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Abstract

Background Automated image analysis has been devel-

oped currently in the field of surgical pathology. The aim

of the present study was to evaluate the classification

accuracy of the e-Pathologist image analysis software.

Methods A total of 3062 gastric biopsy specimens were

consecutively obtained and stained. The specimen slides

were anonymized and digitized. At least two experienced

gastrointestinal pathologists evaluated each slide for

pathological diagnosis. We compared the three-tier

(positive for carcinoma or suspicion of carcinoma; caution

for adenoma or suspicion of a neoplastic lesion; or negative

for a neoplastic lesion) or two-tier (negative or non-nega-

tive) classification results of human pathologists and of the

e-Pathologist.

Results Of 3062 cases, 33.4% showed an abnormal find-

ing. For the three-tier classification, the overall concor-

dance rate was 55.6% (1702/3062). The kappa coefficient

was 0.28 (95% CI, 0.26–0.30; fair agreement). For the

negative biopsy specimens, the concordance rate was

90.6% (1033/1140), but for the positive biopsy specimens,

the concordance rate was less than 50%. For the two-tier

classification, the sensitivity, specificity, positive predictive

value, and negative predictive value were 89.5% (95% CI,

87.5–91.4%), 50.7% (95% CI, 48.5–52.9%), 47.7% (95%

CI, 45.4–49.9%), and 90.6% (95% CI, 88.8–92.2%),

respectively.

Conclusions Although there are limitations and require-

ments for applying automated histopathological classifica-

tion of gastric biopsy specimens in the clinical setting, the

results of the present study are promising.
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Introduction

Digital pathology techniques including automated image

analysis have been developed and widely utilized in

research and in the practice of surgical pathology [1, 2].

For supporting diagnostic procedures, various novel devi-

ces have been reported to be effective, including an auto-

mated screening system for cytopathology [3], automated

analysis for immunohistochemical biomarkers [4], and
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automated morphological analysis and classification for

hematoxylin and eosin (H&E)-stained slides [5–7]. How-

ever, there has been no report on automated image analysis

and histological classification in clinical settings for gas-

trointestinal cancers.

The need for automated image analysis of gastroin-

testinal cancers has been increasing. Gastric cancer and

colorectal cancer are among the five major cancers in Japan

[8]; thus, a large number of endoscopically obtained

specimens are being submitted for pathological analysis.

This considerable workload for surgical pathologists needs

to be reduced; automated screening for negative specimens

that do not require the review of a pathologist could be

effective. Moreover, application of automated image

analysis is expected to contribute to the quality control of

routine pathological diagnosis.

NEC Corporation has developed the e-Pathologist image

analysis software that can classify digitized histological

images of gastric biopsy specimens into three categories

that correspond to carcinoma or suspicion of carcinoma

(positive), adenoma or suspicion of a neoplastic lesion

(caution), and no malignancy (negative). However, the

validity of this software analysis in routine pathological

practice remains unclear.

The aim of the present study was to evaluate the accu-

racy of the classification of the e-Pathologist image anal-

ysis software and clarify the requirements for using an

automated screening system in clinical settings.

Materials and methods

Patient selection, tissue section preparation,

and pathological diagnosis

The study was conducted in accordance with the Declara-

tion of Helsinki, and with the approval of the Institutional

Review Board of the National Cancer Center, Tokyo,

Japan. We consecutively collected a total of 3062 gastric

biopsy specimens between January 19 and April 30 in 2015

at the National Cancer Center (Tsukiji and Kashiwa cam-

pus). The specimens were fixed in 10% buffered formalin

and embedded in paraffin. Each block was sliced into

4-lm-thick sections. Routine hematoxylin and eosin

(H&E) staining was performed for each slide using an

automated staining system.

At least two experienced gastrointestinal pathologists

evaluated each slide for pathological diagnosis according to

the Japanese classification [9] and the revised Vienna clas-

sification [10] for routine clinical practice. They determined

the final consensus diagnosis of each case. The Japanese

group classification was applied to only endoscopic biopsy

materials and epithelial tissue. In brief, this classification

defines group X as an inappropriate material for histological

diagnosis, Group 1 as a normal tissue or nonneoplastic

lesion tissue, Group 2 as a material in which a diagnosis of a

neoplastic or nonneoplastic lesion is difficult, Group 3 as an

adenoma tissue, Group 4 as a neoplastic lesion tissue that is

suspected to be carcinoma, and Group 5 as a carcinoma

tissue. The revised Vienna classification has been widely

accepted and consists of five categories. The Vienna clas-

sification corresponds to the Japanese group classification as

follows: Category 1 is negative for neoplasia/dysplasia

(Group 1); Category 2 is indefinite for neoplasia/dysplasia

(Group 2); Category 3 represents noninvasive low-grade

neoplasia/dysplasia (Group 3); Category 4.1 represents

high-grade adenoma/dysplasia (Group 4); and Category

4.2–5.2 represents noninvasive carcinoma to submucosal

carcinoma, or beyond (Group 5). The correspondence of

each category or group and the final output of e-Pathologist

are summarized in Table 1.

Digital image acquisition

After data anonymization and setting image acquisition

parameters, such as magnification and autofocusing mode,

Table 1 The revised Vienna classification, Japanese ‘‘Group classification,’’ and classification by e-Pathologist

The revised Vienna

classification

Description Japanese ‘‘Group

classification’’

Classification by

e-Pathologist

Category 1 Negative for neoplasia/dysplasia Group 1 Negative

Category 2 Indefinite for neoplasia/dysplasia Group 2 Caution

Category 3 Low-grade adenoma/dysplasia Group 3 Caution

Category 4.1 High-grade adenoma/dysplasia Group 4 Positive

Category 4.2 noninvasive carcinoma Group 5 Positive

Category 4.3 Suspicion for invasive carcinoma Group 5 Positive

Category 5.1 Intramucosal carcinoma Group 5 Positive

Category 5.2 Submucosal invasive carcinoma Group 5 Positive

Category X Inadequate specimen for diagnosis Group X Unclassifiable
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all slides were automatically scanned using the virtual slide

scanner NanoZoomer (Hamamatsu Photonics, Shizuoka,

Japan) at 409 magnification (0.23 lm/pixel). For the

image database, the NDP serve slide image system of

Hamamatsu Photonics was used. During the image col-

lection and analysis procedure, the researchers and statis-

tician (T.S.) were blind to all the diagnoses made by the

human pathologists.

Image data acquisition

Before the evaluation using test slides, a machine learning

algorithm was trained using a large set of H&E-stained

gastric tissue sections on standard glass slides.

Cancer detection procedure

The procedure for detection of a cancerous areas in a given

whole-slide image is shown in Fig. 1. Briefly, each slide

was scanned, resulting in a single whole-slide image that

was the input for automated analysis training. The whole-

slide images had multiple resolution layers that enabled

access to a variety of images acquired at 1.259, 2.59, 59,

109, and 409 objective lens magnification. The first step

of analysis was to identify the tissue regions at 1.259

magnification. The color distribution of the tissue was also

analyzed. The tissue area was then divided into several

rectangular regions of interest (ROIs). Each ROI was

analyzed at a different magnification, i.e., 109 and 209,

depending on the target features to be analyzed (structural

or nuclear features). For this analysis the ROI size was

1024 9 1024 pixels, and we obtained an average of 20

ROIs per tissue. After the feature extraction, all ROIs were

classified as positive (cancer) or negative (benign) using a

trained classifier. The ROI classifier assigns a real number

t, in the range [-1.0; 1.0], where a value of 1.0 indicates a

positive (cancer) ROI and a value of -1.0 indicates a

negative (benign) ROI. The t value can also be interpreted

as a confidence level where values close to 0 indicate a low

level of confidence.

Fig. 1 Analysis flow of the e-Pathologist. a Image scanning using a slide scanner. b Tissue mapping at 92.5. c Structural analysis at 910.

d Nuclear analysis at 920. e Results of the classification analysis are shown in colored rectangles

Automated histological classification of whole-slide images of gastric biopsy specimens 251

123



A positive or negative tissue-level classification was

based on the following rule: if N(t1)/N0[ t2, the tissue is

classified to positive, otherwise negative, where N0 is the

number of ROIs, and N(t1) is the number of ROIs with

t[ t1. Real values t1 and t2 were optimized using a vali-

dation set that was not used for the training of the ROI

classifier.

Quantitative characterization of histopathological

features

To conduct a positive or negative classification using a

machine learning algorithm, it was necessary to extract

several types of histopathological features. These features

were divided into two categories: high-magnification and

low-magnification features.

High-magnification features characterized the nuclear

morphology and texture of an ROI. The contours of nuclei

were traced by following the elliptical boundaries of eosin-

stained and hematoxylin-stained pixels using a dynamic

programming approach. After the extraction of nuclear

contours, several features could be readily computed. To

characterize nuclear morphology, we considered the mass

(number of pixels bounded by the contour) and long-axis

length (after an elliptical fit of the contour points); for

texture, we considered the standard deviation (variance) of

the hematoxylin color channel within the area bounded by

the contours. Because an ROI contains several hundred

nuclei contours, we needed to extract statistical measures

for the entire ROI. Experiments have shown that it is

beneficial to independently extract statistics for small and

large nuclei (based on their pixel mass). Thus, we calcu-

lated the mean, standard deviation, and 85th percentile of

three features (two morphological, and one texture) for two

nuclei groups (small and large), resulting in

2 9 3 9 3 = 18 features. We also included the total

number of small and large nuclei within the ROI, resulting

in 20 high-magnification features per ROI.

Low-magnification features characterized the global

H&E stain distribution within an ROI and the appearance

of blood cells and gland formation. We considered the

proportion of tissue pixels that belong to the categories of

hematoxylin (H), eosin (E), and blood (B). To obtain this

classification, we first trained a support vector regression

(SVR) model to predict the color vector (red, green, or

blue pixel intensity) of H, E, or B tissue pixels given the

overall color histogram of the ROI. A set of training ROIs

were labeled for H, E, B colors using an interactive color

picker, and the SVR classifier was trained in a standard

supervised fashion. The ROI pixels were then classified

based on their proximity to these color vectors, resulting in

four features (%H, %E, %B, and H/E). Gland formations

are difficult to characterize and extract for analysis.

Therefore, we use a data-driven machine learning

approach to train a model to extract gland and duct for-

mations. Convolutional neural networks (CNN) [11] are

well suited for this task and can be trained directly from

the RGB pixels on a set of images where glands have been

traced to provide the training label. We extracted two

features within the ROI, the number of glands and the

proportion of pixels belonging to a gland. The number of

glands was obtained by counting the number of blobs

returned by connected component analysis on the bina-

rized CNN output. The total number of low- and high-

magnification features is thus 20 ? 4 ? 2 = 26.

The procedure for detection described here does not

detect nonepithelial malignancies such as lymphomas and

carcinoid tumors. The possibility of such nonepithelial

cancers was determined using a rule-based classifier

based on tissue-wide features (i.e., nuclear density and

the ratio of large, medium, and small nuclei). The rule-

based classifier was also trained to detect carcinomas that

are difficult to detect based on the 26 features just

described. The specimens that the system analyzed as

suspicious for carcinoma using the rule-based classifier

were categorized using the term ‘‘caution.’’ Thus, the

system classifies a given tissue image into three cate-

gories: positive, negative, or caution. When the quality of

the input image is inappropriate for analysis as a result of

bad staining (i.e., too weak or too strong) or bad imaging

(i.e., blurring), the system excludes these images as

‘‘unclassifiable.’’ This decision is made automatically by

a rule-based classifier based on the overall color his-

togram and a blurriness detector based on FFT (Fast

Fourier Transform).

Training of the tissue classifier

The difficulty in training a tissue-level classifier is that a

whole-tissue image typically only exhibits cancerous fea-

tures on a small part of the tissue (usually a few ROIs). It is

rare that the entire tissue is visibly cancerous. For a stan-

dard supervised machine learning approach to work, a

panel of experts would need to have each ROI in the

training set labeled as positive or negative. This effort is

feasible for small datasets of only a few hundred tissues;

however, in our study, we analyze tens of thousands of

tissues that expert pathologists have evaluated as ground-

truth specimens at the whole-tissue level (not at the ROI

level).

To overcome this difficulty, we used multi-instance

learning (MIL) [12] for training a multilayer neural net-

work (MLNN) model. In MIL, a whole tissue is repre-

sented by a ‘‘bag’’ of instances (ROIs) and a single label

(the whole-tissue ground-truth label). When training a

positive-labeled tissue example, only the instance (ROI)

252 H. Yoshida et al.

123



generating the largest forward response from the MLNN is

back propagated to adjust the model, accounting for the

fact that only a few ROI within the tissue are positive. In

this way, we were able to train a robust model using a large

training dataset of 26,595 tissues with only tissue-level

annotations [13].

Statistical analysis

We compared the classification results of human patholo-

gists and those of the e-Pathologist software. To compare

the results of the three-tier classification, agreement was

assessed as the percent agreement and kappa coefficients

(j) [14]. Kappa coefficients ranged from 0.00 to 1.00 and

were interpreted descriptively as follows: poor j\ 0.20,

fair j = 0.20–0.40, moderate j = 0.40–0.60, good

j = 0.60–0.80, and very good j = 0.80–1.00.

To calculate the sensitivity, specificity, positive predic-

tive value, and negative predictive value of the images

judged as ‘‘negative’’ by e-Pathologist, we dichotomized

the three-tier classification results as negative for negative

specimen images and as non-negative for positive, caution,

and unclassifiable specimen images. Each parameter was

defined as follows: (1) sensitivity: true non-negative/(true

non-negative ? false negative); (2) specificity: true nega-

tive/(true negative ? false non-negative); (3) positive

predictive value: true non-negative/(true non-nega-

tive ? false non-negative); and (4) negative predictive

value: true negative/(true negative ? false negative). All

statistical analyses were performed using JMP 10.0.0

software (SAS Institute, Cary, NC, USA).

Results

Final diagnoses by human pathologists

The details of the final diagnoses by human pathologists

are summarized in Table 2. Of the 3062 cases, 66.6% were

diagnosed as Group 1 cases (negative for a tumor) and the

remaining cases showed an abnormal finding.

Comparison of three-tier classification results

We compared the three-tier classifications of the human

pathologists and e-Pathologist. The results are shown in

Table 3. The overall concordance rate was 55.6% (1702/

3062). The kappa coefficient was 0.28 (95% CI, 0.26–0.30,

fair agreement). For the negative biopsy specimens, the

concordance rate was 90.6% (1033/1140), but was less than

50% for the positive biopsy specimens. Of the 3062

specimens, e-Pathologist regarded 215 (7%) specimens as

unclassifiable.

Comparison of two-tier classification results

Our primary interest was to determine whether e-Pathologist

could accurately screen specimens without the need for fur-

ther human pathologist review. Therefore, we compared the

two-tier classifications of human pathologists and e-Pathol-

ogist. The results are summarized in Table 4. The sensitivity,

specificity, positive predictive value, and negative predictive

value were 89.5% (95% CI, 87.5–91.4%), 50.7% (95% CI,

48.5–52.9%), 47.7% (95% CI, 45.4–49.9%), and 90.6%

(95% CI, 88.8–92.2%), respectively.

Analysis of false-negative results

False-negative classifications of the e-Pathologist software

are a serious error because a human pathologist might not

review such specimens in the clinical setting. Therefore,

we identified the causes of false-negative classifications in

a detailed case review, as summarized in Table 5 and

Table 2 Summary of the final diagnoses by human pathologists

Final diagnosis Number (%)

Group 1 2039 (66.6)

Group 2 26 (0.9)

Group 3 173 (5.7)

Group 4 22 (0.7)

Group 5 729 (23.8)

Others 73 (2.4)

Lymphoma 39 (1.3)

Carcinoid 9 (0.3)

GIST 9 (0.3)

Atypical lymphoid lesion 8 (0.3)

Plasmacytoma 3 (0.1)

Leiomyoma 2 (0.1)

Anisakiasis 1 (0.03)

Insufficient material 2 (0.1)

Total (%) 3062 (100)

Table 3 Comparison of three-tier classification results between

human pathologists and e-Pathologist

Human pathologists Concordance rate

Positive Caution Negative

e-Pathologist

Positive 658 118 726 43.8% (658/1502)

Caution 22 11 172 5.4% (11/205)

Negative 67 40 1033 90.6% (1033/1140)

Unclassifiable 67 40 108 0% (0/215)

Total 814 209 2039 55.6% (1702/3062)
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Supplementary Table 1. Of the 1140 e-Pathologist speci-

mens classified as negative, 107 (9.4%) had an abnormal

finding. Representative false-negative results are shown in

Fig. 2 (examples of false-positive cases are shown in

Supplementary Fig. 1). Well-differentiated noninvasive

neoplasia (low- and high-grade adenoma/dysplasia and

carcinoma in situ) and poorly differentiated adenocarci-

noma accounted for approximately 75% of the false-neg-

ative cases. Furthermore, 11% of the false-negative results

were for lymphoid lesion specimen images. Of all 47

lymphoma and atypical lymphoid lesion specimen images,

12 (26%) were classified as ‘‘Negative.’’

After the final review of all the discordant cases, we

confirmed e-Pathologist did not identify any neoplasms

missed by human pathologists.

Discussion

The present study is the first attempt to investigate the

efficacy of automated image analysis software (e-Patholo-

gist) for screening gastric biopsy specimens. A total of

3062 specimens were digitized and analyzed, of which one-

third showed abnormal findings. We compared the classi-

fication results between human pathologists and e-Pathol-

ogists. Although the overall concordance rate was as low as

55.6% for the three-tier classification, e-Pathologist could

accurately identify 90.6% of negative specimens. The

results of this first large-scale study of automated image

analysis for gastric biopsy specimen are encouraging.

However, several requirements and limitations should be

considered for the use of e-Pathologist in daily clinical

settings.

In the present study, the prevalence of abnormal findings

exceeded 33%, and included cases with mesenchymal

tumor or a lymphoid malignancy other than epithelial

neoplasm. Thus, these consecutively collected specimens

exhibited a variety of diseases, reflecting the actual clinical

setting.

The overall concordance rate for the three-tier classifi-

cation was 55.6%, and the kappa coefficient was 0.28,

indicating fair agreement. The level of diagnostic agree-

ment among pathologists is substantially higher. Nakhleh

et al. summarized 84 relevant studies and reported a major

discrepancy median of 6.3% (1.9–10.6%, 25th–75th per-

centile) [15]. Studies on diagnostic discrepancies in gas-

trointestinal pathology reported discrepancy rates as low as

1.2–3.1% [16–18]. If we intended to use e-Pathologist in a

clinical setting, without supervision by a human patholo-

gist, discrepancy levels at least as low as those reported

previously should be required. In contrast, approximately

90% of negative cases were accurately predicted. This

result is promising for the use of e-Pathologist as a screener

of specimens without further human pathologist review. In

the area of cytopathology, the AutoPap Primary Screening

Table 4 Comparison of two-tier classification results between human

pathologists and e-Pathologist

Human pathologist

Negative Non-negative Total

e-Pathologist

Negative 1033 107 1140

Non-negative 1006 916 1922

Total 2039 1023 3062

Table 5 Detailed final

diagnosis and classification by

e-Pathologist

Final diagnosis Classification by e-Pathologist Total

Positive Caution Negative Unclassifiable

Group 1 726 172 1033 108 2039

Group 2 18 2 4 2 26

Group 3 96 7 32 38 173

Group 4 18 1 3 0 22

Group 5 595 17 55 62 729

Lymphoma 25 3 8 3 39

GIST 9 0 0 0 9

Carcinoid 7 1 1 0 9

Atypical lymphoid 3 1 4 0 8

Plasmacytoma 1 0 0 2 3

Leiomyoma 2 0 0 0 2

Anisakisasis 1 0 0 0 1

Insufficient 1 1 0 0 2

Total 1502 205 1140 215 3063
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System has received the approval of the United States Food

and Drug Administration for the initial screening and

quality control of cervical cytology slides. This system

shows statistically superior abnormality detection sensi-

tivity to that of the current standard practice of manual

screening. For gastric biopsy specimens, there have been

no comparable data on the sensitivity and specificity of

abnormal finding screening. However, studies of the

diagnostic error in surgical pathology may serve as useful

references. Based on the reported gastrointestinal pathol-

ogy diagnostic disagreement rate of 1.2–3.1% [16–18], a

false-negative rate of 1–5% might be considered as an

interim goal for primary screening. However, there is no

consensus on the acceptable false-negative rate for regular

pathological diagnosis. Various factors complicate this

problem, such as the severity or curability of the disease,

the maturity of the healthcare system, including pathologist

accessibility, and the cultural background of each country.

Nevertheless, with a false-negative rate similar to those

reported for human pathologists, it may be acceptable at

present to use automated image analysis for routine

practice.

In the present study, the prevalence of abnormal findings

exceeded 33%, which was mainly the result of the char-

acter of specialized cancer center hospitals from which the

data were obtained. This relatively high prevalence of

abnormal findings increased the absolute number of false-

negative cases. For a normal prevalence value of 1% for

screening the general population using upper gastroin-

testinal endoscopy [19], the e-Pathologist test, with its 90%

sensitivity and 50% specificity for detection, would per-

form at 99.8% negative predictive value and 1.7% positive

predictive value.

To improve the screening ability of e-Pathologist, the

false-negative classification rate should be reduced. In the

present study, 86% of false-negative cases involved low-

Fig. 2 Representative images of hematoxylin and eosin (H&E)-

stained tissue from false-negative cases. a Poorly differentiated

adenocarcinoma and signet-ring cell adenocarcinoma. b Well-to-

moderate differentiation of tubular adenocarcinoma. c Tubular ade-

noma, intestinal type. d MALT lymphoma. The e-Pathologist

software classified all the cases herein as negative
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grade noninvasive epithelial neoplasia, small amounts of

poorly differentiated adenocarcinoma/signet-ring cell car-

cinoma scattering in lamina propria mucosae, and lym-

phoid lesions, such as MALT lymphoma. These lesions are

difficult to diagnose and exhibit lower interobserver

reproducibility for pathological diagnosis [20, 21].

Machine learning models trained specifically for these

lesions may help reduce the e-Pathologist false-negative

classification rate.

A significant number of cases were deemed ‘‘unclassi-

fiable’’ by e-Pathologist, totaling 7% of all specimens. The

reasons for such classification included poor staining (too

weak or too strong) or imaging problems (blurriness). In

clinical settings, the quality of H&E staining or scanned

digital images can vary, and human pathologists correctly

diagnosed those same specimens. Nevertheless, rejection of

difficult-to-classify specimens is a reasonable way to

increase robustness until a sufficient number of such dif-

ficult cases can be collected to train specific models.

In routine practice, human pathologists need to consider

not only neoplastic disease but also nonneoplastic entities,

including infectious or inflammatory disease. For these

specimens, a pathological report of negative for neoplasia/

dysplasia is insufficient and inappropriate. For example,

characterization of gastritis, intestinal metaplasia. and

atrophy are key reportable features, especially in countries

with a low prevalence of Helicobacter pylori infection.

Pathologists must perform further review of these slides

and make relevant comments on clinical diagnosis. At

present, e-Pathologist cannot meet these requirements, and

further improvements should therefore involve the ability

to recognize nonneoplastic disease. In addition, the present

form of analysis was based on only visible morphological,

textual, and color features. The process of making a

pathological diagnosis requires the integration of a variety

of clinical information and background knowledge. In

cases involving a major discrepancy between clinical

diagnosis and histomorphological findings, most patholo-

gists would carefully consider the cause of the discrepancy

and perform appropriate actions, such as communicating

with an endoscopist, ordering deeper sections, or checking

for misidentification of the specimen. Therefore, for the

benefit of the patient, we must recognize this essential

difference between human pathologist diagnosis and AI-

based automated image classification and carefully con-

sider the regulations and requirements for the use of

automated image analysis in the clinical setting.

In conclusion, although there are some limitations and

requirements for using automated histopathological clas-

sification of gastric biopsy specimens in clinical settings,

the present study shows promising results. Further

improvements in machine learning to reduce false-negative

classification may help realize the potential of automated

screening to aid pathologists in the not so distant future.
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