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Abstract

Human gene regulatory networks (GRN) can be difficult to interpret due to a tangle of edges

interconnecting thousands of genes. We constructed a general human GRN from extensive

transcription factor and microRNA target data obtained from public databases. In a subnet-

work of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells,

we benchmarked automated algorithms for identifying core regulatory genes (transcription

factors and microRNAs). Among these algorithms, we identified K-core decomposition,

pagerank and betweenness centrality algorithms as the most effective for discovering core

regulatory genes in the network evaluated based on previously known roles of these genes

in MCF-7 biology as well as in their ability to explain the up or down expression status of up

to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organiz-

ing the GRN in an easier to interpret layered hierarchy where more influential regulatory

genes percolate towards the inner layers. The integrated human gene and miRNA network

and software used in this study are provided as supplementary materials (S1 Data) accom-

panying this manuscript.

Author Summary

A gene regulatory network (GRN) represents how some genes encoding regulatory mole-

cules such as transcription factors or microRNAs regulate the expression of other genes.

Researchers commonly study GRNs involved in a specific biological process with the aim

of identifying a few important regulatory genes. In higher organisms such as humans, a reg-

ulatory gene regulates multiple target genes and correspondingly any gene is regulated by

multiple regulatory genes. Due to such multiplicity of interactions, a GRN usually resem-

bles a tangled hairball wherein it is difficult to identify few most influential regulatory

genes. In this study, we show that network analysis algorithms such as K-core, pagerank

and betweenness centrality are useful for identifying a few important or core regulatory

genes in a GRN, and the K-core algorithm is also useful for organizing regulatory genes in a

hierarchical layered structure where the most influential genes in a GRN are found within

the innermost layer or core. These few core regulatory genes determine to a large extent the
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expression status of the remaining genes in the network. We illustrate a pragmatic applica-

tion of this technique to GRNs reconstructed from genome-wide gene expression measure-

ments in the MCF-7 human breast cancer cell line.

Introduction

Gene regulatory networks (GRN) are model representations of how genes regulate the expres-

sion levels of each other. In transcriptional regulation, proteins called transcription factors

(TFs) regulate the transcription of their target genes to produce messenger RNA (mRNA),

whereas in post-transcriptional regulation microRNAs (miRNAs) cause degradation and

repression of target mRNAs. These interactions are represented in a GRN by adding edges link-

ing TF or miRNA genes to their target mRNAs. Since these physical interactions are fixed, we

can represent a GRN as a static network even though regulatory interactions occur dynamically

in space and time.

A GRN provides a systemic view of gene regulation by coordinated activity of multiple TFs

and miRNAs and thus serves as a medium for understanding the mechanism of gene regula-

tion. In a biological process specific genes are switched on (activated) or off (repressed). Analy-

sis of GRN can help in identifying important or core regulatory genes (TFs and miRNAs) that

play significant role in controlling the specificity of gene expression during a biological process

[1,2]. These core regulatory genes are candidates for further experimental investigation and

potential targets for therapeutic intervention [3–5]. Analysis of GRNs also enables quantitative

modeling of gene expression which can be used for rational design of molecular approaches to

target specific biological processes [6] and infer new biology [7,8].

While the analysis of GRNs is well described in bacteria and yeast [9,10], similar analysis in

higher organisms such as humans is challenging for a variety of reasons. Firstly, our knowledge

of regulatory interactions between genes is incomplete, which is further complicated by the fact

that the interactions may vary across different tissues [11]. Secondly, GRNs in higher organ-

isms are highly complex as each regulatory molecule has dozens to thousands of targets and

correspondingly a gene is usually targeted by multiple regulators. There is also cross-regulation

and auto-regulation among genes. Such multiplicity of interconnections and loops makes the

human GRN resemble a tangled hairball which is more challenging to analyze than a yeast

gene network [12,13]. Lastly, gene expression is regulated at multiple levels in higher organisms

and thereby transcriptional and post-transcriptional regulations represent only a fraction

of total regulatory apparatus [14]. Hence gene expression cannot in principle be entirely

explained using static GRNs.

As a result, although many studies construct GRNs in higher organisms, especially in

human, methodologies for downstream analysis of GRNs are not well established [15]. For

instance, a recent review reported that network analysis based methods for prioritizing candi-

date genes for disease gene discovery are still in infancy in contrast to gene set analysis based

methods such as Gene Ontology and GSEA [16]. Research involving human GRNs has used a

variety of approaches for qualitative analysis such as identifying important hubs, network

motifs, hierarchical organization, pathways, etc. [17–20]. While this is useful for gaining intui-

tive insights into the functioning of a GRN, it is important to have robust and well character-

ized automated and quantitative analysis methods for gleaning useful information from

human GRNs [21,22].

In view of the above challenges, this study aims to describe automated algorithms for ana-

lyzing human GRNs and organizing them into a meaningful structured hierarchy which is
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easier to analyze and interpret. We describe (1) the construction and analysis of an integrated

network of human genes and miRNAs, (2) benchmarking algorithms for identifying core regu-

latory genes, and (3) algorithms for hierarchical organization of GRNs. We also discuss some

practical considerations in the analysis of high throughput gene expression datasets in the con-

text of GRNs.

Results

Construction of an integrated general human gene and miRNA network

We constructed an integrated general regulatory network of all human genes and miRNAs

using extensive experimental TF target data and in silicomiRNA target data derived from pub-

lic databases (Fig 1). The general human TF-miRNA-mRNA network presents a useful base

for understanding the structural characteristics of human GRNs and deriving subnetworks

involved in specific biological processes. For instance, in this study we derived the network of

genes responsible for estrogen response of MCF-7 breast cancer cells as a subnetwork of the

general network.

The nodes in our general human TF-miRNA-mRNA network represent 21,940 genes and

1,867 mature miRNAs based on gencode version 17 [23] and miRBase version 19 [24] annota-

tions respectively. Out of 21,940 genes, 1,374 were marked as TFs and the remaining 20,566

were designated as non-regulatory genes which we call messenger RNAs (mRNAs) for simplic-

ity. Genes were identified as TFs based on gene ontology annotation with term GO:0003700

“sequence-specific DNA binding transcription factor activity” and information obtained from

TRANSFAC database [25].

The edges in the network comprised a total of 2,245,197 interactions between TFs, miRNAs

and mRNAs. Out of the 1,374 TFs in the network, experimentally validated targets for 329 TFs

were obtained from ENCODE and HTRIdb databases [26,27]. For the remaining 1,045 TFs no

target information was included. Although regulatory interactions between genes are cell type

specific, we ignored this specificity to include all known interactions in all cell types. There

were in total 466,534 TF-target interactions including 36,801 TF-TF (including self-regulation),

429,733 TF-mRNA, and 9,883 TF-miRNA interactions. In addition, there were 1,768,780

miRNA-target interactions including 174,936 miRNA-TF and 1,593,844 miRNA-mRNA inter-

actions. These miRNA targets were identified by combining information from four different in

silico databases as described in the Methods section.

Node degree distributions. To get a systematic understanding of the general human TF-

miRNA-mRNA network, we examined the degree distribution of the network, i.e., the statistical

distribution of the number of incoming and outgoing edges in a node. The overall network had

a multimodal degree distribution (Fig 2a) which prompted us to separately analyse the degree

distributions of different types of nodes and edges in the network (Fig 2b–2f). Most regulatory

interactions were best fitted by an exponential distribution (r2 > 0.7; Fig 2b, 2c, 2e and 2f)

implying that a molecule is more likely to regulate or be regulated by a few other molecules

rather than many molecules simultaneously. A notable exception was the out-degree of TFs

(Fig 2d), implying that TFs usually target a large number of genes (Table 1). Most mRNAs

were regulated by several TFs and miRNAs (median 17 TFs, 76 miRNAs). TFs have a slightly

larger number of regulating molecules (median 25 TFs, 111 miRNAs). Notably, miRNAs were

usually regulated by a small number of TFs (median 3 TFs), whereas they in turn regulate a

large number of TFs (median 74) and mRNAs (median 595.5). Furthermore, some TFs target a

large number of molecules as indicated by high mean values of TF->mRNA (1377.35), TF-

>miRNA (83.75) and TF->TF (195.75) interactions although the corresponding median
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values are lower. Despite data incompleteness, these observations are in agreement with similar

patterns reported in C. elegans gene network analysis [12].

Node degree distributions correlate with gene functions and expression. We selected

500 nodes with highest in-degrees and 500 nodes with lowest in-degrees from the general

human TF-miRNA-mRNA network for functional analysis. 500 genes is a reasonably large

number to obtain statistical significance in gene set analysis [28] and represents 2.5 percent of

the total number of nodes. Gene ontology analysis using DAVID [29] reported “transcriptional

regulation” as the most enriched function for the 500 highest in-degree genes (139/500 genes,

FDR 5.5e-11) and “nucleus” as their most prominent cellular compartment (205/500 genes,

FDR 1.4e-19). In contrast, the 500 lowest in-degree genes were significantly enriched with “G-

protein coupled receptors” (176/500 genes, FDR 6.9e-123) lying in the “cell membrane” (247/

500 genes, FDR 2.0e-22) and participating in “cell surface receptor linked signal transduction”

(203/500 genes, FDR 5.8e-73). The results were similar when the analysis was repeated on 1000

highest and lowest in-degree nodes.

We used BioGPS [30,31] to study the expression profiles of these genes in 84 different

human tissues. The low in-degree genes had a significantly lower absolute expression level

across all tissues as compared to the high in-degree genes (Fig 3a). We also looked at tissue spec-

ificity of gene expression using a specificity measure (SPM) described by Xiao et al. [32]. The

SPM of a gene in tissue t is a number in the range 0 to 1.0 calculated as SPMt ¼ xt

ffiffiffiffiffiffiffiffiffiffiffiffi

X

T

t¼1
x2t

s,

where xt is the gene’s expression level in tissue t and T is the total number of tissues. We chose

SPMt>0.5 as indicative of tissue specificity which implies that the expression in tissue t out-

weighs the combined expression in all other tissues. Moreover, following Xiao et al. [32] we

Fig 1. Integrated human transcriptional and post-transcriptional GRN. The network contains a total of
1867 miRNAs and 21,940 genes, including 1374 TFs and 20,556 non-TF genes (or mRNAs for simplicity).
The numbers on the edges denote the total number of interactions between different types of nodes.

doi:10.1371/journal.pcbi.1004504.g001
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Fig 2. Degree distribution of the general human TF-miRNA-mRNA network over (a) all nodes, (b) mRNAs, (c,d) TFs (in, out degrees) and (e,f)
miRNAs (in, out degrees), (g,h,i) regulation of TFs, mRNAs andmiRNAs by TFs, (j,k) regulation of TFs andmRNAs bymiRNAs.

doi:10.1371/journal.pcbi.1004504.g002
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merged similar tissues into an integrative tissue (such as merging monocytes, B cells, T cells and

peripheral blood in a single tissue called “Blood”) to account for the fact that spiking of gene

expression occurs simultaneously in similar tissues. Thus the 84 tissues were squashed into 12

integrative tissues. 422 (84%) out of 500 high in-degree genes had tissue specific expression

while in comparison only 150 (30%) out of 500 low-in-degree genes were tissue specific (Fig

3b), indicating that high node in-degree is associated with tissue specificity of gene expression.

We also analysed the BioGPS expression profiles of top 52 transcription factors which have

an out-degree of more than 4000 and observed that 45 TFs (86%) were expressed in a tissue

specific manner with 35 of them (67%) being highly expressed in the blood and the immune

cells (Fig 3b).

Inferring the properties of complete human GRN by extrapolation. Our general human

TF-miRNA-mRNA network contains only 10–15% of TF-target interactions expected in

the complete network since out of more than 1300 TFs, only 120 TFs have been ChIPed in

ENCODE and there is only limited target information for another 209 TFs in HTRIdB.

We extrapolated the properties of the complete human GRN from the general trends

observed in our partial network. We studied the evolution of network properties as ChIP

Table 1. Statistics of degree distribution for various interactions in the integrated human GRN.

Interaction Type Min Max Mean Median

TF! TF 1 918 195.75 74

TF TF 1 80 27.06 25

TF! mRNA 1 11357 1377.35 3

mRNA TF 1 94 21.55 17

TF! miRNA 1 343 83.75 60.5

miRNA TF 1 74 9.39 3

miRNA! TF 1 595 99.45 74

TF miRNA 1 595 131.73 111

miRNA! mRNA 1 5741 893.41 595.5

mRNA miRNA 1 773 99.06 76

doi:10.1371/journal.pcbi.1004504.t001

Fig 3. Relationship between a node’s in or out-degree in the integrated human TF-miRNA-mRNA network and its expression characteristics in
BioGPS (a) absolute expression level, (b) tissue specific gene expression.

doi:10.1371/journal.pcbi.1004504.g003

Automated Identification of Core Regulatory Genes in Human

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004504 September 22, 2015 6 / 28



experiments were progressively added. A ChIP experiment being added could be for a new TF,

i.e., for which there is no existing target information in the GRN, or for an existing TF but in a

new cell type so that there will be some additional outgoing edges for the TF. As ChIP experi-

ments were added for new TFs the shape of the out-degree distribution of TFs did not change

(Fig 4a) but the total number of edges in the network increased linearly (Fig 4b). As a conse-

quence, the distribution of the in-degree of mRNA nodes and the location of the abrupt “drop”

in number of nodes linearly increases with the number of TFs Fig 4c and 4d. The results sug-

gest that as the number of TFs is increased, a fixed proportion of mRNAs in the GRN receive

additional incoming edges resembling a network percolation like dynamics. Fig 4e shows a

comparative plot of the theoretical cluster sizes obtained from random networks with succes-

sively higher probability of edges (denoted by p) between the nodes. Note that when a certain

threshold number of TFs is reached, a giant cluster is expected to emerge within the network.

In contrast, adding ChIP experiments for existing TFs contributed little to increase the number

of edges in the network (Fig 4f) as the number of targets of a TF reached saturation after a

handful of ChIP experiments (Fig 4g). From these trends we extrapolate that a complete inte-

grated human GRNmight contain ~5 million TF-target interactions. While a few hub nodes

may have more than 750 incoming edges, a majority of genes might have approximately 250

incoming edges (Fig 4h).

Benchmarking algorithms for identifying core regulatory genes

The general human TF-miRNA-mRNA network includes all known genes and interactions.

However, the entire network of genes is not simultaneously active in a single cell. During a bio-

logical process certain genes are switched on (activated) and others are switched off (repressed)

in order to produce the right repertoire of cellular products required in the process. Each bio-

logical process is governed by some core regulatory genes (TFs and miRNAs) that control the

expression of a large number of downstream genes (mRNAs) to produce a specific repertoire

of gene products. In this section we study gene networks active in specific biological processes

and use network analysis algorithms for identifying their core regulatory genes.

Construction of MCF-7 gene network. We studied the network of genes that respond to

estrogen treatment in the MCF-7 breast cancer cell line. After searching through public data-

bases for appropriate human datasets where high quality gene expression, transcription factor

binding and interventional data are available, we narrowed our interest to the MCF-7 cell line

which is a model for hormone-responsive breast cancer [33]. Treatment of MCF-7 cells with

17-β estradiol (E2 or estrogen) drives the expression of thousands of genes mediated by the

estrogen receptor (ER) and leads to extensive cell proliferation. We studied the network of

genes that are differentially expressed in MCF-7 upon E2 treatment using four different public

datasets present in NCBI’s Gene Expression Omnibus (GEO) reporting high throughput gene

expression in hormone starved (Control) vs. estradiol treated (E2) MCF-7 cells (Table 2).

The treatment protocols were similar in all four datasets except for higher concentration

of E2 used in GSE11324 and two different sample collection times of 12hrs (GSE11324,

GSE11352) and 24hrs (GSE42619, GSE51403). In GSE11352 where both 12 and 24hr time

points are reported, we observed that the list of differentially expressed genes (DEGs) at 12hrs

was largely a subset of the list of DEGs at 24hrs and the directions of fold change were exactly

the same between these two time points (see S1 Text). The technology platforms varied

between two different microarrays (Affymetrix, Agilent) and RNA-seq (Illumina). Two experi-

mental datasets, GSE11324 and GSE51403, showed higher sensitivity than the others, reporting

8,180 and 7,792 DEGs respectively at 0.05 FDR, and 3,362 and 4,094 DEGs respectively at

0.001 FDR (Fig 5a). These two experiments together included most of the DEGs found in the
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Fig 4. Evolution of the integrated human TF-miRNA-mRNA network with increasing number of ChIP’ed transcription factors and cell types in
which transcription factors have been ChIP’ed. As more TFs are ChIP’ed, while the shape of TF out-degree distribution remains the same (a), a
proportionate number of edges are added to the network (b). Addition of these new edges leads to a linear increase in the in-degrees of mRNA nodes both for
average in-degree and high in-degree mRNAs (c,d). This is similar to percolation dynamics where the frequency of both average and large size clusters
increases as an increasing number of lattice spaces are filled up (e). ChIP of the same TFs in more cell types adds fewer new edges to the network (f) and the
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other two experiments (see S1 Text and Fig 5a). Hence we chose to use the union of DEGs in

GSE11324 and GSE51403 at 0.001 FDR as starting DEG list. Although the overlap of gene lists

between the two datasets was low (30%) at 0.001 FDR, relaxing the FDR to 0.05 in the compari-

son dataset increased the overlap to more than 60% (Fig 5a). Thus using a stringent FDR of

0.001 limited us to a higher quality DEG list. This list consisted of a total of 5,736 molecules

including 462 TFs, 58 miRNAs and 5,216 mRNAs (Fig 5b).

Next, we derived the network of these 5,736 DEGs by taking this subset from our general

human TF-miRNA-mRNA network. All 5,736 nodes and all the edges interconnecting them

were considered. Out of the 462 TFs, only 106 TFs had one or more known targets in the net-

work. The remaining 356 TFs either did not have any target information in ENCODE and

HTRIdB or none of their known target genes were within the MCF-7 estrogen response

network.

Identification of core regulatory molecules in MCF-7 response to estrogen. In order to

identify the core regulators (TFs and miRNAs) in MCF-7 estrogen response GRN, we applied

various strategies for ranking regulatory molecules (106 TFs and 58 miRNAs). Researchers

usually look at most differentially expressed regulators or differentially expressed regulators

with the most number of targets in the list of differentially expressed genes (i.e., regulators with

maximum out-degree in the GRN) or regulators with maximum fold enrichment of differen-

tially expressed (DE) targets in the data computed as [(#target genes that are DE)/(#DE genes)]

/ [(#target genes)/(#all genes)]. In addition, we used various network analysis based methods to

rank the regulators, including maximum in-degree, centrality measures (closeness, between-

ness), pagerank, and K-core. The top 20 ranked regulatory molecules identified by each strat-

egy are shown in Table 3.

We used three different criteria to evaluate the effectiveness of various strategies towards

identifying core regulators of the MCF-7 estrogen response GRN: (i) randomization test, (ii)

literature evidence, and (iii) quantitative modeling of gene expression.

Randomization test for core regulators. We performed a randomization test to deter-

mine whether the core regulators of the MCF-7 estrogen response GRN identified by a ranking

strategy were selected by chance. The randomization test evaluates the null hypothesis that the

core regulatory molecules were selected due to the characteristics of the general TF-miRNA-

mRNA network and not specifically for the MCF-7 ER network. In case the null hypothesis

holds, further evaluation of whether the core regulators play an important role in regulating

the MCF-7 estrogen response GRN will not be meaningful as the same set of core regulators

will be reported by the ranking strategy for any biological process.

We generated 10,000 networks by randomly sampling nodes from the general TF-miRNA-

mRNA network maintaining the same number of nodes in each randomly sampled network as

TF nodes (g) with a plateau reached beyond 10 cell types. Shown in (h) is an extrapolation of mRNA in-degree if all known TFs in the human genome (~1400)
were to be ChIP’ed.

doi:10.1371/journal.pcbi.1004504.g004

Table 2. Public MCF-7 gene expression datasets downloaded from NCBI’s Gene Expression Omnibus (GEO) database.

Category GEO Series ID Platform Description Reference

Datasets for building MCF-7 gene network GSE11324 Affymetrix HG U133 plus 2.0 Control vs. 100nM E2 treatment for 12 hrs. [34]

GSE11352 Affymetrix HG U133 plus 2.0 Control vs. 10nM E2 treatment for 12 hrs. [35]

GSE42619 Agilent HG G4112F 4x44K Control vs. 10nM E2 treatment for 24 hrs. [36]

GSE51403 Illumina HiSeq 2000 RNA-seq Control vs. 10nM E2 treatment for 24 hrs. [37]

doi:10.1371/journal.pcbi.1004504.t002
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the MCF-7 estrogen response GRN. During random sampling we also maintained the same

proportion of TFs (462 of which 106 have known targets), miRNAs (58), and mRNAs (5216)

as the MCF-7 estrogen response GRN. In each randomly sampled network we used the above-

mentioned strategies for ranking genes and checked the coefficient of determination R2 (square

Fig 5. MCF-7 estrogen response gene network. (a) Differentially expressed genes with FDR < 0.001 were
selected from two high quality datasets GSE11324 (microarray) and GSE51403 (RNA-seq). A significant
number of genes were common between the two datasets, near about 70% if a FDR cutoff of 0.05 were to be
used as shown by dotted ellipses. The union list between GSE11324 and GSE51403 was selected for
network construction. The union list also had a good overlap with another dataset GSE11352. (b) The final
MCF-7 network consisted of 5736 nodes including 462 TFs, 58 miRNAs and 5216 mRNA genes. The
numbers on the edges denote the total number of interconnections between various types of nodes.

doi:10.1371/journal.pcbi.1004504.g005

Table 3. Top 20 regulatory molecules identified by various ranking strategies in the MCF-7 estrogen
response gene regulatory network.

Ranking Strategy Top regulatory molecules (ranked 1 to 20 from left to right)

Most differentially expressed
regulators

hsa-miR-941, GATA4, PGR, SIM1, CXCL12, hsa-miR-653, hsa-miR-
489, EGR3, SOX3, HEY2, MYBL1, hsa-miR-548M, TMEM229A,
FOXE3, FOXC2, CREB3L1, GRHL3, MYB, hsa-miR-623, hsa-miR-
1231

Maximum out-degree MYC, ELF1, TAF1, E2F6, E2F1, HDAC2, EGR1, CHD2, GATA2, USF1,
RAD21, IRF1, GABPA, FOXA1, AR, SMC3, SRF, RFX5, GATA3,
ZNF143

Maximum target fold
enrichment

ESR1, STAT2, TP63, hsa-miR-4800-5P, GATA3, HIF1A, NFYA,
TFAP2C, IRF1, SREBF1, GTF2F1, ATF3, BHLHE40, hsa-miR-4640-
3P, RFX5, PBX3, SMARCC1, E2F1, USF2, FOXA1

Maximum in-degree PURB, HNRNPD, NFAT5, ZBTB4, CHD2, STAT3, HMGB1, NAA15,
ILF3, CREB1, FOXN2, NCOA3, GABPB1, HBP1, HIF1A, AFF4,
ZNF143, ELK4, KLF10, ZNF367

Maximum closeness
centrality

MYC, ELF1, TAF1, E2F6, E2F1, EGR1, HDAC2, CHD2, GATA2,
RAD21, USF1, IRF1, AR, GABPA, FOXA1, SMC3, GATA3, YBX1,
SRF, ZNF143

Maximum betweenness
centrality

MYC, E2F6, ELF1, YBX1, E2F1, STAT3, GABPA, CHD2, EGR1, ESR1,
TAF1, SRF, ZNF143, RAD21, FOS, ELK4, GATA2, AR, TFAP2C,
JUNB

Maximum pagerank MYC, MYB, ATF3, RUNX3, BRCA1, PPARA, ESR1, SMAD7, CXCL12,
ASCL1, LMO2, CDKN1A, E2F1, TCERG1, SOX9, TP53, ETS2,
SMAD3, TFAP2C, MEIS2

Innermost K-core MYC, ELF1, TAF1, E2F6, E2F1, HDAC2, EGR1, CHD2, USF1, RAD21,
IRF1, GABPA, SMC3, SRF, RFX5, GATA3, ZNF143, YBX1, USF2,
STAT3

doi:10.1371/journal.pcbi.1004504.t003
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of sample correlation coefficient) between the average rank of a regulator in a randomly sam-

pled network (if it were present in a randomly sampled network) and its rank observed in the

MCF-7 estrogen response GRN using the same strategy (Figs 6 and 7). Except for “most differ-

entially expressed regulators”, all other strategies for ranking genes could be evaluated by this

method. Ranking of regulators based on maximum out-degree and closeness centrality was

very similar in MCF-7 estrogen response GRN and randomly sampled networks (R2 > 0.9 in

Figs 6 and 7). Rankings based on other strategies were mildly correlated. Thus the randomiza-

tion test favored other ranking strategies over maximum out-degree and closeness centrality.

Literature validation of core regulators. We evaluated the biological relevance of core

regulatory molecules identified by a ranking strategy to the MCF-7 estrogen response GRN by

searching for evidence in the published literature. We used Google Scholar to quantify the

number of publications in which a regulatory molecule has been cited in the context of estrogen

stimulation of MCF-7 (see Methods). Based on this quantification we ranked all the regulatory

molecules present in the MCF-7 ER network in descending order of the number of associated

publications (see S1 Text for the full list). For instance, the gene ESR1 (Estrogen Receptor) was

ranked 1st with 84,700 associated publications. We then summed up the ranks of all top 20 reg-

ulatory molecules identified by a ranking strategy to produce its “literature validation score”, so

that a lower scoring ranking strategy was considered better. The scores of various ranking strat-

egies are shown in Table 4. In comparison, selection of any 20 regulators at random produced

literature validation scores with a mean of 1349.8 and standard deviation 160.5 over 1000 ran-

dom trials. The regulatory molecules identified using betweenness centrality and pagerank

algorithms were found to have better literature evidence as compared to the other ranking

strategies. Maximum out-degree and K-core measures also identified regulatory molecules that

are well-known in the literature. However, regulatory molecules with maximum in-degree or

that were most differentially expressed had poor literature validation.

Modeling of gene expression. We investigated whether the core regulators identified by a

ranking strategy could explain the expression levels of remaining genes in the GRN. Recent

studies on quantitative modeling of gene expression have attempted to model real valued log

fold change values [38,39]. However, we observed a fair amount of biological variance in log

fold change measurements. Between the two high quality gene expression datasets GSE11324

and GSE51403 used to derive our MCF-7 estrogen response GRN, the log fold change measure-

ments were only a moderately correlated (Pearson coefficient r = 0.80 using FDR<0.001, and

r = 0.663 using FDR<0.05) (Fig 8). However, the direction of gene expression was largely con-

sistent in the two datasets (97% consistency using FDR<0.001, and 87% consistency using

FDR<0.05). In order to minimize the effect of biological variation on prediction accuracy, we

focused on binary classification of genes into up or down expressed categories as in some previ-

ous studies [9,40] instead of predicting real valued log fold changes.

We used the core regulators identified by a ranking strategy to model the expression of all

other genes (called target genes) in a GRN. Only the edges directly connecting core regulators

to target genes were considered in the model. Let there bem core regulators and n target genes.

In the model a target gene i2[1,. . .,n] is represented by an input-output pair (Xi,yi) where Xi ¼
ðx1i ; . . . ; xmi Þ is am-dimensional vector describing the regulation of the target gene by core reg-

ulators such that x
j
i ¼ 1 if there is an edge in the network connecting core regulator j to target

gene i, or x
j
i ¼ 0 otherwise. The label yi represents the expression level of target gene i as +1 if it

is up expressed or -1 if down expressed. The classification model determines the closest possi-

ble approximation to the mapping f:X!Y. We used linear regression (LR) and support vector

machines (support vector classification, SVC, and support vector regression, SVR) for super-

vised classification [38], and principal component analysis (PCA) for unsupervised
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Fig 6. Randomization test to determine whether the core TFs andmicroRNAs identified in MCF-7 estrogen response GRNwere obtained by
chance. The scatter plot compares the core number of a TF in MCF-7 estrogen response GRN (y-axis) with its average core number over 10,000 randomly
sampled networks (x-axis). To be comparable the randomly sampled networks contained the same number of TFs and miRNAs as the MCF-7 estrogen
response GRN.

doi:10.1371/journal.pcbi.1004504.g006
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Fig 7. Randomization test to determine whether the core TFs andmicroRNAs identified in MCF-7 estrogen response GRNwere obtained by
chance. The scatter plot compares the core number of a microRNA in MCF-7 estrogen response GRN (y-axis) with its average core number over 10,000
randomly sampled networks (x-axis). To be comparable the randomly sampled networks contained the same number of TFs and miRNAs as the MCF-7
estrogen response GRN.

doi:10.1371/journal.pcbi.1004504.g007

Automated Identification of Core Regulatory Genes in Human

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004504 September 22, 2015 13 / 28



classification [41]. An assumption built into our modeling strategy is that the core regulators

act as mutually independent variables in controlling the expression of target genes. In LR and

PCA models these variables combine additively (with a weight) whereas in SVC and SVR mod-

els they may combine nonlinearly such as multiplicatively.

Table 5 shows the classification accuracy obtained using core regulators identified by vari-

ous ranking strategies using different classifiers. Classification accuracy was computed as area

under the ROC curve (AUROC) or as Matthew’s correlation coefficient (MCC) averaged over

a 5-fold cross validation procedure as described in Methods. AUROC value close to 0 (or MCC

close to -1) indicates misclassification, AUROC = 0.5 (or MCC = 0) indicates random classifi-

cation, and AUROC value close to 1.0 (or MCC close to 1.0) indicates perfect classification.

Classification accuracies based on the core regulators selected by K-core, betweenness central-

ity, pagerank and maximum out-degree were comparable and consistently better than the

other ranking strategies. The core regulators selected by K-core set into a SVR classifier

reported the best classification accuracy of AUROC = 0.695 with the expression of slightly

more than 70% of the genes correctly predicted in both up and down-regulated classes.

We performed randomization tests to determine whether gene expression classification

using network information was an artefact of machine learning algorithms. The null hypothesis

Table 4. Literature validation scores for various ranking strategies (lower scores are better).

Ranking Strategy Literature validation score

Most differentially expressed regulators 1563

Maximum out-degree 837

Maximum target fold enrichment 1165

Maximum in-degree 1584

Maximum closeness centrality 796

Maximum betweenness centrality 718

Maximum pagerank 728

Innermost K-core 894

doi:10.1371/journal.pcbi.1004504.t004

Fig 8. Comparison of gene expressionmeasurements in two repeats of the same biological experiment. The scatter plot shows the measured fold
changes of gene expression in E2 vs. Control treated MCF-7 cells in GSE11324 (x-axis) and GSE51304 (y-axis) experiments. Only genes which passed a
FDR cutoff of 0.001 (a) or 0.05 (b) are shown. Although both datasets are of high quality, the absolute values of fold change are only moderately correlated.
However, the direction of fold change is consistent for most of the genes.

doi:10.1371/journal.pcbi.1004504.g008
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is that the machine learning algorithm memorized the data so that network information did

not play a role in classification results. Thus we replaced the inputs X which represent network

information with randomly generated vectors of the same dimension while preserving the

degree distribution of the network (using networkx function directed_configuration_model),

and then performed gene expression classification with exactly the same procedure as before.

In other words, we checked whether gene expression could be explained equally well using a

random network. In 1000 trials of random networks, unsupervised classification using PCA

yielded an average classification accuracy of AUROC = 0.501 with a standard deviation of 0.01,

which is equivalent to a random predictor. Supervised classification using LR, SVR and SVC

yielded a similar average classification accuracy of AUROC = 0.497 ± 0.02, AUROC =

0.504 ± 0.02 and MCC = -0.003 ± 0.01 respectively, leading to the conclusion that random net-

works are not explanatory of gene expression.

Comparative evaluation of ranking algorithms. In summary, among the ranking strate-

gies benchmarked here, the core regulators identified using most differentially expressed or

maximum in-degree criteria had comparatively poor validation against published literature

and low performance in quantitative modeling of mRNA expression. The core regulators iden-

tified by maximum out-degree and closeness centrality strategies fared well in these two evalua-

tions. However, in randomization tests they appeared to have been selected generally based on

their prominence (by out-degree or closeness centrality) in the general TF-miRNA-mRNA net-

work rather than specific relevance to the MCF-7 estrogen response GRN. The core regulators

identified by betweenness centrality, pagerank and K-core fared well in all the three evaluation

criteria. The core regulators identified by betweenness centrality and pagerank had better

literature evidence as compared to the K-core regulators, including important genes such as

estrogen receptor (ESR1) and androgen receptor (AR), which are central to the estrogen

response. In contrast, the K-core regulators were best suited for quantitative modeling of gene

expression.

Hierarchical organization of MCF-7 estrogen response GRN using K-
core

K-core structure of MCF-7 estrogen response GRN. Apart from identifying core regula-

tory molecules it is also important to organize a GRN in a structure that helps in understanding

the flow of regulatory information. Following previous studies on yeast and bacterial GRNs

[42,43], we used the K-core algorithm to organize the regulatory molecules in MCF-7 estrogen

Table 5. Performance of explaining gene expression in E2 vs. control treated MCF-7 cells using core regulators identified by various ranking strat-
egies. Three different mathematical or AI models were used for modeling gene expression: linear regression (LR), support vector machines (classification,
SVC, and regression, SVR) and principal component analysis (PCA). Performance was measured as area under the ROC curve (AUROC) for real-valued
estimators and using Matthew’s correlation coefficient (MCC) for binary classifiers in 5-fold cross validation.

Ranking Strategy Area under ROC curve MCC

LR SVR PCA SVC

Most differentially expressed regulators 0.567 0.575 0.572 0.149

Maximum out-degree 0.675 0.683 0.602 0.289

Maximum target fold enrichment 0.681 0.632 0.590 0.222

Maximum in-degree 0.586 0.585 0.586 0.155

Maximum closeness centrality 0.676 0.684 0.602 0.285

Maximum betweenness centrality 0.673 0.682 0.619 0.287

Maximum pagerank 0.653 0.646 0.620 0.254

Innermost K-core 0.674 0.695 0.605 0.294

doi:10.1371/journal.pcbi.1004504.t005
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response GRN in a layered hierarchy. The K-core algorithm is generally used for identifying a

set of central or K-core nodes in a network all of which have a degree of at least K. It works by

iteratively removing leaf nodes which have degree less than K (all nodes with degree one are

removed in the first iteration, nodes with degree two are removed in the second iteration, and

so forth) so that in the final or K’th iteration only the K-core set of nodes remains. Each node

in the network is assigned a core number based on the iteration during which it was removed

by K-core. The K-core nodes are well interconnected with each other as well as with the rest of

the nodes in the network and thus most of the information flow in a network takes place

through the K-core nodes [44,45]. In the MCF-7 estrogen response GRN, 29 iterations of K-

core were required until the final core was obtained and it consisted of only one molecule, the

transcription factor Myc, a well-known oncogene. We then ranked all the regulatory molecules

from 1 to 29 in the opposite order of their core number, i.e., the iteration in which they were

removed by K-core. This resulted in a hierarchical organization of all the molecules with Myc,

having rank 1 in the innermost core, followed by other molecules (Fig 9).

Importantly the core number obtained using the K-core algorithm has no relationship with

the cascade of gene expression that actually takes place in the biological system. For instance,

the transcription factor estrogen receptor (ER), which is encoded by the gene ESR1, is the key

TF responsible for estrogen response in MCF-7 cells. Upon estrogen stimulation, ER moves to

the cell nucleus and activates the transcription of a number of important TFs (such as Myc),

triggering a cascade of gene expression which ultimately results in the activation of thousands

of genes. However, in K-core analysis the gene ESR1 was found in the 8th core. This is because

ER is not central to information flow in the network as it has fewer direct targets compared to

some of the other TFs that it regulates. On the other hand Myc is at the center of the core since

it directly influences a large number of other TFs and miRNAs. As shown above (in the section

titled “literature validation of core regulators”) we confirmed that the molecules placed within

the first three cores are known in the literature to have key roles in the estrogen response of

MCF-7 cells.

Nodes in the inner cores are more explanatory of gene expression. In order to test the

hypothesis that the layered hierarchy produced by K-core places more influential or core regu-

latory molecules in the inner cores, we studied the contribution of regulators in various cores

of the MCF-7 estrogen response GRN towards explaining the expression levels of mRNAs. We

repeated the quantitative gene expression classification experiments as described above using

regulatory nodes selected with varying cutoffs of the core number, K. Initially, several regula-

tory nodes were selected with a loose criterion of K� 15. Subsequently, the number of regula-

tory nodes was reduced by progressively decreasing the cutoff for K until a minimum of K� 2,

which considered only the innermost core regulators. The overall classification accuracy

decreased slightly as the number of regulatory nodes was gradually reduced from 111 (K� 15)

to 29 (K� 2): AUROC for LR decreased from 0.733 to 0.687, AUROC for SVR decreased from

0.742 to 0.693, and MCC for SVC decreased from 0.364 to 0.300 (Table 6). The inner and outer

core regulators were also used separately for gene expression classification in order to estimate

their individual contributions (bottom half of Table 6). Classification accuracy was highest (LR

AUROC = 0.687, SVR AUROC = 0.693, SVCMCC = 0.300) using 29 innermost core regula-

tors (K� 2), lower (LR AUROC = 0.535, SVR AUROC = 0.580, SVC MCC = 0.130) for the

next outer set of 16 regulators (K = 3), and further lower for subsequent sets of outer regulators.

Thus, the inner K-core regulators were found to be more explanatory of gene expression than

the outer ones.

Nodes in the inner cores are biologically more relevant. As described above and in the

Methods section, we measured the biological relevance of individual genes by ranking them

according to their number of Google scholar citations in the context of MCF-7 estrogen
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Fig 9. Hierarchical organization of all regulatory molecules, including 106TFs and 58miRNAs, in MCF-7 estrogen response GRN using K-core
algorithm. TF and miRNA nodes are represented by rectangles and diamonds respectively. Nodes are colored red or green depending upon whether the
molecule’s expression is up or down-regulated in E2 vs. Control cells. The hierarchy is based on the principle of network centrality where nodes which are
more important for the flow of regulatory information are more towards the core. Nodes in core 1 (Myc) are most central, followed by nodes in cores 2, 3, and
so on in decreasing order of centrality. Some cores have been clubbed together for ease of visualization.

doi:10.1371/journal.pcbi.1004504.g009
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response. Then we computed the average rank of genes in each core to assess the overall biolog-

ical relevance of a core. Lower average rank indicates greater known relevance to MCF-7 estro-

gen response biology. The average rank was lowest for the innermost cores (K�2) and
increased for each of the successive outer cores (Table 7) indicating that the regulators in the

inner cores are biologically more relevant than those in the outer cores to the estrogen response

of MCF-7 cells.

Contribution of miRNAs in explaining gene expression. miRNAs are fine regulators of

gene expression. We tested the regulatory contribution of miRNAs by measuring the accuracy

of gene expression classification with and without including miRNAs within the list of regula-

tors. In the MCF-7 estrogen response GRN most of the miRNAs occupied the outer cores in

the hierarchical organization produced by K-core while none of them was within the innermost

core (K� 2), supporting the conclusion that miRNAs are not among the most important mole-

cules that direct information flow in a gene network (Fig 9). Classification accuracy dropped

slightly when miRNAs were excluded (Table 8) indicating a minor influence of miRNAs in reg-

ulating gene expression in the present network. A possible reason is that we have used in silico

miRNA target information in this study which is generally considered inferior to experimental

target information.

Discussion

We described the construction of human TF-miRNA-mRNA networks using experimental

TF-target and in silicomiRNA-target information from public databases and algorithms for

identifying their core regulatory genes and organizing them into a meaningful hierarchy.

Table 6. Gene expression classification in the MCF-7 estrogen response GRN using various selections of regulatory nodes based on their core
numbers, K, in K-core hierarchy. In the top half of the table the innermost core regulators (K� 2) are always included and the cumulative effect of adding
further core regulators is measured. In the bottom half of the table the innermost core regulators (K� 2) are excluded in order to measure the individual contri-
butions of regulators at various core levels. Classification accuracy is reported in terms of area under the ROC curve (AUROC) for real valued classifiers (LR,
SVR and PCA) and Matthew’s correlation coefficient (MCC) for binary classifiers (SVC).

Selected regulators Area under ROC curve MCC

K cutoff # Regulators # Targets LR PCA SVR SVC

K � 15 111 5625 0.733 0.609 0.742 0.364

K � 10 89 5647 0.715 0.608 0.725 0.349

K � 7 61 5675 0.696 0.606 0.703 0.309

K � 3 45 5691 0.692 0.606 0.699 0.311

K � 2 29 5707 0.687 0.610 0.693 0.300

K = 3 16 5720 0.584 0.535 0.580 0.130

3 < K � 7 16 5720 0.570 0.525 0.565 0.084

7 < K � 10 28 5708 0.569 0.525 0.568 0.091

10 < K � 15 22 5714 0.569 0.572 0.609 0.165

doi:10.1371/journal.pcbi.1004504.t006

Table 7. Literature validation in terms of the average rank of genes in various cores of the K-core hier-
archical organization of MCF-7 estrogen response GRN (lower scores are better).

Core(s) # Regulators Average rank

K�2 29 47.8

K = 3 16 52.4

4�K�7 16 56.8

8�K�9 16 78.1

K = 10 12 80.4

doi:10.1371/journal.pcbi.1004504.t007
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Apart from its methodological contributions this study has also given some interesting

insights into the topology of human GRNs. While most TFs tend to have high out-degrees,

most mRNAs have low to medium in-degrees. There are only few hub mRNAs that attract

many edges into them. This implies that there are many small cohorts of TFs that regulate vari-

ous mRNAs. Usually a cohort of TFs regulates genes in a specific biological process. Thus

could be many different cohorts of TFs regulating many varieties of biological processes. We

observed that mRNAs with low in-degrees had low absolute expression levels and low tissue

specificity and were usually present outside the nucleus performing housekeeping or signal

transduction type of functions. On the other hand mRNAs with high in-degrees were associ-

ated with high expression level, high tissue specificity and were present in the nucleus taking

part in transcriptional activity and other related functions in context of DNA. The association

between high in-degree and tissue specificity makes biological sense as more number of TFs

required for regulating a gene will allow greater fine tuning of its expression.

Although our current network is incomplete with only 10–15% of the estimated number of

TF-target interactions known, by extrapolation we attempted to describe the characteristics of

a full TF-miRNA-mRNA network. A full network is estimated to contain ~5 million TF-target

interactions with an average mRNA in-degree of 250 and a few hubs with up to 750 incoming

edges. Assuming that a TFBS is on average 8 bp long and a TF has on average 5 binding sites

per gene (these values are rough estimates based on ENCODE data), the total regulatory DNA

would span 2 billion bp. This estimate is on the higher side as we have neglected overlapping or

competing TFBS and we have made a generous estimate of the total number of TF-target inter-

actions. However, a large chunk of human DNA could carry regulatory signals.

The fact that betweenness centrality, pagerank and K-core algorithms performed the best in

identifying core regulators of a GRN implies that nodes with higher and more direct connectivity

with other nodes are more influential or core to biological processes. This is tied in to the hierar-

chical organization of GRNs. The concept of hierarchical organization in GRNs has been in

place for many years. Earlier uses of terms such as “master regulators” [46] implied a pyramidal

control structure similar to social organizations where few and influential individuals at the top

of the hierarchy supervise a larger group of individuals below them. Initial studies of GRNs in

simpler organisms such as E. coli and yeasts supported this idea [47,48]. However, the notion of

hierarchy and master regulators has undergone changes as our understanding of transcriptional

networks has evolved [49]. Regulation of gene expression is now understood to lie somewhere in

between pyramidal “autocracy” (master regulators influencing thousands of genes) and flat

“democracy” (all genes exerting regulatory influence on all other genes) [50]. For instance, Jothi

et al. [20] used a vertex sort algorithm to organize yeast transcription factors in a three-layered

hierarchy (top, core and bottom) having a feed-forward structure in which the top layer TFs

Table 8. Performance of gene expression classification in the MCF-7 estrogen response GRNwith
and without the inclusion of miRNAs in the list of regulators. Each row of the table represents a different
selection of regulatory nodes based on their core number, K, in the hierarchy produced by K-core. Classifica-
tion accuracy is reported in terms of the area under the ROC curve (AUROC) for LR and SVR.

Selected regulators With miRNAs (AUROC) Without miRNAs
(AUROC)

K cutoff LR SVR LR SVR

K � 15 0.733 0.742 0.695 0.705

K � 10 0.715 0.725 0.695 0.705

K � 7 0.696 0.703 0.694 0.700

K � 3 0.692 0.699 0.689 0.696

doi:10.1371/journal.pcbi.1004504.t008

Automated Identification of Core Regulatory Genes in Human

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004504 September 22, 2015 19 / 28



regulate the core and the bottom layer TFs, the core layer TFs regulate the bottom layer, and the

TFs in a layer regulate each other. Currently the study of modular structure of GRNs is gaining

interest where groups of genes co-regulate and coordinate specific functions [51,52].

Our K-core based hierarchical organization implies a notion of network centrality or the rel-

ative influence or importance of nodes in a network. Nodes found in the inner cores are consid-

ered to be more influential or central than those in the outer cores. Although there are many

measures of centrality [53], our choice of K-core centrality was motivated by the virtue of its

being a combination of both global and local properties of a node as it lies somewhere between

degree centrality which identifies nodes that are globally hubs, and betweenness centrality

which identifies nodes that are locally important for information flow in a network [54]. In

protein interaction networks, essential and evolutionary conserved proteins were found

towards the innermost cores [55]. In internet networks, nodes with better routing capabilities,

i.e. which can choose several paths to connect to another node, were in the inner cores [56]. In

social networks and in spread of infectious diseases the most efficient spreaders were those

located within the core of the network as identified by K-core [44,45,57]. It appears that in our

hierarchical organization regulators central to the flow of regulatory information are in the

innermost cores as they are most explanatory of gene expression. Previously it has been shown

that greater number of TF-mRNA interactions is associated with more number of cores in the

hierarchical organization of a GRN [42]. We observed a total of 29 cores in the K-core organi-

zation of MCF-7 estrogen response GRN as compared to between 6–9 cores observed in yeast

GRNs [42], which agrees with the observation that human GRNs have higher degree of inter-

connectivity between genes than yeast GRNs.

Sources of error

While our knowledge of bacterial and yeast GRNs is fairly comprehensive, human GRNs have

only been partially reconstructed. Recently, a core human GRN interconnecting 475 TFs was

reported separately for 41 different tissue types [58] by combining in silico predicted TF bind-

ing sites and in vivo DNaseI footprints. A human GRN was also reconstructed from ENCODE

data [13]. In the present study we reconstructed a network of human genes and microRNAs

using experimental TF target and in silico predicted miRNA target information. The TF target

information obtained from ENCODE and HTRIdB covered only 329 out of 1374 TF nodes in

our network and hence target information for more than two-thirds of the TFs was missing.

Our analysis based on an incomplete network is prone to errors. Furthermore, TF target infor-

mation obtained from ENCODE and HTRIdB is not tissue specific and hence it is only approx-

imately correct when used for a specific tissue or cell line. Another source of error in our

network reconstruction is that biochemical binding of a TF in the promoter region of a gene

does not necessarily translate to a functional interaction between the TF and the target gene.

Functional interaction requires additional criteria to be fulfilled such as the position of TF

binding relative to the transcription start site and the context of other TF binding sites in its

vicinity. Some proprietary databases contain information of functional interaction between

TFs and their target genes compiled from published literature. This information can in fact be

more accurate for delineating true interactions between TFs and their target genes. Despite all

of these limitations, our network was able to explain gene expression with up to 70% accuracy

(MCC = 0.4), which was significant against randomization tests. We are optimistic that predic-

tion accuracy can be substantially improved as more extensive and accurate data of TF targets

becomes available in the near future.

Due to lack of experimental data on miRNA targets, we obtained this information from a

combination of four different publically available in silicomiRNA target prediction tools, each
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of which has a different underlying methodology. A miRNA target was considered valid only if

supported by at least two different tools (we also separately tried considering only targets sup-

ported by at least three different tools and observed similar results). We observed in our ran-

domization tests that in silicomiRNA target information contributed little towards explaining

gene expression. Thus experimental data on miRNA targets would add important information

to the network.

Conclusion

In conclusion, this study presents an optimistic view of the usefulness of static gene networks

for identifying core regulators within a densely interconnected system of genes and explaining

gene expression.

Methods

Transcriptional regulation data

Regulatory targets of transcription factors (TFs) were identified using two public databases—

Encode and HTRIdb. High throughput transcription factor binding profiles obtained from 423

ChIP Seq experiments on 76 different human cell types were downloaded from the ENCODE

consortium website [27,59]. The ChIP Seq experiments reported a total of 5.8 million normal-

ized peaks of 120 unique transcription factors in the human genome build 37 (hg19) reference

assembly. The annotation of human genes and miRNAs in the same reference assembly was

downloaded from the Gencode website (version 17) [23]. Following previous studies [12,39],

any gene or miRNA whose TSS falls within ± 1kb of a transcription factor binding peak was

considered as direct target of the transcription factor. Restricting or expanding the definition

of target gene from ±0.25 kb to ±4kb had little effect on the number of TF-target or miRNA

interactions (see S1 Text). Thus a total of 428,769 unique TF-gene interactions and 9,883

unique TF-miRNA interactions were identified. Furthermore, data of experimentally verified

targets of 284 unique TFs totaling 51,871 TF-gene interactions, was downloaded from the

HTRIdb database [26]. Combined together the Encode and HTRIdb data contributed a total of

466,534 unique TF-gene interactions for 329 unique TFs.

Post-transcriptional regulation data

In silico predicted miRNA-mRNA interactions were downloaded from four different databases,

including miRanda [60], TargetScan [61], picTar [62] and miRDB [63]. Each of the above tools

uses a different methodology for predicting miRNA targets. Interactions which were found in

at least two out of four databases were chosen in the present study, which summed up to

1,768,780 miRNA-mRNA interactions as shown in Fig 10.

Microarray data analysis

All public microarray gene expression datasets were downloaded from NCBI’s Gene Expres-

sion Omnibus (GEO) [64] in the GSE series matrix format. The series matrix files were ana-

lyzed using the Bioconductor package limma [65] in R statistical language to obtain differential

gene expression.

Network analysis

Network analysis, including network construction, subsampling and computation of centrality

measures for nodes was performed using version 1.9.1 of networkx library [66] in Python pro-

gramming language. All networks were constructed as directed networks using DiGraph class
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of networkx. Definitions of centrality measures used in this study (out_degree_centrality,

in_degree_centrality, closeness centrality, betweenness centrality, pagerank, core_number) can

be accessed via networkx documentation:

http://networkx.github.io/documentation/networkx-1.9.1/reference/algorithms.centrality.

html

http://networkx.github.io/documentation/networkx-1.9.1/reference/algorithms.link_

analysis.html

http://networkx.github.io/documentation/networkx-1.9.1/reference/algorithms.core.html

Literature validation of core regulators

We used Google Scholar to perform a query using the format ‘+“MCF-7” +estrogen +regulator’

where regulator is the gene symbol of the regulatory molecule whose biological relevance to the

MCF-7 ER network is being evaluated. The number of results (publications) returned by Goo-

gle Scholar was taken as a quantitative measure of the relevance of a molecule to the MCF-7 ER

network. Since the same molecule may referred by different symbols in the literature, we down-

loaded all synonyms of a gene symbol from the HGNC website (http://www.genenames.org/

cgi-bin/download) and took the maximum number of results returned by any of the synonyms

as the final number. For some genes such as AR, the gene symbol was too short to be meaning-

fully queried. In such cases we queried by the full name of the molecule, such as +“Androgen

receptor” in this case.

Quantitative modeling of gene expression

Quantitative modeling was used to explain the expression status of genes in a GRN as either up

or down expressed based on the core regulators (TFs and miRNAs) that target them in the net-

work. Let there bem core regulators and n target genes. In the model the target genes were rep-

resented by input-output pairs (Xi,yi), i2[1,. . .,n] where Xi ¼ ðx1i ; . . . ; xmi Þ is am-dimensional

vector such that x
j
i ¼ 1 if there is an edge connecting core regulator j2[1,. . .,m] to the target

gene i, or otherwise x
j
i ¼ 0, and yi = +1 if target gene i is up expressed or yi = −1 if it is down

expressed. We used various mathematical models to approximate target gene expression, Y, as

a function of regulatory inputs, X, viz., linear regression (LR), support vector machines

Fig 10. Overlap of miRNA-mRNA interactions predicted in silico by various tools.

doi:10.1371/journal.pcbi.1004504.g010

Automated Identification of Core Regulatory Genes in Human

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004504 September 22, 2015 22 / 28

http://networkx.github.io/documentation/networkx-1.9.1/reference/algorithms.centrality.html
http://networkx.github.io/documentation/networkx-1.9.1/reference/algorithms.centrality.html
http://networkx.github.io/documentation/networkx-1.9.1/reference/algorithms.link_analysis.html
http://networkx.github.io/documentation/networkx-1.9.1/reference/algorithms.link_analysis.html
http://networkx.github.io/documentation/networkx-1.9.1/reference/algorithms.core.html
http://www.genenames.org/cgi-bin/download
http://www.genenames.org/cgi-bin/download


(support vector classification, SVC, and support vector regression, SVR) and principal compo-

nent analysis (PCA), which are individually described below.

We set up a K-fold validation procedure where the total set of n target genes was randomly

subdivided into K subsets of equal sizes. K iterations of classification were performed where in

each iteration K-1 subsets of genes were used for training a mathematical model while the one

remaining subset was used for testing its classification performance. Over the K iterations, each

gene subset was used exactly once as test set for assessing the performance of the mathematical

model. The classification performance computed as area under the ROC curve (AUROC) was

reported as its average over the K iterations. In our experiments we performed a 5-fold cross

validation.

Linear Regression (LR) was used to model the expression of target genes, yi, as

yi ¼ b
0
þ
X

j

bjx
j
i þ εi;

where β0 is the intercept term representing basal expression level of all genes, εi is the error

term, and βj are the weights representing the relative influences of core regulators j in control-

ling the expression of target genes. The weights and intercept were analytically determined by

the formula b̂ ¼ ðXT
XÞ�1XTY . The fitted expression levels of the genes ŷ i ¼ yi � εi were

computed as Ŷ ¼ Xb̂.

Principal component analysis

The principal components of the input matrix X were computed by determining the eigenval-

ues, {λ1,λ2,. . .,λm}, and eigenvectors, {v1,v2,. . .,vm}, of its covariance matrix, XXT, satisfying the

condition

ðXX
TÞvj ¼ ljvj;

where λj are scalars, and vj are n×1 dimensional column vectors. The normalized eigenvectors

�v j ¼ vj=kvjk were called the principal components of X. The principal components were

ordered such that the largest eigenvalue corresponds to the first principal component and the

smallest eigenvalue corresponds to the last (mth) principal component. The first principal com-

ponent was used as a predictor for target gene expression, i.e., Ŷ ¼ v
1
.

Support vector machine was provided them-dimensional rows of input matrix X as input

vectors and the corresponding gene expression class, Y, as binary (+1 or -1) outputs. We used

the libSVM software library [67] accessed via its in-built Python wrappers to implement both

classification (SVC) and regression (SVR) models. In both models we used the radial basis

function (RBF) kernel. The parameter γ of the kernel and the cost (or regularization) parameter

C of the SVMmodel were chosen by optimization using grid search [68], but the cross-valida-

tion procedure was done differently in this case to avoid overfitting the parameters. We sepa-

rated the data into 80% training and 20% held out test data. On the 80% training data we

performed 5-fold cross validation while using grid search to select the best classification accu-

racy. Then the chosen parameters were used to train a SVMmodel on the entire 80% training

data. The accuracy of this model was tested on the held out test data. The training data and

held out test data were rotated in a 5-fold cross validation to obtain the average classification

accuracy.
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Computation of area under the ROC curve (AUROC)

The LR, PCA and SVR models produced real valued estimates, ŷ i, of the target gene expression

levels, yi. The real valued ŷ i were converted to binary class predictions by selecting a discrimi-

nation threshold t such that yi;predicted ¼
þ1 if ŷ i � t

�1 if ŷ i < t

(

. The threshold, t, was varied over the

entire range of ŷ i, i.e., from miniðŷ iÞ to maxiðŷ iÞ) and the ROC (receiver operating characteris-

tics) curve was created by plotting true positive rate (TPR) against false positive rate (FPR) of

classification at various settings of threshold t. The area under the ROC curve was computed

by numerical integration using trapezoidal approximation.

Predicted Class

þ1 �1
Actual þ1 TP FN

Class �1 FP TN

TPR ¼ TP

TP þ FN
;

FPR ¼ FP

FP þ TN

Matthews correlation coefficient

For binary classification using support vector classification (SVC), we computed the classifica-

tion accuracy in terms of Matthews correlation coefficient (MCC) defined as:

MCC ¼ TP�TN�FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p . MCC is generally regarded as a balanced measure taking

into account the classification accuracy in both positive and negative classes.

Hierarchical network analysis

Our method of constructing a hierarchy from a directed regulatory network is inspired by

existing methods in the literature but is more suitable for identifying few important regulators

in the network. Bhardwaj, et al., [19] reported a simple method of building a hierarchy in gene

networks where they organized TFs into three different layers—TFs which are not regulated by

other TFs were placed in the top layer, TFs with no out-going edges to other TFs were in the

lowest layer, and TFs which both regulate other TFs and are themselves regulated by other TFs

were in the middle layer. This method was extended to include miRNAs by Cheng, et al., [12]

where miRNAs were placed in separate layers above the TFs they regulate and in-between the

layers of TFs. We found that in our network there were no TFs which could be classified in the

top layer. A simple hierarchy was in-fact impossible to construct due to the presence of loops

(TFs regulating each other) where it is hard to distinguish which regulator should be on the top

or below.

We identified the hierarchy of genes based not only on their immediate regulatory interac-

tions but also on their overall importance within the network. We used K-shell (also known as

K-core) decomposition, a classical method in graph theory [69] which has been used to obtain

a hierarchy of nodes based on their degree characteristics in bacteria and yeast GRNs [42,43].

Each K-shell was obtained by successively removing nodes of degree K beginning with degree
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1. This was repeated until a final irreducible K-core was left. Recent literature has found that

the K-core contains the nodes that have the greatest potential for information spread within

the network [45]. Thus using K-core we retained the most essential central nodes for

consideration.
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