
Automated Handling of Anaphoric Ambiguity in Requirements:
A Multi-solution Study

Saad Ezzini
University of Luxembourg

Luxembourg

saad.ezzini@uni.lu

Sallam Abualhaija
University of Luxembourg

Luxembourg

sallam.abualhaija@uni.lu

Chetan Arora
Deakin University

Australia

chetan.arora@deakin.edu.au

Mehrdad Sabetzadeh
University of Ottawa

Canada

m.sabetzadeh@uottawa.ca

ABSTRACT

Ambiguity is a pervasive issue in natural-language requirements.

A common source of ambiguity in requirements is when a pronoun

is anaphoric. In requirements engineering, anaphoric ambiguity

occurs when a pronoun can plausibly refer to different entities and

thus be interpreted differently by different readers. In this paper, we

develop an accurate and practical automated approach for handling

anaphoric ambiguity in requirements, addressing both ambiguity

detection and anaphora interpretation. In view of the multiple com-

peting natural language processing (NLP) and machine learning

(ML) technologies that one can utilize, we simultaneously pursue

six alternative solutions, empirically assessing each using a col-

lection of ≈1,350 industrial requirements. The alternative solution

strategies that we consider are natural choices induced by the exist-

ing technologies; these choices frequently arise in other automation

tasks involving natural-language requirements. A side-by-side em-

pirical examination of these choices helps develop insights about

the usefulness of different state-of-the-art NLP andML technologies

for addressing requirements engineering problems. For the ambigu-

ity detection task, we observe that supervised ML outperforms both

a large-scale language model, SpanBERT (a variant of BERT), as

well as a solution assembled from off-the-shelf NLP coreference re-

solvers. In contrast, for anaphora interpretation, SpanBERT yields

the most accurate solution. In our evaluation, (1) the best solu-

tion for anaphoric ambiguity detection has an average precision of

≈60% and a recall of 100%, and (2) the best solution for anaphora

interpretation (resolution) has an average success rate of ≈98%.

KEYWORDS

Requirements Engineering, Natural-language Requirements, Ambi-

guity, Natural Language Processing (NLP), Machine Learning (ML),

Language Models, BERT.

ACM Reference Format:

Saad Ezzini, Sallam Abualhaija, Chetan Arora, and Mehrdad Sabetzadeh.

2022. Automated Handling of Anaphoric Ambiguity in Requirements: A

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510157

Multi-solution Study. In 44th International Conference on Software Engineer-

ing (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3510003.3510157

1 INTRODUCTION

Natural language (NL) is the most common medium for specifying

systems and software requirements. NL enables communication

between stakeholders who may have different backgrounds, often

requiring little or no additional training [71]. NL requirements

are nonetheless prone to defects such as ambiguity [10, 20, 71].

Ambiguity occurs when a word, phrase or sentence is open to

multiple interpretations [69]. Ambiguity can have a negative impact

on the quality of requirements and also potentially jeopardize the

success of a project [24, 41]. A common cause of ambiguity in

requirements is anaphora [28, 39, 81, 95].

Anaphora means repetition in Greek and is defined as refer-

ences to entities mentioned earlier in the text. These references are

called anaphors and the entities to which they refer are called an-

tecedents [60]. Anaphoric ambiguity occurs when there is more than

one plausible antecedent [24, 61]. In linguistics, there are several

types of anaphora [60]. In requirements engineering (RE), anaphora

is typically scoped to pronominal anaphora, i.e., when the anaphor

is a pronoun [25, 95]. This is because pronominal anaphora has

been clearly established as a genuine source of ambiguity in re-

quirements [39].Anaphoric ambiguity detection in RE is thus the task

of identifying ambiguous occurrences of pronouns [94]. The closely

related task of anaphora resolution (interpretation) is concerned

with finding the most likely antecedent for a given pronoun [61].

To illustrate, consider the example in Figure 1. Here, the anaphor

is it, occurring in the second sentence. The potential antecedents

are the preceding noun phrases (NPs), namely “the S&T compo-

nent”, “approval requests”, “the DBS”, “the request” and “storage

parameters”. The pronoun it is unlikely to refer to “approval re-

quests” or “storage parameters” due to number disagreement (here,

singular pronoun versus plural NPs). Similarly, it is unlikely to

refer to “the request”, since it is the subject of the verb “create”, and

“the request” is not a suitable replacement for the subject of this

verb. It is not entirely clear though whether it refers to “the S&T

component” or “the DBS”. Depending on which antecedent – “the

S&T component” or “the DBS” – is selected, there are two different

interpretations as to which subsystem should create a configuration

record. To properly deal with this situation, the pronoun it has to be

187

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510003.3510157&domain=pdf&date_stamp=2022-07-05

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ezzini, et al.

either detected as ambiguous or resolved as referring to the correct

antecedent, which happens to be “the S&T component”. We note

that identifying the correct antecedent in this example would likely

be impossible without domain knowledge.

?
x

?
The S&T component shall send all approval requests to the DBS.

If the request contains storage parameters, it shall create a
configuration record from the parameters.

x
x

“S&T” and “DBS” stand for “Surveillance and Tracking” and “Database Server”, respectively.

Figure 1: Example of Anaphoric Ambiguity.

In RE, unconscious disambiguation of requirements is common,

particularly by stakeholders who have domain knowledge or a

good understanding of the system under development [78]. Not all

stakeholders in a project, however, share the same level of domain

knowledge or familiarity with the system-to-be. For example, it

is known that developers are prone to interpreting requirements

inaccurately [63]. To reduce the potential for misinterpretation and

the ensuing consequences, it is desirable to deal with ambiguity

in requirements as early as possible. Typically, and somewhat in

contrast to the literature on Natural Language Processing (NLP),

RE prioritizes ambiguity detection over anaphora resolution. The

rationale is that any genuine ambiguity in requirements needs to be

inspected by human analysts and mitigated by rephrasing or other

means, as opposed to the ambiguity being subjected to automated

interpretation, i.e., what is commonly done in NLP [25].

Anaphoric ambiguity is prevalent in NL requirements. Estimates

from the RE literature suggest that nearly 20% of industrial require-

ments contain anaphora [25, 81]. Current RE research on anaphoric

ambiguity [7, 22, 25, 94, 95], as we elaborate in Section 2.2, does

not adequately explore two important facets. First, the existing

work relies primarily on the traditional methods in NLP and ma-

chine learning (ML). With the rapid emergence and adoption of

new technologies such as pre-trained language models, BERT [18]

being a notable example, the landscape for the processing (and

generation) of NL content has changed drastically. This, on the one

hand, provides an opportunity to develop new solutions, and, on

the other hand, necessitates a revamp and reexamination of the

existing solutions, now using better enabling technologies. Second,

the existing RE solutions for anaphoric ambiguity have been eval-

uated on either a single application domain (e.g., railway) or on

very small datasets. As such, empirical results remain scarce on the

usefulness of automated techniques for dealing with anaphora in

requirements documents.

On the surface, it may seem that one can readily adopt exist-

ing solutions from the NLP community to deal with anaphoric

ambiguity in requirements. In the NLP literature, anaphora is typi-

cally addressed as part of coreference resolution, which is concerned

with finding mentions that refer to the same entity in a given

text [38, 76]. Coreference resolution is often an intermediate step

for more advanced NLP tasks such as question answering and sen-

timent analysis [61]. As noted earlier, in RE, we prioritize detection

over resolution, since we want to bring ambiguous cases to the

analysts’ attention for further examination. Existing coreference

resolvers have not been built to support ambiguity detection, thus

complicating the application of an individual resolver for this task.

Our aim in this paper is to arrive at a practical and effective

solution for handling anaphoric ambiguity in textual requirements.

By “handling” anaphoric ambiguity, we mean the primary task of

detecting genuine cases of anaphoric ambiguity and the secondary

task of interpreting (resolving) anaphora when the risk of ambiguity

is sufficiently low. We achieve our aim by empirically investigat-

ing multiple solution strategies. Some of the investigated strate-

gies are new and some are adaptations of existing work that are

implemented using state-of-the-art technologies. The alternative

strategies considered are choices that, in our experience, recurrently

arise when engineering requirements automation solutions using

NLP and ML. These choices particularly include: (1) whether to use

hand-crafted language features, word embeddings or a combination

thereof for classification, (2) whether pre-trained language models

like BERT are a viable replacement for the more traditional tech-

niques, and (3) whether a mashup of existing (and often generic)

NLP tools would be adequate for specific RE tasks.

Our decision to examine and report on multiple solution strate-

gies ismotivated by building empirical insights about thementioned

choices. Naturally, our findings in this paper are limited to the task

at hand, i.e., handling anaphoric ambiguity. Nonetheless, we believe

that our mode of investigation contributes to establishing a frame-

work for comparing the choices available in other requirements

automation tasks that are addressed via NLP and/or ML.

Contributions. This paper makes the following contributions:

(1) We develop six alternative solutions for automated han-

dling of anaphoric ambiguity in requirements. The solutions span

both traditional as well as more recently established NLP and ML

technologies. We implement all six solutions using Jupyter Note-

books [42], and make the solutions publicly available1.

(2) We empirically evaluate the above-mentioned alternatives on

two industrial datasets. The first dataset is a pre-existing one [2],

containing 98 requirements with 109 pronoun occurrences. The

second dataset was curated as part of our work using third-party

(non-author) annotators. This second dataset is a collection of 22

industrial requirements specifications from eight different applica-

tion domains and containing a total of 1,251 requirements with 737

pronoun occurrences. Over these datasets, for detecting anaphoric

ambiguity, supervised ML classification yields the best results with

an average precision of ≈60% and a recall of 100%. As for anaphora

resolution, a fine-tuned language model from the BERT family of

models turns out to be the best solution with a success rate of ≈98%.

The fact that different best solutions emerge for two closely related

tasks further signifies the usefulness of running multi-solution

studies like ours.

Significance. The significance of our work is two-fold: (1) ambi-

guity handling is a major concern in RE. We devise an accurate

automated solution to address a prevalent (and problematic) ambi-

guity type, namely anaphoric ambiguity; (2) the NLP landscape has

evolved drastically in recent years. Comparing the more traditional

techniques against new advancements is beneficial and relevant to

many AI-based RE automation tasks beyond ambiguity handling.

1https://tinyurl.com/mww2w46t

188

Automated Handling of Anaphoric Ambiguity in Requirements: A Multi-solution Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

We demonstrate how such comparisons can be made systematically.

We further provide insights and lessons learned, and shed light on

potential challenges.

Structure. Section 2 discusses background and positions our work

against the related literature in NLP and RE. Section 3 presents

our alternative solutions for handling anaphoric ambiguity in re-

quirements. Section 4 reports on our empirical evaluation. Section 5

addresses threats to validity. Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK

This section presents the necessary background for our solutions

and further discusses the related literature in RE and NLP.

2.1 Background

Below, we discuss the enabling technologies used by our solutions

marked � to � in Figure 3. The precise design of these alternative

solutions will be elaborated in Section 3.

Language Models (LMs). LMs are statistical models that assign

probabilities to words or phrases given some training corpus. For

example, an LM would assign a higher probability to the phrase

“briefed reporters on” than the phrase “briefed to reporters” [37].

BERT, standing for Bidirectional Encoder Representations from

Transformers, is a pre-trained masked language model (MLM) in-

troduced by Devlin et al. [18]. MLMs randomly mask a fraction of

the tokens in the pre-training text (the BooksCorpus and English

Wikipedia in the case of BERT); the pre-training objective is then

to predict the original vocabulary of these masked tokens based

on the surrounding context. For example, BERT should predict the

masked token “briefed” in the phrase “[MASK] reporters on”.
Pre-trained LMs can be employed to directly solve downstream

NLP tasks such as anaphoric ambiguity handling (the focus of our

work). We integrate LMs into our solutions using two strategies.

The first strategy is to fine-tune the parameters of a pre-trained LM

on a labeled dataset for anaphoric ambiguity handling. We apply

this strategy to devise solutions � and � based on SpanBERT [36],

a variant of BERT. In contrast to BERT, SpanBERT is pre-trained to

predict masked text spans (rather than masked tokens). SpanBERT

is better suited than BERT for tasks such as anaphora resolution

and question answering where the output is a text span, e.g., a noun

phrase rather than an individual noun [44]. The second strategy is

to extract contextual embeddings from the pre-trained LM and use

these embeddings as learning features in ML-based text classifica-

tion. Embeddings are mathematical representations capturing the

syntactic and semantic characteristics of text. For developing solu-

tion �, we use embeddings from both BERT [18] and SBERT [77].

While BERT derives embeddings for individual tokens, SBERT is

optimized for deriving semantically meaningful embeddings for an

entire text sequence.

Machine Learning (ML). Supervised ML (including text classifica-

tion [87]) requires labeled data consisting of datapoints described

as a set of features and a class label. Using this labeled data, an

ML classifier is trained to discriminate among the different classes

based on the features. Subsequently, the classifier will be able to

predict the class of a previously unseen datapoint described by the

features. For text classification, different types of learning features

can be used [3]. Among them, we apply in our work both manually-

crafted features collected from the literature as well as contextual

embeddings, presented earlier.

Solutions � and � – and also � which is a combination of �
and � – are ML-based. In our labeled data, each datapoint is the

combination of a pronoun and a candidate antecedent, both occur-

ring in some context. Each datapoint is labeled correct, incorrect or

inconclusive, as we explain in Section 3. Our empirical evaluation

examines several widely used ML classification algorithms, namely

decision tree (DT), feed-forward neural network (FNN), k-nearest

neighbour (kNN), logistic regression (LR), naïve Bayes (NB), ran-

dom forest (RF) and support vector machine (SVM). We refer the

reader to textbooks for more details about these algorithms [30, 91].

Natural Language Processing (NLP) Pipeline. In our work, we

apply an NLP pipeline composed of eight modules: (1) tokenizer for

splitting the text into tokens; (2) sentence splitter for breaking up

the text into individual sentences; (3) part-of-speech (POS) tagger

for assigning a POS tag, e.g., noun, verb or pronoun, to each to-

ken in each sentence; (4) lemmatizer for identifying the canonical

form (lemma) of each token, e.g., the lemma for “playing” is “play”;

(5) constituency parser for identifying the structural units of sen-

tences, e.g., NPs; (6) dependency parser for defining the grammatical

dependencies between the tokens in sentences; (7) coreference re-

solver for finding mentions that refer to the same textual entity; and

finally, (8) semantic parser for extracting information about words’

meanings. Modules 1 to 6 are prerequisites for all our solutions

(see the preprocessing step in Section 3.2). Our ML-based solutions

additionally use modules 7 and 8 for extracting language features.

Module 7 is the basis for solution �.

2.2 Related Work
Ambiguity in natural language has been studied extensively [28,

54, 61]. In RE, different dimensions of ambiguity have been ex-

plored, including understanding the significance of ambiguity in

requirements [24, 28, 32, 78, 84], analyzing the linguistic causes of

ambiguity [10, 21, 39, 54], ambiguity prevention [4, 5, 55, 58, 80],

and ambiguity detection and resolution [5, 17, 20, 23, 25, 29, 40, 43,

64, 81, 83, 88, 90, 95]. Below, we discuss related work on anaphoric

ambiguity detection and anaphora resolution, covering both the

RE and NLP communities.

In RE, anaphoric ambiguity has been addressed only to a limited

extent, despite (pronominal) anaphora being a common source

of misunderstandings in requirements [28]. Yang et al. [94, 95]

propose an ML-based solution over language features for detecting

cases of anaphoric ambiguity leading to misunderstandings. Using

200 anaphoric pronouns from different domains, they report an

accuracy of ≈76% for classifying whether an antecedent is correct

for a given pronoun. Detecting potential anaphoric ambiguity has

also been addressed as a sub-topic of defects detection, with some

basic solutions having been proposed, e.g., generating potential

ambiguity warnings for all pronouns or only for pronouns whose

surrounding text matches some simple syntactic patterns [5, 28, 81].

The approaches outlined above have two limitations. First, they

are based on traditional technologies from NLP and ML – two fields

that have advanced significantly over the past few years. Second,

these approaches have been evaluated on small datasets or single

189

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ezzini, et al.

r2 [If the request contains storage parameters, it shall create a

configuration record from the parameters.]

r1 [The S&T component shall send all approval requests to the DBS.]

Co
nte

xt

Pronoun

Candidate antecedents

c 1

p1

a11 a12 a13

a14 a15

Figure 2: Illustration of our Notation.

domains. We address the first limitation by (i) devising solutions in

view of recent advances in NLP and ML, particularly the emergence

of pre-trained language models; and (ii) re-examining the state-of-

the-art approach by Yang et al. [94, 95], enhanced with several new

language features gleaned from the literature [13, 19, 47, 56, 62,

75]. To address the second limitation, we conduct a multi-solution

empirical study including a relatively large RE dataset that covers

eight different application domains.

In the NLP community, dealing with anaphora is a long-standing

problem [61]. As already noted in the introduction section, com-

pared to RE, the focus in NLP is primarily on anaphora resolu-

tion, given the needs of the NLP tasks that are further down-

stream [47, 70]. Despite numerous attempts at addressing anaphora

resolution, the complex nature of the task has slowed progress for

several anaphora types [86]. The anaphora resolution techniques

in the NLP community are broadly classified into three categories:

syntactic, semantic and neural-network-based [46]. The syntactic

and semantic approaches focus on designing ML features based

on grammatical structure and word meanings in sentences. In the

neural-network-based approaches, anaphora resolution is often

reformulated as a question-answering problem. Recent solutions in

this category achieve promising results [33, 93].

In addition to being focused on resolution, the techniques devel-

oped by the NLP community are trained on generic corpora, e.g.,

Wikipedia. Due to the major differences between the terminology

and style applied in requirements writing versus what is avail-

able in generic corpora [26], NLP tools usually do not work well if

applied as-is to requirements documents [20, 90]. To address this

problem, we collect and annotate, as part of our work, a dataset of in-

dustrial requirements. Taking inspiration from the state-of-the-art

NLP directions, we build multiple solutions for handling anaphoric

ambiguity, while ensuring that anaphoric ambiguity detection is

explicitly addressed and prioritized over anaphora resolution.

3 SOLUTIONS DESIGN

We start this section by defining in an analytical manner anaphoric

ambiguity detection and anaphora resolution. This is followed by

a discussion of the preprocessing required for automating these

tasks. We then present the design of six alternative solutions for

automated handling of anaphoric ambiguity in requirements; these

solutions will be tuned and evaluated in Section 4.

3.1 Problem Definition

LetR = (𝑟1, 𝑟2, . . . , 𝑟𝑛) be a sequence of requirements, where each 𝑟𝑖
represents a single requirements sentence. Let P = (𝑝1, 𝑝2, . . . , 𝑝𝑚)

be all the pronouns in R in their order of appearance. Following

best practice [95], we define the context 𝑐 𝑗 of a pronoun 𝑝 𝑗 as two
consecutive sentences 𝑐 𝑗 = (𝑟𝑖−1, 𝑟𝑖); 2 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, where
𝑟𝑖 is the sentence in which 𝑝 𝑗 occurs. If 𝑝 𝑗 occurs in 𝑟1, then the
context is one sentence only, i.e., 𝑐 𝑗 = (−, 𝑟1). Each pronoun occur-
rence is represented by a distinct 𝑝 𝑗 ∈ P. This means that multiple
occurrences of the same pronoun constitute different elements in

P, even when the occurrences are within the same sentence. For

each 𝑝 𝑗 ∈ P, the context of 𝑝 𝑗 , i.e., 𝑐 𝑗 , induces a set of candidate
antecedents denoted A 𝑗 = {𝑎 𝑗1, 𝑎 𝑗2, · · · , 𝑎 𝑗𝑡 }.
To illustrate our notation, we recall the example of Figure 1.

Let 𝑟1 and 𝑟2 be the two consecutive sentences in that example.
Then, R = (𝑟1, 𝑟2). There is only one pronoun in R; therefore,

P = (𝑝1) where 𝑝1 = it. The context for 𝑝1 is 𝑐1 = (𝑟1, 𝑟2), and the
set of candidate antecedents for 𝑝1 is A1 = {𝑎11, 𝑎12, 𝑎13, 𝑎14, 𝑎15}
where 𝑎11 = “the S&T component”, 𝑎12 = “approval requests”, 𝑎13 =
“the DBS”, 𝑎14 = “the request” and 𝑎15 = “storage parameters”. For

easier referral later in the paper, we visually show in Figure 2 how

our notation is applied to the example of Figure 1.

Using our notation, anaphoric ambiguity detection is to decide

whether a given pronoun occurrence 𝑝 𝑗 is ambiguous or unambigu-
ous in its context 𝑐 𝑗 . Anaphora resolution is to identify the most
likely antecedent for 𝑝 𝑗 .

3.2 Preprocessing

The preprocessing step generates the input for the alternative am-

biguity handling solutions that we consider in this paper. We first

apply the NLP pipeline, discussed in Section 2.1, on a given require-

ments specification (RS) to parse its textual content. We create the

list of all pronouns (i.e., P) occurring in RS; this is done by selecting

the words that the POS tagger marks as PRP (personal pronoun)

or PRP$ (possessive pronoun) [52]. For each 𝑝 𝑗 ∈ P, we identify
the context 𝑐 𝑗 as the requirement 𝑟𝑖 in which 𝑝 𝑗 occurs and the
preceding requirement 𝑟𝑖−1 (for 𝑖 ≥ 2). Finally, for each 𝑝 𝑗 , we
generate the set of all candidate antecedentsA 𝑗 . Since antecedents

are NPs, as noted in Section 1, we generate A 𝑗 by including all

NPs that precede 𝑝 𝑗 in 𝑐 𝑗 , as automatically identified by the con-
stituency parser module in the NLP pipeline. We further include

any segment following the pattern [NP and/or NP] (e.g., “the sender

and the receiver”) and [NP preposition NP] (e.g., “the component of

the system”). Doing so improves the set of candidate antecedents

by covering the cases where 𝑝 𝑗 refers to a compound NP [6, 95].

3.3 Alternative Solutions
We consider six alternative solutions for handling anaphoric am-

biguity. These are shown in Figure 3. Alternatives � and � are

based on SpanBERT; alternatives �, � and � are based on super-

vised ML; and, alternative � is based on existing NLP coreference

resolvers. We note that the expected input differs across solutions:

The solutions based on SpanBERT take as input tuples of the form

〈𝑐 𝑗 , 𝑝 𝑗 〉; the ML-based solutions take as input triples of the form
〈𝑐 𝑗 , 𝑝 𝑗 , 𝑎 𝑗𝑘 〉; and, the NLP-based solution take as input merely the
context information (𝑐 𝑗) for pronoun occurrences. The input for all
solutions is directly constructible from the preprocessing results.

Table 1 outlines for each solution the inputs, the intermediate

outputs and the rules for processing the intermediate outputs. The

190

Automated Handling of Anaphoric Ambiguity in Requirements: A Multi-solution Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Input RS

Preprocess

Ambiguous?
Most likely antecedent

A: Tuples of the form (context and pronoun) B: Triples of the form (context, pronoun, candidate antecedent) C: Contexts of pronoun occurrences
LFs: language features FEs: feature embeddings

〈cj , pj , ajk〉 cj

[CLS]cj [SEP]pj

NLPCoref

6

(iii) NLP-based

Coref1 Coref2

C

MLLF

MLFE
Extract

Features

(ii) ML-based

MLensemble

3

4

5

LFs

FEsB C

Ambiguous?
Most likely antecedentAmbiguous?

Most likely antecedentAmbiguous?
Most likely antecedent

Output
p1
p2...{

Legend

pm

〈cj , pj〉

SpanBERTRE

Pre-trained
SpanBERT

SpanBERTNLP

Encode Input

(i) SpanBERT-based

CoNLL2011
Fine-tune

(1)

Fine-tune
(2)

DAMIRT

21

A

Figure 3: Overview of Solution Alternatives (marked � to �).

Table 1: Inputs, Intermediate Outputs and Ambiguity-handling Rules for Solution Alternatives.

Alternative(s) Input (I), Intermediate Output (O) and Ambiguity Handling Rules (R)

� � I: 〈𝑐 𝑗 , 𝑝 𝑗 〉 tuples. O: Tuples of the form 〈𝑠𝑞, 𝑝𝑟𝑞〉, where 𝑠𝑞 is a text span and 𝑝𝑟𝑞 is the probability of 𝑠𝑞 being the antecedent
for 𝑝 𝑗 .R: (Anaphora Resolution

∗) For a pronoun 𝑝 𝑗 , if there is exactly one 𝑠𝑞 in 𝑐 𝑗 such that 𝑝𝑟𝑞 is ≥ a fixed (empirically tuned)
threshold, then 𝑠𝑞 is the most likely antecedent of 𝑝 𝑗 . (Ambiguity Detection) If such 𝑠𝑞 is identified, then 𝑝 𝑗 is unambiguous;
otherwise 𝑝 𝑗 is ambiguous.

� � � I: 〈𝑐 𝑗 , 𝑝 𝑗 , 𝑎 𝑗𝑘 〉 triples. O: Tuples of the form 〈ℓ𝑗𝑘 , 𝑝𝑟 𝑗𝑘 〉, where ℓ𝑗𝑘 is a label characterizing the referential relation between
𝑎 𝑗𝑘 and 𝑝 𝑗 in 𝑐 𝑗 and where pr 𝑗𝑘 is the prediction probability for ℓ𝑗𝑘 . For anaphora resolution, the labels admitted by ℓ𝑗𝑘
are correct and incorrect; for ambiguity detection, ℓ𝑗𝑘 additionally admits inconclusive. R: (Anaphora Resolution

∗) For a

given 𝑝 𝑗 , if there is exactly one 𝑎 𝑗𝑥 such that ℓ𝑗𝑥 = correct with any probability, then 𝑎 𝑗𝑥 is the most likely antecedent of
𝑝 𝑗 . Otherwise, if multiple ℓ𝑗𝑘 are predicted as correct for 𝑝 𝑗 , then we deem 𝑝 𝑗 ’s most likely antecedent to be 𝑎 𝑗𝑥 where
𝑥 is the index at which ℓ𝑗𝑥 has the highest probability pr 𝑗𝑥 . (Ambiguity Detection) For a given 𝑝 𝑗 , if there is exactly one
label ℓ𝑗𝑥 = correct, then 𝑝 𝑗 is unambiguous if, additionally, either of the following conditions hold: (a) pr 𝑗𝑥 is ≥ a fixed

(empirically tuned) threshold, or (b) there is no label ℓ𝑗𝑘 that is inconclusive. Otherwise, 𝑝 𝑗 is ambiguous.

� I: Contexts (𝑐 𝑗) of pronoun occurrences. O: Each pronoun occurrence 𝑝 𝑗 alongside mentions𝑚1 and𝑚2 found by Coref1 and

Coref2, respectively. R: (Anaphora Resolution
∗) If𝑚1 =𝑚2, then𝑚1 (=𝑚2) is the most likely antecedent of 𝑝 𝑗 . (Ambiguity

Detection) If an antecedent is identified by the anaphora resolution rule, then 𝑝 𝑗 is unambiguous; otherwise, 𝑝 𝑗 is ambiguous.

* If no anaphora resolution rule is triggered for a given pronoun occurrence, then no antecedent is predicted.

rules produce the final results for anaphora resolution and ambigu-

ity detection. We elaborate our alternative solutions next.

(i) Solutions based on SpanBERT.We employ the recent language

model SpanBERT [36], introduced in Section 2.1, to develop solu-

tions � and �, referred to as SpanBERTNLP and SpanBERTRE ,

respectively. We first fine-tune the pre-trained SpanBERT model to

generate SpanBERTNLP using the CoNLL2011 dataset [34, 53, 72]

– a large dataset of generic text with about 7,000 pronoun occur-

rences. This fine-tuning step – fine-tune (1) in Figure 3 – aims to

adjust the parameters of the general SpanBERT model using the

inputs and outputs of CoNLL2011 on the anaphora resolution task.

Next, we fine-tune SpanBERTNLP to generate SpanBERTRE on a

subset of DAMIR – a dataset of NL requirements, which we have

constructed as part of our work. The second fine-tuning – fine-tune

(2) in Figure 3 – enhances SpanBERTNLP by exposing it to examples

of ambiguous and unambiguous pronouns from the RE domain. The

hypothesis we would like to examine using the resulting solution,

i.e., SpanBERTRE , is whether requirements-specific knowledge im-

proves the accuracy of anaphoric ambiguity handling in RE. The

CoNLL2011 and DAMIR datasets are discussed in Section 4.3.

The input to BERT and its variants needs to be tokenized and en-

coded into the same format used by the pre-trained models. Specifi-

cally, we encode each tuple 〈𝑐 𝑗 , 𝑝 𝑗 〉 as [CLS]𝑐 𝑗 [SEP]𝑝 𝑗 . Two special
tokens are automatically added by BERT’s tokenizer: [CLS] to repre-

sent the classification output and [SEP] to separate 𝑐 𝑗 from 𝑝 𝑗 . Any
repeated occurrence of the same pronoun 𝑝 𝑗 is replaced with 𝑝 𝑗#𝑑 ,
where 𝑑 ≥ 1 is a unique identifier. The multiple occurrences are

then encoded as [CLS]𝑐 𝑗 [SEP]𝑝 𝑗#𝑑 . The [CLS] token is relevant for
SpanBERT’s pre-training, which is not part of our analysis. [CLS]

thus has no significance for our analytical purposes.

The SpanBERT-based solutions, � and �, handle ambiguity us-

ing the respective rules provided in Table 1. There is a threshold

191

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ezzini, et al.

𝜃𝛼 for controlling the resolution results. We recommend 𝜃𝛼 = 0.9
based on our tuning, discussed in Section 4.5. For the example in Fig-

ure 2, the input to � and � is 〈𝑐1, 𝑝1〉, encoded as [CLS]𝑐1 [SEP]𝑝1.
The intermediate output of both solutions would be a tuple like

〈𝑠1 =“the S&T component”, pr1 = 0.99〉. The text span 𝑠1 would be
the antecedent of 𝑝1, since it is identified with a probability ≥ 0.9.
Thus, 𝑝1 would be detected as unambiguous. Note that � and �
do no necessarily demarcate all possible text spans in 𝑐 𝑗 , but rather
only those that the solutions find relevant for anaphora resolution.

(ii) Solutions based on supervised ML. We refer to our three

ML-based solutions, �, � and �, as MLLF , MLFE and MLensemble ,

respectively. MLLF is trained on 45 language features (LFs) col-

lated from the existing NLP and RE literature on anaphora resolu-

tion [13, 19, 47, 56, 62, 75, 95]. The description of the LFs is provided

online [82]. MLFE is trained on feature embeddings (FEs) which are

contextual representations of the input, as explained in Section 2.1.

MLensemble is an ensemble classifier which combines the results of

MLLF and MLFE .

Each triple 〈𝑐 𝑗 , 𝑝 𝑗 , 𝑎 𝑗𝑘 〉 in the input to the ML-based solutions
needs to be transformed into a feature vector. MLLF is built over

45-dimensional feature vectors encoding the LFs. The values for the

LFs are computed using the NLP pipeline. The LFs characterize the

referential relation between 𝑝 𝑗 and its candidate antecedent𝑎 𝑗𝑘 , e.g.,
number agreement when both are plurals or singulars. MLFE is built

over 768-dimensional feature vectors representing the FEs extracted

from BERT [18] and SBERT [77]. The FEs capture the semantic and

syntactic regularities of a text sequence [57]. There are other pre-

trained models, e.g., GloVe [67] and word2vec [59], that can be

used for deriving the FEs. We favor embeddings derived from BERT

(and SBERT), because these embeddings are contextual and known

to better capture sequence-level semantics, including referential

relations, when compared to the (non-contextual) embeddings from

GloVe and word2vec [48]. In Section 4.5, we experiment with three

different ways of deriving FEs from BERT.

For a triple 〈𝑐 𝑗 , 𝑝 𝑗 , 𝑎 𝑗𝑘 〉, the intermediate output of the ML-based
solutions is a predicted label that assumes one of the following three

values: correct (meaning that 𝑝 𝑗 refers to 𝑎 𝑗𝑘), incorrect (meaning
that 𝑝 𝑗 does not refer to 𝑎 𝑗𝑘) or inconclusive (meaning that the
referential relation between 𝑝 𝑗 and 𝑎 𝑗𝑘 is not clear enough to be
classified as either correct or incorrect). MLensemble generates its

intermediate output by combining the predictions from MLLF and

MLFE . If MLLF and MLFE agree on the label predicted for a given

triple, then MLensemble assigns this label to the triple as well. If

MLLF and MLFE disagree, then MLensemble assigns to the triple the

label predicted with the higher probability, but only if the difference

between the two probabilities is greater than or equal to a threshold

𝜃𝛿 . If the probability difference falls short of 𝜃𝛿 , then MLensemble
assigns the label inconclusive. Based on our tuning presented in

Section 4.5, we recommend 𝜃𝛿 = 0.1.
For ambiguity detection, we train the classifiers underlying our

ML-based solutions on a subset of the DAMIR dataset, with data-

points covering all three outcome classes (correct, incorrect and in-

conclusive). Doing so enables the classifiers to distinguish unambigu-

ous cases (correct and incorrect) from ambiguous ones (inconclusive).

For anaphora resolution, we train the classifiers on only the dat-

apoints labeled correct or incorrect. For this task, the datapoints

labeled inconclusive are not useful and may even mislead the learn-

ing of correct and incorrect referential relations.

The rules used by ourML-based solutions for ambiguity handling

are inspired by Yang et al. [95] and provided in Table 1. There is a

threshold 𝜃𝛽 in the rules for controlling the detection results. We
recommend 𝜃𝛽 = 0.5, based on the tuning results of Section 4.5. To
illustrate the ML-based solutions, recall the example of Figure 2. For

that example, the input would be five triples: 〈𝑐1, 𝑝1, 𝑎1𝑘 〉; 1 ≤ 𝑘 ≤ 5.

For ambiguity detection, when trained and tuned as we explain

in Section 4.5, MLLF predicts inconclusive for all triples, whereas

MLFE predicts inconclusive for 𝑘 ∈ {1, 2, 5} and incorrect for the rest.
These predictions jointly lead to MLensemble predicting inconclusive

for all triples. Due to space, we do not show and argue through the

probability scores that MLensemble uses for deriving its results for

our illustrative example. When the ambiguity-handling rules are ap-

plied to these intermediate results, none of the ML-based solutions

provide a resolution for 𝑝1, and all three detect 𝑝1 as ambiguous.

(iii) Solution based on NLP coreference resolvers. We refer to

our final solution, numbered � in Figure 3, as NLPcoref . This solu-

tion requires two independent coreference resolvers and can easily

be implemented using the NLP pipeline. Let us denote the two

resolvers by Coref 1 and Coref 2. NLPcoref , as shown in Table 1, com-

bines the results of Coref 1 and Coref 2 via consensus. We instantiate

Coref 1 and Coref 2 using two popular coreference resolvers [14]: the

resolver in the CoreNLP toolkit [15, 16] and the one in the SpaCy

library [31]. For the example of Figure 2, NLPcoref resolves 𝑝1 as
referring to 𝑎14 (“the request”), thus deeming 𝑝1 as unambiguous.

4 EMPIRICAL EVALUATION

In this section, we tune and assess the alternative solutions pre-

sented in Section 3.

4.1 Research Questions (RQs)

Our evaluation tackles the following three research questions (RQs):

RQ1. Which solution alternative is the most accurate for de-

tecting anaphoric ambiguity in requirements? By comparing

the accuracy of the alternative solutions in Figure 3, we identify, in

RQ1, the best-performing solution for detecting anaphoric ambigu-

ity in requirements.

RQ2. Which solution alternative is the most accurate for re-

solving anaphora in requirements? In RQ2, we identify among

the alternatives in Figure 3, the one that is most accurate for resolv-

ing anaphora. Having an accurate anaphora resolver is beneficial

for RE in at least two ways: First, during requirements reviews, the

machine-generated interpretations are a good indicator for the risk

of misunderstandings. Notably, if the requirements analyst(s) settle

on an interpretation that differs from the one (if any) offered by

automated resolution, then there is an increased chance that other

stakeholders, e.g. developers, may misinterpret the anaphora in

question, with this misinterpretation potentially happening much

later in the development process and thus potentially being more

costly to fix. Second, for automated information extraction purposes,

e.g., the extraction of conceptual models from requirements [8, 79],

one would typically want to use the results of automated anaphora

resolution as-is and without additional manual processing.

192

Automated Handling of Anaphoric Ambiguity in Requirements: A Multi-solution Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Summary Statistics for our Datasets.

DAMIR ReqEval CoNLL2011

Unique Sentences 1,251 98 6,888

Pronouns
Ambiguous 342 62 -

Unambiguous 395 47 6,757

Triples

Correct 404 66 6,866

Incorrect 2,814 104 14,666

Inconclusive 3,448 272 -

RQ3. What is the execution time of each solution alternative?

Execution time is an important factor for ensuring practicality. RQ3

examines the execution time of each of the alternatives in Figure 3.

4.2 Implementation and Availability

We use Python 3.8 [89] for implementing the preprocessing step

(Section 3.2) as well as for the high-level scripting of the alternative

solutions shown in Figure 3. The NLP pipeline and language-feature

extraction are implemented using SpaCy 3.0.5 [31], NLTK 3.5 [49],

Stanza 1.2 [73], and CoreNLP 4.2.2 [51]. The SpanBERT-based solu-

tions use the Transformers 4.6.1 library [92] provided by Hugging

Face (https://huggingface.co/) and operated in PyTorch [65]. For

the ML-based solutions, we use Scikit-learn 0.24.1 [66]. We use the

Transformers library for extracting embeddings. BERT’s embed-

dings are extracted from the bert-base-cased model. For extract-

ing SBERT’s embeddings, we use the paraphrase-MPNet-base-v2

model [85], also available in the Transformers library. Finally, for

implementing the solution that uses existing NLP resolvers, we use

the coreference resolution modules available in SpaCy 3.0.5 [31]

and CoreNLP 4.2.2 [15, 16]. The different solutions proposed in this

paper are implemented using Jupyter Notebooks [42].

4.3 Datasets

We use three datasets in our evaluation. The first dataset has been

curated using two external (non-author) annotators, as we elaborate

momentarily. We call this dataset DAMIR, which stands for Dataset

for Anaphoric aMbiguity In Requirements. The other two datasets

are borrowed from the literature. These are CoNLL2011 [34, 53, 72],

the NLP dataset on coreference resolution released in the 2011 edi-

tion of the Computational Natural Language Learning conference

(CoNLL2011); and ReqEval [1], the RE dataset on anaphoric ambi-

guity released in the 2020 edition of the NLP4RE workshop. We

use the CoNLL2011 dataset for fine-tuning the SpanBERT-based

solutions. We use the ReqEval dataset to evaluate the solution alter-

natives. The DAMIR dataset is split into two portions, as we explain

later; one portion is used for development and tuning, and the other

portion is used for evaluating the solution alternatives.

Table 2 provides summary statistics for DAMIR and the adapted

versions of CoNLL2011 and ReqEval. Specifically, the table shows

the number of unique sentences in each dataset, the number of

pronouns marked as ambiguous and unambiguous, and the number

of triples marked as correct, incorrect and inconclusive. We discuss

the three datasets next. Note that the number of correct antecedents

is greater than the number of unambiguous pronouns since the

correct antecedent can occur in the context multiple times, in which

case it will be counted more than once.

DAMIR. We collected 22 industrial requirements specifications

(RSs) from eight application domains: satellite communications,

medicine, aerospace, security, digitization, automotive, railway, and

defence. The requirements in these specifications were indepen-

dently analyzed by two third-party annotators with expertise in

linguistics. The first annotator, who has a Masters degree in cul-

tural studies and multilingualism, had, prior to her engagement in

our work, done a six-month internship, focusing on investigating

the linguistic characteristics of requirements. The second anno-

tator has a computer-science background with a Masters degree

in quality management. This annotator further has a professional

certificate in English translation. Both annotators received train-

ing on anaphoric ambiguity in requirements. The annotators’ work

spanned two months, with a total of 44 and 56 hours declared by the

annotators, respectively. To mitigate fatigue effects, the annotators

were encouraged to limit their periods of work to two hours at a

time. In addition to the original RSs, we shared with the annotators

the lists of automatically generated triples (〈𝑐 𝑗 , 𝑝 𝑗 , 𝑎 𝑗𝑘 〉).
The annotators were asked to examine the list of triples asso-

ciated with each pronoun occurrence 𝑝 𝑗 . If they were confident
that a candidate antecedent 𝑎 𝑗𝑘 is the likely one in a triple, then
they were instructed to label that triple as correct and all other

triples involving 𝑝 𝑗 as incorrect. In case of doubt, the annotators
were asked to label all the triples involving 𝑝 𝑗 as inconclusive. The
annotators could also select the label invalid if some automatically

generated triple had an error caused by, e.g., inaccurate splitting of

the sentence constituents. All such invalid triples were filtered out.

To construct the DAMIR dataset, we checked the annotations

for the triples associated with each 𝑝 𝑗 . If the annotators agreed
that a triple should be labeled as correct (meaning that they also

agreed that the other triples for 𝑝 𝑗 should be labeled as incorrect),
we considered 𝑝 𝑗 as unambiguous. In this case, the triples associated
with 𝑝 𝑗 received the same labels as indicated by the annotators. If
the annotators disagreed on the label for any triple associated with

𝑝 𝑗 , then we regarded 𝑝 𝑗 as ambiguous, and consequently, labeled
all the associated triples as inconclusive. We identified two types of

disagreement between the annotators: (i) one annotator found 𝑝 𝑗
ambiguous and labeled its triples as inconclusive, while the other

annotator found 𝑝 𝑗 unambiguous and labeled some triple as correct;
or (ii) the annotators labeled two different triples as correct, i.e.,

they unconsciously disagreed on the interpretation. We define as

an agreement any case other than (i) and (ii) above. Using Fleiss’

kappa (𝜅) [27], we obtain an inter-rater agreement of 𝜅 = 0.54,
which indicates moderate agreement [45] between the annotators.

We note that for datasets related to ambiguity analysis, this level of

agreement is to be expected [20], considering that disagreements

are indicators for ambiguous cases.

We split the pronoun occurrences in DAMIR into two disjoint

subsets: DAMIR𝑇 and DAMIR𝐸 . The contexts for the elements in

DAMIR𝑇 are also distinct from those for the elements in DAMIR𝐸 ,

i.e., all triples associated with a pronoun 𝑝 𝑗 including the candidate

antecedents 𝑎 𝑗𝑘 of 𝑝 𝑗 appear in either DAMIR
𝑇 or DAMIR𝐸 but not

in both. DAMIR𝑇 contains 80% of the dataset and is used for devel-

oping and tuning the solutions. DAMIR𝐸 contains the remaining

193

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ezzini, et al.

20% and is used for evaluation. Our empirical evaluation, presented

in Section 4, is conducted using DAMIR𝐸 only.

CoNLL2011. We extracted from the original CoNLL2011 dataset

only the annotations relevant to anaphoric ambiguity analysis,

i.e., the annotations where a pronoun has been labeled with the

antecedent it refers to. We used the source documents released

alongside CoNLL2011 in order to identify a context of size two for

each pronoun occurrence. To adapt this dataset to our work, we

generated 〈𝑐 𝑗 , 𝑝 𝑗 , 𝑎 𝑗𝑘 〉 triples through preprocessing (Section 3.2).
We then assigned labels to the triples in a backward manner: A

triple 〈𝑐 𝑗 , 𝑝 𝑗 , 𝑎 𝑗𝑘 〉 is labeled correct if 𝑎 𝑗𝑘 represents the selected
antecedent for 𝑝 𝑗 . Otherwise, the triple is labeled incorrect. We note
that no triple is marked as inconclusive here, since CoNLL2011 was

not created for ambiguity detection; all pronoun occurrences in

CoNLL2011 are regarded as unambiguous.

ReqEval. The ReqEval dataset is composed of a set of independent

requirements, each with at least one pronoun occurrence. Each pro-

noun occurrence is labeled as either ambiguous or unambiguous. In

the latter case, the correct antecedent is provided. To adapt ReqEval

to our work, we generated 〈𝑐 𝑗 , 𝑝 𝑗 , 𝑎 𝑗𝑘 〉 triples through preprocess-
ing. In contrast to the DAMIR and CoNLL2011 datasets where we

set the context size to two when generating the triples, for ReqEval,

we use a context of size one. This is because we could not ascertain

that the requirements were in any particular order; a context be-

yond the immediate sentence where a pronoun appears was not

intended in ReqEval. For each ambiguous 𝑝 𝑗 , we assigned the label
inconclusive to all triples associated with 𝑝 𝑗 . For each unambiguous
𝑝 𝑗 , we assigned the label correct to the triple where 𝑎 𝑗𝑘 matches
the antecedent provided for 𝑝 𝑗 and incorrect to all other triples.

4.4 Evaluation Metrics

Anaphoric ambiguity detection. We evaluate ambiguity detec-

tion using precision (P), recall (R) and F𝛽 -score computed as 𝑃 =
𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), and 𝐹𝛽 = (1 + 𝛽2) (𝑃 ∗ 𝑅)/(𝛽2 ∗
𝑃 +𝑅), respectively. A true positive (TP) is a case where the solution

correctly predicts 𝑝 𝑗 as ambiguous. A true negative (TN) is a case

where the solution correctly predicts 𝑝 𝑗 as unambiguous. A false

positive (FP) is a case where the solution falsely predicts 𝑝 𝑗 as am-
biguous, and a false negative (FN) is a case where the solution falsely

predicts 𝑝 𝑗 as unambiguous. As is common for many requirements
analysis tasks including ambiguity analysis [11, 95], we favor recall

over precision. We thus use and report F2-scores (i.e., 𝛽 = 2).

Anaphora resolution.We evaluate resolution using the following

metric, which we call success rate: the ratio of correctly resolved

pronoun occurrences to the total number of pronoun occurrences

labeled as unambiguous in the ground truth. We apply two modes

to decide whether the antecedent identified by a solution is correct

as per the ground truth. In the full matching mode, we consider

the identified antecedent to be correct only when it fully matches

the text span in the ground truth. In the partial matching mode,

we consider the identified antecedent to be correct if it overlaps

with the text span in the ground truth. For example, the identified

antecedent “all approval requests” compared to “approval requests”

(in the ground truth) is considered as correctly resolved in partial

matching but not in full matching. The rationale for considering

partial matching is that, when the matching results are destined

for a manual review, pinpointing the location of the text span of

interest is highly useful, even though the identified span may be

incomplete or only partially correct.

4.5 Solutions Tuning

In this section, we describe the tuning of our solutions. The resulting

tuned solutions are used in Section 4.6 for answering RQ1-3.

Tuning SpanBERT. We fine-tune the SpanBERT-based solutions

to maximize F2-score for ambiguity detection. We follow the recom-

mendations in the literature for fine-tuning pre-trained language

models [18, 36, 68]. To generate SpanBERT𝑁𝐿𝑃 (solution � in Fig-

ure 3), we fine-tune SpanBERT on the CoNLL2011 dataset for 20

epochs with 2e-5 learning rate and 32 batch size. We then generate

SpanBERT𝑅𝐸 (solution� in Figure 3) by fine-tuning SpanBERT𝑁𝐿𝑃

for 3 epochs on the DAMIR𝑇 dataset with the same learning rate

and batch size as used in solution �.

We apply a threshold 𝜃𝛼 as the lower bound for accepting a text

span identified by solution � or � as the antecedent of a pronoun

occurrence (see Section 3.3). We tune 𝜃𝛼 on DAMIR
𝑇 via exhaustive

search. Specifically, we experiment with 10 values [0.1, 0.2, · · · , 1.0].
The optimal value is 𝜃𝛼 = 0.9.

Tuning ML. We optimize MLLF and MLFE (solutions � and � in

Figure 3) on DAMIR𝑇 . We consider different configurations that

arise from varying the ML classification algorithm and the FEs.

For both � and �, we experiment with seven widely used classifi-

cation algorithms, namely decision tree (DT), feedforward neural

network (FNN), k-nearest neighbor (kNN), logistic regression (LR),

naïve Bayes (NB), random forest (RF) and support vector machine

(SVM) [50, 74, 95]. Following best practice [18, 77], we explore

four options for extracting FEs for solution �. In the first option,

FE1, the embeddings are extracted from SBERT. The other three

options, FE2–FE4, are based on embeddings from BERT. FE2 are the

embeddings from the second-to-last hidden layer; FE3 are the con-

catenation of the embeddings from the last four hidden layers; and

FE4 are the summation of the embeddings from these four layers.

The various options explained above induce seven configurations

for solution � and 28 for solution �. We tune solutions � and

� for maximizing F2-score for ambiguity detection in DAMIR𝑇 .

We further tune the solutions for maximizing the success rate of

anaphora resolution (using only the datapoints labeled correct or

incorrect, and excluding those labeled inconclusive). Since correct is

the minority class in anaphora resolution, we downsize the incorrect

class using random under-sampling [35].

We evaluate all configurations using 10-fold cross-validation [91].

We note that standard 10-fold cross-validation would partition

DAMIR𝑇 at the triple level, implying that some of the triples associ-

ated with a pronoun occurrence could land in the training set and

the others in the test set. Such splitting of the triples associated with

the same pronoun is undesirable. We therefore develop a variant

of 10-fold cross-validation where we first group the datapoints in

DAMIR𝑇 by pronoun occurrence, perform random shuffling and

only then split the dataset into ten equal partitions. This ensures

that all the triples associated with a single pronoun occurrence are

placed in one partition only, used either for training or for testing.

Tables 3 and 4 list the various configurations and the results ob-

tained for each. We note that, in Table 4, we apply the full matching

194

Automated Handling of Anaphoric Ambiguity in Requirements: A Multi-solution Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Accuracy of Different Configurations of Solutions � and � for Anaphoric Ambiguity Detection.

DT FNN kNN LR NB RF SVM

P R F2 P R F2 P R F2 P R F2 P R F2 P R F2 P R F2

� LF 50.9 94.0 80.3 50.2 96.2 81.2 50.3 91.0 78.3 49.5 89.0 76.6 50.4 99.7 83.3 49.9 94.3 80.0 50.0 94.4 80.1

�

FE1 51.0 86.3 75.7 51.6 99.2 83.6 50.2 98.2 82.4 50.3 95.3 80.6 50.8 98.3 82.8 50.3 94.5 80.3 50.0 97.2 81.7

FE2 49.8 89.0 76.7 51.1 98.0 82.7 49.8 96.8 81.4 50.4 95.9 81.2 50.1 96.9 81.5 51.1 96.7 82.0 50.4 97.7 82.2

FE3 51.9 89.0 77.7 49.9 94.0 79.8 50.2 97.7 82.1 51.2 97.2 82.3 50.6 98.7 82.9 50.6 95.5 80.9 50.4 97.7 82.2

FE4 56.9 87.3 77.5 55.5 96.9 83.6 55.7 98.3 84.7 52.5 90.4 78.3 55.0 95.3 82.8 57.7 100 85.9 56.0 92.6 80.3

† FE1: FEs from SBERT, FE2: FEs from BERT’s second-to-last layer, FE3: concatenation of FEs from BERT’s last four layers, FE4: summation

of FEs from the same four layers.

Table 4: Success Rate of Different Configurations of Solu-

tions � and � for Anaphora Resolution.

DT FNN kNN LR NB RF SVM

� LF 32.2 81.4 61.0 86.4 18.6 71.1 91.5

�

FE1 6.8 74.6 13.6 66.1 62.7 66.1 69.4

FE2 0.0 59.3 16.9 66.1 55.9 67.8 71.1

FE3 8.5 61.0 16.9 66.1 18.6 67.8 66.1

FE4 6.8 57.6 15.2 62.7 52.5 57.6 66.1

mode for computing accuracy. This is because the ML-based solu-

tions predict an exact candidate antecedent from a pre-generated

list instead of demarcating a text span. The best results for each

solution are highlighted in bold. We select as the best-performing

configuration for MLLF the NB algorithm for ambiguity detection,

and the SVM algorithm for anaphora resolution. We select as the

best-performing configuration for MLFE the RF algorithm trained

over FE4 for ambiguity detection, and the FNN algorithm trained

over FE1 for anaphora resolution. Following the above decisions,

we apply grid search [9] to optimize the hyperparameters of the

best-performing configurations; hyperparameter optimization for

all possible configurations would have been too expensive due to

the high dimensionality of feature embeddings.

Finally, there are two fixed thresholds in the ML-based solu-

tions, 𝜃𝛽 and 𝜃𝛿 , which we tune after hyperparameter optimization.
The role of 𝜃𝛽 is the same as that of 𝜃𝛼 , discussed earlier for the
SpanBERT-based solutions. The 𝜃𝛽 threshold is tuned in the same
manner as 𝜃𝛼 . The optimal value is 𝜃𝛽 = 0.5. As for 𝜃𝛿 , the thresh-
old is used by MLensemble to ensure that one candidate antecedent

is not favored over another when the predicted probabilities are

too close (see Section 3.3). We tune 𝜃𝛿 using exhaustive search on
DAMIR𝑇 and over the same ten values tried for 𝜃𝛼 and 𝜃𝛽 . The
optimal value is 𝜃𝛿 = 0.1.

4.6 Answers to the RQs

RQ1. Which solution alternative is the most accurate for detecting

anaphoric ambiguity in requirements? Table 5 (left side) shows the

precision (P), recall (R) and F2-score (F2) of the different solutions

measured on the DAMIR𝐸 and ReqEval datasets.

As shown by the table, all alternatives perform better on ReqEval

than DAMIR𝐸 . The difference in accuracy is particularly notable

for the precision of SpanBERT-based solutions. We believe that this

difference can be explained by the different context sizes used for

pronoun occurrences in the two datasets. In ReqEval, the context is

one sentence with an average length of 25 words, where both the

pronouns and their antecedents occur. In this dataset, the average

number of candidate antecedents for a pronoun is four. In contrast,

in DAMIR𝐸 , the context is composed of two sentences with an aver-

age of 47 words. For this dataset, the average number of candidate

antecedents is nine, i.e., more than twice as many as for ReqEval.

Parsing larger contexts and having to deal with more candidate

antecedents allow more room for error. Overall, we believe that the

results for DAMIR𝐸 are more reflective of practice, since analysts

often consider a broader context for a pronoun than the sentence

where the pronoun appears. As noted earlier, this broader context

information is unavailable in ReqEval, hence our evaluation using

single sentences as context in this dataset.

As seen from Table 5, the ML-based solutions have the best

recall (and also precision) on both datasets. We believe that the

superior accuracy of the ML-based solutions has to do with the fact

that these solutions are explicitly trained to distinguish ambiguous

and unambiguous pronoun occurrences. We further observe that

the choice of features in ML-based solutions, i.e., LFs versus FEs,

has little impact on the accuracy of ambiguity detection. Overall

MLensemble leads to the best F2-scores, including perfect recall on

both datasets. In terms of precision, the ML-based solutions are the

superior ones as well. We note that MLLF and MLFE neither achieve

perfect recall on ReqEval nor offer tangible gains over MLensemble in

terms of precision. Across ReqEval and DAMIR𝐸 , MLensemble has an

average precision of 59.9%. We believe that this level of precision is

acceptable in practice. The implication of a ≈60% precision is the

manual effort needed for filtering out the pronounswronglymarked

as ambiguous (FPs). Discarding FPs is still easier and requires less

effort than finding FNs, i.e., the ambiguous cases that are missed.

The answer to RQ1 is that MLensemble (solution � in Figure 3)

with an average precision of ≈60% and a recall of 100% is the most

accurate solution for detecting anaphoric ambiguity in require-

ments.

RQ2. Which solution alternative is the most accurate for resolving

anaphora in requirements? Table 5 (right side) shows the resolution

success rate (defined in Section 4.4) for DAMIR𝐸 and ReqEval. Our

evaluation covers 96 unambiguous pronouns in DAMIR𝐸 and 62 in

195

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ezzini, et al.

Table 5: Accuracy Results for Different Anaphoric Ambiguity Handling Solutions.

Precision, Recall and F2 of Ambiguity Detection (RQ1) Success Rate (%) of Anaphora Resolution (RQ2)

DAMIR𝐸 ReqEval DAMIR𝐸 ReqEval

P (%) R (%) F2 (%) P (%) R (%) F2 (%) Full Partial Full Partial

� SpanBERT𝑁𝐿𝑃 40.0 81.8 67.6 60.2 75.8 72.1 73.5 88.2 97.8 97.8

� SpanBERT𝑅𝐸 36.9 77.2 63.3 57.6 96.8 85.2 68.9 96.1 97.8 100

� ML𝐿𝐹 57.6 100 87.2 61.8 98.9 88.3 81.2 - 57.4 -

� ML𝐹𝐸 57.5 100 87.1 62.2 98.2 88.0 51.0 - 82.9 -

� MLensemble 58.2 100 87.5 61.5 100 88.9 82.3 - 57.4 -

� NLPCoref 52.4 48.5 49.2 56.7 51.5 52.5 52.5 52.5 39.6 51.7

† For each dataset, the best values of P, R, F2 and success rate are highlighted in bold.

ReqEval. We apply both the full and partial matching modes (see

Section 4.4). We note though that only full matching applies to the

ML-based solutions, since these solutions identify the antecedent

of a pronoun from a pre-calculated list of candidate antecedents.

As Table 5 shows, for anaphora resolution, no solution outper-

forms all the others on both datasets. For instance, the ML-based

solutions (� – �) perform well on one dataset but not the other.

MLensemble is the best-performing solution on DAMIR
𝐸 , but per-

forms rather poorly on ReqEval. As highlighted in the table, the

SpanBERT-based solutions clearly outperform all other solutions

in partial matching mode, with SpanBERTRE achieving the highest

success rate. We thus believe that SpanBERTRE is the most useful

solution in terms of providing assistance to analysts during manual

requirements reviews.

The answer to RQ2 is that SpanBERTRE (solution � in Figure 3)

with an average success rate of ≈98% is the most accurate solution

for resolving anaphora in requirements.

RQ3. What is the execution time of each solution alternative? We

consider the execution time of our solutions both from the perspec-

tive of a solution developer and that of an end-user.

A developer would be interested in how long it takes to tune

the SpanBERT- and ML-based solutions, as discussed in Section 4.5.

Tuning is a one-off activity and not pertinent to end-users. We used

Google Colaboratory [12] for developing and tuning the SpanBERT-

based solutions. Fine-tuning SpanBERT on CoNLL2011 (with 6,757

pronouns) to generate SpanBERTNLP took ≈4 hours. Fine-tuning

SpanBERTNLP on DAMIR𝑇 (with 533 pronouns) to generate

SpanBERTRE took ≈23 minutes. For tuning the ML-based solu-

tions, we used a workstation equipped with a 12-core processor

(AMD Ryzen 9 5900X 3.7 GHz) and 64 GB of memory. Recall from

Section 4.5 that the ML-based solutions are tuned separately for am-

biguity detection and anaphora resolution. Tuning time is directly

impacted by the best-performing configuration picked for each

task (which will then be subjected to hyperparamater optimization).

Tuning MLLF required 30 minutes for detection and 53 minutes for

resolution. Tuning MLFE was more expensive, requiring 6.5 hours

for detection and 45 minutes for resolution.

To measure execution time from an end-user’s perspective, we

used a normal laptop with a 2.3 GHz CPU and 16 GB of memory. We

picked from our evaluation set a random selection of 100 pronoun

occurrences. These occurrences span 96 requirements sentences

and induce 842 triples. We combined the 96 sentences into a sin-

gle document. The resulting document is not meant to represent a

real-world RS. Rather, we want this document to emulate a represen-

tative situation for pronoun occurrences (e.g., in terms of having

different pronoun types and different numbers of candidate an-

tecedents in context). In a real setting, before one applies any of our

solutions to an RS, all the material in the RS other than the sentences

within the context of some pronoun occurrence can be removed.

The resulting document was used for measuring per-pronoun

execution time. The measured times are representative for larger

samples as well, with the overall execution time increasing linearly

as the number of pronoun occurrences increases.

The answer to RQ3 is as follows. The average time (in seconds)

required for handling an individual pronoun occurrence is: 1.5s

using SpanBERTNLP or SpanBERTRE; 8s for detection and 8s for

resolution usingMLLF ; 7.5s for detection and 6s for resolution using

MLFE; 14.5s for detection and 13s for resolution using MLensemble;

and 7s using NLPCoref .

The practical implication of these execution times is as follows:

Based on the literature [25], one can expect that 20% of the re-

quirements in a given RS would contain (pronominal) anaphora.

Processing a large RS with, say, 2000 requirements would then

require processing 400 (give or take) requirements sentences. Ex-

trapolating from our datasets, one can expect 1.2 pronouns per

sentence and thus 480 pronouns in our hypothetical RS with 2000

requirements. Using the most accurate solutions from RQ1 and

RQ2, one would require about 2 hours for detecting ambiguity us-

ing MLensemble and about 4 minutes for resolving anaphora using

SpanBERTRE . The execution time of ambiguity detection can be

cut by almost half if one applies either MLLF or MLFE , potentially

at the cost of a slight decrease in recall. These execution times are

acceptable for offline processing, e.g., during a break or overnight.

As for online (i.e., interactive) processing, we observe that, at any

given time, an analyst likely works on only a small fragment of a

large document. For interactive usage, anaphoric ambiguity han-

dling can be localized to the document segment (e.g., sentences)

that the analyst is working on.

196

Automated Handling of Anaphoric Ambiguity in Requirements: A Multi-solution Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

4.7 Discussion

Below, we make two remarks: the first one is the overall conclusion

of our empirical evaluation; the second one is a lesson learned about

using pre-trained language models in RE.

(1) Given the accuracy results (RQ1 and RQ2) and the execution

times (RQ3), we propose a hybrid solution for handling anaphoric

ambiguity in requirements. This hybrid solution combines super-

vised ML for ambiguity detection and SpanBERT for anaphora

resolution. For the detection task, MLensemble is the most accurate.

One may nonetheless elect to use the slightly less accurate MLLF or

MLFE to reduce execution time. For the resolution task, we recom-

mend SpanBERTRE. This solution is highly accurate in pinpointing

the location of antecedents.

(2) We benefited from the CoNLL2011 dataset for the initial fine-

tuning of SpanBERT, before further fine-tuning it with RE-specific

data. Our preliminary experimentation indicated that, without the

intermediate fine-tuning step over CoNLL2011, SpanBERT would

not lead to a viable solution through fine-tuning on our RE datasets

alone. We believe that, due to the general scarcity of tailor-made

datasets for RE tasks, one should take into account the possibil-

ity that intermediate fine-tuning data may be required, when at-

tempting to design requirements automation solutions based on

pre-trained language models. To this end, RE researchers may need

to look for complementary datasets in other communities, e.g., NLP,

to be able to get the best traction from pre-trained language models.

5 THREATS TO VALIDITY

The validity concerns most pertinent to our evaluation are internal

and external validity.

Internal Validity. The main concern regarding internal validity is

bias. This concern applies mainly to the DAMIR dataset, which was

developed on the authors’ initiative. To mitigate bias, the labelling

of DAMIR was performed exclusively by two independent (non-

author) annotators. To avoid learning bias, the annotators were

never exposed to either the design or the results of any of the

alternative solutions in our study.

External Validity. We evaluated all solutions on two datasets –

DAMIR and ReqEval, the latter being an external dataset. The indi-

vidual solutions show comparable results across the two datasets.

In terms of domain coverage, DAMIR spans eight different applica-

tion domains. The consistency of the results across the DAMIR and

ReqEval datasets, taken alongside the domain coverage of DAMIR,

provides confidence about the generalizability of our empirical find-

ings. That said, further evaluation using additional documents and

user studies can help further mitigate external-validity threats.

6 CONCLUSION

In this paper, we developed and evaluated six alternative automation

solutions for handling anaphoric ambiguity in requirements. Each

solution addresses both the detection of anaphoric ambiguity as

well as the resolution of anaphora. Our motivation for conducting

a multi-solution study stems from the availability of competing

NLP and ML technologies that we could build on. Without an

empirical examination of different solution designs, we would not

be able to ascertain which technologies would be the most suitable

for our analytical needs. This situation is not limited to our work

per se; choosing the right set of technologies for the task at hand

is a consideration that one increasingly has to contend with in

AI-enabled automation.

Our evaluation involved two datasets with a total of≈1,350 indus-

trial requirements. Our results indicate that, for anaphoric ambigu-

ity detection, supervised ML is more accurate than both SpanBERT

(a variant of BERT) and a solution built using off-the-shelf coref-

erence resolvers. Our best solution for ambiguity detection has an

average precision of ≈60% and a recall of 100%. Differently from the

ambiguity detection task, for anaphora resolution, SpanBERT yields

the best solution with an average success rate of ≈98%. Based on

these results, we recommend a hybrid solution for anaphoric ambi-

guity handling, where ambiguity detection and anaphora resolution

are realized using different technological platforms.

Anaphoric ambiguity is an important but still a single aspect of

the broader problem of ambiguity. In requirements engineering,

where ambiguity handling is closely associated with quality assur-

ance, analysts are likely interested in a more holistic treatment

that addresses a wider range of ambiguity types. In the future, we

would like to expand our work to other ambiguity types, particu-

larly semantic ones, that are still under-explored. Furthermore, and

to more conclusively evaluate the usefulness of our current results,

we plan to conduct user studies involving practicing engineers.

Acknowledgement. This work was funded by Luxembourg’s Na-

tional Research Fund (FNR) under the grant BRIDGES18/IS/12632261

and NSERC of Canada under the Discovery and Discovery Accel-

erator programs. We are grateful to the research and development

team at QRA Corp. for valuable insights and assistance.

REFERENCES
[1] Sallam Abualhaija, Davide Fucci, Fabiano Dalpiaz, and Xavier Franch. 2020.

Preface: 3rd Workshop on Natural Language Processing for Requirements En-
gineering (NLP4RE’20). In Joint Proceedings of REFSQ-2020 Workshops, Doctoral
Symposium, Live Studies Track, and Poster Track co-located with the 26th Interna-
tional Conference on Requirements Engineering: Foundation for Software Quality.

[2] Sallam Abualhaija, Davide Fucci, Fabiano Dalpiaz, Xavier Franch, and Alessio
Ferrari. 2020. ReqEval: The shared task on anaphora ambiguity detection and
disambiguation. https://github.com/frieden84/nlp4re-reqeval last accessed: July
2021.

[3] Charu C Aggarwal. 2018. Machine learning for text. Springer.
[4] Vincenzo Ambriola and Vincenzo Gervasi. 2006. On the Systematic Analysis of

Natural Language Requirements with CIRCE. Automated Software Engineering
13, 1 (2006).

[5] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. 2015.
Automated Checking of Conformance to Requirements Templates Using Natural
Language Processing. IEEE Transactions on Software Engineering (TSE’15) 41, 10
(2015).

[6] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. 2017.
Automated Extraction and Clustering of Requirements Glossary Terms. IEEE
Transactions on Software Engineering 43, 10 (2017).

[7] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, Frank Zimmer, and Raul
Gnaga. 2013. RUBRIC: A Flexible Tool for Automated Checking of Conformance
to Requirement Boilerplates. In Proceedings of the 9th joint meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE’13).

[8] Chetan Arora, Mehrdad Sabetzadeh, Shiva Nejati, and Lionel Briand. 2019. An
Active Learning Approach for Improving the Accuracy of Automated Domain
Model Extraction. ACM Transactions on Software Engineering and Methodology
28, 1 (2019).

[9] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms
for hyper-parameter optimization. Advances in neural information processing
systems 24 (2011).

[10] D. Berry, E. Kamsties, and M. Krieger. 2003. From Contract Drafting to Software
Specification: Linguistic Sources of Ambiguity, A Handbook. http://se.uwaterloo.
ca/~dberry/handbook/ambiguityHandbook.pdf

197

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ezzini, et al.

[11] Daniel M Berry. 2021. Empirical evaluation of tools for hairy requirements
engineering tasks. Empirical Software Engineering 26, 6 (2021).

[12] Ekaba Bisong. 2019. Building machine learning and deep learning models on Google
cloud platform: A comprehensive guide for beginners. Apress.

[13] Samuel Broscheit, Massimo Poesio, Simone Paolo Ponzetto, Kepa Joseba Ro-
driguez, Lorenza Romano, Olga Uryupina, Yannick Versley, and Roberto Zanoli.
2010. BART: A multilingual anaphora resolution system. In Proceedings of the
5th international workshop on semantic evaluation.

[14] Xinyun Cheng, Xianglong Kong, Li Liao, and Bixin Li. 2020. A Combined Method
for Usage of NLP Libraries Towards Analyzing Software Documents. In Interna-
tional Conference on Advanced Information Systems Engineering.

[15] Kevin Clark and Christopher D. Manning. 2016. Deep Reinforcement Learning for
Mention-Ranking Coreference Models. In Empirical Methods on Natural Language
Processing.

[16] Kevin Clark and Christopher D. Manning. 2016. Improving Coreference Resolu-
tion by Learning Entity-Level Distributed Representations. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics.

[17] Fabiano Dalpiaz, Ivor van der Schalk, Sjaak Brinkkemper, Fatma Aydemir, and
Garm Lucassen. 2019. Detecting terminological ambiguity in user stories: Tool
and experimentation. Information and Software Technology 110 (2019).

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of deep bidirectional transformers for language understanding.
(2018). arXiv:arXiv:1810.04805

[19] Richard Evans. 2001. Applying machine learning toward an automatic classifica-
tion of it. Literary and linguistic computing 16, 1 (2001), 45–58.

[20] Saad Ezzini, Sallam Abualhaija, Chetan Arora, Mehrdad Sabetzadeh, and Lionel C
Briand. 2021. Using domain-specific corpora for improved handling of ambiguity
in requirements. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering.

[21] Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, and Giuseppe Lami. 2001. The
linguistic approach to the natural language requirements quality: Benefit of
the use of an automatic tool. In Proceedings of the 26th Annual NASA Goddard
Software Engineering Workshop.

[22] Henning Femmer, Daniel Méndez Fernández, Elmar Juergens, Michael Klose,
Ilona Zimmer, and Jörg Zimmer. 2014. Rapid requirements checks with require-
ments smells: Two case studies. In Proceedings of the 1st International Workshop
on Rapid Continuous Software Engineering.

[23] Henning Femmer, Daniel Méndez Fernández, Stefan Wagner, and Sebastian Eder.
2017. Rapid quality assurance with Requirements Smells. Journal of Systems and
Software 123 (2017).

[24] Alessio Ferrari and Andrea Esuli. 2019. An NLP approach for cross-domain am-
biguity detection in requirements engineering. Automated Software Engineering
26, 3 (2019).

[25] Alessio Ferrari, Gloria Gori, Benedetta Rosadini, Iacopo Trotta, Stefano Bacherini,
Alessandro Fantechi, and Stefania Gnesi. 2018. Detecting requirements defects
with NLP patterns: An industrial experience in the railway domain. Empirical
Software Engineering 23, 6 (2018).

[26] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. 2017. Pure: A
dataset of public requirements documents. In 2017 IEEE 25th International Re-
quirements Engineering Conference.

[27] Joseph L. Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychol. Bull. 76, 5 (1971).

[28] Vincenzo Gervasi, Alessio Ferrari, Didar Zowghi, and Paola Spoletini. 2019.
Ambiguity in Requirements Engineering: Towards a Unifying Framework. In
From Software Engineering to Formal Methods and Tools, and Back. Springer.

[29] Benedikt Gleich, Oliver Creighton, and Leonid Kof. 2010. Ambiguity Detection:
Towards a Tool Explaining Ambiguity Sources. In Proceedings of the 16th Working
Conference on Requirements Engineering: Foundation for Software Quality.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning (1st
ed.). MIT Press.

[31] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.
2020. spaCy: Industrial-strength Natural Language Processing in Python. https:
//doi.org/10.5281/zenodo.1212303

[32] Mitra Bokaei Hosseini, Rocky Slavin, Travis Breaux, Xiaoyin Wang, and Jianwei
Niu. 2020. Disambiguating Requirements Through Syntax-Driven Semantic
Analysis of Information Types. In Proceedings of the 26th Working Conference on
Requirements Engineering: Foundation for Software Quality.

[33] Yufang Hou. 2020. Bridging Anaphora Resolution as Question Answering. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics.

[34] David Graff Huang, Shudong and George Doddington. 2002. Multiple-Translation
Chinese Corpus LDC2002T01. Web download file. Philadelphia: Linguistic Data
Consortium.

[35] Nathalie Japkowicz. 2000. The class imbalance problem: Significance and strate-
gies. In Proceedings of the International Conference on Artificial Intelligence.

[36] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and
Omer Levy. 2020. SpanBERT: Improving pre-training by representing and pre-
dicting spans. Transactions of the Association for Computational Linguistics 8

(2020).
[37] Dan Jurafsky and James H. Martin. 2020. Speech and Language Processing (3rd

ed.). https://web.stanford.edu/~jurafsky/slp3/(visited 2021-06-04).
[38] Erik Kamsties. 2005. Understanding Ambiguity in Requirements Engineering.

Springer Berlin Heidelberg.
[39] Erik Kamsties and Barbara Peach. 2000. Taming ambiguity in natural language

requirements. In Proceedings of the 13th International Conference on Software and
Systems Engineering and Applications.

[40] Nadzeya Kiyavitskaya, Nicola Zeni, Luisa Mich, and Daniel Berry. 2008. Re-
quirements for tools for ambiguity identification and measurement in natural
language requirements specifications. Requirements Engineering 13, 3 (2008).

[41] Pohl Klaus and Rupp Chris. 2011. Requirements Engineering Fundamentals (1st
ed.). Rocky Nook.

[42] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol
Willing. 2016. Jupyter Notebooks – a publishing format for reproducible com-
putational workflows. In Positioning and Power in Academic Publishing: Players,
Agents and Agendas.

[43] Giuseppe Lami, Mario Fusani, and Gianluca Trentanni. 2019. QuARS: A Pioneer
Tool for NL Requirement Analysis. In From Software Engineering to Formal
Methods and Tools, and Back. Springer.

[44] Matthew Lamm, Jennimaria Palomaki, Chris Alberti, Daniel Andor, Eunsol Choi,
Livio Baldini Soares, and Michael Collins. 2021. Qed: A framework and dataset
for explanations in question answering. Transactions of the Association for Com-
putational Linguistics 9 (2021).

[45] J. Richard Landis and Gary G. Koch. 1977. An Application of Hierarchical Kappa-
type Statistics in the Assessment of Majority Agreement among Multiple Ob-
servers. Biometrics 33, 2 (1977).

[46] Kusum Lata, Pardeep Singh, and Kamlesh Dutta. 2021. A comprehensive review
on feature set used for anaphora resolution. Artificial Intelligence Review 54, 4
(2021).

[47] Timothy Lee, Alex Lutz, and Jinho D Choi. 2016. QA-It: classifying non-referential
it for question answer pairs. In Proceedings of the ACL 2016 Student Research
Workshop.

[48] Qi Liu, Matt J Kusner, and Phil Blunsom. 2020. A survey on contextual embed-
dings. (2020). arXiv:arXiv:2003.07278

[49] Edward Loper and Steven Bird. 2002. NLTK: The Natural Language Toolkit.
In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics.

[50] Panos Louridas and Christof Ebert. 2016. Machine Learning. IEEE Software 33, 5
(2016).

[51] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. 2014. The Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations.

[52] Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Build-
ing a Large Annotated Corpus of English: The Penn Treebank. Computational
Linguistics 19, 2 (1993).

[53] Murray Grossman Nii Martey John Bell Mark Liberman, Kelly Davis. 2002. Emo-
tional Prosody Speech and Transcripts LDC2002S28. CD-ROM. Philadelphia:
Linguistic Data Consortium.

[54] Aaron Massey, Richard Rutledge, Annie Anton, and Peter Swire. 2014. Identifying
and classifying ambiguity for regulatory requirements. In Proceedings of the 22nd
IEEE International Requirements Engineering Conference.

[55] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. 2009. Easy
Approach to Requirements Syntax (EARS). In Proceedings of the 17th IEEE Inter-
national Requirements Engineering Conference.

[56] Joseph F McCarthy and Wendy G Lehnert. 1995. Using Decision Trees for Coref-
erence Resolution. In International Joint Conferences on Artificial Intelligence.

[57] Alessio Miaschi and Felice Dell’Orletta. 2020. Contextual and Non-Contextual
Word Embeddings: an in-depth Linguistic Investigation. In Proceedings of the 5th
Workshop on Representation Learning for NLP. Association for Computational
Linguistics.

[58] L. Mich. 1996. NL-OOPS: From natural language to object oriented require-
ments using the natural language processing system LOLITA. Natural Language
Engineering 2, 2 (1996).

[59] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. (2013). arXiv:arXiv:1301.3781

[60] Ruslan Mitkov. 1999. Anaphora resolution: the state of the art. Citeseer.
[61] Ruslan Mitkov. 2014. Anaphora resolution. Routledge.
[62] Natalia N Modjeska, Katja Markert, and Malvina Nissim. 2003. Using the web

in machine learning for other-anaphora resolution. In Proceedings of the 2003
conference on Empirical methods in natural language processing.

[63] Ray Offen. 2002. Domain understanding is the key to successful system develop-
ment. Requirements engineering 7, 3 (2002).

[64] Mohamed Osama, Aya Zaki-Ismail, Mohamed Abdelrazek, John Grundy, and
Amani Ibrahim. 2020. Score-based automatic detection and resolution of syntactic

198

Automated Handling of Anaphoric Ambiguity in Requirements: A Multi-solution Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

ambiguity in natural language requirements. In 2020 IEEE International Conference
on Software Maintenance and Evolution.

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc.

[66] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research 12 (2011), 2825–2830.

[67] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing.

[68] Jason Phang, Thibault Févry, and Samuel R Bowman. 2018. Sentence encoders
on stilts: Supplementary training on intermediate labeled-data tasks. (2018).
arXiv:arXiv:1811.01088

[69] Steven Piantadosi, Harry Tily, and Edward Gibson. 2012. The communicative
function of ambiguity in language. Cognition 122, 3 (2012).

[70] Massimo Poesio, Roland Stuckardt, and Yannick Versley. 2016. Anaphora resolu-
tion. Springer.

[71] Klaus Pohl. 2010. Requirements Engineering (1st ed.). Springer.
[72] Sameer Pradhan, Lance Ramshaw, Mitch Marcus, Martha Palmer, Ralph

Weischedel, and Nianwen Xue. 2011. CoNLL-2011 shared task: Modeling unre-
stricted coreference in ontonotes. In Proceedings of the Fifteenth Conference on
Computational Natural Language Learning: Shared Task. 1–27.

[73] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Man-
ning. 2020. Stanza: A Python Natural Language Processing Toolkit for Many
Human Languages. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstrations.

[74] Felipe Quecole, Maisa Cristina Duarte, and Estevam Rafael Hruschka. 2018. Cou-
pling for Coreference Resolution in a Never-ending Learning System. Journal of
Information and Data Management 9, 2 (2018).

[75] Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nathanael Cham-
bers, Mihai Surdeanu, Dan Jurafsky, and Christopher D Manning. 2010. A multi-
pass sieve for coreference resolution. In Proceedings of the 2010 conference on
empirical methods in natural language processing.

[76] Marta Recasens, Lluís Màrquez, Emili Sapena, M Antònia Martí, Mariona Taulé,
Véronique Hoste, Massimo Poesio, and Yannick Versley. 2010. Semeval-2010
task 1: Coreference resolution in multiple languages. In Proceedings of the 5th
International Workshop on Semantic Evaluation.

[77] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. (2019). arXiv:arXiv:1908.10084

[78] Cristina Ribeiro and Daniel Berry. 2020. The prevalence and severity of persistent
ambiguity in software requirements specifications: Is a special effort needed to
find them? Science of Computer Programming 195 (2020).

[79] Marcel Robeer, Garm Lucassen, Jan Martijn E.M. van der Werf, Fabiano Dalpiaz,
and Sjaak Brinkkemper. 2016. Automated Extraction of Conceptual Models from
User Stories via NLP. In Proceedings of the 24th IEEE International Requirements
Engineering Conference.

[80] Danissa Rodriguez, Doris Carver, and Anas Mahmoud. 2018. An efficient
wikipedia-based approach for better understanding of natural language text
related to user requirements. In Proceedings of the 39th IEEE Aerospace Confer-
ence.

[81] Benedetta Rosadini, Alessio Ferrari, Gloria Gori, Alessandro Fantechi, Stefania
Gnesi, Iacopo Trotta, and Stefano Bacherini. 2017. Using NLP to Detect Require-
ments Defects: An Industrial Experience in the Railway Domain. In Proceedings of
the 23rd Working Conference on Requirements Engineering: Foundation for Software
Quality.

[82] Chetan Arora Mehrdad Sabetzadeh Saad Ezzini, Sallam Abualhaija. 2021. “Online
Annex (online)”. Available at https://tinyurl.com/2p9k2zf2, August 2021.

[83] Nicolas Sannier, Morayo Adedjouma, Mehrdad Sabetzadeh, and Lionel Briand.
2017. An automated framework for detection and resolution of cross references
in legal texts. Requirements Engineering 22, 2 (2017).

[84] Unnati Shah and Devesh Jinwala. 2015. Resolving Ambiguities in Natural Lan-
guage Software Requirements: A Comprehensive Survey. SIGSOFT Software
Engineering Notes 40, 5 (2015).

[85] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. Mp-
net: Masked and permuted pre-training for language understanding. (2020).
arXiv:arXiv:2004.09297

[86] Rhea Sukthanker, Soujanya Poria, Erik Cambria, and Ramkumar
Thirunavukarasu. 2020. Anaphora and coreference resolution: A review.
Information Fusion 59 (2020).

[87] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2016. Introduction to data
mining. Pearson Education India.

[88] Sri Tjong and Daniel Berry. 2013. The design of SREE—a prototype potential
ambiguity finder for requirements specifications and lessons learned. In Proceed-
ings of the 19th Working Conference on Requirements Engineering: Foundation for
Software Quality.

[89] Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateS-
pace.

[90] Yawen Wang, Lin Shi, Mingyang Li, Qing Wang, and Yun Yang. 2020. A Deep
Context-wise Method for Coreference Detection in Natural Language Require-
ments. In 2020 IEEE 28th International Requirements Engineering Conference.

[91] Ian Witten, Eibe Frank, Mark Hall, and Christopher Pal. 2011. Data Mining:
Practical Machine Learning Tools and Techniques (4th ed.). Elsevier.

[92] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics.

[93] Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei Li. 2020. CorefQA: Corefer-
ence resolution as query-based span prediction. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics.

[94] Hui Yang, Anne De Roeck, Vincenzo Gervasi, Alistair Willis, and Bashar Nu-
seibeh. 2010. Extending nocuous ambiguity analysis for anaphora in natural
language requirements. In Proceedings of the 18th IEEE International Requirements
Engineering Conference. IEEE.

[95] Hui Yang, Anne de Roeck, Vincenzo Gervasi, Alistair Willis, and Bashar Nu-
seibeh. 2011. Analysing anaphoric ambiguity in natural language requirements.
Requirements Engineering 16, 3 (2011).

199

