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Abstract—In this article, we introduce the 2020 Gaofen Chal-
lenge and relevant scientific outcomes. The 2020 Gaofen Challenge
is an international competition, which is organized by the China
High-Resolution Earth Observation Conference Committee and
the Aerospace Information Research Institute, Chinese Academy
of Sciences and technically cosponsored by the IEEE Geoscience
and Remote Sensing Society and the International Society for
Photogrammetry and Remote Sensing. It aims at promoting the
academic development of automated high-resolution earth obser-
vation image interpretation. Six independent tracks have been
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organized in this challenge, which cover the challenging problems
in the field of object detection and semantic segmentation. With
the development of convolutional neural networks, deep-learning-
based methods have achieved good performance on image interpre-
tation. In this article, we report the details and the best-performing
methods presented so far in the scope of this challenge.

Index Terms—Convolutional neural networks, Gaofen
Challenge, object detection and recognition, optical images,
SAR images, semantic segmentation.

I. INTRODUCTION

W
ITH the significant progress of various earth observation

missions, a large amount of high-resolution data has

been widely acquired, providing a variety of earth information.

Automated high-resolution earth observation image interpreta-

tion has a wide range of applications, such as flight management,

urban planning, and water-body monitoring [1]–[7]. However,

the automatic interpretation of high-resolution remote sensing

images is still challenging due to complex background and

various objects in remote sensing images [8].

The 2020 Gaofen Challenge has covered two main approaches

proposed in the field of automated interpretation: first, object

detection and recognition, and second, semantic segmentation.

The main purpose of object detection and recognition is to

obtain the categories and locations of objects in an image. In the

field of interpreting remote sensing images, object detection and

recognition is significant to many rigid objects, such as airplanes,

ships, and bridges. Common object detection and recognition

algorithms consist of two categories: anchor-based algorithms

and anchor-free algorithms. Anchor-based algorithms include

one-stage methods and two-stage methods. For the two-stage

methods, proposals are generated using a region proposal net-

work (RPN) first. Then, they further classify and locate objects

with candidate region proposals [9]–[12]. Compared with two-

stage object detection algorithms, one-stage algorithms do not

need to generate region proposals and, instead, they predict the

classification and localization directly. One-stage methods are

more efficient than two-stage methods due to their simple struc-

tures [13]–[17]. Recently, anchor-free object detection methods

have been proposed in several works. For example, CornerNet
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[18] and CenterNet [19] regard an object as a pair of keypoints.

Anchor-free methods have few hyperparameters and can also

achieve relatively good performance [18], [20], [21].

Compared to object detection, semantic segmentation needs

to obtain the categories for each pixel in an image. Common

semantic segmentation methods consist of encoder–decoder

models and dilated-based models. For instance, the fully con-

volutional network [22], UNet [23], and SegNet [24] use the

encoder–decoder structure to exploit the high-level feature

maps. DeepLab [25] and ENet [26] adopt atrous convolutions

to enlarge the receptive field of filters and aggregate multiscale

context information. The aforementioned methods have made

great progress in the field of image processing. However, au-

tomated high-resolution earth observation image interpretation

is challenging due to the inherent characteristics of remote

sensing scenes [27]–[29]. More specifically, remote sensing

images typically cover large and often complex scenes with

diverse background and a wide variety of objects exhibiting

large differences in size. Some object categories even reveal

high intracategory and low intercategory variations, making the

interpretation even more challenging [28], [30].

To promote the development of this domain, the 2020 Gaofen

Challenge on automated high-resolution earth observation im-

age interpretation serves to bring together researchers from

both computer vision and earth observation domains to dis-

cuss cutting-edge technologies on image interpretation and their

applications.1 It is an international competition, which is hosted

by the China High-Resolution Earth Observation Conference

Committee and the Aerospace Information Research Institute,

Chinese Academy of Sciences and technically cosponsored by

the IEEE Geoscience and Remote Sensing Society and the

International Society for Photogrammetry and Remote Sensing.

We set six tracks in the 2020 Gaofen Challenge to meet

different application requirements. Tracks 1, 2, and 3 aim to

promote the research of object detection and recognition in

optical images and synthetic aperture radar (SAR) images.

Specifically, fine-grained airplane detection, bridge detection,

and ship detection tasks are set in these tracks. The other three

tracks focus on semantic segmentation in optical images and

SAR images with respect to object categories, such as water

body, road, tree, building, vehicles, and land.

To satisfy the high-resolution earth observation system con-

struction requirements for major national scientific and techno-

logical projects, images used in the scope of the 2020 Gaofen

Challenge are collected from the Gaofen-2 satellite and Gaofen-

3 satellite. Specifically, we use the Gaofen-2 optical satellite data

with 0.8–4 m resolution for airplane detection, bridge detection,

and water-body segmentation tasks. And the Gaofen-3 SAR

data with 1–5 m resolution are used for the tasks addressing

ship detection, and semantic segmentation in polarimetric SAR

data. To obtain high-quality data, we invited hundreds of experts

taking more than three months to prepare the dataset. Finally, a

large-scale and challenging dataset with various categories and

tremendous object instances has been published for the 2020

Gaofen Challenge.

1[Online]. Available: http://en.sw.chreos.org/

Fig. 1. Sample images and ground truths of object detection and recognition
tasks. (a) Airplane detection. (b) Ship detection. (c) Bridge detection.

The rest of this article is organized as follows. We introduce

the relevant details about the organization and dataset of the

challenge in Section II. The overall information and results of

participants in the challenge are discussed in Section III. We

report the methods proposed by the winning teams of each track

in Sections IV–IX. Finally, Section X, we make a conclusion to

the 2020 Gaofen Challenge.

II. DATA OF THE 2020 GAOFEN CHALLENGE

Data from Chinese Gaofen satellites are provided for all six

tracks of the 2020 Gaofen Challenge. The data used in the

challenge include multiscale, multiview, multiresolution optical

remote sensing images and SAR images, which are all collected

from Gaofen-2 and Gaofen-3 satellites with the resolution rang-

ing from 1–4 and 1–5 m, respectively. The data containing more

than 10 000 images are annotated by more than 100 experts

over three months. Some images and corresponding ground truth

labels of each track are shown in Figs. 1 and 2. Details of the

data provided for the 2020 Gaofen Challenge Tracks 1 to 6 are

presented in the following.

1) Data for Track 1 (airplane detection and recognition in

optical images) are provided by the Gaofen-2 satellite.

The scenes include the main civil airports in the world,

such as Sydney Airport, Beijing Capital International Air-

port, Shanghai Pudong International Airport, Hong Kong

Airport, Tokyo International Airport, and many more. The

data contain 3000 satellite images with a spatial resolution

of 0.8 m. Each image is of the size 1000 × 1000 pixels

and contains ten categories of airplanes (i.e., Boeing 737,

Airbus A321, Airbus A330, Boeing 747, Boeing 777,

Boeing 787, Airbus A220, COMAC ARJ21, Airbus A350,

and other) exhibiting a wide variety of orientations and

scales.

2) Data for Track 2 (ship detection in SAR images) are

collected from Gaofen-3 satellite. It contains 1000 SAR

images with a spatial resolution ranging from 1–5 m. Each

image is of the size 1000 × 1000 pixels and includes ships

exhibiting a wide variety of orientations and scales. The

scenes include the main civil ports in the world, such as

Victoria Harbour, Port of Sanya, Incheon Port, etc.

3) Data for Track 3 (automatic bridge detection in optical

satellite images) are provided by the Gaofen-2 satellite

with the resolution ranging from 1–4 m. Each image

contains at least one bridge. There are 3000 images with

http://en.sw.chreos.org/
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Fig. 2. Sample images and ground truths of semantic segmentation tasks.
(a) Semantic segmentation in optical images. (b) Water-body segmentation in
optical images. (c) Semantic segmentation in fully polarimetric SAR images.

different sizes ranging from 667 × 667 to 1001 × 1001

pixels in the bridge dataset.

4) Data for Track 4 (semantic segmentation in optical satellite

images) are provided by the Gaofen-2 satellite with 0.8 m

resolution. Each image is annotated with respect to nine

categories of ground objects at the pixel level, including

road, building, shrub and tree, lawn, land, water body,

vehicle, impervious ground, and others. There are 1800

images with the size ranging from 512 to 5000 pixels.

5) Data for Track 5 (automatic water-body segmentation in

optical satellite images) are provided by the Gaofen-2

satellite with the resolution ranging from 1–4 m, covering

rivers and lakes in large scope. There are 2500 images with

a size ranging from 492 to 2000 pixels in the water-body

dataset.

6) Data for Track 6 (semantic segmentation in fully polari-

metric SAR images) are provided by the Gaofen-3 satellite

with 1–3 m resolution, containing four polarization modes

(i.e., HH, VV, HV, and VH). Six categories, including wa-

ter body, building, industrial area, lawn, land, and others,

are annotated at the pixel level for each image. There are

1200 images with the size ranging from 512 to 1500 pixels.

The aforementioned datasets are provided for the training

set, preliminary test set, and final test set of the 2020 Gaofen

Fig. 3. Dataset distribution of 2020 Gaofen Challenge.

TABLE I
DATASET STATISTICS FOR CHALLENGE

Challenge. More information about the distribution of the data

provided for the different tracks is shown in Fig. 3 and Table I.

III. ORGANIZATION, SUBMISSIONS, AND RESULTS

Six independent and distinctive tracks were organized in the

2020 Gaofen Challenge. Considering the practical application,

three of the six tracks addressed the task of object detection

and recognition, and the remaining three addressed the task of

semantic segmentation, as described in Sections III-A–III-F. For

the tracks on object detection and recognition (Tracks 1–3), the

mean Average Precision (mAP) [31] with the Intersection over

Union (IoU) of 0.5 is used to evaluate the results. For a given

ground truth and the predicted result, TP, FP, and FN are selected

according to an IoU threshold of 0.5. Then, the precision and

recall are calculated as

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
. (2)

According to Pascal VOC 2012, the AP of each class is

calculated based on precision and recall, and then the mAP can

be obtained. For the tracks on semantic segmentation (Tracks

4–6), the frequency weighted IoU (FWIoU) [32] is used as an

accuracy evaluation indicator, and its calculation method is as
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follows:

FWIoU =
1

∑N
i=0

∑N
j=0 sij

∑N

i=0

∑N
j=0 sijsii

∑N
j=0 sij +

∑N
j=0 sji − sii

(3)

where N is the number of categories, and sij represents the

number of pixels belonging to category i and predicted to be

category j.

In addition to the accuracy of image interpretation, the infer-

ence time and the quality of technical reports are also taken into

account in the final results. The final score is defined as

score = 70% · accuracy + 20% · speed + 10% · report. (4)

Section III-G shows baseline solutions achieved for the 2020

Gaofen Challenge, whereas the participating and winning meth-

ods are analyzed in Sections III-H and III-I, respectively.

A. Track 1: Airplane Detection and Recognition in Optical

Images

Track 1 is dedicated to the detection and recognition of

airplanes in optical satellite images. For each image in the

dataset, there is an XML file with the same name for describing

annotation information, such as the image coordinates and object

information of airplanes. Each airplane instance in the images

is annotated by the corresponding category information and

location with an oriented bounding box [33].

B. Track 2: Ship Detection in SAR Images

Track 2 is dedicated to the detection of ships in SAR images,

where the goal is to locate the ships in SAR images. In each

image, the coordinates of ships are described in a predefined

format. Compared with Track 1, each XML file corresponds to

one image, including the coordinates of the horizontal bounding

box for each ship.

C. Track 3: Automatic Bridge Detection in Optical Satellite

Images

The goal for Track 3 is to locate bridges in large-scale optical

satellite images. The labeling format is similar to Track 2, and

the coordinates of each bridge are given as horizontal bounding

boxes.

D. Track 4: Semantic Segmentation in Optical Satellite Images

Track 4 is dedicated to semantic segmentation in optical

satellite images. In this case, a pair of images are provided for

each scene, as shown in Fig. 2(a). One is the original optical

satellite image, and the other is an image annotated with the

ground truth whose size is the same as for the previous satellite

image. In ground truth images, different categories are marked

with different RGB values in pixel level.

E. Track 5: Automatic Water-Body Segmentation in Optical

Satellite Images

To detect the water body in remote sensing images, the 2020

Gaofen Challenge set up Track 5 whose purpose is to locate the

water body in the optical satellite images with pixel level. Same

as Track 4, the original optical satellite images and ground truth

images are provided for water-body segmentation.

F. Track 6: Semantic Segmentation in Fully Polarimetric SAR

Images

In addition to the track for semantic segmentation in optical

satellite images, a semantic segmentation track for SAR images

was also set up. Its goal is to classify the features in SAR satellite

images with pixel level. As shown in Fig. 2(c), the dataset format

is the same as for Tracks 4 and 5.

G. Baseline Solutions

Classic object detection and semantic segmentation networks

are used as baseline solutions of each track separately. A two-

stage object detection method in the form of a Faster RCNN

[10] based on ResNet-50 is used for object detection tracks.

The Faster RCNN is a detector with good performance, which

generates anchors through an RPN and completes regression

and classification after Region-of-Interest (RoI) pooling. For

Track 1, an angle information regression is added to realize

rotated boxes regression. For semantic segmentation tracks,

we use DeepLab V3 [34] based on ResNet-50 as a baseline

solution. DeepLab V3 improves the atrous spatial pyramid pool-

ing (ASPP) structure and uses multiple scales to obtain better

segmentation results.

H. Participation

There are 701 teams from 253 affiliations, with 2023 com-

petitors joining in the 2020 Gaofen Challenge. The competitors

come from more than 20 countries, including China, England,

Germany, France, Japan, Australia, Singapore, India, Sweden,

etc. The total number of track registrations is 1584 times, of

which the tracks for object detection were registered 860 times

with 54%, and the tracks for semantic segmentation were reg-

istered 724 times with 46%. It can be seen that the popularity

of object detection tracks and semantic segmentation tracks is

similar, indicating that both of them are widely studied in the

field of the automated interpretation of high-resolution earth

observation data. In total, there were 5719 submissions for all

tracks. The specific numbers of submissions for each track are

shown in Fig. 4.

I. Best-Performing Approaches and Discussion

The top six teams of each track were awarded winning places.

In this article, we mainly introduce the methods of champion

teams. The brief introduction of the champion teams for Tracks

1–6 is as follows.

1) First place in Track 1: The Detect AI team; Chen Yan,

Wenxuan Shi, Tao Qu, Chu He, and Dingwen Wang from

Wuhan University, China; with attention mechanism and

deformable convolution based on Faster RCNN.

2) First place in Track 2: The challenger_nriet team; Guo Jie,

Zhuang Long, Xie Cong, and Zheng Ping from the Nanjing

Research Institute of Electronics Technology, China; with



8926 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 4. Total submission of each track.

SPPNet and an ensemble of adaptively spatial feature

fusion (ASFF) module with Faster RCNN.

3) First place in Track 3: The MDIPL-lab team; Yuxuan

Sun, Wei Li, Wei Wei, and Lei Zhang from Northwest-

ern Polytechnical University, China; with ResNet50 and

HRNet-w32 on Faster RCNN.

4) First place in Track 4: The BUCT Tu Xiang Jie Yi Xiao

Fen Dui team; Fei Ma, Jun Ni, Ruirui Li, Yingbing Liu,

Feixiang Zhang, and Fan Zhang from the Beijing Univer-

sity of Chemical Technology, China; with an ensemble of

ResNet101-V2 on DeepLab V3+ [35]–[37].

5) First place in Track 5: The Wu Da Ti Shui Gao Fen Dui

team; Bo Dang, Jintao Li, Tianyi Gao, and Yansheng Li

from Wuhan University, China; with multistructure deep

segmentation network [38]–[41].

6) First place in Track 6: The BUCT Tu Xiang Jie Yi Xiao

Fen Dui team; Fei Ma, Jun Ni, Ruirui Li, Yingbing Liu,

Feixiang Zhang, and Fan Zhang from the Beijing Univer-

sity of Chemical Technology, China; with an ensemble of

conditional random field (CRF) with DeepLab V3+ [42].

Looking at the overall trend, the methods used by the winning

teams were all improved and extended on the basis of the well-

established models. The methods used by the champion teams

of each track are described in detail in Sections IV–IX.

IV. FIRST PLACE IN THE AIRPLANE DETECTION AND

RECOGNITION IN OPTICAL IMAGES: DETECT AI

In this section, we introduce the winning method proposed for

airplane detection and recognition in optical images. Airplane

detection is one of the most common detection applications

in rotation detection. The similarity of airplanes increases the

difficulty of fine-grained detection regarding different types of

airplanes. To solve this problem, Detect AI team proposes a

rotation detection method based on an attention mechanism.

First, they use the attention mechanism to extract the texture

features of the aircraft in the feature representation stage for

classification and add deformable convolutional network (DCN)

to extract the irregular structure features of the aircraft. Finally,

Detect AI team used many common techniques in the training

process without spending extra time.

Detect AI team first selected R2CNN [43], RRPN [44], RoI

transformer [45], S2A-Net [46], and other algorithms in the com-

petition. After basic training and verification of these algorithms,

S2 A-Net has achieved the highest detection performance, so

Detect AI team uses S2 A-Net as their detection benchmark.

An S2 A-Net-based airplane detection method is proposed

and optimized in the feature representation stage and the object

regression stage. The overall framework of the method is shown

in Fig. 5. The optimization of each part will be introduced below.

A. Deformable Convolutional Network

It is challenging to acquire the structural features and in-

formation of the airplanes by common convolution because

of their irregular shapes. The common convolutional neural

network mainly uses regular square grid points to sample the

fixed position, which cannot learn the structural characteristics

of the airplanes.

To solve the aforementioned problems, this section introduces

deformable convolution by adding two-dimensional offset val-

ues and pooling operations to achieve the freedom of convo-

lutional kernel and pooling to learn the irregular shape of the

airplanes [47]. Specifically, the bias value of the convolutional

kernel and pooling layer are obtained through an additional

convolutional layer and the feature map with the RoI together,

respectively. Since the biased models are all simple layers, the

number of parameters and calculations required for this process

are relatively small, and end-to-end training can be achieved

through the gradient backpropagation algorithm.

B. Orientation-Sensitive Regression

Detect AI team first adopts active rotating filters (ARFs) to

learn the orientation information. The ARF filter can rotate

several times during convolution to generate orientation features.

Using ARF in the deep learning network can obtain orientation-

invariant features with encoded orientation information. Object

classification tasks benefit from orientation-invariant features,

whereas bounding box regression tasks require sensitive fea-

tures. Then, Detect AI team conducts the pooling layer to

the orientation-invariant feature and obtains the orientation-

sensitive features for the bounding box (bbox) regression.

C. Experiment

There are 1000 images with ground-truth labels in the training

data, and the size of each image is 1024 × 1024 pixels. The

data contain ten types of airplane samples. Detect AI team first

divides the training set into two parts, 800 images are used for

training, and 200 images are used for validation. They randomly

rotate the training set and expand the training set to five times.

They made an automatic contrast argumentation based on the

dataset and applied mixup [48] to the dataset, which greatly

expands the training samples. At the same time, they collect air-

plane images from the public remote sensing dataset as training
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Fig. 5. Network of airplane detection method.

TABLE II
COMPARATIVE EXPERIMENTAL RESULTS ON AIRPLANE DETECTION

Bold entities mean the best performance model in the

table.

data for pretraining. The data source is mainly from DOTA [59],

UCAS-AOD [49], NWPU VHR-10 [50], and RSOD-Dataset

[51]. A total of 7449 images containing airplanes are collected

for pretraining, and the model is tested on the competition data.

This article verifies the proposed method on the test set, and

compares the performance of the S 2 A-Net. The object detection

results are provided in Table II. The visualization of airplane

detection results are shown in Fig. 6.

D. Discussion

Airplane detection and recognition play an important role in

both military and civilian fields. Detect AI team analyzes the

characteristics of optical airplane remote sensing images, and

carry out research on its object characteristics. According to its

existing problems and challenges, they improve and optimize

the existing detection framework. On the one hand, they use

attention and DCN to learn the texture features and irregular

shape features of the airplanes. On the other hand, they propose

a new orientation-sensitive bbox regression method, with which

the bbox of the object is regressed more accurately.

V. FIRST PLACE IN THE SHIP DETECTION IN SAR IMAGES:

CHALLENGER_NRIET

In this section, we introduce the winning method proposed

for ship detection in SAR images. There are a few particular

challenges for SAR ship detection, as analyzed as follows.

1) A large number of small objects. Compared with natural

scenes, there are many objects in small size in remote

sensing imagery. The SAR images provided by the official

website are acquired from the Gaofen-3 satellite with a

spatial resolution ranging from 1–5 m. This means that

for a 20-m ship, it will be only 4–20 pixels in the provided

SAR images.

2) Rotation invariance. Objects in satellite imagery may have

any orientation. For example, a ship can sail at any angle

on the sea.

3) Insufficient training data. Compared with optical images,

it is more difficult to obtain SAR images [52]. Therefore,

the number of available SAR images is less than that of

optical images.

4) Wide range of aspect ratios. Ships may have a relatively

large aspect ratio in satellite images compared with most

other objects. Therefore, anchor-based CNN methods

have difficult setting anchors covering ships with different

aspect ratios [53], [54].

Challenger_nriet team uses a bag of tricks to alleviate these

problems, which are described in the following sections.

A. Baseline Model

In the face of these challenges, they adopt YOLOv3 [55] as the

baseline model. Ships have a large range of aspect ratios in SAR

images compared with general objects in optical images. Thus,

the nine anchors in the YOLOv3 model cannot cover scales and

aspect ratios of ships in SAR images very well. Therefore, they

use guided anchors to adjust the shape of the anchor to fit the

desired shape.

As shown in Fig. 7, a spatial pyramid pooling (SPP) layer

added in the YOLOv3 model can combine local and global

features, making features contain richer information and have

stronger representation power.

Furthermore, they use the ASFF [56] model to filter conflictive

information to control the inconsistency between different scales
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outputted by the feature pyramid network (FPN) of YOLOv3.

An extra IoU loss function [57] is added to the original smooth

L1 loss for more accurate bounding box regression.

The baseline model is trained with the 300 training images

downloaded from the official website for 100 epochs. The pro-

posed model is trained using stochastic gradient descent (SGD)

[58] algorithms with the cosine learning rate schedule from

0.001 to 0.00001. The values of weight decay and momentum

are 0.0005 and 0.9, respectively.

B. Bells and Whistles

In this part, we introduce some bells and whistles to improve

the model’s ability in their method.

1) Data Augmentation: They add SAR-Ship-Dataset [59] to

train their model. The image size of SAR-Ship-Dataset is 256 ×
256 pixels. Therefore, they randomly select 2 × 2/3 × 3/4 × 4

images and stitch them together and rescale the stitched images

to a size of 1000 × 1000 pixels. The Fig. 8 shows the results

of data augmentation. They also involve mirroring, cropping,

distorting, and random-affine transformations for data augmen-

tation. Moreover, Challenger_nriet team adds the HRSID dataset

[60] to the training set to train the model.

2) Finer-Grained Features and Denser Grid: Many ships in

the SAR images are relatively small compared with objects in

natural scenes. As a result, they remove stage 5, which has a

stride of 32 in the YOLOv3 backbone network. Instead, they

output stage 2, stage 3, and stage 4 to detect ships in different

scales. To keep the depth of output features consistent, they add

more convolutional layers with shortcut connections in stage

2. Finally, they get finer-grained features while still keeping

enough semantic information.

3) Multiscale Training: As shown in Fig. 9, challenger_nriet

team adopts multiscale training with the random crop. First, they

randomly crop image patches from images in the dataset, and the

scale of cropped patches is randomly sampled from 384, 416,

448, 480, 512, 544, 576, 608, and 640, then the cropped patches

are rescaled to a fixed size of 512× 512 pixels for training. They

only keep those patches with ships.

4) Scale-Aware Loss Function: To focus more on small

ships, Challenger_nriet team set different weights on the loss

function according to the size of ships. The weight of L1 loss

and IoU loss of small ships are larger than for large ships. The

weights are calculated as

weight =

{

1, if
(w·h)
(W ·H) > 0.01

3− (200·w·h)
(W ·H) , otherwise

(5)

where w and h represent the width and height of the ship,

respectively. W and H represent the width and height of the

image, respectively.

5) Multiple Weights Fusion: Challenger_nriet team trains

the model for 100 epochs, then averages the weights from epochs

of 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100 to achieve the

final network weights for more robust testing.

6) Deeper Network and More Training Epochs: They add

more convolutional layers in stage 2 and train the models for

TABLE III
RESULTS ACHIEVED ON THE TEST SET DATASET

Bold entities mean the best performance model in the table.

more epochs (200 epochs). This strategy can keep finer-grained

features while still catching enough semantic information.

7) Multiscale Testing: They adopt three scales for testing,

800 × 800, 1056 × 1056, and 1248 × 1248 pixels. They first

obtain the network outputs of each scale. Then, they concatenate

them together and perform nonmaximum suppression (NMS) to

get the final detection results. Besides, they change the NMS

threshold from 0.65 to 0.55.

C. Results and Discussion

Challenger_nriet team reports the detection results on the

preliminary test set downloaded from the official website of the

contest. Details are demonstrated in Table III. The detection

results of ships are shown in Fig. 10.

The model achieves 59.95% mAP for the test dataset provided

in phase 3 of the contest. Finally, to ensure wider testing scales,

they instead adopt three scales of 736 × 736, 1056 × 1056, and

1344 × 1344 pixels for testing. And finally get 60.58% mAP for

the test dataset provided in phase 3 of the contest.

VI. FIRST PLACE IN THE AUTOMATIC BRIDGE DETECTION IN

OPTICAL SATELLITE IMAGES: MDIPL-LAB

Bridge detection aims at automatically detecting and locating

bridges in remote sensing images. As a branch of the object

detection task, many detection methods for natural scenes can be

also used for bridge detection. For example, Faster-RCNN [61],

a representative two-stage detector, can have stable performance

under different tasks. Therefore, the proposed method is modi-

fied based on Faster-RCNN. To solve the problem of the small

dataset and single scene, ResNet50+DCN and HRNet-W32 are

adopted as the backbone network in this method. In view of the

characteristics of remote sensing images with large variation in

object orientation and complicated illumination conditions, we

adopt horizontal flip and random 90◦ rotation in data argumen-

tation. In addition, FPN and multiscale training are adopted to

deal with the variance of object sizes.

A. Model Structure

Faster RCNN+FPN and the random horizontal flip with prob-

ability P = 0.5 are used as the benchmark methods. Considering

that some of the bridges are located on the diagonal of the target

box, and most of these target boxes are rivers, we used DCNv2
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TABLE IV
RESULTS OF DIFFERENT METHODS OR STRATEGIES WITH BASELINE

Bold entities mean the best performance model in the table.

to extract features more effectively and focus on effective infor-

mation.

It was observed that the captured scenes in the bridge

dataset are relatively monotonous while the size of the bridges

varied greatly and there are many small bridges. Therefore,

we chose the backbone network HRNet-W32, which is more

advantageous in integrating multiscale features compared with

ResNet50 and ResNet101. At the same time, due to the relatively

monotonous scene, deeper networks, such as ResNet101, are

not significantly improved over ResNet50.

Integration of multiple different models has proven to be a rel-

atively effective way to improve accuracy. For the experiments

based on test dataset, they tried NMS, SoftNMS [62], VOTE,

and NMS using IOF instead of IOU, and finally chose SoftNMS

as the integration method.

B. Data and Training Strategy

Reasonable data argumentation can artificially control the

prior rules of scene distribution and increase the amount of data,

which is another strategy to improve the performance of the

model. To simulate the change of camera rotation angle during

data acquisition and enhance the diversity of data, we added

random rotations of 0◦, 90◦, 180◦, and 270◦ to the random

horizontal flip in the method.

A multiscale method is introduced in the training and testing

process to solve the large object size difference problem. At the

same time, considering that the images in the dataset have two

resolution sizes of 1001× 1001 and 668× 668 pixels, the size of

image is randomly scaled between 600 and 1200 pixels during

the training.

C. Experiment

All experiments are conducted on the object detection frame-

work MMDetection [63]. There are a total of 2000 images in

the dataset. Since some consecutive images are taken with the

same scene, the first 667 images are selected as the validation

set to avoid data duplication. Twelve epochs are trained in each

experiment. The initial learning rate is 0.00125, the batch size

is usually 4 or 8, and the learning rate decreased by 1/10 in the

8th and 11th epoch. SGD with a momentum of 0.9 and weight

attenuation of 0.0001 is used as the optimizer. The probability

of both a horizontal flip and a subsequent rotation of 90◦ is 0.5.

On the baseline model, the results using different methods

and strategies are shown in Table IV. The team adds the DCNv2,

TABLE V
RESULTS OF DIFFERENT MODELS

Fig. 6. Airplane detection results of the proposed method.

multiscale training, and data enhancement strategy. The detec-

tion results of bridges are shown in Fig. 11.

The different models and their integration effects are shown

in Table V. HRW32 represents HRNet-W32, and the Aug repre-

sents the argumentation strategy. Finally, the integration of the

two models using SoftNMS yielded slightly better results than

either vote or NMS.

D. Discussion

This method is aimed at the automatic bridge detection in

remote sensing imagery. On the basis of Faster-RCNN, it adjusts

the backbone network selection and data argumentation strategy

according to the characteristics of single scenes in the dataset,

and finally selects two models to integration and obtain 83.6%

AP.

VII. FIRST PLACE IN THE SEMANTIC SEGMENTATION IN

OPTICAL IMAGES: BUCT

In this section, we introduce the winning method proposed

for the semantic segmentation in optical images. The method

proposed by the team is a deep semantic segmentation network

combined with multiscale spatial features. The purpose is to

obtain features of different scales and use the regional features of

superpixels to combine global information to improve the perfor-

mance of segmentation. This method first uses ResNet101-V2

as the backbone network of Deeplab V3+ [37] to extract image

features and then uses two subnetworks of “pixel-level seman-

tic segmentation” and “superpixel-level semantic segmentation

based on boundary feature enhancement” for semantic segmen-

tation. The framework is shown in Fig. 12.
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Fig. 7. YOLOv3 architecture with SPP module and ASFF module.

Fig. 8. Randomly selecting 2 × 2/3 × 3/4 × 4 images and stitching them
together.

Fig. 9. Adopting multiscale training with random crop.

Fig. 10. Detection results of ships in SAR images.

A. Data Preprocessing

Due to the complexity of the categories of the objects in the

dataset, the BUCT team augments the existing data. BUCT team

used the following methods to augment the data.

1) Overlap cropping: The training images are cropped into a

fixed size with overlap.

2) Spatial transformation: It includes horizontal and vertical

flipping, random rotation at any angle with the image

center as the origin, scaling outward or inward with a

Fig. 11. Visualization of the bridge detection results.

certain proportion, random cropping, and shifting in the X

or Y direction (or both).

3) Random noise addition: Gaussian noise is randomly added

to the data to prevent the CNN from learning useless

high-frequency features, thereby reducing the probability

of overfitting.

B. Deep Semantic Segmentation Network Combined With

Multiscale Spatial Features

1) Feature Extraction Based on ResNet101: Using the acti-

vation function on the residual branch, the information propaga-

tion speed of ResNet101 will be faster in the back propagation

and forward propagation. It allows the network to get better

results and avoids the problem of vanishing gradients.

2) Pixel-Level Semantic Segmentation Based on Deeplab

V3+: The pixel-level feature classification subnetwork uses the

DeepLab V3+ network to segment objects at the pixel level. The

feature maps embedded in the first four convolutional blocks of

ResNet101 are sent to the ASPP module to represent different

local and global information proportions. Then, the feature ex-

traction result and the low-resolution information in the encoder

are cascaded up-sampling, and finally the pixel loss is obtained.

DeepLab is a method that combines deep convolutional neural

networks (DCNNs) and probabilistic graphical models (Dense

CRFs). DCNNs use atrous convolution to expand the receptive

field to solve resolution reduction caused by down-sampling

or pooling in DCNNs. Dense CRFs can consider the mutual

influence between adjacent pixels.

3) Superpixel-Level Semantic Segmentation Branch Based

on Edge Feature Enhancement: The segmentation results of

DeepLab V3+ at the edge are not very good, and there is strong

segmentation noise and fuzzy edge. As a result, the BUCT

team uses a high-precision end-to-end superpixel generation
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Fig. 12. Framework of the proposed semantic segmentation method.

method. This method can be implemented using a deep con-

volutional network, which is trained together with the semantic

segmentation network, so the segmentation accuracy is greatly

improved. Then, with the help of the pixel and each superpixel

correlation matrix and ground truth, the superpixel-level loss

function is calculated. The goal of the loss function is to ensure

that the labels of pixels belonging to the same superpixel are

as consistent as possible. In addition, when calculating the loss

function, the BUCT team uses the ground truth to give more

weight to the pixels near the edge of the objects.

At the superpixel generation stage, traditional simple linear

iterative clustering method has nondifferentiable step. There-

fore, this method cannot be introduced into convolutional neural

networks. As a result, the BUCT team proposes a differentiable

linear iterative clustering method. This method models the asso-

ciation between pixels and superpixelsQ ∈ Rn×m. For the pixel

p and superpixel i in the tth step, the association is denoted as

Qt
pi = e−D(Ip,S

t−1

i
) = e−‖Ip−St−1

i
‖2 (6)

where n and m denote the number of pixels and superpixels,

respectively. Ip and Si are the features of pixels and superpixels,

respectively. The cluster center of the superpixels is defined as

the weighted sum of pixel features

St
i =

1

Zt
i

n
∑

p=1

Qt
piIp. (7)

Zt
i =

∑

p Q
t
pi is the normalized constant. Considering the

calculation to obtain Qpi, m is set to be 9 in the training stage.

Since the superpixel is an oversegmentation of the image, the

segmentation label of the image can be used as the supervision

information of the superpixel segmentation. Associated matrix

Qt
(p,sp) represents the relationship between pixels and super-

pixels. The annotation results of pixels can be mapped to the

superpixels by applying the column normalization to Qt
(p,sp).

Similarly, the annotation results of superpixels can be mapped

to the pixels by applying the row normalization to Qt
(p,sp). If the

annotation of pixels is defined as G, that of superpixels can be

denoted as

G∗ = Qrow Q⊤
col G. (8)

C. Loss Function

In the training process, the pixel-level segmentation branch

outputs the predicted pixel label matrix P ∈ Rn×1. The super-

pixel segmentation branch outputs the pixel-superpixel corre-

lation matrix Q ∈ Rn×m, where n and m are the number of

pixels and superpixels, respectively, and the true label matrix is

denoted as G ∈ Rn×1.

1) Pixel-Level Loss Function: The pixel-level loss can be

described as the cross-entropy loss between the predicted label

and the ground truth, which is defined as

Lpixel = L(G,P ). (9)
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TABLE VI
COMPARISON OF SEMANTIC SEGMENTATION RESULTS IN OPTICAL IMAGES

2) Superpixel-Level Loss Function: We calculate the area

loss between the superpixel reconstruction result and the ground

truth, which can be defined as

Lregion = WoverL(G,G∗)

= WoverL(G,QrowQ
⊤
colG). (10)

Among them,Wover represents the excessive subdivision matrix.

For the pixels on the edge of the ground truth, let ω= 1+γi,
otherwise ω= 1. The overall loss function can be denoted as the

sum of pixel loss and area loss

L = Lregion + Lpixel

= WoverL(G,QrowQ
⊤
colG) + L(G,P ). (11)

D. Implementation Details

For the DeepLab V3+, the number of convolutional kernels

in each convolutional layer is set to 256, and the stride of the

atrous convolutional is set to [6, 12, 18]. The initial learning rate

and batch size are set to 0.007 and 5, respectively.

E. Results and Discussion

The experiment uses multiple models to analyze the perfor-

mance, including U-Net [23], D-LinkNet [64], DeepLab-V3,

DeepLab-V3+, and various forms of DeepLab-V3+. At the

same time, it is analyzed whether to use data expansion and

augmentation. The models use ResNet50 and ResNet101 to be

baseline models to conduct experiments. All experiments used

400 images as the validation set and other images as the training

set. The experimental results are shown in Table VI.

As a single network, DeepLab-V3+ has better feature extrac-

tion capabilities than U-Net, D-LinkNet, and DeepLab-V3. As a

result, the obtained segmentation accuracy using DeepLab-V3+

is the highest. As shown in Table VI, for each model, the

segmentation accuracy after the data augmentation has been

improved. For the backbone network, the segmentation accuracy

of the models using ResNet101 network is higher than that of

the ResNet50 network. In addition, the accuracy of multinetwork

segmentation model is higher than the single-network segmen-

tation model, but it has longer inference time [65].

Based on the comprehensive results of inference time

and segmentation accuracy, using DeepLab-V3+ network and

ResNet101 backbone network can achieve the best performance

of semantic segmentation.

VIII. FIRST PLACE IN THE AUTOMATIC WATER-BODY

SEGMENTATION IN OPTICAL IMAGES: WHU

In this section, we introduce the winning method designed for

the automatic water-body segmentation in optical images. The

WHU team proposes water-body extraction method based on

spatial consistency boundary optimization and rotation consis-

tency constraint in multistructure segmentation network. The

method integrates three network architectures with different

characteristics, including large receptive field, high-resolution

representation, and reduction of information loss caused by

pooling. Thus, the noise and missing points caused by accidental

errors can be reduced. The fully connected CRF is used for

postprocessing of the predicted results. Then, weighted fusion

of the postprocessing results and the original network prediction

results are performed. In the testing stage, the original image

and the image after rotation of 90◦, 180◦, and 270◦ are com-

prehensively predicted with multiangle rotation consistency.

Weighted fusion of the results and CRF postprocessing results

are performed to obtain the multichannel water-body prediction

results, and then the multichannel prediction results are voted.

Finally, the automatic extraction results of optical images are

obtained.

A. Multistructure Deep Segmentation Network

This method trains three deep segmentation networks with

different characteristics, as shown in Fig. 13. The training set is

processed using data enhancement methods, such as rotation and

stretching. The focal loss function [16] is used for water-body

segmentation.
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Fig. 13. Structure of multistructure deep segmentation network optimization.

1) Context Encoder Network (CE-Net): The CE-Net is first

used in 2-D medical image segmentation [66]. A context ex-

traction module is added into the traditional encoder–decoder

structure to capture higher level features and obtain the spatial

information for semantic segmentation, thus reducing the loss

of information caused by pooling and convolution. Its network

structure mainly includes a feature encoder module, a context

information extraction module, and a decoder module. Among

them, the ResNet-152 is used as the fixed feature extractor.

The context information extractor module consists of a dense

atrous convolutional (DAC) module and a residual multikernel

pooling (RMP) module, whereas the decoder uses convolutional

layers and transposed convolutional layers. At the same time,

the weight of pretraining on the ImageNet dataset is used to

accelerate the network convergence. The DAC module aims to

enlarge the receptive field, and the parallel structure reduces the

conflict between the segmentation and image details. The RMP

module uses different scales of the pooling kernel to segment

water body of various sizes.

2) Deep Segmentation Network With Dense Convolutional

Pooling (CEWI-Net): Inspired by the CE-Net and Inception V1

[67], the WHU team proposes a deep segmentation network

based on dense convolutional pooling (CEWI-Net), which adds a

dense convolutional pooling block (DCP Block) to the encoder–

decoder structure. This module is composed of convolutional

layers with three convolutional kernel scales (1 × 1, 3 × 3, 5 ×
5) and a maximum pooling layer. Each layer in the module can

learn the characteristics of “sparse” and “not sparse,” which has

the advantage of multiscale. At the same time, they use 1 × 1

convolutional layer to reduce the dimension of channels so as

to reduce the number of network parameters and accelerate the

convergence while ensuring accuracy.

3) Deep Segmentation Network of Multiscale Object Con-

text (HR-Net): In general, existing methods encode the input

image as a low-resolution representation by a module and then

recovering the high-resolution representation. Instead, HR-Net

[68] takes a high-resolution subnet and adds four stages from

high-resolution to low-resolution subnet one by one. Four kinds

of resolution subnets are connected in parallel. The information

in the parallel multiresolution subnet is exchanged in the whole

network to complete the repeated multiscale fusion. Finally,

bilinear up-sampling of the low-resolution output in the network

is carried out to obtain the high-resolution output.

Given the complex types of water body and the relation-

ship between ground objects in high-resolution remote sensing

images, we introduce the object context representation (OCR)

based on high-resolution representation [69]. It is difficult to

segment water body according to a single-pixel point. OCR

can effectively extract context information. OCR combines the

category information of water body and nonwater body to weigh

each pixel and connects with the original feature to obtain the

feature representation of each pixel.

4) Optimization Loss Function: Water bodies in remote sens-

ing images mainly include rivers, lakes, and ponds with different

scales and shapes, which bring different difficulties to the deep

semantic segmentation network. Focal loss [70] is used as the

loss function of network optimization to address the problem

of an unbalanced number of difficult and easy samples in the

training images. The calculation method is as follows:

LFocal =
1

N

N
∑

i=1

−αy′i(1− yi)
γ log (yi)

− (1− α) (1− y′i) y
γ
i log (1− yi) (12)

where y′i is the ground-truth and yi denotes the predicted result.

Focal loss uses two parameters α and γ to make the network pay

more attention to difficult images. To prevent the loss of simple

samples from being too small, both of them adjust together to

achieve balance.

B. Spatial Consistency Boundary Optimization and Rotation

Consistency Constraints Based on Multistructure

Segmentation Network

The testing phase includes the comprehensive prediction of

rotation consistency from multiple angles, spatial consistency

boundary optimization, and the voting of the multistructure

segmentation network, as shown in Fig. 14.

1) Comprehensive Prediction of Rotation Consistency From

Multiple Angles: In remote sensing images, water body is char-

acterized by diverse types, various scales, and complex spatial

relations, which restricts the consistency of regional prediction

and the integrity of extraction results. The method is to improve

the accuracy of different water-body extraction results and re-

duce misclassification and hole phenomena by synthesizing the

prediction results of the original image and the image rotated

from three angles.

The concrete method structure is shown in Fig. 15. First, the

original image and the image rotated by 90◦, 180◦, and 270◦ are

sent into the segmentation network in turn for prediction, and

the probability matrix for prediction of P0, P90, P180, and P270

is obtained. It is then rotated to correspond to the pixels of the

original image. The prediction probability matrix of water body

is then obtained by averaging the prediction probability values

of four water bodies. The calculation formula is as follows:

PD = (P0 + P90 + P180 + P270)/4. (13)
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Fig. 14. Structure diagram of multistructure deep segmentation network of water-body extraction based on spatial consistency boundary optimization and rotation
consistency constraints.

Fig. 15. Comprehensive prediction of consistent rotation (red in the prediction
maps indicates the water, blue indicates the background, and colors between red
and blue represent the confidence score.)

Here, PD is the water-body prediction probability matrix,

which is activated by the sigmoid function. i and j are the rows

and column numbers of pixel points, respectively, and the final

probability matrix of the water body P is the weighted fusion

of PD and PCRF , and the formula is as follows:

PDij
= δ(wij) (14)

Pij = β · PDij
+(1−β) · PCRFij

(15)

where δ(·) is the sigmoid activation function, and β is an

adjustable weight parameter.

2) Spatially Consistent Boundary Optimization: It uses the

fully connected CRF to postprocess the segmentation results

of the network, and the weighted fusion of the processed

results and the original network prediction results is carried out

to recover the boundary details of the predicted results. The

structure of the algorithm is shown in Fig. 16.

3) Multistructure Deep Segmentation Network Voting: It in-

tegrates three network architectures with different characteris-

tics, and the prediction results are voted pixel by pixel to obtain

the final water-body automatic extraction results. It uses CE-Net

to reduce pooling information loss, CEWI-Net with multiscale

characteristics, and HR-Net with high-resolution representation

and spatial context relationships.

Fig. 16. Dense CRF weighted fusion model.

C. Implementation Details

In the experiment, the mean and standard deviation of optical

images are used to normalize the images. The sigmoid activation

function limits the output value within the range of [0, 1],

indicating the probability of water-body prediction. The team

selects the Adam [71] to be optimization method, and sets

learning rate and batch size are 0.0001 and 4, respectively.

D. Results and Discussion

To validate the performance of this method, the WHU team

compared their method with (1) U-Net [23]; (2) CE-Net; (3)

CEWI-Net; (4) HR-Net; (5) the network only using multistruc-

ture voting mechanism without spatial consistency boundary

optimization; (6) the network without the comprehensive pre-

diction of rotation consistency from multiple angles.

Fig. 17 is an example of the automatic extraction results of

water body on the test set of the Gaofen-2 high-resolution optical

images. From the results, a single segmentation network will

frequently have the missed and misclassified situations. The

use of spatial consistency, the fully connected CRF weighted
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Fig. 17. Visualization of water-body extraction results.

TABLE VII
ACCURACY COMPARISON OF SEVEN METHODS ON WATER-BODY DATASET

fusion, will optimize the predicted image boundary. As shown

in Table VII, the multistructure deep segmentation network can

integrate the characteristics of the three networks to improve the

extraction accuracy of different types of water body. Compre-

hensive prediction of rotation consistency can synthesize diverse

spatial information from multiple angles, thereby improving the

reliability of water-body prediction.

IX. FIRST PLACE IN THE SEMANTIC SEGMENTATION IN FULLY

POLARIMETRIC SAR: BUCT

In this section, we introduce the winning method proposed

for the semantic segmentation in fully polarimetric SAR. The

method proposed by the team consists of a set of fully po-

larized SAR image preprocessing methods and a multiscale

deep network collaboration with superpixel constraints. This

method uses Deeplab V3+ for pixel-level classification and

simultaneously extracts local gradient ratio patterns (LGRPs)

from the original fully polarimetric SAR image, then performs

weighted K-means [72] clustering to generate superpixels. Un-

der the constraints of superpixels, the classification loss function

is further optimized to improve the segmentation performance.

The framework of the method is shown in Fig. 18.

A. Data Preprocessing

The dataset used in this method is divided into two parts, one

is the Gaofen-3 fully polarimetric SAR training dataset provided

by the organizers, and the other part is the fully polarimetric SAR

data collected by team. BUCT team has augmented the existing

data, including the following.

1) Overlap cropping: They crop the original image to a fixed

size with overlap.

2) Spatial transformation: It includes horizontal and vertical

flipping, random rotation of the image at any angle with

the center as the origin, scaling of the image at a certain

ratio, random cropping, and shifting.

3) Adding noise: Gamma noise fitting and noise addition

of different visual numbers is performed on the image,

thereby enriching the training samples.

4) Polarization simulation: They perform polarization simu-

lation for the specific objects, and then obtain the HH, HV,

and VH channels of the simulation data.

B. Pixel-Level Semantic Segmentation: DeepLab V3+

BUCT team uses DeepLab V3+ for semantic segmentation

of the fully polarimetric SAR image. In the DeepLab V3+

network, feature extraction is performed on the input image

through the backbone network to obtain low-level feature and

high-level feature. In the encoding stage, the advanced features

go through the FPN, including a 1 × 1 convolution, three atrous

convolutional layers with different atrous rates (6, 12, 18), a

global average pooling, and an up-sampling layer. Then, the

outputs of the five layers are cascaded, and the number of
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Fig. 18. Framework of the proposed method for SAR image semantic segmentation.

channels is changed through 1 × 1 convolution. In the decoding

stage, the low-level features are dimensionally adjusted by 1

× 1 convolution (output stride = 4), and the encoder output is

up-sampled 4 times (output stride changes from 16 to 4). Then,

we concatenate the features and perform 3 × 3 convolution,

then up-sample 4 times to get dense prediction. All up-sampling

layers in the decoder use bilinear interpolation.

C. Superpixel Segmentation Technology for Fully Polarimetric

SAR Image

Due to geometric distortion and speckle noise in fully polar-

ized SAR images, it is difficult to adopt a effective method to

generate superpixels with high boundary fitting, compactness,

and low computational cost. This method adopts an superpixel

generation algorithm with linear feature clustering and edge con-

straint for SAR images [35]. There are three stages. First, BUCT

team extracts the LGRP of each pixel. This feature has strong

robustness to coherent speckle noise. LGRP characteristics can

be defined as

LGRPP,R (gc) =

p=0
∑

P−1

s
(

Gratio (gp)−Gratio (gc)
)

2p (16)

where Gratio(gp) and Gratio(gc) are the gradient ratio charac-

teristics of neighboring pixels and center pixels, respectively.

Second, for the edge detector, the traditional rectangular edge

detector uses a series of windows with various directions to

calculate the edge strength map (ESM). The windows are di-

vided into a pair of parallel subwindows. BUCT team uses the

ratio-feature-based edge detector of Gaussian windows instead

of the traditional rectangular windows. The horizontal Gaussian

window is defined as

GW(x, y) =
1√

2πσx

√
2πσy

exp

(

−
(

x2

2σ2
x

+
y2

2σ2
y

))

.

(17)

In addition to the ESM, the Gaussian window can obtain edge

direction map and edge map of the SAR image. Finally, an

improved superpixel generation strategy based on normalized

cuts (Ncuts) is adopted, which uses distance metrics and also

considers spatial proximity and feature similarity. In this strat-

egy, the BUCT team approximates the similarity using a positive

semidefinite kernel function instead of traditional feature-based

algorithms. The best point can be obtained by weighted K-means

and Ncuts function, thereby effectively reducing the computa-

tional cost. The weighted local K-means clustering function is

denoted as

ΦK−means =
K
∑

k=1

∑

u∈ω(k)

w(u)‖Ψ(u)−mk‖2. (18)

The Ncuts function is defined as

ΦNcuts =
1

K

∑K

k=1

∑

u∈ω(k)

∑

v∈ω(k) W (u, v)
∑

u∈ω(k)

∑

v∈V W (u, v)
. (19)

Among them, for each pixel p, Ψ(u) is an eight-dimensional

feature vector composed of LGRP features. Given two pixels

u = (l4u, l8u, xu, yu) and v = (l4v, l8v, xv, yv), the similarity

measure between them is denoted as

Ŵ (u, v) = Ŵf (u, v) + βadp · Ŵs(u, v). (20)

The variation coefficient is used to learn the tradeoff factor

between spatial proximity and feature similarity during linear

feature clustering, which helps to adaptively adjust the shape

and scale of superpixels according to image uniformity. The

coefficient of variation is calculated as follows:

βadp = 1− 1

2
[CoV (xu, yu) + CoV (xv, yv)] . (21)

The superpixel generation method used in this method has

some characteristics, which are as follows.

1) The structure of the image can be maintained well because

of edge information and Ncuts strategy.

2) The method is not sensitive to the coherent speckle noise.

3) The method has higher computational efficiency.

4) The shape and compactness of super pixels can be adap-

tively changed according to the complexity of the image.
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TABLE VIII
COMPARISON OF EXPERIMENTAL RESULTS IN FULLY POLARIMETRIC SAR IMAGES

Fig. 19. Image enhancement results of proposed method. (a) ground-truth
image. (b) label image. (c)-(g) the images obtained by rotating the ground-truth
image at different angles. (h)-(l) the images obtained by cutting and stitching
the ground-truth image.

Fig. 20. Gray image of polarization modes. (a) HH. (b) HV. (c) VH. (d) VV.

D. Results and Discussion

In this competition, the BUCT team uses U-Net, D-LinkNet,

and DeepLab V3+ for pixel-level semantic segmentation and use

a CRF as postprocessing after U-Net and D-LinkNet network,

defined as U-Net+CRF and D-LinkNet+CRF, respectively.

In terms of data augmentation, the BUCT team has performed

methods, such as rotation, cropping, and stitching on the original

image, enhancing the sensitivity of the model to image edges.

The specific transformation is shown in Fig. 19. Fig. 19(a) is

the image A-10 in the training dataset, and Fig. 19(b) is the

corresponding colored label map. Fig. 19(c)–(g) shows the im-

ages obtained by rotating A-10 at different angles; Fig. 19(h)–(l)

shows the images formed after cropping and then stitching.

Performing the same operation on all the original images can get

the augmented dataset. Fig. 20 shows a grayscale image of the

four polarization channels of image A-10. Adding these images

to the training can enhance the model’s sensitivity to edges and

improve the overall accuracy. However, through training, it is

found that the model performs not well enough on the edges of

rivers and small objects.

The results of different methods are shown in Table VIII. From

the table, for a single network, DeepLab V3+ has good perfor-

mance on feature extraction. BUCT team attempted to use a CRF

as postprocessing, but the accuracy has not improved because

the CRF overlooked some small objects. It is obvious that the

performance of the model after data augmentation has improved,

reflecting the importance of the amount of data. To get higher

accuracy, the BUCT team try to parallelize the dual networks in

DeepLab V3+. However, the accuracy is still slightly lower than

using DeepLab V3+, and the inference time is also longer.

X. CONCLUSION

The development of earth observation programs and accessi-

ble high-resolution data can provide abundant information about

the earth and promote various applications. Due to the insuffi-

cient amount of annotated data and the complex background, it is

of great challenge to apply the automated interpretation for such

data. Therefore, it is significant that highly advanced techniques

need to be proposed.

To enhance the academic development in this field, the 2020

Gaofen Challenge focuses on the automated high-resolution

earth observation image interpretation for optical and SAR

images. More than 10 000 images from Gaofen-2 and Gaofen-3

satellites are annotated for this challenge. Complex background,

various scales, and fine-grained types make the 2020 Gaofen

Challenge more difficult.

The 2020 Gaofen Challenge is arranged in six tracks accord-

ing to different application requirements. Tracks 1–3 aim to

promote the development of object detection and recognition

in optical and SAR images. Tracks 4–6 focus on semantic

segmentation in optical and SAR images.
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The 2020 Gaofen Challenge has attracted 701 teams from

253 affiliations with 2023 competitors to participate in. The

competitors come from more than 20 countries, including China,

England, Germany, France, Japan, Australia, Singapore, India,

Sweden, etc. All winners use deep-learning-based methods for

image interpretation.

Although many excellent algorithms have emerged in the

challenge, the exploration of earth observation technology

cannot be stopped. After the challenge, the datasets are still

accessible for further research.

In the future, we will also continue to promote this event and

hope it can help the earth observation community to develop

deep-learning-based methods. We will dedicate to improve the

professional level of the Gaofen Challenge. For the data, we

will continue to build larger scale high-resolution multisource

datasets and enhance the quality of annotations. After the chal-

lenge, we will provide a repository to share datasets and codes

for competitors. For the tracks in the challenge, we will set more

tracks that are combined with practical applications in the field

of remote sensing. For the competitors, we will encourage more

foreign scholars to participate in the competition to make it

more international. Moreover, we will improve the evaluation

system to obtain more authoritative and fair results. With the

improvement of Gaofen Challenge, we hope that more and more

scholars from all over the world will participate in the challenge.
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