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Automated Hypothesis Tests and Standard Errors for. Nonstandard Problems

Frederic M. Lord

Abstract

A general computer program is described that will compute asymptotic

standard errors and carry out significance tests for an endless variety

of (standard and) nonstandard large-sample statistical problems, without

requiring the statistician to derive asymptotic standard error formulas.

The program assumes that the observations have a multinormal distribution

and that the null hypothesis to be tested has the form g = 0 where g

is some function (to be specified by the user) of means, variances, and

covariances. Only minor reprogramming is required to replace either or

both of these assumptions.
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Automated Hypothesis Tests and Standard Errors for Nonstandard Problems*

Frederic M. Lord

Introduction

A general computer program can be written that will compute asymptotic

standard errors and carry out significance tests for an endless variety

of (standard and) nonstandard large-sample statistical problems, witftout

requiring the statistician to derive asymptotic standard ',tor formulas.

This report describes one such computer program (currently available from

the writer).. The program, written by M. Stocking, is described starting

on page 10.

As presently implemented, the program assumes that the observations

have a multinormal distribution and that the null hypothesis to be tested

has the form t = 0 where t is some function (to be specified by the user)

of means, variances, and covariances. As will be pointed out, only minor

reprogramming is required to replace either or both of these assumptions.

The present program is not set up to deal with vector hypotheses of

the form g = 0 . Possible program changes to accommodate vector hypotheses

will be obvious to the statistician (see Moran, 1970, section 3).

Without user action, the program accommodates two samples, each

composed of any number of observations on a maximum of 10 random variables.

More samples (up to 20) with fewer random variables can be accommodated if

the user sets all population covariances between variables from different

samples equal to zero. In addition, the maximum of 10 random variables

per sample can be increased, if desired.

*Research reported in this paper has been supported by grant GB-32781X
from National Science Foundation.
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Shenton, Bowman, and Sheehan (1971) desc77ibe computer procedures much

more powerful and more versatile than those described here, with the

exception that their program deals with univariate problems only.

Asymptotic Hypothesis Testing

Consider a sample consisting of a matrix X of observations drawn

from the distribution f(XI g,e) where A is a vector of "nuisance"

parameters mathematically independent of t and of each other. We wish

to test the composite hypothesis H : = 0 .
0

Let i and A be the

maximum likelihood estimates of g and 0 obtained without the restric-

tion g = 0 . H0 can usually be tested by computing Erei where 8A

is the asymptotic sampling variance of I with I and A substituted for

the unknown parameters g and A . The rejection region for H
0

con-

sists of one or both tails of the asymptotic distribution of VaA under

H
0

. Uhder regularity conditions (Cramer, 1946, section 33.3), this

distribution is normal with zero mean and unit variance.

In a well-defined sense (Wald, 1943; Moran, 1970), the test just

described is asymptotically optimal (locally asymptotically most powerful).

If i and 0 are consistent estimators but not maximum likelihood esti--

mators, the test will have the same significance level, but the power of

the test (locally) may be low. A regularity condition worth noting is

that g = 0 must not be a boundary of the range of E .

Input

In the present implementation two alternative methods are provided

for data input. If the sample means m s fin ) and the sample variance-
-
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covariance matrix S e IIsij11 are available, these may be used as input.

Otherwise, the raw observations are input and m and S automatically

computed.

In order to use the packaged computer program, the statistician

must specify what function E _ E(T) or E E61,0 is to be tested, where

E is differentiable and T is a vector whose elements T
g
a Tg(µ1E) are

differentiable functions of the mean vector p = Ipil and the variance-

covariance matrix E E haijII of the multinormal population. (In some

problems- -for example, in testing hypotheses about correlation coefficients--

it is often convenient for the statistician to work with r rather than

with p and E only.) Note that I = E(2) or E = E(11,) and that

g
= T

g (µ,2) where each "hat" denotes a maximum likelihood estimate (for

a rigorous treatment, see Zehna, 1966). -In the present implementation,

the statistician specifies the function E simply by writing a FORTRAN

arithmetic assignment statement. On the left of the equal sign he writes

XIHAT and on the right he writes down the explicit arithmetic expression

A A
for E(T) or for E(P,E) . He inserts this FORTRAN statement at a pre-

arranged point in a subroutine.

If a = m and 2 = s , as in many simple problems, the user simply

provides the explicit arithmetic expression for E(i,2) and the computer

proceeds directly tc compute I 8A t/8A and finally the percentile

at which i/8A falls in a standard normal distribution: If the user

defines E in terms of the functions Tg ) then he must supply FORTRAN

arithmetic assignment statements defining each Tg as a function of

other T and the sufficient statistics m and S .
g ,;4
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If there are some restrictions on the parameters (other than that

0 under H0 then a # m or E / S . Since g and E are esti-
-

mated without the restriction t = 0 , a and E will usually have a

simpler mathematical form than would estimates obtained with this restric-

tion. Whenever Oi / mi or aij / , the statistician must insert in

the subroutine arithmetic assignment statements defining ai or as

functions of m and S or if convenient as functions of ii 's and 2 's.

If formulas for efficient estimators of g and E are not known to

the statistician, he may substitute other consistent estimators, in which

case (under regularity conditions) the significance test may be a con-

servative one in the sense that it rejects the null hypothesis less often

than it should.

Automated Procedure

.
The program input described in the preceding section enables the

computer to compute t for any values of m and S . The main virtue of

the program is that the statistician does not have to derive an explicit

formula for the asymptotic sampling variance of

because the computer uses the general formula

4 61
SR E E T-- cov(milmi)"j

I . This is avoided

a a+EEEE Ts--- cov(sgh,sii)
ghij gh ij

where cov denotes a covariance with sample estimators substituted for

(1)

population values. The required derivatives are approximated numerically
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by the computer (see Description of Computer Package, p. 11), using only

the formula for , without need for symbolic differentiation (the user

should check that t is differentiable however). The necessary sampling

covariances are automatically computed from standard formulas built into

the computer program:

cov(m.1,m.j )

cov(sgysid = (8 6, + 8 8 .)/N
gi gj h3.

}

where N is the number of observations, and either aii = sib or else

an arithmetic assignment statement defining a. has been provided in

(2)

the program by the statistician.

If some parameters and statistics other than means, variances, and

covariances are to be used and some distribution other than multinormal

is to be assumed, it is only necessary to provide appropriate formulas

for computing the maximum likelihood estimates and to insert appropriate

formulas for sampling covariances in place of (2).

Illustrative Problems

The computer program has been checked out by applying it to numerical

examples testing some two dozen different null hypotheses for which the

numerical answers could be verified. A partial listing may suggest to

the reader the scope of the program. Primes are used to distinguish param-

eters of two different populations; ai denotes the standard deviation of

variable i .
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In a Monte Carlo study, 1000 values of t/8i and their probability

levels were computed using the program described, where

131634 -- 613624
1St.*

34 1313/ "1-'34 624

The time required on a 360/65 for all 1000 was about 80 seconds.
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Description of Computer Package

Martha Stocking

1. General Description

The package that performs the automated hypothesis testing consists

of a main program and six subroutines. The package is written in FORTRAN IV

in 'double precision and when compiled on an IBM 360/65 using the G compiler,

takes 56K. This size will be increased if the user either enlarges the

number of variables in a sample (see section 5) or modifies subroutine

XIHAT substantially (see section 4).

LASAHT

IN

COVM

COVS

MATOUT

FILL

Main program for Large Sample Hypothesis Testing. LASAHT

reads input, computes derivatives, and calls subroutines

COVM, COVS, IN, MATOUT, and XIHAT.

Subroutine called by LASAHT if input is raw data to read

data and compute means and covariances.

Subroutine called by LASAHT to compute first sum in

equation (1).

Subroutine called by LASAHT to compute second sum in

equation (1).

Subroutine called by LASAHT to print upper triangular

matrices.

Subroutine called by MATOUT.

XIHAT Subroutine in which user will supply formulas for E and

any restrictions (see section 4).



2. Computation of Partial Derivatives

The partial derivatives are computed numerically. All elements in

are held constant except one. This element is increased by some increment,

and a value for I is computed; the element is then decreased from its

original value by the same increment, and another value of E is computed.

The derivative is approximated as the difference between these two values

of I divided by twice the increment.

In computations with fixed word length, the optimum size of the

increment is not known. A repetitive procedure is used in which the size

of the increment is decreased up to the point where the difference between

two successively computed approximations to the derivative increases (due

to truncation error). The first value used for the increment is 0.001.

In successive repetitions, this is decreased by a factor of 10, up to

a maximum of five times. If the differeAces between successive approxima-

tions do not increase, the last derivative computed is used.

3. Input, Output, Program Messages for User

Input

The description of the input for one or two samples with a maximum of

10 variables each is simple, and will be discussed first. The description

for more samples with fewer variables is more complex and will be discussed

later. The following is a description of the input cards required. The user

must follow the normal FORTRAN convention of right-adjusting all values within

the specified fields.
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CARD 1 FORMAT(16I5)

cols. 1-5 NSAMP The number of independent samples of data.

Must be one or two.

CARD 2 FORMAT(10A8)

cols. 1-80 TITLE Title of first sample

CARD 3 FORMAT(1615)

cols. 1-5 NOBS1 Number of observations in first sample

cols. 6-10 N1 Number of variables in first sample, maximum

of 10

cols. 11-15 INPUT = 0 , input for first sample is raw data

= 1 , input for first sample are sample means

and sample variance-covariance matrix.

CARD 4 FoIlwr(10k8)

cols. 1-80 FMT

If INPUT = 0

CARD 5+ FORMAT(FMT)

cols. 1-80 RAW(I),(I=1,...,N1) Observations on N1 variables, one record

per set of N1 observations, with each set

of observations beginning a new record.

Punched according to format specified

on card 4.

Variable format for reading data for first

sample. Will be used for either raw data or means

and variance-covariance matrix, depending upon

cols.11-15 of card 3. Must specify a floating-

point format.

t
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If INPUT = 1

CARD 5+ FORMAT(FMT)

cols. 1-80 X(I),(I=1,...,N1) N1 sample means for first set of data, punched

according to format specified on card 4.

CARD 6+ FORMAT (FMT)

cols. 1-80 S(I,J),(I=1,...,N1; Upper triangle, including the diagonal,

J=II...,N1) of the sample variance-covariance matrix.

This triangular matrix must be punched

row by row (each row begins with the

diagonal element) with each row

beginning a new record according to

format specified on card 4.

If cols. 1-5 of card 1 = 2, i.e., there are two samples, then cards 2

through 6+ are repeated for the second sample. The variable names which

change, and their meanings are:

NOBS2 - number of observations in the second sample

N2 - number of variables in the second sample, maximum of 10

X2 - means for second sample

S2 - variance-covariance matrix for second sample.

All other variables are reused for the second sample.

It is possible to increase the number of samples up to a maximum

of 20, but one must also reduce the number of variables per sample, and

specify that the covariances between variables from different samples are

zero. The input cards remain essentially the same. In particular, card 1,

NSAMP, must still be either one or two.



Suppose we have two samples, each with one variable, i.e., two uni-

variate samples. If NOBS1 = NOBS2 exactly the same results can be ob-

tained from the program by considering the data as one bivariate sample

with s
12

= 0 . The input cards for two univariate samples with sample

means and covariances as input would be similar to

Card 1 cols. 1-5 NSAMP = 2

Card 2 cols. 1-80 TITLE

Card 3 cols. 1-5 NOBS1

cols. 6-10 N1 = 1

cols. 11-15 INPUT = 1

Card 4 cols. 1-80 FMT = (8E10.4) (say)

Card 5 cols. 1-10 X(1)

Card 6 cols. 1-10 S(111)

Card 2* cols. 1-5 TITLE for 2nd sample

Card 3* cols. 1-5 NOBS2

cols. 6-10 N2 = 1

cols. 11-15 INPUT = 1

Card 4* cols. 1-80 FMT = (8E10.4)

Card 5* cols. 1-80 X2(1)

Card 6* cols. 1-10 S2(111)

*Indicates second sample.

Considering these data as one bivariate sample we would have

Card 1

Card 2

Card 3

cols. 1-5 NSAMP = 1

cols. 1-80 TITLE

cols. 1-5 NOBS1

cols. 6-10 N1 = 2
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Card 4 cols. 1-80 FMT = (8F10.4)

Card 5 cols. 1-10 X(1)

cols. 11-20 X(2)

Card 6(a) cols. 1-10 5(1,1)

cols. 11-20 S(1,2) = 0

Card 6(b) cols. 1-10 5(2,2)

Further examples might be of some use here. Suppose the user has

four samples of the same size, each with two variables. This can be

handled by the program by considering these dits to be one sample

(NSAMP = 1) with eight variables and the following sample variance-

covariance matrix

all 512

s2
2

0

0

633

0

0

s44

0

0

0

0

s55

0

0

0

0

s56

566

0

0

0

0

.0

0

0

0

0

0

0

577 578

88

Or we can consider these data as two samples (NSAMP. 2) with 4 variables

each and obtain the same result. The sample variance-covariance matrix

for the first sample would be

11

522

o

o 0

533 5314-

%4

S
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and for the second sample

s*
1

s*
1

0 01 2

0-22 0

s*
s3434

s1

* = second sample

By extension of these examples, it is clear that without changing the

program, a maximum of 20 univariate samples can be handled if they are

all of the same size. In this case, we would treat this as two (N11011° = 2)

samples, each with 10 variables. The sample variance-covariance matrix

would be similar for each sample--the main diagonal would contain the vari-

ances, and all off-diagonal elements would be zero.

Output

The output from the program is largely self-explanatory. A title

is printed at the top of the first page. The number of samples (NSAMP)

is also printed, and will be either one or two. It will not reflect the

actual number of samples if the user has taken advantage of the facilities

described in the input section to expand the number of samples. Also,

the time and date of the run are printed (see section 6).

For each of two possible samples there is printed the title, number

of observations, number of variables, and the variable INPUT. In addition,

to provide the user with means of checking his input, the sample means,

and upper right triangle of the sample variance-covariance matrix is

printed.
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The estimated means and variance-covariance matrix are then printed.

These values will be identical to the sample values except for those

values for which the user has provided formulas for computing different

estimates in subroutine XIHAT (see section 4). This output is also

provided for user verification of his formulas.

The value of I , computed with the estimated values, is then printed.

In addition, the partial derivativesof g with respect to the means and

variance-covariance matrices are printed for each sample.

Finally, g is printed again, along with var(i) , a^ ,

'Era^
'E
and the percentile at which ita^ falls in a standard normal

distribution.

Messages

The program detects two conditions that will result in the printing

of a message:

1. If NSAMP is greater than two, the actual value of NSAMP that

the user supplied is printed and the program exits.

2. The program uses the value of the last derivative computed as

the partial derivative, and continues on to the computation of the next

partial derivative. If a derivative is obtained from computation with the

smallest increment, a message is printed.

4. Subroutine XIHAT

Subroutine XIHAT is the subroutine in which the user inserts coding for

his specific null hypothesis g = 0 . If the user wishes to specify

estimates other than sample means and variance-covariances, he also inserts

the coding in this subroutine.

411
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Variables containing information transmitted to this subroutine as

arguments are as follows (these names differ slightly from the corresponding

variable names in LASAHT):

Variable name Dimension Contents

X 10 Sample means for first sample

S 10 by 10 Sample variance-covariance matrix for first

sample

X2 10 Sample means for second sample

S2 10 by 10 Sample variance-covariance matrix for second

sample

N Number of variables in first sample

N2 Number of variables in second sample

NOBS Number of observations for first sample

NOBS2 Number of observations for second sample

NSAMP Either 1 or 2, same variable as card. 1

of input

Variables containing information transmitted from this subroutine as

arguments are as follows:

M 10 Estimated means for first sample

10 by 10 Estimated variance-covariance matrix for

first sample

M2 10 Estimated means for second sample

$2 10 by 10 Estimated variance-covariance matrix for

second sample

XIHAT The value of computed in this subroutine
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The FORTRAN statements down to 9999 transfer the sample means and

covariances into the estimated means and covariances. This insures that

the estimated means and covariances will be the same as the sample values

unless modified by the user.

If the user wishes to specify other estimates for some or all of

the means and covarianceslhe must insert the FORTRAN code to do that

operation between the first two asterisk cards. He must follow the

following rules:

1. In referring to any element of any covariance matrix, the

second subscript must be greater than or equal to the first,

i.e., only the upper right triangle is to be worked with.

2. The estimates supplied must appear to the left of an equal

sign.

3. The first line of FORTRAN code must not be a format statement,

and must have the statement number 100.

4. Statement numbers 9998 and 9999 must not be used.

The user must insert the FORTRAN code for the computation of t

between the second set of asterisk cards. This code may consist of

a number of statements. The user may refer to any variable previously

defined. The following rules must be followed:

1. In referring to any element of any variance-covariance matrix,

the second subscript must be greater than the first.

2. Statement numbers 9998 and 9999 must not be used, and statement

numbers used in specifying estimates (if any) must not be

repeated.
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3. If no estimates were specified, the first line of code must

not be a format statement, and must have the statement number

100.

4. The variable XIHAT must appear to the left of an equal sign.

5. Instructions for Program Changes

Increasing the Number of Variables

The following vectors in the main program LASAET have dimensions which

are dependent upon the number of variables in each sample. Let nl indi-

cate the maximum number of variables in the first sample, and n2 be the

maximum number in the second sample.

MSAVE(ni), $SAVE(nilni), M(ni), S(nilni), X(ni),

M2SAVE(n2), $2SAVE(n2,n2), M2(n2), $2(n2,n2), S2(n2,n2), X2(n2)

ni(ni + 1) n2(n2 + 1)

DER(max( , ))

2 2,
TAU(ni + n2 + n1 + n2)

DOUTImax(niln2), max(ni,n2))

INDEX(max(niln2))

The equivalencing of TAU to MSAVE, M2SAVE, $SAVE, and $2SAVE is arranged

so that MSAVE(1) is TAU(1), M2SAVE(1) is TAU(ni + 1), $SAVE(1,1) is

TAU(ni + n2 + 1) and $2SAVE(1,1) is TAU(ni + n2 + 14. + 1).

The user may change the maximum number of variables by using the above

formulas for determining the correct dimension and equivalence statements.

There are only three restrictions: (1) the maximum number of variables

must be the same for both samples; (2) the variable IDEM must be set


