacent nodes and the strengths of these connections
are then found, and represented in the background connectivity
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Fig. 3. Analysis examples. (From left: Object, foreground graph, and background graph) (top) An 8� 3� 5 binary volume containing a torus, and its connectivity
graphs. Analysis is performed along thez axis. The hole in the object appears as a cycle in the foreground graph. (bottom) The same object, rotated 90, and its
connectivity graphs. The hole in the object now appears as a cycle in the background graph. The foreground appears as a single node. Analysis is performed along
thez axis.

Fig. 4. Special connectivity rule. This example shows a 2� 2� 2 configuration of voxels consisting of six foreground voxels such that two opposite corners
of the cube are background. Taking the intersection of the two slices shows the D6 connections between the two slices. The intersection in this case suggests
two connections between the slices and the presence of a topological handle. However, no such handle is present in a marching cubes tessellation of this object.
Representing these two apparent connections as a single connection in the foreground connectivity graph makes our algorithm more appropriate for use with the
marching cubes algorithm.

graph as weighted edges. These connections are found by taking
the intersection of pairs of connected components from adja-
cent slices after dilation of one of these components with a
cross operator. This identifies connections formed by compo-
nents sharing an edge, but not those that only share a corner.
An edge is added to the background graph for each connected
component in this intersection, with the edge weight defined by
the component’s size. It should be noted that for some cases the
size of connection will be dependent on which node is dilated
prior to taking the intersection; we intend to address this in fu-
ture implementations of our method. Background connectivity
graphs are also shown in Fig. 3.

3) Spherical Homeomorphism Conjecture:We conjecture
that if the foreground and background connectivity graphs for
an object without interior cavities are both trees (graphs with
no cycles), then the object’s surface is homeomorphic to a
sphere. This forms the basis for our correction strategy. Though
we have not proved our conjecture, it has been true for each
simulated and real object we have analyzed.

B. Automated Topological Editing of Volumetric Data
Low-level segmentation results will not typically exhibit

spherical topology. In this section, we describe methods by
which the topology of a volumetric object may be altered
so that its surface will be homeomorphic to a sphere. It is
our conjecture that if an object does not have a topologically
spherical surface, then its connectivity graphs will have cycles.
Thus, our strategy for correcting an object’s topology is to
alter the object’s membership set in such a way that it will
generate foreground and background connectivity graphs that
have no cycles. We first identify a pair of desired graphs using
Kruskal’s algorithm [24] to produce two maximal spanning
trees. Since the weighting of our graphs represents the strength
of connection between nodes in adjacent slices, the maximal
spanning tree algorithm will remove the lightest possible
set of edges from the graphs, corresponding to the weakest
connections, in order to create trees. The task of our editing
procedure is to break the links in the actual object that represent
the edges deleted from the graphs.



SHATTUCK AND LEAHY: AUTOMATED GRAPH-BASED ANALYSIS AND CORRECTION OF CORTICAL VOLUME TOPOLOGY 1171

(a) (b) (c) (d)

Fig. 5. Correcting object topology. We edit an object to remove a handle. (a) The original object and its foreground connectivity graph. (b) We subsample the
object in a slice adjacent to the connection we are breaking. The foreground connectivity graph is expanded. (c) We can then remove a node in the graph and the
object; this breaks the cycle in the graph and causes the object to have a genus of 0. (d) In this simple case, we could have simply removed a node from the graph
and object.

1) In-Place Correction: It is important to recognize that
each edge connecting two nodes in the graphs corresponds to
connections between voxels and not voxels themselves. Still,
both nodes contain subsets of voxels that form the edge. If we
naively remove either set of voxels from the nodes, we may
break links to other nodes in the object. This could result in
separating the object into multiple pieces. For this reason, we
have devised three tests for sets of voxels before we alter their
membership in the object. These tests are described below in
order of increasing computational complexity. A simple cor-
rection example appears as Fig. 5. When removing voxels from
the foreground nodes, we are removing them from the object.
Conversely, when we remove voxels from the background
nodes, we are adding them to the object.

Our first test is based on the graph itself. Each edge to be re-
moved connects two nodes that will remain in the graph after
correction and are, therefore, part of the desired maximal span-
ning tree. If either of these nodes is a leaf on the tree, i.e., if
it is only connected to one other node on the tree, then we can
remove the voxels from this node and sever the link. The re-
maining edges in the graph will be unaffected. It may be the
case that other voxels in this node are separated from the main
object; however, other nodes are unaffected. It may also be the
case that removing voxels from the foreground or background
nodes will produce cycles in the opposite graph; however, this
can be corrected in subsequent operations. In practice, we have
not observed situations where cycling between solutions occurs.

The second test we apply is to examine the connectivity in
the area of the two possible corrections. This is best explained
with an example. Assume we want to remove a set of foreground
voxels from a node in slice , and the voxels form an un-
desired connection with the set of voxels in slice . If
the neighbors of in slice are also foreground voxels,
then these voxels will remain connected after we remove the
voxels. Furthermore, they will remain connected to the rest of
the object because they would otherwise have been only con-
nected to , and the edge formed between and would

have been part of the maximal spanning tree. Thus, thevoxels
can be removed without altering any other nodes in the object.
If this test is not passed, we do the same test withand slice

. A similar test is used for background voxels.
Our third test is to simply remove the voxels that form a link

from either node and examine the object or background to see if
our correction caused it to become a disjoint set. If so, we undo
the correction. Otherwise, we accept the correction and proceed
to the next problem.

2) Subsampling Method:In some cases, we may be unable
to find a suitable way of breaking a link in the tree by only
removing or adding voxels to the object. Instead, we can sub-
sample the volume at the location of the topological defect.
More specifically, we can insert a slice between the two slices
where the link occurs; this slice will be a duplicate of either
slice. We have effectively cut one of the slices in half.

Splitting the slice in two introduces duplicate nodes in the
graph for the original slice. Assume we duplicate slicewith
slice , and now the slices appear in the volume in the order

. Given a node in is linked only to the
node it duplicates in slice, say , and the nodes in to
which was connected. We are free to remove the voxels that
form an undesired link between and the nodes in slice .
Any other voxels in will remain connected to and, thus,
any other connections between and nodes in slice will
remain connected to the object. A simple example is shown in
Fig. 5.

We keep an index to these slices as being only half of their
original height so that we can compensate for this in tessellation
or other procedures. Clearly, the in-place correction method
is preferred as subsampling can greatly increase the size of
the volume and subsequent tessellations. However, having this
method as a last resort ensures that we can always generate an
object that produces appropriate graphs. In practice, we have
not encountered a brain volume that required the subsampling
correction method. The subsampling method is described in
more detail in [25].
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(a) (b)

(c) (d)

Fig. 6. Axis dependence of corrections. The corrections applied to an object vary depending on the axis along which the volume is analyzed. (a) and (b) The
object from Fig. 3 is corrected by removing a single voxel. (c) and (d) The same object analyzed along a different axis is corrected by adding three voxels.

C. Iterative Multiaxis Correction

The nature of the changes described in the previous section
depends on the axis along which the object is analyzed. This is
shown in Fig. 6, where a topological handle is fixed by either re-
moving one voxel or adding three. To ensure that we make the
smallest changes possible to the object, we iteratively apply the
corrections along each axis. A threshold is used, and only cor-
rections less than or equal to the threshold are performed. This
multiaxis approach dramatically reduces the number of voxels
that are added to or removed from the object membership set
[25], [23].

D. The Topological Constraint Algorithm

The topological constraint algorithm is summarized below.
The algorithm assumes as input a single D6 connected object in
a single D18 background; i.e., the object has no interior back-
ground cavities.

1) Set the threshold value to one.
2) Starting with the axis, compute a foreground connec-

tivity graph .
3) Compute a maximal spanning tree from

. The set represents the set of
edges to be deleted from the tree.

4) Find the set of edges that have weights less
than or equal to the threshold.

5) For each edge where either node is connected to
only one other node in, remove the voxels that form the
link from the slice where the node is singly connected.

6) For each edge remaining in , test the connectivity in
the slices above and below to see if the linking voxels
can be removed from the node; if so, remove them.

7) For each edge remaining in , remove the linking
voxels and test to see if the correction is acceptable. If
not, restore the voxels to their previous state.

8) Repeat steps 2–7 for the- and axes.
9) Repeat steps 2–8 for the background components in the

object.
10) Repeat steps 2–9 until no further changes can be made

at this threshold.

11) Iterate steps 2–10 with an increasing threshold until no
further corrections can be made.

12) If cycles still exist, conclude by inserting duplicate slices
where necessary and remove undesired linking voxels in
the duplicate slices.

III. RESULTS

We implemented the topological constraint algorithm in C++
and successfully applied it to volumetric objects. We present the
results of the algorithm on a small test object and demonstrate
the graph formation and correction process. We then present the
results of using the algorithm on several cerebral cortex masks
generated from MR images of several subjects.

A. Simple Test Objects

Fig. 7 shows two renderings of a small hand-created object
composed of 65 connected voxels. The voxels are contained
within four slices of a 20 20 6 volume. Computation of the
Euler–Poincaré formula on the marching cubes [21] tessellation
shows that the object has a genus of five. The handles or holes of
the object are clearly visible; we see three holes aligned with the
vertical axis and two aligned horizontally. The interslice con-
nectivity graphs for this object are also shown in Fig. 7. Each of
the three vertical holes are captured as cycles in the foreground
graph, while the two horizontal holes are captured in the back-
ground graph.

For illustrative purposes, we apply the algorithm along
a single axis only. The foreground pass identifies the three
foreground cycles, creates the desired maximal spanning tree,
and removes three voxels to produce an object with genus 2.
These graphs and the corrected object are shown in Fig. 8.
The background analysis is then performed—two cycles are
identified, a maximal spanning tree is created, and three voxels
are added to the object to break the cycles. These graphs and
the resulting object are shown in Fig. 9. This object has a
genus of 0, as verified by the Euler–Poincaré formula. In this
case, all corrections were made using the in-place correction
approach. The connectivity graphs of this object are two trees,
in accordance with our conjecture. A total of five voxels were
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(a) (b)

(c) (d)

Fig. 7. Test object. (a) and (b) Renderings of a simple object used to test the topological constraint algorithm. (c) Connectivity graph for foreground. (d)
Connectivity graph for background.

changed to constrain the topology of this object. While these
changes appear very significant to the shape of the object, it
should be noted that the object’s structure is of the same scale
as its topological defects.

B. Human MR Data Sets

The method described in this paper can be applied to arbitrary
three-dimensional binary volumetric objects. Our specific appli-
cation is to constrain an object representing the interior volume
of the cerebral cortex such that its tessellation is topologically
equivalent to a sphere. This problem provides an excellent test
for the algorithm, as segmentations based on low-level tissue
classification typically produce brain surfaces with numerous
tiny handles due to classification errors. The use of the topolog-
ical constraint algorithm may be justified by the small size of

these defects since it will choose the smallest regions it can in
which to make its corrections.

1) Preprocessing:We preprocessed six T1-weighted
MR volumes for this study using a sequence of low-level
steps described in [26]. We first stripped skull and scalp
from the volume using a combination of edge-enhancing
anisotropic diffusion filtering, Marr–Hildreth edge detection,
and mathematical morphology. We then compensated for
image nonuniformity using a parametric tissue intensity model
that adapts a tricubic B-spline gain field to match local tissue
properties to the global properties of the image. Finally, the
voxels within the brain volume were labeled as white matter,
grey matter, cerebrospinal fluid (CSF), and partial volume
combinations of these. The classification step used the same
parametric model as the inhomogeneity compensation step, but
in this case the model was formulated into a Bayesian classifier
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(a) (b) (c)

Fig. 8. Foreground correction. (a) The maximal spanning tree identified by the algorithm. (b) Connectivity graph of the object after foreground correction. (c)
Rendering of the edited object.

(a) (b) (c)

Fig. 9. Background correction. (a) The maximal spanning tree identified by the algorithm for background connectivity. (b) Connectivity graph of theobject after
background correction. (c) The corrected object with genus 0.

with a Gibbs spatial prior model to encourage piecewise
contiguous labeled regions.

We used the output of the classification step to produce the
initial white matter volume. The largest connected component
composed of voxels containing white matter was selected, and
additional processing was performed to compensate for certain
segmentation irregularities. Specifically, in the area of the sub-
cortical nuclei, interior grey matter often joined with sulcal CSF
as a result of the low resolution of the acquisition system rela-

tive to the fine anatomical detail in the image. Thus, the initial
volume typically included the surfaces of the ventricles. To ac-
count for this, we searched for the lateral ventricles by analyzing
the CSF voxels in the volume. If found, the ventricles were then
included in the inner cerebral white matter volume; otherwise
they were filled manually. Hand editing was also required to
ensure that the complete subcortical nuclei structures were also
included inside the initial white matter volume. It should be
noted that if structures such as the basal ganglia are left unfilled
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TABLE I
CHANGESMADE TO CORRECTTOPOLOGY. THE GENUS OFEACH OBJECTWAS REDUCED BY OUR ALGORITHM TO ZEROWITHOUT THE NEED FORSUBSAMPLING.
IN EACH CASE, THE NUMBER OFVOXELS CHANGED WAS VERY SMALL COMPARED TO THESIZE OF THEBRAIN VOLUME, AND FEW LARGE CHANGESWEREMADE

TABLE II
SIZE AND NUMBER OF CHANGES MADE TO EACH WM VOLUME. MOST

CHANGESMADE ARE ONE ORTWO VOXELS IN SIZE; A FEW LARGE CHANGES

OF SIZE LARGER THAN 10 ARE REQUIRED FOREACH VOLUME

so that bridges in the white matter exist, these structures will
be severed or filled by the topology correction algorithm. We
cut the volume at the brain stem to remove the cerebellum. The
resulting volume was then processed with the topological con-
straint algorithm to force its tessellation to be homeomorphic to
a sphere.

2) Topological Correction Results:We applied the topo-
logical constraint algorithm to six T1-weighted MR volumes
after preprocessing using the procedure described above. All
processing was performed using the BrainSuite tool [27];
processing time for each volume was between 5 and 10 min on
an Intel Pentium III Xeon 933-MHz CPU. It should be noted
that aspects of the implementation of our approach, such as
the frequent recalculation of the graphs, can be optimized,
providing for substantial decreases in computational cost.

Each white matter volume was tessellated after topological
correction and the genus was verified by the Euler–Poincaré for-
mula. In every case, the method produced a final volume with a
tessellation having an Euler characteristic of two, corresponding
to a genus of zero and homeomorphism to a sphere. Importantly,
the algorithm was able to correct all volumes without subsam-
pling and with very few changes to the membership set.

Table I shows the initial genus, number of changes, and
largest single change made to each volume. Further details
of the changes made are provided in Table II, which shows
the number of changes made for each size. Fig. 12 shows a
histogram of the fraction of changes made of each given size,
averaged over the six volumes. Our algorithm changed less than
0.21% of the voxels in any volume, and 90% of the changes
were made by altering three or fewer voxels. Most changes
made were less than ten voxels in size. The larger changes are
unlikely to closely follow the anatomical contours of the image
since they are restricted to be within a single plane. However,
the algorithm can be run with a limit on the largest change made
to the volume. The larger changes can then be made manually.

Fig. 10. Slice from a topology corrected image. White voxels are those
voxels common to the precorrected and corrected image. Black voxels have
been changed by the algorithm to correct the topology. The changes made by
the algorithm tend to be only a few voxels per topological defect.

The small nature of the changes made is highlighted by
Fig. 10, which shows the corrections made to a single slice
in one of the volumes. Fig. 11 shows renderings of marching
cubes tessellations of one of the volumes before and after
correction. The cortical surfaces are identical except in regions
where topological defects have been broken or filled.

To analyze the axis dependency of our corrections, we applied
the algorithm to each volume after transposing theand axes,
and the and axes. Ideally, the set of voxels changed would
be independent of orientation. In most cases, at least 70% of the
voxels changed were independent of orientation. However, there
were volumes in which only 25% of the voxels changed were
independent of orientation. This could be addressed in future
work by combining the analysis of all three axes.

A more important problem with our approach is that each
edit made to the object is restricted to changing voxels within
a single slice of data. Anatomical boundaries in the volume are
not likely to line up along these boundaries, which means that
as the size of the correction gets larger it is more likely to de-
viate from the anatomical boundary. This can result in notches
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Fig. 11. Topological constraint results. The top rendering shows a marching cubes tessellation of a white matter surface following a smoothing to reduce staircase
artifacts due to the binary nature of the data. Several topological defects are clearly visible in the image. The lower rendering shows the same volumeafter
application of the topological correction algorithm, after tessellation and smoothing by the same process. All topological handles have been filled or severed but
the global properties of the figure remain nearly identical. Inset are close-ups of corrected topological defects.

Fig. 12. Histogram of average fraction of changes made per size. Averaged
over the six brains in Table I.

in the final surface, though the use of the multiaxis iterative ap-
proach significantly reduces this. In future work, we intend to
explore approaches that will allow larger corrections to follow
more natural contours. One possible method would involve re-
moving only a portion of each defect during an iteration, where
the portion removed will be selected based on the intensity of
the MR data. For our cortical surface identification algorithm,

this would allow us to remove voxels forming a topological de-
fect that are less likely to be white matter.

IV. CONCLUSION

In this paper, we have presented a new method that analyzes
and alters the topology of a binary volumetric object so that its
tessellation will be homeomorphic to a sphere. The method is
appropriate for forcing the topology of cerebral white matter
volumes to be spherical. It operates on the voxel membership
set of the volume, and makes minimal changes to force it to
have the topology of a sphere. The method has correctly altered
the topology of every volume tested.

This method provides a completely automated way to quickly
correct the topology of cortical volume segmentations. When
used in combination with largely automated segmentation pro-
cedures, the burden on human operators to produce topologi-
cally correct cortical surface models is significantly reduced.
This increases the scale on which surface-based intersubject
population studies can realistically be performed.
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