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Abstract—We present a newly developed strategy for automat-
ically segmenting movies into logical story units. A logical story
unit can be understood as an approximation of a movie episode,
which is a high-level temporal movie segment, characterized
either by a single event (dialog, action scene, etc.) or by several
events taking place in parallel. Since we consider a whole event
and not a single shot to be the most natural retrieval unit for the
movie category of video programs, the proposed segmentation is
the crucial first step toward a concise and comprehensive content-
based movie representation for browsing and retrieval purposes.
The automation aspect is becoming increasingly important with
the rising amount of information to be processed in video archives
of the future. The segmentation process is designed to work on
MPEG-DC sequences, where we have taken into account that at
least a partial decoding is required for performing content-based
operations on MPEG compressed video streams. The proposed
technique allows for carrying out the segmentation procedure in
a single pass through a video sequence.

Index Terms—Video content analysis, video data bases, video
segmentation.

I. INTRODUCTION

I N recent years, technology has reached a level where vast
amounts of digital information are available at a low price.

During the same time, the performance-versus-price ratio of
digital storage media has steadily increased. The ease and low
cost of obtaining and storing digital information as well as
the almost unlimited possibility to manipulate it make people
eager to collect and store more and more of it. Thus, we
have witnessed the rapid growth of digital archives in the
professional and consumer environment; examples of this are
digital museum archives and Internet archives.

The developments in the field of digital video compression
have also made possible the creation of digitalvideoarchives.
Such video libraries are already available to commercial
service providers. We expect that the digital storage of video
material at home will soon overtake the current analog video
cassette recording systems [9], [13], [16]–[18].

A particular problem with digital libraries is the manage-
ment of large amounts of information. Solutions for text-
oriented databases (e.g., SQL) already exist. However, meth-
ods for browsing, querying, and organizing visual information
(images, graphics, and video), and their linking to textual
information are still in their infancy [11]. The MPEG-7
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standardization platform [6] addresses ways to represent visual
information by means of a standard set of descriptors, so
that it can be used effectively in professional and consumer
applications and especially in user interfaces. The question
of how to obtain these descriptors automatically is becoming
a research topic of increasing importance. Particularly, the
automation aspect becomes highly important with steadily
rising volumes of information to be processed.

To obtain descriptors for visual information, a content anal-
ysis is required. Several approaches for the content analysis of
still images exist; most of them are based on an analysis and
comparison of color, texture, and shape [5], [12], [14]. It is
generally accepted that content analysis of video sequences
requires a preprocessing procedure that first breaks up the
sequences into temporally homogeneous segments calledshots
[1]–[3], [8], [15], then condenses these segments into one
or a few representative frames (key frames) [4], [7], [20],
[23], and finally determines the relationship between shots
on the basis of their audiovisual characteristics (e.g., audio
tracks, key frames). This last step we call video-content
organization. Since most of the video streams that modern
digital storage systems have to deal with are available in the
MPEG compressed format, no content-related operations are
possible on these streams directly. However, it is also not
necessary to decode the stream completely, since all processing
steps can be performed on the correspondingDC1 sequence
[19]. This has a main consequence that key frames are only
available in subsampled formats, which are called DC images.

Most existing approaches perform the video-content or-
ganization by clustering shots on the basis of the similarity
between the visual contents contained in their key frames. As
with still images, the content is typically represented by color
histograms, object shapes, and textures. Approaches in [20]
and [24] show shot-based organization structures (e.g., shot
cluster trees), in which a single shot is considered to be an
elementary retrieval unit of the analyzed video. In addition
to key frames, temporal content variations in a shot can be
used. The scene-transition graphs in [22] simulate the story
flow of an analyzed video sequence by temporally connecting
different shot clusters.

In this paper, we concentrate onmoviesas a particularly
important category of video programs. We see several prob-
lems involved in using unconstrained shot-based cluster trees
to organize movie material for retrieval purposes. In the first
place, the obtained structures may be very large due to the

1DC sequence consists of frames, which are formed using the DC coeffi-
cients of the discrete cosine transform (DCT). This transform is one of the
steps in the MPEG-compression scheme.
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Fig. 1. A sample movie sequence consisting of three episodes. Two of them (1 and 3) cover only one event and have a simple structure. Episode 2 covers
two events taking place at the same time, presented by their interchanging fragments. Descriptive shots are described as boxes with lined patterns. All
other shots belonging to segmentsT j

i are event shots.

huge number of shots in a full-length movie, they may not be
unique, and they may not be transparent enough, especially
if no natural cluster structure exists among the shots. Second,
the concept of using single shots as elementary retrieval units
may be useful for some video material, but certainly not for
full-length movies. As already noticed in [21], it is highly
unlikely that a user would think in terms of single shots
when interacting with a movie-retrieval system. A far more
probable scenario is that humans remember differentevents
after having watched a movie, and hence they also think in
terms of events during the retrieval process. Such an event can
be a dialog, an action scene, or, generally, any series of shots
“unified by location or dramatic incident” [21]. Instead of a
single shot, the whole event should be treated as an elementary
retrieval unit in advanced movie-retrieval systems. Therefore,
we believe that for efficient movie-content organization and
retrieval, strategies other than unconstrained shot clustering
are required. In this paper, we propose a novel method
to automatically segment movies into groups of successive
shots, which we calllogical story units. Each of these units
is characterized by one or several temporally interrelated
events, which implies that the result of our segmentation
can provide a concise and comprehensive entrance level to
an event-oriented movie-organization scheme. The high-level
segmentation method that we propose can be carried out in
parallel with the preprocessing steps of shot-change detection
and key-frame extraction.

In Section II, we will give a definition of a logical story
unit and discuss the justification of our segmentation approach
in more detail, also in view of related approaches in recent
literature. Section III proposes the novel movie-segmentation
method and explains the possible differences between detected
logical story units and actual movie episodes. We applied
the proposed method to two full-length movie sequences and
evaluated the segmentation results in Section IV. Conclusions
can be found in Section V.

II. CONCEPT OFLOGICAL STORY UNITS

A. From an Episode to a Logical Story Unit

Each shot within a movie belongs to a certain global context
built up around one movie event or several of them taking
place in parallel. Thereby, a shot can either be a part of

an event or serve for its “description” by, e.g., showing
the scenery where the coming or the current event takes
place, showing a “storytelling” narrator in typical retrospective
movies, etc. In view of such a distinction, we will further refer
to shots of a movie as eitherevent shotsor descriptive shots.

We can now realistically assume that a standard movie is
produced as a series of meaningful segments corresponding to
the event-oriented global contexts described above, which we
will call episodes. An episode is generally a combination of
the event shots and descriptive shots related to the event(s)
of the episode. It can be simple, if it concentrates on only
one event. However, more complex episode structures exist
as well, containing several events taking place in parallel that
are presented as a series of their interchanging fragments. We
denote the fragment of the event by and introduce a
model for the movie structure (shown in Fig. 1), which takes
into account episodes of different complexity.

In view of the event-based structure of an episode and
the assumed limited number of episodes in a typical movie,
segmenting a movie into episodes can provide a compact
and comprehensive entrance level to an event-oriented movie-
organization scheme. Such segmentation can be performed
most precisely if the movie script is available. However, this
is not the case in automated sequence analysis systems, espe-
cially in those operating at the user side [13] of a video trans-
mission network. In such systems, all movie-content analysis,
segmentation, and organization processes are done on the basis
of the movie’s audiovisual characteristics and their temporal
variations, measured and captured by standard audio-, image-,
and video-processing tools. It is realistic to assume that
segmentation results obtained by means of these tools are
generally different from those obtained by using the movie
script, since different segmentation criteria are used. This will
be explained in more detail in Section III-C. In this paper, we
only usevisual featuresto perform the movie segmentation.
As a result, approximations of the actual movie episodes are
obtained, which we will calllogical story units(LSU’s).

Various applications in digital video libraries can benefit
from an LSU-based movie-organization scheme. For example,
an overview of a movie can be obtained immediately if one
looks at the obtained set of LSU’s. Fig. 2 illustrates how a
movie can be broken up into LSU’s and how existing content-
based clustering algorithms can be applied to all shots of an
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Fig. 2. Possible scheme for movie representation for which LSU’s are used.

LSU. The shots of each LSU that are most representative can
be glued together and played as movie highlights. One can
also use key frames to browse through each individual LSU,
which is an especially important feature for LSU’s having
a complicated structure (e.g., containing several temporally
interrelated events). The user only browses through relevant
shots, e.g., those relating to the selected LSU (for instance,
when searching for a particular movie character in the context
of a certain event), and is not burdened with (the many) other
shots of a sequence. For each granularity (cluster) level, a key-
frame set is available providing video representations through
pictorial summaries having different amounts of detail.

B. Previous Work

Few methods dealing with high-level movie segments can
be found in the literature. In [10], characteristic temporal
events like dialogs and high-motion and high-contrast seg-
ments are extracted for the purpose of making a movie
trailer, but no attempt is made to capture the entire movie
material. Audio as well as motion information is used for
an extraction procedure. In [21], an approach is presented
that is based on time-constrained clustering and assignment
of labels to all shots in a sequence. Predefined models are
used to analyze the resulting label sequence and to recognize
patterns corresponding to dialogs, action segments, and arbi-
trary story units. However, the effectiveness of this method,
especially for segmenting movies into story units, depends on
the applicability of the model used for a story unit. We foresee
several practical problems here, such as, for example, the
choice of the interval for time-constrained clustering, which
puts an artificial limit on the duration of an episode. Another
problem is that characterizing shots by distinct labels simplifies
the real interrelation among neighboring shots far too much.

The method of detecting LSU boundaries that we propose in
this paper essentially finds a compromise between the totally
unconstrained shot-clustering approaches from [20], [22], and
[24] and the model-driven shot-clustering approach from [21].

C. Definition of LSU

Our definition of an LSU is based on the global temporal
consistency of its visual content. Such a consistency can be
expected in view of the realistic assumption that an event is
related to a specific location (scenery) and to certain characters.
It can be expected that every now and then within an event,
similar visual content elements(scenery, background, people,
faces, dresses, specific patterns, etc.) appear, and some of them
even repeat. Such content matches clearly may not happen in
successive shots, but it is highly probable that these occur
within a certain time interval. The definition of an LSU can
now be formulated as follows: an LSU is a series of temporally
contiguous shots, which is characterized by overlapping links
that connect shots with similar visual content elements.

An illustration of an LSU as defined above is given in Fig. 3.
In the movies that we have processed, the length of an LSU
varied roughly between 1 and 10 min.

The basis of the definition of an LSU given above is
that a visual dissimilarity between two video shots can be
measured. In the next section, we will propose a suitable
intershot dissimilarity measure and discuss it in detail. For
now, we assume that the dissimilarity between the
shots and is quantitatively available. Three different
cases can be distinguished, depending on the relation of the
current shot and the th LSU.

Case 1: Visual content elements from shot reappear
(approximately) in shot . Then, shots and

form a linked pair, illustrated in Fig. 3 by the arrow.
Since shots and belong to the sameLSU ,
consequently all intermediate shots also belong toLSU

LSU

if (1)

Here, is the number of subsequent shots with which the
current shot is compared to check the visual dissimilarity. The
threshold function specifies the maximum dissimilarity
allowed within a single LSU. Since the visual content is
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Fig. 3. Illustration of LSU’s characterized by overlapping links connecting similar shots.

usually time variant, the function also varies with the
shot under consideration. The estimation of will be
discussed in Section III.

Case 2: There are no subsequent shots with sufficient sim-
ilarity to shot , i.e., the inequality in (1) is not satisfied.
However, one or more shots preceding shot link with
shot(s) following shot (see Fig. 3). Then, the current shot
is enclosed by a pair of shots that belongs toLSU , i.e.,

LSU

if

(2)

Here is the number of shots to be considered preceding the
current shot .

Case 3: If for the current shot neither (1) nor (2) is
fulfilled, but if shot links with one of the previous shots,
then shot is the last shot ofLSU . This can also be seen
in Fig. 3.

In Section III, we will discuss the calculation of and
, as well as an efficient way to use the above definition

to detect the LSU boundaries.

III. N OVEL APPROACH FORLSU BOUNDARY DETECTION

A. Threshold Function

The objective is to detect the boundaries between LSU’s,
given the definition of an LSU and the concept of linking shots.
In principle, one can check (1) and (2) for all shots in the video
sequence. This, however, is computationally intensive and also
unnecessary. According to (1), if the current shotis linked
to shot , all intermediate shots automatically belong to
the same LSU, so they do not need to be checked. Only if no
link can be found for shot is it necessary to check whether at
least one of shots preceding the current shotcan be linked
with a shot [for , as stated in (2)]. If such a link
is found, the procedure can continue at shot ; otherwise,
shot is at the boundary ofLSU . The procedure then

Fig. 4. Illustration of the LSU boundary-detection procedure. The shots
indicated by (a) and (b) can be linked and are by definition part ofLSU(m).
Shot (c) is implicitly declared part ofLSU(m) since the shot (d) preceding
(c) is linked to a future shot (e). Shot (e) is at the boundary ofLSU(m) since
it cannot be linked to future shots, nor can any of itsr predecessors.

continues with shot for LSU . The proposed LSU
boundary-detection procedure is illustrated in Fig. 4.

To determine whether a link can be established between two
shots, we need the threshold function . We compute this
threshold recursively from already detected shots that belong
to the current LSU. If the minimum of found in (1)
[or (2) if (1) does not hold] denotes thecontent inconsistency
value of shot , then the threshold function we
propose is

(3)

Here is a fixed parameter whose value is not critical between
1.3 and 2.0. Further, is computed as

(4)

The parameter denotes the number of links in the current
LSU that have led to the current shot, while the summation
in (4) comprises the shots defining these links. Essentially,
the threshold adapts itself to the content inconsistencies
found so far in the LSU. It also uses as a bias the last content
inconsistency value of the previous LSU for which (1) or
(2) is valid.

B. Intershot Dissimilarity Measure

The LSU detection algorithm and the computation of
the threshold function require the use of a content-based
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Fig. 5. Comparison of shotk with shotn by matchingH�W blocks from
each key frame of shot imagek with shot imagen. Shot k had two key
frames, and shotn had three key frames.

dissimilarity function . In the following, we define our
own dissimilarity measure.

We assume that the video sequence is segmented into shots,
for which any of the methods found in the literature [1]–[3],
[8], [15] can be used. Each detected shot is represented by one
or multiple key frames so that its visual information is captured
in the best possible way [4], [7], [20], [23]. Since we are using
MPEG compressed video sequences, the key frames are DC
images, which are typically 64 times smaller than the original
frames (8 8 discrete cosine transform blocks are used).

For each shot, all key frames are merged in one large
variable-size image, called theshot image,which is then
divided into blocks of pixels. Each block is now
a simple representation of one visual-content element of the
shot. Since we cannot expect an exact shot-to-shot match in
most cases, and because the influence of those shot-content
details that are not interesting for an LSU as a whole should
be as small as possible, we choose to use only those features
that describe the elementsglobally. Furthermore, fairly
large blocks have to be used, for instance, . In this
paper, we only use the average color in the uniform
color space as a block feature.

For each pair of shots , with , we would now like
to find the mapping between the blocksand , each being
an block from the shot image and , respectively.

• Each block in a key frame of shot image has a
unique correspondence to a block in shot image . If
a block has already been assigned to a blockof a
key frame belonging to shot image, no other block of
that key frame may use it. All blocks are only available
when a new key frame of shot is to be matched. Fig. 5
illustrates this in more detail.

• The average distance in the color space between
corresponding blocks of the two shot images is minimized

(5)

where is as shown in (6) at the bottom of the
page and where all possible block combinations are given
by the first item.

Unfortunately, this is a problem of high combinatorial com-
plexity. We therefore use a suboptimal approach to optimize
(5). The blocks of a key frame of shot are matched in
the unconstrained way in shot imagestarting with the top-
left block in that key frame, and subsequently scanning in
the line-fashioned way to its bottom-right block. If a block

has been assigned to a block, it is no longer available
for assignment until the end of the scanning path. For each
block , the obtained match yields a minimal distance value

. This procedure is repeated for the same key frame in
the opposite scanning fashion, i.e., from bottom-right to top-
left, yielding a difference mapping for the blocks and a new
minimal distance value for each block, denoted by . On
the basis of these two different mappings for a key frame of
shot and corresponding minimal distance values and

per block, the final correspondence and actual minimal
distance per block are constructed as follows.

• if (7a)

• if and is the
lowest distance value measured for the assigned block
in the shot image (one block in shot image can be
assigned to two different blocks in a key frame of shot

: one time in each scanning direction) (7b)

otherwise (7c)

• if and is the
lowest distance value measured for the assigned block in
the shot image (7d)

otherwise (7e)

stands for a fairly large value, indicating that no objective
best match for a block could be found. The entire procedure
is repeated for all key frames of a shot, leading to one value

for each block of a shot image.
Last, the average of the distances of the best

matching blocks [those with lowest values] in the shot
image is computed as the final intershot dissimilarity value

(8)

(6)



HANJALIC et al.: AUTOMATED HIGH-LEVEL MOVIE SEGMENTATION 585

Fig. 6. Possible differences between an LSU and an episode boundary.

The reason for taking only the best matching blocks is that
two shots should be compared only on a global level. In this
way, we allow for inevitable changes within the LSU, which,
however, do not degrade the global continuity of its visual
content.

C. LSU Versus Episode Boundaries

After the LSU boundary detection procedure has been
explained, the characteristics of the obtained LSU’s in view of
the actual episodes will now be discussed. For this purpose,
we investigate a series of shotsto , as illustrated in Fig. 6.
According to the movie script, the boundary between episodes

and lies between shots and . We now assume that
shot , although belonging to episode, has a different visual
content than the rest of the shots in that episode. This can be
the case if, e.g., is a descriptive shot, which generally differs
from event shots. Consequently, the content consistency could
be followed by overlapping links in theLSU up to shot

, so that the LSU boundary is found between shotsand
. If shot contains enough visual elements also appearing in

episode , so that a link can be established,is assumed to
be the first shot ofLSU instead of shot . This results
in a displacedepisode boundary, as shown in Fig. 6. However,
if no content-consistency link can be established between shot

and any of the shots from episode , another LSU
boundary is found between shotsand . Suppose that is
a descriptive shot of episode , containing a different
visual content than the rest of the shots in that episode, so
again no content-consistency link can be established. Another
LSU boundary is found between shotsand . If the linking
procedure can now be started from shot, it is considered
to be the first shot of the newLSU . In this case,
not a preciseLSU boundaryis found but one that is spread
around the actual episode boundary, taking into consideration
all places where the actual episode boundary can be defined.
Consequently, shots and are not included in LSU’s, as
shown in Fig. 6. Such scenarios occur quite often and show
that by investigating the temporal consistency of the visual
content, only an approximation for the actual episode should
be expected.

IV. EXPERIMENTAL VALIDATION

To test the proposed LSU boundary-detection approach,
we used two full-length movies. Both were available as
DC sequences obtained from MPEG streams with (slightly
modified) frame sizes, 88 72 and 80 64, respectively. We

detected the shots using the method from [3] and represented
each shot by two key frames taken from the beginning and
the end of a shot, in order to capture most of its important
visual content elements.

To get an idea about where the episode boundaries should
actually be positioned, we asked unbiased test subjects to
manually segment both movies. The obtained segmentation
results differed mainly in the number of detected episode
boundaries; this was especially noticeable in the complicated
movie segments and can be explained by how each subject
perceived that episode to be constructed. An example of
such a complicated movie segment is a broad context of a
wedding party with a lot of small events taking place in
parallel—some complete, some mixed with other events—but
all relating to the same scenery and movie characters. Some
subjects regarded this as one episode, while others labeled
each individual event.

Then, we had our algorithm perform the automatic segmen-
tation of the movies for different values of parametersand

. Thereby, we limited the range of the parameteronly to
1.4–1.5 while varied in the range 40–70% of all shot-image
blocks. We learned that taking less than 30% of the blocks
makes the intershot comparison too rough. On the other hand,
more than 70% makes the comparison too detailed. Hereby,
we related the number of blocks considered in (8) to the total
number of blocks in a shot image to compute the percentages.
Although both parameters determine the sensitivity of the
detection procedure and, consequently, also the number and
positions of detected boundaries, the parameteris more
interesting since it defines the limits of intershot comparison,
concerning both the amount of detail taken into account and
how “global” this comparison should be. On the other hand,
we left the parameters (look-ahead distance) and (look-
back distance) constant at values and , since the
segmentation results were fairly insensitive to the setting of
these parameters.

On the basis of manual segmentation results, we defined
two different classes of episode boundaries:

• probable boundaries:registered by all test subjects;

• potential boundaries:registered by some of the test
subjects;

and used them to classify the automatically obtained results
for each parameter pair . Thereby, an automatically ob-
tained LSU boundary was considered to be properly detected
if it was close enough to the one detected manually. For this
purpose and in view of the possible boundarydisplacement
discussed in Section III-C, we set the maximum tolerable
distance to four shots. Any other automatically detected bound-
ary was considered to befalse. To evaluate the quality of
the automated boundary detection, we used the following
expression:

(9)

denotes the quality of the boundary detection,is the
number of properly detectedprobable boundaries, and is
the number of falsely detected boundaries. Since theprobable
boundaries were those that all test subjects had selected, we
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TABLE I
LSU BOUNDARY-DETECTION RESULTS FORDIFFERENT PARAMETER SETTINGS. BOLD NUMBERS INDICATE THE PARAMETER COMBINATION PROVIDING

THE OPTIMAL DETECTION PERFORMANCE. COMBINATIONS WITH THE SAME Q VALUES ARE ASSIGNED THE SAME RANKING

considered them to be fundamental, and relevant for quality
evaluation. This is not the case withpotentialboundaries, and
they are, therefore, not considered in (9). For each parameter
combination and for each movie, the quality was
computed, resulting in a ranking list of all pairs . The
first column of Table I shows all parameter combinations

used in the experiments. The other columns show for
each of the movies the number of probable and potential
boundaries that were detected, the number of false alarms,
and the ranking for each parameter combination according to
the computed detection quality. In the final step, ranks of all
pairs obtained for both movies have been added up and
served for the overall ranking of all parameter combinations
based on the quality of their detection.

As shown by the overall ranking list in the last column of
the table, the best performance for both movies is obtained
when 50% of the blocks are considered for computing the
overall intershot difference value and when the threshold
multiplication factor is 1.4. It can also be observed that
the quality of a parameter combination decreases the more
it differs from the optimal parameter set. This is mainly due
to the influence of parameter : if fewer blocks are taken
into account when (8) is computed, the intershot comparison
becomes too global, resulting in a low number of detected
boundaries. Although only a few or even no false alarms were
registered, the resulting video representation is too coarse for
the first interaction level in the movie retrieval system. On the
other hand, the large number of blocks considered in (8) can
make the boundary detection too sensitive. This may result in
an increased number of false boundaries, so that the first user-
interaction level is too complex and the interaction inefficient.

For the chosen optimal parameter combination %
and , the average percentage of detectedprobable
boundaries is 69%, with only 5% of false detections. The low
number of false detections obtained for this parameter set is
in line with our requirements of conciseness and comprehen-
siveness of the movie-retrieval interface at its highest level.
These characteristics are not guaranteed if there is a high

percentage of “false episodes,” making the first interaction
level overloaded. On the other hand, after investigating the
missed 31% ofprobableboundaries, we found out that most
of the episodes, which could not be distinguished from each
other, belong to the same global context (e.g., a series of
episodes including a wedding ceremony, a reception, and a
wedding party). Therefore, a relatively high percentage of
missedprobable boundaries does not actually diminish the
comprehensiveness of the LSU set obtained for %
and when we take into account that more detailed
information about the content of each detected LSU can be
obtained by browsing through different hierarchical levels of
the structure in Fig. 2.

Table I also shows that the efficiency of the algorithm
concerning the detection of probable and potential boundaries
is not the same. The higher percentage of probable boundaries
that were detected can be explained by the fact that those
boundaries were characterized by a radical change of the
scenery, which could easily be recognized by all test subjects,
but also by our algorithm. On the other hand, most of the po-
tential boundaries were marked by some of the users in highly
complex parts of the movies, where clearly distinguishing
different episodes was a difficult task. Since our assumption
about the temporal consistency of the visual content within an
episode, i.e., its change at an episode boundary, was often not
fulfilled in such complex movie segments, no good detection
performance could be expected there.

Falsely detected boundaries in both movies were, in general,
those lying in the middle of an event. One such boundary
is found in a scene that takes place in a dark room where
suddenly the light was turned on, ending the temporal consis-
tency of the visual content. On the other hand, if boundaries
were missed, this was most often a consequence of insufficient
changes of visual features at certain episode boundaries. One
example is the transition from a wedding ceremony to a
wedding party, featuring the same crowd and a similar scenery.

The movies used in this paper belong to quite different cat-
egories in view of the dynamics and variety of their contents.
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However, the results in Table I show that the difference in the
algorithm performance is not as large, indicating a sufficient
consistency of the defined detection approach and of the LSU
model for different movie types. According to Table I, the
number of false detections is slightly higher for the second
movie. This was expected in view of the fact that most of the
movie is characterized by episodes having a highly complex
visual structure. On the other hand, this is compensated by the
number of properly detectedprobableboundaries, which is a
bit higher than in the first movie. This can be interpreted as a
consequence of a larger variety of sceneries used in this movie
to characterize different episodes, making their boundaries
more obvious and easier to detect.

V. CONCLUSION

In this paper, we presented a new approach for automatically
segmenting movies into units that closely approximate actual
movie episodes. Our segmentation is based on an investiga-
tion of the visual information of a video sequence and the
temporal variations, as well as on the assumption that the
visual content within a movie episode is temporally consistent.
Consequently, an LSU is defined on the basis of overlapping
links, which connect shots with similar visual content. We
determine whether a link between two shots exists by applying
an adaptive threshold function to shot dissimilarities. Based
on experimental results, we can conclude that the number of
missed episode boundaries for a particular movie primarily
depends on the degree to which an episode boundary corre-
sponds to a large discontinuity in the global visual content
flow. Similarly, the number of falsely detected boundaries is
directly related to the global temporal consistency of the visual
content within an episode. The results in Table I show that the
majority of episode boundaries in both movies could be found
with only a low percentage of false detections, providing a
concise and comprehensive first interaction level of a movie-
retrieval interface. Also, the results of applying the algorithm
to the two movies belonging to quite different movie categories
did not differ much, indicating that the detection performance,
and therefore also the defined LSU model, are sufficiently
consistent for different types of movies.

In general, our work shows that using only visual features
of a movie sequence can provide satisfactory segmentation
results, although the LSU boundaries only approximate the
actual episode boundaries in some cases.

The results of the high-level segmentation procedure pre-
sented in this paper can be used for developing an efficient
event-oriented movie-retrieval scheme. As the proposed tech-
nique computes the detection threshold recursively and only
looks ahead a limited number of shots, the entire process,
including the shot-change detection, key-frame extraction, and
LSU boundary detection, can be carried out in a single pass
through a sequence.
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