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I. INTRODUCTION

Histology is the microscopic inspection of plant or animal

tissue. It is a critical component in diagnostic medicine and

a tool for studying the pathogenesis and biology of pro-

cesses such as cancer and embryogenesis. Tissue processing

for histology has become increasingly automated, drastically

increasing the speed at which histology labs can produce

tissue slides for viewing. Another trend is the digitization of

these slides, allowing them to be viewed on a computer rather

than through a microscope. Despite these changes, much of

the routine analysis of tissue sections remains a painstaking,

manual task that can only be completed by highly trained

pathologists at a high cost per hour. There is, therefore, a

niche for image analysis methods that can automate some

aspects of this analysis. These methods could also automate

tasks that are prohibitively time-consuming for humans, e.g.

discovering new disease markers from hundreds of whole-slide

images (WSIs) or precisely quantifying tissues within a tumor.

In this paper, we aim to acquaint the signal processing

researcher with histology and review the current approaches

to the fascinating and important signal processing problems

associated with histology image analysis. Throughout, we

focus on slides stained with the ubiquitous hematoxylin and

eosin (H&E) stain and imaged with brightfield microscopy.

In Section II, we describe how clinical tissue samples are

prepared and processed. Section III presents a workflow for au-

tomated histology analysis and surveys the current approaches

and associated challenges, with a focus on opportunities for

signal processing. We conclude briefly in Section IV.

II. HISTOLOGY: THE PATHOLOGIST’S VIEW

The main goal of the surgical pathologist in a diagnostic

practice is to examine tissue and render a correct diagnosis that

will ultimately translate to a therapeutic intervention for the

patient. The therapeutic response may range from no action,

in the case of a diagnosis of normal or unremarkable, to

close follow-up, local excision, medical treatment only (benign

diagnoses), or radical chemotherapy and/or surgery (malignant

diagnoses).

Figure 1 presents the pipeline from tissue processing to

diagnosis from the perspective of the diagnostic pathologist.

Understanding this process will give the reader an appreciation
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Fig. 2. A large gross specimen (left) is cut into smaller pieces and placed
into cassettes (right) for further processing.

of how images are derived from tissue and the associated

sources of variability, noise, and artifacts; this information is

critical to designing automated image analysis systems. This

portion of the paper is based on standard histology texts [1],

[2], as well as years of experience in the field of pathology.

A. Tissue Collection

The clinical histology process begins when the treating

physician, after assessing the patient by history, physical

examination, and/or radiographic and laboratory studies, deter-

mines that treatment can proceed no further without histology

confirmation. The treating physician then must obtain enough

good-quality tissue to obtain a diagnosis. There are several

possible approaches to tissue collection, including fine-needle

aspiration, needle biopsy, excisional biopsy, or excision of the

lesion in its entirety. The sensitivity (likelihood of getting the

correct diagnosis) and specificity (likelihood of not getting

the incorrect diagnosis) increase from fine-needle aspiration to

excision of the entire lesion. This is because the larger biopsies

preserve more cellular context and allow the pathologist to

examine multiple slides from different areas of the sample.

After biopsy, the pathologist evaluates the tissue on the

macroscopic scale, measuring it and recording a description

of its color and characteristics. For larger tissues (e.g. tumor

resections or colon resections), the tissue must be trimmed to

fit into the tissue cassettes (approximately 10 × 10 × 3 mm)

that will contain it for the subsequent processing steps (Figure

2).

B. Processing

The next step in the diagnostic pipeline is tissue process-

ing, which involves chemically and physically stabilizing the

tissue. The tissue is first immersed into a fixative solution

that is used to stop cells from breaking down and prevent

microorganism growth. In general, tissue is fixed for a few
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Fig. 1. Block diagram of the histology process.

hours (small biopsies) to about 24 hours (large biopsies).

Fixation is critical because poorly fixed tissue leads to poor

tissue sectioning and poor microscopic morphology.

After fixation, the tissue is physically stabilized by one of

several methods (freeze drying, microwave, chemical) with

the end goal of preserving the cellular morphology. The most

commonly employed method involves the use of alcohols and

xylene and is automated in most laboratories: First, the tissue

is dehydrated, which clears the water and aqueous fixative

from it. Next, the tissue is cleared of the dehydrating agent,

leaving the tissue ready for paraffin infiltration. Finally, the

paraffin warms in the processor until it is liquefied, infiltrates

the tissue under vacuum, and then cools so that the tissue

becomes firm. This process takes approximately nine hours

and in many laboratories is run overnight. One of the end

results of processing tissue in this manner is that the tissue

section is slightly smaller than the original fresh or fixed tissue

prior to processing.

C. Embedding

After processing, the tissue is embedded in a block of

support material, as shown in Figure 3. To achieve this, the

tissue is placed on the bottom of a mold and paraffin is poured

over it. The original tissue cassette is placed over the mold and

then placed onto a cooling plate to solidify the paraffin. The

result is a tissue block, tissue that is impregnated with and

surrounded by hardened paraffin. Because the tissue will be

sliced parallel to the cassette, orientation of the tissue during

embedding is key; see Figure 4 for an example.

Fig. 3. (left) Paraffinized tissue is oriented and embedded into a block of
paraffin. (right) Tissue blocks after embedding.

D. Sectioning

Sectioning is cutting thin slices of tissue that are mounted

on microscope slides (Figure 5). This is achieved with a tool

called a microtome, which operates like a deli slicer. This step

can be manual, semi-automated, or automated. For example,

the manual rotary microtome advances the block by a set

amount with each turn of the wheel and thus produces a ribbon

of tissue. Most tissue sections for diagnostic purposes are

cut at 3–4 µm thickness. For certain applications (e.g., silver

Fig. 4. Importance of proper orientation during embedding. (left) Gross
photograph showing an opened enteric duplication cyst (arrowhead) intimately
joined to the bowl (arrow). (right) Histology image of the cyst with normal
bowel (arrow) abutting cyst wall (arrowhead) can only be observed when
slicing occurs perpendicular to the wall.

Fig. 5. (left) During sectioning, the the tissue block is sliced into 3–4 µm
sections, which remain connected in a ribbon. (right) Collecting a ribbon from
the water bath with a glass slide.

staining of kidney biopsies) thinner sections are necessary;

these are more difficult to obtain without damaging the tissue.

Thicker sections tend to make staining dark and obscure

nuclear detail.

These thinly cut sections are floated out onto a water

bath heated to about 10
◦C below the melting point of the

paraffin. This allows dispersion of any wrinkles generated

by the microtome blade at sectioning. Once the sections are

cut and floated, they are placed onto 25 × 75 × 1 mm glass

microscope slides.

E. Staining

At this point, the tissue slices are nearly invisible under a

light microscope so they must be stained to create contrast.

Most staining procedures in the laboratory, aside from im-

munohistochemical ones (IHC, antibody-based), use chemicals

or dyes that will bind or have affinity for certain components

of the cells and extracellular components. The chemical prop-

erties of these dyes produce the visual appearance that is seen

under the microscope.

The most widely used stains for both diagnostic and re-

search histology are hematoxylin and eosin. Hematoxylin

stains nucleic acids and appears blue/purple, while eosin

stains proteins and appears pink/red when visualized under

a brightfield microscope. So for most tissues, cell nuclei are
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blue, while cytoplasm can vary from clear to red to purple

depending on its constituents. The reason that H&E staining

of tissue has persisted for decades as the primary tissue stain

in diagnostic and research pathology is that these stains attach

themselves to almost every cellular component, allowing for

visualization of whole cells and all tissue components. Another

reason is that these stains provide excellent contrast between

cellular constituents by having chemical properties that pro-

duce colors at opposite ends of the visual spectrum. These

color perceptions are helpful in diagnosis, though not entirely

necessary, since, even in grayscale, distinctions between and

within tissues can be made and diagnoses rendered.

F. Visualization

Once stained, the slides must be visualized (Figure 6).

A growing trend in pathology is to digitize slides so that

pathologists can make diagnoses based solely on the digital

image [3], [4]. The advent and refinement of whole-slide

scanners have made rapid scanning and high-resolution WSIs

commonplace. These systems are now offered by many com-

panies and offer spatial resolutions using the 40× objective

of approximately 0.23–0.25 µm/pixel. Storing digital images

would be an attractive alternative to storing glass slides, since

glass slides take considerably more space, can be damaged or

lost, and fade over time, but currently institutions must keep

their glass slides and tissue blocks for at least 10 years.

Fig. 6. (left) Histology slides after staining. (right) Visualization setup
including a microscope with attached camera and desktop computer.

Despite these advantages, in most medical centers the

pathologists still rely on visualization of the slide through a

microscope. According to pathologists, a microscope offers

faster panning, faster focusing, and an intangible sense of

being closer to the tissue. This last advantage is more difficult

to explain, but the sense is that the eye can capture greater

detail through the microscope than from a digital image on

a monitor. Even so, studies have shown no appreciable dif-

ference in diagnoses rendered by pathologists using digitized

images compared to diagnoses rendered using a microscope

[5]–[8].

G. Analysis

The goals of the pathologist in the clinical domain versus

the research domain can be very different; we discuss each

separately.

Clinical practice. In the clinic, the goal of the pathologist

is to render accurate and timely diagnoses. For a given

slide, they analyze a wide variety of characteristics including

tissue architecture, cellular color and texture (Figure 7), and

cellular/nuclear morphometry (Figure 8), combined with years

of experience, to produce diagnoses. Computer algorithms

may automate some of these tasks. For example, in cytopathol-

ogy, automated methods for screening Pap smear slides limit

the number of cytotechnologists needed to complete these

screenings. In the future, we could hope to automate or semi-

automate histology screenings, e.g., of the gastrointestinal

tract. Such automation could greatly reduce healthcare costs

and potentially provide pathologists more time for challenging

cases and important research.

Fig. 7. Examples of important visual cues in histology. (left) In this teratoma
section, color makes distinguishing cartilage (blue/gray, arrow) from bone
(pink/red, arrowhead) easy, even at low magnification. (right) In this liver
section of a child with mitochondrial disorder, texture is important. Under
high magnification, cell borders are accentuated and cytoplasm shows tiny
red granules representing abnormal mitochondria (arrow).

Fig. 8. Examples of the importance of nuclear shape and distribution in
colon screening. (left) In normal colon tissue, nuclei are regular in size and
distribution around the colon gland (arrow). (right) In colitis, nuclei become
much less regular (arrow).

Research. In the research domain, pathologists may aim to

quantify differences between histology samples in terms of a

variety of parameters including cellular/nuclear morphometry,

amount of stroma (the connective tissue cells that support

the function of cells around them) present, types of tissue

present, etc. Although some basic analyses can be readily

performed using available image analysis software (e.g. Photo-

shop, ImageJ, MetaMorph), most quantification in pathology

remains semiquantitative: staining intensity may be rated as

low, moderate, or strong; the amount of a certain cell type

may be visually estimated as 0-25%, 25-50%, or >50% of

the total population; and morphometric descriptions of cells

are limited to semantic descriptions such as larger, thickened,

pleomorphic, or cellular.

For some studies, this type of analysis is not accurate

enough, because many biologically or clinically relevant fea-

tures cannot be easily captured and processed by the human

visual system. For example, given two tumors, how would a

pathologist support the claim that the average nucleus size is



4

different between them? Similarly, how can pathologists quan-

tify, by eye, complex patterns such as chromatin distribution?

Signal processing solutions to these quantification challenges

would be extremely useful technology for researchers in

almost any area of investigation that analyzes and quantifies

observations from tissue specimens.

H. Sources of Variability

There are three main sources of variability in a histology-

based diagnosis: biological variability, inter-observer variabil-

ity, and technical variability. Biological variability encom-

passes the normal variability among people and the myriad of

pathological processes that can affect any tissue group. Due to

biological variability, slides generated from the same tissue in

different patients can look different. Inter-observer variability

contends that two pathologists can look at the same tissue and

render different interpretations. Finally, technical variability

is the variability in a slide’s appearance due to how it was

prepared. We focus here on the details of technical variability.

In the best case, the slide that is generated from the

above tissue processing pipeline shows tissue that is properly

oriented, sectioned, stained, and coverslipped. Unfortunately,

each of these steps can introduce variability into the final

product, and differences in protocol between labs can greatly

alter the appearance of even biologically similar tissue sam-

ples. Some variables such as fixation, specimen orientation in

the block, and microtome sectioning are heavily dependent

on human skill, and even though tissue processing, staining,

and coverslipping are largely automated, they still depend

on human monitoring, machine maintenance, and solution

preparation.

For automated analysis systems, each source of variability

presents a significant obstacle. Tissue that is poorly fixed will

not cut well and has a blurry appearance, removing important

cues such as edges. Tissue that has been dried out will be

shrunken and have poor morphology and stain contrast, similar

to poorly fixed tissue. Sectioning artifacts are some of the most

commonly encountered and can produce folds in the tissue,

chatter artifacts from a dull blade (seen as alternating light

and dark regions), or missing pieces of the tissue.

Staining is a critical source of variability because it pro-

duces the color and contrast on the slide (Figure 9). Many

different formulations of H&E exist, each producing a slightly

different appearance. The stain can also be applied in different

manners. In progressive staining, the sample remains in the

hematoxylin solution for a specified amount of time to render

appropriate staining. In regressive staining, the sample remains

in the hematoxylin long enough to overstain, and is then

destained back to the desired contrast with an acid alcohol

solution. Furthermore, both hematoxylin and eosin solutions

can have their staining capabilities altered by prolonged stor-

age, contamination by other reagents or water, precipitation,

and changes in pH. Staining artifacts can include light staining

with either hematoxylin or eosin, precipitated hematoxylin

(seen as blue chunks under the microscope), or lack of staining

with either hematoxylin, eosin, or both. That these artifacts are

well-understood by pathologists is another reason why H&E

remains so popular.

Fig. 9. Example of staining variability. Both left and right images are of
bone, but the color of the bone varies from pink (left) to purple (right) due to
staining variability. Such color variations present a challenge for automated
analysis systems.

III. AUTOMATED HISTOLOGY IMAGE ANALYSIS

In this section, we survey the current methods and signal

processing challenges in automated histology image analysis.

We aim to cover a broad range of signal processing topics,

but we restrict the review to slides stained with the com-

mon and inexpensive H&E stain and imaged with brightfield

microscopy. This is because H&E images are prevalent in

clinical and research settings and because this focus allows

us to survey a more coherent group of methods; we argue

that the approaches to a single task, e.g. nucleus detection,

vary considerably across staining and imaging modalities. This

section is organized around a generalized block diagram of a

hypothetical histology analysis workflow, shown in Figure 10.

For each block in the diagram, we describe the signal pro-

cessing challenge and review the current approaches in the

literature.

We are aware of three previous reviews of automated his-

tology analysis. The first, [9], deals with analysis of histology

images including H&E images as well as fluorescence and

multispectral images. It covers preprocessing, segmentation

of glands, nuclei, and other subcellular components, feature

extraction, dimensionality reduction, and classification. The

second, [10], tackles the broader field that the authors term

computational pathology, which includes histology as well

as cytology analysis. It discusses issues of data and ground

truth collection including variation among experts and publicly

available datasets and describes automated analysis primarily

from a statistical pattern recognition viewpoint. The third, [4],

discusses histology WSI informatics, including quality control

during image acquisition, feature extraction, region of interest

(ROI) detection, and visualization.

While our survey does not include every paper on automated

histology, we aim to give the reader a sense of what has

been tried for the various histology analysis tasks we present.

We have given priority to recent journal papers except where

necessary. Also note that we do not focus on results of or

comparison between methods. This is because, at this stage,

automated histology research is diffuse: most methods are

tailored to private datasets and there is no consensus on what

quantitative metrics should be reported. Moving toward shared

datasets and metrics will be a critical step forward in the field.
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Fig. 10. Block diagram of a generic automated histology analysis workflow. Most current works address only one or a few of these blocks.

A. Preprocessing

Histology images exhibit the same types of artifacts and

noise as any digital microscopy image, as well as some

novel ones introduced by tissue processing. These can affect

analysis unless removed with appropriate preprocessing. A

good overview of noise and artifacts in digital microscopy

and methods to correct them are discussed in [11]; in this

section we focus on the issues specific to H&E images of

tissue processed as described above.

Stain normalization. As discussed in Section II-H, staining

variations affect the appearance of histology images; such

variations are problematic for automated analysis because

color is a critical feature in histology. Stain normalization

is the process of taking two H&E images that have staining

variation between them and removing this variation. Doing

so has been shown to improve histology image segmentation

[12], [13]. One approach to stain normalization is to use color

normalization techniques from photography such as histogram

equalization; e.g., in [12] the rank statistics of the input image

are scaled to match those of the reference image separately

in each color channel. The method has been successfully

used in other automated histology work, including [14]. Such

methods are especially suited for cases where the images to be

normalized show approximately the same tissue, e.g., in the

case of serial sections such as in [15].

An approach more specifically tailored for H&E image

normalization is to first separate the image into H-only and E-

only images (sometimes called color deconvolution), then nor-

malize these images separately and recombine. This approach

better handles cases where, e.g., the hematoxylin stain is too

intense but the eosin stain is too weak. When the stain colors

are known, the color deconvolution method in [16] solves the

separation. When they are not known, the problem becomes

more challenging. The approach taken in [13], [17], [18] is

to estimate the stain colors and deconvolve as before. In [17],

the stain colors are estimated using the fact that all stained

pixels will lie on a wedge in color space; this is a special

case of the non-negative matrix factorization problem studied

elsewhere. Reference [18] uses expectation-maximization to

find clusters in chromaticity space that correspond to stain

colors, and [13] finds pixels stained with only one stain via

supervised classification and uses their mean color to estimate

the stain colors. A different approach is to estimate the single-

stain images directly; e.g. [19] searches for an H-only image

that removes most of the contrast from the red channel of the

input, based on the assumption that most this contrast comes

from the nuclei, which are stained only by hematoxylin.

These separation methods all produce qualitatively fair

results, but it is unclear which comes closest to the cor-

rect separation. We have recently released a stain separation

benchmark dataset based on chemical destaining [20]; our

comparison indicates that the method of [17] is superior to

that of [19], but we did not evaluate any of the more recent

approaches.

Tissue deformation. Because the tissue slices are very

thin, they can fold over on themselves during processing,

creating a tissue area that is doubly thick. The authors of [21]

proposed detecting these folds by their high color saturation,

and the authors of [22] devised a method for selecting a good

saturation threshold for this detection, but, to our knowledge,

no work addresses correcting tissue folds digitally. In the same

vein, differences in the water content of different tissues can

cause them to pull apart when the tissue is dehydrated during

processing; the result is white cracks that are not biologically

meaningful. Again, we are aware of no work that addresses

correcting these artifacts.

Stitching. High-resolution WSIs are often acquired by

imaging several strips or tiles separately, which then must be

stitched together to create the final image. Because the offsets

between the strips or tiles are known, adequate stitching results

are often provided by the microscope/scanner software or can

easily be achieved with simple compositing techniques. A

more challenging stitching problem occurs when a large gross

specimen must be sectioned and imaged as several pieces. In

[23], the authors describe a GUI that allows stitching of high-

resolution images of such tissue fragments via hand-selected

control points and linear transformation. We are not aware of a

work that addresses histology image stitching with automatic

control point selection or explores a richer set of transforms.

B. Registration

There are a variety of H&E histology image registration

tasks, depending on the image modalities involved. In this

section, we review three common registration tasks involving

H&E images.

H&E to H&E. Given serial sections of a tissue sample,

each stained with H&E, one aim is to register them to create

a tissue volume. This 3D reconstruction can more fully show

the extent of a pathological process or show relationships of

tissue types to one another. This is a difficult registration task:

each slice undergoes nonrigid deformation during processing

and may exhibit cracking or folding artifacts. The standard
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approach is to register in a coarse to fine manner as in

[15], where the authors register images of serial tissue slices

to explore the 3D shape of cervical tumor fronts using a

series of three registrations: (1) a rigid registration using

a frequency domain method, (2) a polynomial registration

using control points automatically selected with correlation

matching on small patches, and (3) a registration consisting

of unconstrained local displacements regularized by local

curvature. An approach more tailored to histology is to use

specific anatomical landmarks; e.g., [24] registers based on

blood vessels.

H&E to another stain. One may also want to register

images of two adjacent tissue slices that use different stains;

e.g. H&E to IHC stains. This task is difficult because, by

design, the stains will give contrast to different structures.

One way to overcome this obstacle is with the selection of

an appropriate pixel-wise similarity measure, e.g. the authors

of [25] register H&E images to a variety of IHC images using

mutual information and the elastix software package [26].

Another approach is given in [27], where distinctive landmarks

such as blood vessels are segmented and used to compute the

registration.

H&E to MRI. Compared to histology, magnetic resonance

imaging (MRI) has low contrast and resolution, but has the

advantage of being noninvasive; registering histology images

to MR images could help train radiologists, provide better non-

invasive diagnoses, and enable the development of MRI-based

CAD tools [28]. This task is difficult because MR images

are 3D while histology images are 2D, MR images are lower

resolution than histology images, and because the contrast in

MR and histology images is generated in different ways. When

considering MR images collected in vivo, registration is even

more difficult because surgical extraction and histology pro-

cessing can greatly deform the tissue. In [29], histology images

are registered to in vivo MR images via two intermediates,

the block face photo and the ex vivo MR image, with the

idea that the deformations between these intermediate stages

are less drastic and therefore easier to estimate. Each step

of the registration is completed using mutual information as

the metric and thin plate splines to deform the image with

control points initialized by hand. In [28], histology images

are registered to MR slices to create a histology volume, then

the MR volume is registered in 3D to the histology volume

and resliced. The process is iterated until convergence.

In each of these scenarios, comparison between methods

is difficult because no ground truth exists. This problem is

intensified in the first two scenarios because qualitatively good

registrations may actually remove true differences between the

adjacent tissue slices being registered.

C. Display and Annotation

A fundamental problem in the display of histology images

is that they can be huge, easily several GB for uncompressed

WSIs. As a result, commercial slide scanners often save

images in a proprietary format for which the manufacturers

provides free viewing software, e.g. Aperio ImageScope. For

the researcher interested in reading the images themselves, one

solution is Openslide [30], a C library that aims to allow slides

from any vendor to be opened, manipulated, or converted to

other formats. One format that OpenSlide can convert to and

is a natural fit for large histology images is the Deep Zoom

(DZI) format, which creates from a large image a tiled image

pyramid, allowing real-time viewing of images of arbitrary

size, even streaming over the Internet. One example of this

approach can be found in [31], which involves displaying

WSIs from The Cancer Genome Atlas dataset [32] on the

Internet using the similar Zoomify format. The system in

[33] is designed specifically for viewing histology images and

avoids the time-consuming calculation of image pyramids by

creating the current view in real time from image tiles.

Beyond simply viewing large histology images, researchers

may want to collect expert annotations for them for the

purpose of training and testing their analysis algorithms. In the

simplest case, the expert pathologist may label an entire image,

e.g., as normal or cancer. For more fine-grained labeling, Ape-

rio ImageScope, Sedeen Viewer, and Cytomine [34] provide

freehand annotation tools for large images. The next step for

histology image display and annotation is systems allowing

the pathologist to interact with automated analyses, teaching

and correcting the system in real time. Some efforts have been

made in this area: after the automated segmentation in [35],

experts can click on nuclei to indicate that they either need

to be split or merged, and Cytomine is beginning to include

collaborative proofreading of automated cancer segmentation.

D. ROI Identification

A single biopsy can generate dozens of high-resolution

WSIs, however, often, only a small region of this vast quantity

of tissue is diagnostically useful. There is, therefore, a need

for fast computational methods that can identify these ROIs

in while-slide histology images. Once identified, these regions

can be passed to a pathologist or to subsequent steps of a

larger automated histology pipeline.

One approach is to simply downsample the input; e.g. [36]

uses a low-resolution input to extract features based on color

and sparse coding of subpatches. These features are classified

via support vector machine (SVM) to detect ROIs. Another

approach is to process the image at multiple scales, such as

in [37], where WSIs of breast cancer tissue are recursively

partitioned via color clustering at increasingly fine resolutions

to efficiently identify tissue vs. non-tissue and lesion vs.

normal regions. Yet another approach is to detect objects such

as glands and identify ROIs based on these [38]. There are

generally fewer objects on a slide than pixels, so processing

objects can be more efficient than processing pixels.

E. Nucleus Detection

Nuclei are prevalent in histology images and their size,

shape, distribution, and texture are relevant for many analysis

tasks such as identifying inflammation, identifying and grading

cancer, and determining tissue type. Therefore, locating nuclei

is a critical step in many histology analysis systems. Nucleus

detection in histology images is challenging because nuclei

can be tightly clustered (Figure 11) and vary in size, shape,
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Fig. 11. Clustering of nuclei makes nucleus segmentation challenging (all
panels adapted with permission from [35]). In this grayscale H-only image,
the closely packed and overlapping nuclei (left), cannot be separated with
threshold-based clustering, resulting in large connected components (yellow
cluster, middle). The method in [35] breaks apart these clusters via graph cuts,
resulting in good separation of nuclei (right).

and color depending on their cell type. Even within a single

cell type, the stain may not penetrate all nuclei equally, leaving

some darkly stained and others lightly stained. Finally, human

nuclei are around the same scale as the thickness of the tissue

slice (5 µm), meaning that, for some nuclei, only a portion

appears on the slide.

Basic approaches to nucleus detection involve color clus-

tering of the pixels; e.g. the work in [39] uses clustering in

the Lab color space to identify four subcellular components,

namely nuclei, cytoplasm, neuropil, and background, and [40]

uses expectation-maximization clustering to identify regions

of lymphocyte nuclei, stroma, cancer nuclei, and background.

Using only local information omits the strong prior knowl-

edge we have about nucleus size and shape. Approaches that

move beyond local information include [36] and [40], which

use active contours to refine their initial color segmentation,

and [14], which uses a graph cut based on color and Laplacian

of Gaussian features. Similarly, the authors in [35] use Lapla-

cian of Gaussian filtering with clever scale selection to detect

nucleus seed points followed by local maximum clustering

to form a rough segmentation. Another approach is to frame

nucleus detection as a classification problem; e.g. in [41],

an SVM is trained to detect rectangular windows containing

nuclei; the features used are pixel intensities and Laplacian of

Gaussian edge intensities.

Finally, several methods use heuristics to separate clustered

nuclei, including the curvature-based reasoning in [14] and

concavity detection in [40]. The method in [35] separates

nuclei via graph cuts (Figure 11). These approaches achieve

impressive-looking results even when nuclei are clustered, but

large, hand-annotated datasets will be necessarily to compare

them and understand their strengths and weaknesses.

F. Cell Classification

Most histology images contain cells of several types; mov-

ing beyond nucleus detection to cell classification can provide

valuable diagnostic information. For example, the method

in [42] classifies cells as centroblasts or normal, which is

useful for cancer grading. It uses color and Fourier-based

texture features with quadratic discriminant analysis as the

classifier. The nuclei found in [40] are classified as belonging

to lymphocytes or other based on their color.

Other work focuses on detecting mitotic cells. Notably, [43]

presents a contest dataset for this task which comprises 50

images collected on each of two different slide scanners as

well as a multispectral scanner. The highest-scoring approach

at the time of the contest was based on a deep convolutional

neural network [44].

G. Multicellular Structure Detection

Cells in histology images are not solitary, rather they are

part of organized structures (e.g., glands, acini). Detecting and

analyzing these structures is a unique challenge in histology

image analysis. Because there are many types of multicellular

structures, these tasks tend to be more varied and application-

driven than the ones we have discussed before, hence we give

only a few examples here.

Glands are a multicellular structure common to many tissue

types (e.g. salivary, breast, prostate, pancreatic, sinonasal,

gastrointestinal tissues), and changes in their morphology can

be an important indicator of disease. In histology images,

most glands appear as clear areas surrounded by cells. The

method in [38] leverages the clear areas to find seed pixels

and then uses region growing to segment the glands. Going

further, [38] classifies glands as malignant or normal based

on their size with a Markov random field (MRF) to impose

spatial smoothness. In [45], a graph is built on top of a colon

tissue image with nodes corresponding to either nucleus or

non-nucleus objects. The colon glands can then be described

by subgraphs around a user-selected point at their center.

Matching these subgraphs to reference ones from healthy or

diseased glands allows classification of the input image.

Some approaches to segmenting multicellular structures

treat them like nuclei, e.g. [46] segments lymphoid follicles,

which are organized groups of lymphoid cells, using active

contours. Detected regions are split based on curvature and

false detections are further trimmed based on color.

H. Tissue Segmentation

Tissues are organized groups of cells. Identifying them

in an image is important for diagnosis or giving context

to subsequent analyses. The wide variety of tissues and the

complexity of their appearances makes this a challenging

problem. The method in [47] uses local pixel intensities

as features and is able to segment bone, cartilage, and fat

tissue in teratoma tumor images. We presented a segmentation

method [48] inspired by the lack of edges in histology images.

It uses local color histograms rather than edge-based features

and outperforms generic methods for tissue segmentation. The

authors in [49] showed that segmentations seeking homogene-

ity of objects such as cells and crypts, rather than simply pixel

homogeneity, perform well on colon tissue.

Some tissue-level analyses amount to diagnoses; e.g. in [50],

small subregions of a prostate tissue image are classified as

normal, stroma, or prostatic adenocarcinoma. Normal regions

are those around glands, which are simple to segment because

of their white centers. Stroma and cancer regions are distin-

guished using Haralick texture features. Another group [51]

used a graph-based methodology to segment regions of cancer

in colon images, where features were based on the frequency

of co-occurrence of nodes.



8

I. Diagnosis

Automated diagnosis is essentially image classification:

given a histology image, what disease does it represent? As

such, most approaches follow the paradigm of feature extrac-

tion followed by classification. The authors in [52] address

the problem of classifying subtypes of renal tumor in expert-

selected ROIs. They use Fourier shape descriptors extracted

from binary masks of nuclei, cytoplasm, and unstained regions

as features and a series of SVM classifiers arranged in a

directed acyclic graph to distinguish between three types of

renal cell carcinoma and one benign tumor. Based on which

shape descriptors are most distinguishing during classification,

the authors can identify which shapes are indicative of each

tissue type. In [53], hand-selected ROIs of breast tissue

are classified as normal, in situ cancer, or invasive cancer.

They use generic features including local binary patterns, co-

occurence matrix statistics, and curvelet coefficient statistics.

Classification proceeds in two stages, first a random subspace

ensemble of SVMs, then a random subspace ensemble of

neural networks. Each stage may either classify an image

or reject it as too difficult. Images rejected from the first

stage move on to the second, while images rejected from

the second stage are viewed by a human expert. The method

achieves accuracy of over 99% with a 1.94% rejection rate.

The recent conference paper [54] moves away from hand-

designed features by learning features from the data using

sparse representation.

Grading is diagnosing the severity of a disease. Established

grading scales are useful guides for algorithm development,

and automated grading promises increased repeatability over

human grading. The method in [36] grades breast cancer by

analyzing the size, shape, and texture of the nuclei inside

an ROI using a Bayesian classifier. Another approach is to

include some notion of cellular components without specifi-

cally segmenting nuclei. In, [55] greyscale thresholding and

morphology are used to find blobs that are then classified

based on intensity and size into three different nucleus types

and stroma. The image is then segmented into areas of high

and low nucleus density. Features including nucleus count,

nucleus spacing, and tubule count are extracted for the high

density areas only. The images are finally classified into grade

one, two, or three with a quadratic classifier. In [39], Haralick

features are extracted from cytoplasm and neuropil regions and

used to determine the differentiation level of neuroblastoma tu-

mors. The classification step is an ensemble of seven different

classifiers and dimensionality reduction methods combined via

weighted voting. The method handles WSIs by splitting them

into small tiles that are processed in parallel as well as first

classifying a downsampled version of the tile and using higher

resolution data only if the classification certainty is low.

Finally, generic features can be used. In [56], prostate cancer

is detected and graded based on color and color co-occurrence

features and a random forest classifier. In [57], two different

lung cancer subtypes are differentiated in images of tissue mi-

croarrays and hand-selected ROIs from full slides. The red and

blue channels of the image are histogram-stretched to enhance

the H&E contrast, and then Haralick and densitometric (e.g.

mean pixel value, pixel center of mass, etc.) features are used

in a boosting decision tree, achieving accuracy over 90%.

IV. CONCLUSION

Histology is a critical tool in medicine and therefore au-

tomated histology analysis could have a profound effect on

healthcare quality, availability, and cost. At the same time,

the field provides a host of fascinating signal processing

challenges. How can tissue folds be detected and corrected?

How can images of deformable tissue sections be registered

to recover the 3D shape of a tumor? What features are needed

to explain the complex architecture of tissues such as skin?

How can we detect rare cell types with a scarcity of labeled

data? And how can we run any of these methods efficiently

on huge WSIs?

We hope this discussion has served both as a useful primer

and as a call to action. Much has been accomplished in this

field, but these systems are far from clinical acceptance. To

get there, we need algorithms that demonstrate robustness

and that solve relevant problems in medicine. Robustness

will come from sharing datasets and algorithms so that they

can be truly validated and compared. Relevance will depend

on the continued efforts of pathologists and engineers to

collaborate on defining and refining algorithms. Given the

impact histology image analysis can make on the future of

healthcare, it is well worth the effort.
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