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Abstract

We extend EUCLID, a computational strategy for automated material model discovery and
identification, to linear viscoelasticity. For this case, we perform a priori model selection
by adopting a generalized Maxwell model expressed by a Prony series, and deploy EUCLID
for identification. The methodology is based on four ingredients: i. full-field displacement
and net force data; ii. a very wide material model library - in our case, a very large number
of terms in the Prony series; iii. the linear momentum balance constraint; iv. the sparsity
constraint. The devised strategy comprises two stages. Stage 1 relies on sparse regression;
it enforces momentum balance on the data and exploits sparsity-promoting regularization
to drastically reduce the number of terms in the Prony series and identify the material
parameters. Stage 2 relies on k-means clustering; starting from the reduced set of terms
from stage 1, it further reduces their number by grouping together Maxwell elements with
very close relaxation times and summing the corresponding moduli. Automated procedures
are proposed for the choice of the regularization parameter in stage 1 and of the number of
clusters in stage 2. The overall strategy is demonstrated on artificial numerical data, both
without and with the addition of noise, and shown to efficiently and accurately identify a
linear viscoelastic model with five relaxation times across four orders of magnitude, out of
a library with several hundreds of terms spanning relaxation times across seven orders of
magnitude.

Keywords: Linear viscoelasticity, unsupervised learning, Lasso regularization, sparse
regression, k-means clustering.

1. Introduction

The mechanical behavior of linear viscoelastic materials can be described by convolu-
tional constitutive equations in which the stress tensor is a function of the strain history.
The relaxation functions of the constitutive integrals are generally well represented by the
generalized Maxwell model expressed through a Prony series [1, 2], where the unknown pa-
rameters are the shear and bulk moduli and their corresponding relaxation times, and the
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number of terms in the series is itself unknown. The identification of all these parameters
requires the solution of a non-linear regression problem with non-negativity constraints [3].
If the relaxation times are known a priori, the identification task is drastically simplified
since the associated regression problem becomes linear. There is a vast literature proposing
methods for both identification scenarios, see also the review in [1]. An important challenge
is that the identification problem is known to be ill-posed [4], meaning that the solution may
not be unique and that small perturbations in the measured data can produce high varia-
tions on the identified parameters. Among the approaches in which the relaxation times are
chosen upfront and the corresponding bulk and shear moduli are identified, we mention the
collocation method by Schapery [5], with its more recent developments and applications in
[6, 7], the windowing technique [8, 9], and the multidata method [10, 11]. A performance
comparison of some of these methods is presented in [3]. Ill-posedness is addressed e.g. using
Tikhonov regularization (also known as ridge regression) [12–16], or the maximum entropy
method [17]. Among the approaches which solve for both material parameters and relax-
ation times, we mention [18], [19], [20], and more recently [21] and [22], which respectively
use Bayesian inference and multi-objective optimization. Linear and non-linear regression
methods are compared in [23].

The vast majority of the available approaches make use of experimental data obtained
through Dynamic Mechanical Analysis (DMA) and quasi-static creep or relaxation curves.
These tests do not exploit the wealth of local information contained in full-field displace-
ment/strain data, nowadays readily accessible through measurement technologies such as
Digital Image Correlation (DIC) and Digital Volume Correlation (DVC). In [24], full-field
displacement data are deployed for viscoelastic material identification by minimizing the
difference in the forces obtained from the measured displacements and from finite element
analysis. The Virtual Field Method, a method specifically designed to solve inverse problems
of material identification based on full-field data [25–27], is applied to viscoelastic materials
in [28, 29].

Assuming a viscoelastic material model a priori and calibrating its parameters by lever-
aging available experimental information may fail to result in an accurate description of the
material response if the model is not chosen well to interpret the data. This observation has
prompted the emergence of data-driven approaches as more versatile alternatives to classical
material models. E.g. neural networks are powerful for describing complex mathematical
relations due to their flexible architecture and large number of tunable parameters. First
applied in the context of material modeling by [30], they were more recently developed for
viscoelastic material behavior; e.g. they are used in [31] to learn the viscoelastic stress up-
date, in [32–34] to learn temperature-dependent viscoelastic material behavior, and in [35]
to predict the Prony parameters of a viscoelastic material at finite strains. In [36], input
convex neural networks are employed to learn the thermodynamic potentials of viscoelastic
materials which govern the material response. Importantly, [36] and [37] train the neural
networks for viscoelasticity by leveraging indirect data, which are easier to acquire through
experimental testing than labeled stress-strain data tuples. Other authors depart from pure
machine-learning models in favor of physics-augmented approaches; e.g. in [38] data are
used for learning viscoelastic corrections to conventional hyperelastic material models. An-
other stream of research bypasses material modeling altogether by running finite element
simulations that are directly informed by the data [39, 40], an idea which was recently
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extended to viscoelastic material behavior in the frequency domain [41]. For both machine-
learning-based and model-free approaches, the material behavior is not amenable to physical
interpretation nor to mathematical analysis, as it is encoded in a black-box tool (the trained
neural network) or in the raw data set.

We recently proposed a new method for automated discovery of material models based
on full-field displacement and global force data, which we denote as EUCLID (Efficient Un-
supervised Constitutive Law Identification and Discovery). The idea behind EUCLID is to
start from a very large modeling space (a “library” or “catalogue” of material models), and to
simultaneously perform model selection and parameter identification by enforcing balance of
linear momentum along with sparsity-promoting regularization. The outcome is a parsimo-
nious and interpretable expression for the material model. Thus far, EUCLID was applied
to hyperelastic [42] and elastoplastic materials [43], and more recently generalized to the
wide class of standard dissipative materials [44]. This contribution included viscoelasticity;
however, the focus was on evaluating the ability of EUCLID to automatically discriminate
between different categories of constitutive behavior (e.g. elasticity, plasticity with different
types of hardening, viscoelasticity, viscoplasticity), and for each category catalogues of rel-
atively limited extent were adopted (including a simple linear viscoelastic model with only
one Maxwell element). For hyperelasticity, we also developed versions of EUCLID relying
on Bayesian regression [45] and on input-convex neural networks [46].

In this paper, we extend EUCLID to viscoelasticity. For this case, we perform model
selection a priori and target linear viscoelasticity with a generalized Maxwell model. This
implies no significant limitation, as a Prony series with a sufficient number of terms is known
to be able to approximate a very general linear viscoelastic behavior. Thus, we deploy EU-
CLID for the identification procedure and aim at exploiting its favorable features to solve
the aforementioned issues with identification of linear viscoelastic models. The determi-
nation of the relaxation times is addressed by starting with an extremely large catalogue
of possible values, which has no significant impact on the overall efficiency of the method
(and is facilitated by the frequency domain formulation). To automatically select only a
few relevant features, we use Lasso (or l1) regularization [47], which preserves the stability
of the ridge (l2) regression while promoting sparsity in the set of the Prony series terms.
The non-uniqueness of the solution, which may manifest itself with two or more Maxwell
elements being associated with very similar relaxation times, is addressed through an auto-
matic clustering stage. Thus, compared to previous versions of EUCLID, the main novelty
aspects lie in i. the formulation of the problem in the frequency domain, leading to a differ-
ent expression of the physics-driven loss function; ii. the use of Lasso regularization, which
leads to a convex minimization problem and thus significantly enhances the efficiency; the
introduction of the clustering phase, which is a powerful tool if model features in the library
are highly correlated.

The remainder of this paper is organized as follows. After a brief review of the lin-
ear viscoelastic problem in Section 2, Section 3 formulates the inverse problem of material
identification in the frequency domain. In Section 4 we present our two-stage identifica-
tion strategy, which is tested and discussed in Section 5. Finally, Section 6 draws the main
conclusions.
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2. Brief review of the linear viscoelastic problem

As follows, we introduce some simple relationships valid for linear viscoelasticity, in the
continuum and discretized frameworks, that are useful for the subsequent developments.

2.1. Linear viscoelastic constitutive laws in the time and frequency domains

Let B ⊂ IR3 be our physical domain and T ⊂ IR the time interval of interest. For any
x ∈ B and t ∈ T , we preliminarily write the volumetric-deviatoric decomposition of the
Cauchy stress tensor as σ(x, t) = s(x, t) + p(x, t)I, where s(x, t) is the deviatoric stress
tensor, p = 1

3
tr(σ) is the pressure, and I denotes the identity tensor. Similarly, for the

infinitesimal strain tensor we have ε(x, t) = e(x, t) + θ(x, t)I, where θ = 1
3

tr(ε) is the
volumetric strain, and e(x, t) is the deviatoric strain tensor. The stress-strain relations for
a linear isotropic viscoelastic material can be expressed as

s(x, t) =

∫ t

−∞
G(t− τ)ė(x, τ)dτ , (1)

p(x, t) =

∫ t

−∞
K(t− τ)θ̇(x, τ)dτ , (2)

where G(t) and K(t) are independent functions referred to as relaxation functions [2], and
we denote the time derivative with a superposed dot.

Let us now consider as (steady-state) strain history a harmonic function of time with
circular frequency ω and phase angle φ, i.e.

e(x, t) = ē(x, ω) exp(iφ) exp(iωt) = ê(x, ω) exp(iωt) , (3)

θ(x, t) = θ̄(x, ω) exp(iφ) exp(iωt) = θ̂(x, ω) exp(iωt) , (4)

where ē(x, ω) and θ̄(x, ω) are the (complex) deviatoric and volumetric strain moduli. Note
that we have set ê(x, ω) = ē(x, ω) exp(iφ) and θ̂(x, ω) = θ̄(x, ω) exp(iφ). Correspondingly,
the deviatoric and volumetric stresses at steady state must be of the form

s(x, t) = s̄(x, ω) exp(iϕ) exp(iωt) = ŝ(x, ω) exp(iωt) , (5)

p(x, t) = p̄(x, ω) exp(iϕ) exp(iωt) = p̂(x, ω) exp(iωt) , (6)

where s̄(x, ω) and p̄(x, ω) are the (complex) deviatoric and volumetric stress moduli and
ϕ is the stress phase angle. As for the strains, we have set ŝ(x, ω) = s̄(x, ω) exp(iϕ) and
p̂(x, ω) = p̄(x, ω) exp(iϕ). The linear viscoelastic constitutive model in the frequency domain
can then be expressed by introducing the two complex transfer functions G∗(iω) and K∗(iω)
[2], such that

ŝ(x, ω) = G∗(iω) ê(x, ω) , (7)

p̂(x, ω) = K∗(iω) θ̂(x, ω) . (8)

The functions G∗(iω) and K∗(iω) are the Fourier transforms of G(t) and K(t) [2] and can
be decomposed into real and imaginary parts as follows

G∗(iω) = Gs(ω) + iGl(ω) ,

K∗(iω) = Ks(ω) + iK l(ω) ,
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where Gs(ω) and Ks(ω) are often denoted as shear and bulk storage moduli, respectively,
whereas Gl(ω) and K l(ω) are the shear and bulk loss moduli.

The relaxation functions G(t) and K(t), or equivalently their transforms G∗(iω) and
K∗(iω), entirely characterize the viscoelastic material response.

2.2. Discrete weak form of linear momentum balance in the frequency domain
Neglecting body forces and inertial effects, the weak form of linear momentum balance

in the frequency domain can be written as∫
B
σ̂ : δε̂ dV =

∫
∂Bt
t̂ · δû dS (9)

where σ̂(x, ω) = ŝ(x, ω) + p̂(x, ω)I, ∂Bt is the Neumann portion of the domain boundary
∂B with imposed traction t̂(x, ω) (zero in our case as we assume displacement-controlled
loading), and the equality has to hold for all admissible test functions δû, i.e. for all those
that are sufficiently regular and vanish on the Dirichlet boundary ∂Bu. By introducing a
spatial discretization in ne linear three-node finite elements B =

⋃ne
e=1 Be for a plane strain

problem, the (complex) internal force vector associated with element Be is obtained as

f inte =

∫
Be

BT
e

[
ŝh(x, ω) + p̂h(x, ω)m

]
dV =

=

[
G∗(iω)

∫
Be

BT
eDBD dV +K∗(iω)

∫
Be

bTb dV

]
ûe , (10)

where ŝh(x, ω) and p̂h(x, ω) are the spatially discretized counterparts of ŝ(x, ω) and p̂(x, ω),
respectively, with ŝh(x, ω) written in Voigt notation; Be is the discrete strain-displacement
differential operator (a 4 × 6 array); m = [1 1 1 0 ]T; BD = ΠDBe with ΠD = I4 − 1

3
m mT

(where I4 is the 4× 4 unit matrix); b = mTBe;

D =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

 , (11)

and ûe is the 6 × 1 vector of the element nodal displacements in the frequency domain,
ûe(ω) = ūe(ω) exp(iφ), where ūe(ω) is the modulus and φ the phase shift at each frequency
ω. From (10), the (complex) element stiffness matrix is thus obtained as

ke =

[
G∗(iω)

∫
Be

BT
eDBD dV +K∗(iω)

∫
Be

bTb dV

]
. (12)

3. EUCLID for identification of linear viscoelastic constitutive laws

As follows, we describe the four fundamental ingredients of EUCLID [42, 43, 45, 46]: i.
a wide and versatile material model library; ii. the data; iii. the linear momentum balance
constraint; iv. the sparsity constraint1.

1Conceptually, one would expect the data to be described first. However, since in the present investigation
the data are generated numerically, for the clarity of the presentation it is more convenient to start from the
material model library, part of which is then used for finite element data generation.
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3.1. Material model library
As anticipated earlier, we describe linear viscoelastic behavior with the generalized Maxwell

model, a highly versatile ansatz in which the relaxation functions are expressed as the fol-
lowing Prony series

G(t) = G∞ +

NG∑
α=1

Gα exp(− t

τGα
) , (13)

K(t) = K∞ +

NK∑
α=1

Kα exp(− t

τKα
) . (14)

Here G∞, Gα, τGα with α = 1, . . . , NG are the material parameters related to the deviatoric
response, whereas K∞, Kα, τKα with α = 1, . . . , NK are those of the volumetric response, and
NG and NK are the numbers of Maxwell elements for the deviatoric and volumetric series,
respectively. The generalized Maxwell model is known to be able to describe viscoelastic
materials of arbitrary complexity if the number of rheological elements is sufficiently large.
Hence, we intend to adopt very large values of NG and NK to obtain a very flexible model
ansatz able to reproduce highly complex material behavior.

Through the Fourier transform of Eqs. (13) and (14), we obtain G∗(iω) and K∗(iω) as
follows

G∗(iω) = G∞ +

NG∑
α=1

Gα

ω2τ 2Gα
1 + ω2τ 2Gα

+ i

NG∑
α=1

Gα
ωτGα

1 + ω2τ 2Gα
, (15)

K∗(iω) = K∞ +

NK∑
α=1

Kα

ω2τ 2Kα
1 + ω2τ 2Kα

+ i

NK∑
α=1

Kα
ωτKα

1 + ω2τ 2Kα
, (16)

which can be conveniently written in a more compact form as

G∗(iω) = GTBs
G(ω; τG1 ...τGNG ) + iGTBl

G(ω; τG1 ...τGNG ) , (17)

K∗(iω) = KTBs
K(ω; τK1 ...τKNK ) + iKTBl

K(ω; τK1 ...τKNK ) , (18)

where

G = [G∞, G1, . . . , GNG ]T ,

Bs
G =

[
1,

ω2τ 2G1

1 + ω2τ 2G1

, . . . ,
ω2τ 2GNG

1 + ω2τ 2GNG

]T
,

Bl
G =

[
0,

ωτG1

1 + ω2τ 2G1

, . . . ,
ωτGNG

1 + ω2τ 2GNG

]T
,

K = [K∞, K1, . . . , KNK ]T ,

Bs
K =

[
1,

ω2τ 2K1

1 + ω2τ 2K1

, . . . ,
ω2τ 2KNK

1 + ω2τ 2KNK

]T
,

Bl
K =

[
0,

ωτK1

1 + ω2τ 2K1

, . . . ,
ωτKNK

1 + ω2τ 2KNK

]T
.
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The objective of the identification is thus to select, out of the very wide initial library
(containing NK + NG Maxwell elements), the minimum number of terms which accurately
describes the material behavior, and to calibrate the corresponding values of the bulk and
shear moduli.

3.2. Input data

In the spirit of EUCLID, we rely on the availability of experimental full-field displace-
ments (e.g. from DIC/DVC) and net force data, and do not use labeled stress-strain data
pairs. Possible data from DMA testing, if available, could be exploited additionally but are
not considered here.

In this study, we employ data generated numerically by solving the forward discretized
problem of linear viscoelasticity in the frequency domain outlined in Section 2.2. For each
frequency, the global algebraic system of equations in the unknown nodal displacements is
obtained by assembling the element stiffness matrices and internal force vectors in Eqs. (12)
and (10) and applying Dirichlet boundary conditions. To set these, we choose first the
frequency range [ωmin, ωmax] relevant for the material at hand, and then the number Nω of
frequencies to be excited during the test. Then, we assign the modulus (and possibly the
phase angle) of the applied displacements. Note that the lowest frequency ωmin directly
affects the capability of the model to discover very large relaxation times. Since we need to
identify the moduli at “infinite” time, a sufficiently small value for ωmin must be used. Being
the problem formulated in the frequency domain, this is not detrimental for the efficiency of
data generation.

We mimic experimental displacements from DIC or DVC, which are inevitably affected
by noise, by adding to the numerical data a spatially uncorrelated Gaussian white noise with
zero mean and standard deviation σ. The noise is generated in the time domain by choosing,
at each node of the mesh, a constant amplitude and a different seed for the generation of
random phases. The noise in the frequency domain is then obtained through Fast Fourier
Transform and added to the noise-free solution of the forward problem at the chosen Nω

frequencies.

3.3. Enforcing balance of linear momentum on the data

With data at hand, and having formulated a wide material model library, we now seek
to identify which terms in the library are relevant to describe the material response as
observed in the data, and to simultaneously compute the corresponding unknown material
parameters. As full-field displacements in the bulk and net force data for the loaded portions
of the boundary are known at different frequencies, the material parameters remain the only
unknowns in the weak linear momentum balance equations. Hence, these equations can
serve as the basis to formulate a physics-driven inverse problem for material parameter
identification. To set this problem, it is convenient to rearrange Eq. (10) to express the
elemental internal force vector as a linear function of the unknown shear and bulk moduli,
i.e. as f inte = aeθ. Here θ = [G;K] = [G∞, G1, . . . , GNG , K∞, K1, . . . , KNK ]T is a Nf × 1
array collecting all the unknown shear and bulk moduli2, with Nf = (NG + NK + 2), and

2We denote with [(·) , (·)] and with [(·) ; (·)] horizontal and vertical concatenations of arrays, respectively.
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ae =
[
aGe ,a

K
e

]
is a 6×Nf matrix, with the sub-matrices aGe and aKe given by

aGe =

[∫
Be

(
BTDBD

)
dV ûe

] [
Bs
G + iBl

G

]T
(19)

aKe =

[∫
Be

(
bTb

)
dV ûe

] [
Bs
K + iBl

K

]T
. (20)

Let D = {(a, i) : a = 1, . . . , N ; i = 1, 2} denote the set of all nodal degrees of freedom.
D is split in two subsets of internal and boundary degrees of freedom, namely Dint ⊂
D and Dbnd = D \ Dint, respectively. Due to the assumption of displacement-controlled
experiments, we have on the domain boundary either homogeneous Neumann or Dirichlet
boundary conditions. Let Dbnd,α ⊆ Dbnd with α = 1, . . . , Nbnd, such that Dbnd,α ∩Dbnd,β = ∅
for α 6= β, be the boundary subsets where Dirichlet boundary conditions are enforced and
reaction forces can be measured. Note that, on the generic subset Dbnd,α, only the net
reaction force r̂α (given by the sum of the reaction forces at all degrees of freedom in the
subset) is assumed to be known, as it is realistically measurable through load cells.

Through the assembly of the element matrices ae, the global nodal force vector is obtained
as a linear function of the unknown moduli A(ω)θ = f̂(ω), where the system matrix A
has dimensions 2N × Nf . Let Aint = A|Dint be the restriction of the matrix A to the

internal nodal degrees of freedom Dint and Abnd = [A|Dbnd,1 ; . . . ;A|Dbnd,Nbnd ] be the vertical

concatenation of the restrictions of the matrix A to the boundary degrees of freedom Dbnd,α

with α = 1, . . . , Nbnd. The corresponding restrictions on the vector f̂ are f̂
int

= f̂ |Dint = 0

(since we do not have body forces) and f̂
bnd

= [r̂1; . . . ; r̂Nbnd ].

The above matrices Aint(ω), Abnd(ω) and reaction force vector f̂
bnd

(ω) are frequency
dependent. As mentioned in Section 3.2, we assume to perform an experiment in which Nω

frequencies are excited. By vertically concatenating the contribution of each frequency ωh
with h = 1, . . . , Nω, we build the system Aθ = f , where

A =
[
Aint(ω1); . . . ;A

int(ωNω);Abnd(ω1); . . . ;A
bnd(ωNω)

]
, (21)

f =
[
f int(ω1); . . . ;f

int(ωNω);f bnd(ω1); . . . ;f
bnd(ωNω)

]
, (22)

which condenses all the measured information on the material response (combining full-field
displacements and reaction forces) corresponding to the excited frequencies.

Finally we note that the obtained complex system Aθ = f is equivalent to the two real
systems of equations involving its real and imaginary parts. Hence, the final linear system of
real equations Aθ = b is obtained by vertically concatenating the real and imaginary parts
of A and f , i.e., A = [<(A);=(A)] and b = [<(f);=(f)].

3.4. Sparsity promotion through Lasso regularization

The linear system obtained in the previous section is overdetermined and can be solved
in a least square sense as follows

θopt = arg min
θ
||Aθ − b||2 . (23)
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However, due to the ill-posed nature of the problem, ordinary least square estimates obtained
by (23) are often not satisfactory. Further, recall that we do not know the relaxation times
upfront and thus start from a highly flexible model ansatz containing a very large number
of Maxwell elements (see Section 3.1). This implies that solving (23) would in general result
in a highly complicated material model with a very large number of material parameters (as
large as in the assumed library). In the spirit of EUCLID, we seek to promote sparsity, i.e.
to automatically select only a small subset of the material parameters contained in the model
library to obtain a parsimonious model. To this end, we exploit the Lasso (least absolute
shrinkage and selection operator) regularization technique [47] (see also the preliminary work
in [48]) and rewrite the optimization problem in Eq. (23) as follows

θopt = arg min
θ

||Aθ − b||2 + λ

Nf∑
i=1

|θi|

 . (24)

The regularization term added to the loss function penalizes solution vectors with many
non-zero entries and hence promotes sparsity in θ. The penalty parameter λ controls the
importance of the regularization term relative to the linear momentum balance term. The
higher λ, the larger the number of features which are set to zero in the final solution vector,
i.e. removed from our material model library. An intuitive rule for selecting λ is discussed
in Section 4. To solve (24), we use the built-in Matlab function lasso, which employs the
coordinate descent technique [49].

4. Two-stage identification strategy

To promote parsimony in the most effective way, we propose an identification strategy
based on two subsequent stages. In the first stage, the Lasso-regularized optimization prob-
lem (24) is solved to obtain a sparse solution with a small number of Maxwell elements;
in the second stage, the sparsity of the solution is further enhanced by merging Maxwell
elements with similar relaxation times.

4.1. Stage 1: sparse regression

The first stage of the discovery process consist in the following steps:

1. Set the size of the material library, i.e. choose NG and NK , from which the total
number of unknown model features results as Nf = NG +NK + 2.

2. Choose the range of relaxation times [τmin, τmax] relevant for the material at hand and
a discrete set of relaxation times in the range. We assume the NG relaxation times
for the shear deformation and the NK relaxation times for the bulk deformation to be
both equally spaced on a logarithmic scale in the chosen range.

3. Build the arrays A and b in (24) as described in Section 3.3.

4. Define a discrete set of λ values from very small (corresponding to almost no regular-
ization) to very large (causing all features to be set to zero) and solve (24) for each of
these values.

9



5. Set a threshold eλ for the Mean Squared Error (MSE), defined as ||Aθ−b||2/Nf , and
identify the largest value of λ (i.e. the one leading to the most parsimonious model)
which corresponds to an MSE below the threshold, λopt. Further clarification will follow
in Section 5.3.

The solution of (24) obtained for λ = λopt is the outcome of stage 1. It delivers a material
model characterized by a drastically reduced number of features θopt,(1) ⊂ θopt with respect
to the initially chosen number Nf . The model is thus at the same time parsimonious and
accurate, whereby the accuracy (in the satisfaction of linear momentum balance on the data)
is dictated by the user-defined choice of eλ.

4.2. Stage 2: clustering

The standard EUCLID strategy proposed in [42–44] is limited to stage 1. With respect to
the previous investigations, the present linear viscoelastic case displays two unique features
which motivate the introduction of a second stage, namely,

• the a priori choice of a discrete set of relaxation times stemming from the fine dis-
cretization (in the logarithmic scale) of a relaxation time interval, and

• the equivalence of two (or more) Maxwell elements with the same relaxation times and
different shear (bulk) moduli to a single Maxwell element with the same relaxation
time and shear (bulk) modulus equal to the sum of the two (or more).

This equivalence naturally calls for a clustering procedure able to condensate Maxwell
elements with close relaxation times and thus to further reduce the number of features,
reaching the highest level of parsimony in the material model. The ensuing second stage
compensates for the difficulties of Lasso regression in choosing among almost linearly de-
pendent features, such as in the case of Maxwell elements with very close relaxation times.
Moreover, the clustering algorithm in stage 2 is extremely efficient, since it operates on the
results of stage 1, for which the number of features is already reduced by orders of magnitude
with respect to the initial catalogue size.

Let N
(1)
G < NG and N

(1)
K < NK be the number of Maxwell elements with non-zero

moduli selected in stage 1 for shear and bulk deformations, respectively, such that N
(1)
f =

N
(1)
G + N

(1)
K + 2 is the number of non-zero model features (dimension of θopt,(1)) after stage

1. Our objective is to find the minimum number of clusters N (2) = N
(2)
G = N

(2)
K such that

the material model obtained by condensing the Maxwell elements belonging to each cluster
accurately describes the material response3.

To this end, we gradually increase the number of clusters, icls, starting from 1. For each
icls we deploy a k-means clustering algorithm, based on [50] and implemented in the built-in
Matlab function kmeans, which partitions the active relaxation times selected in stage 1 into
icls clusters by minimizing the sum of the distances of the relaxation times within a cluster
to the centroid relaxation time. After clustering, the centroid of a cluster represents the

3We assume here that the optimal final number of Maxwell elements is the same for shear and bulk
deformations. This assumption, however, could be easily removed by formulating two separate clustering
algorithms, one for the shear and one for the bulk elements.
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G τG K τK
[N/mm2] [s] [N/mm2] [s]

500 - 2000 -
779 0.0728 2242 0.007693

1019 0.4824 2712 0.063440
529 3.9150 2366 0.457000

201.1 30.2100 1097 4.197000
96 629.4000 460.1 35.120000

Table 1: True material parameters selected from [51].

corresponding relaxation time, whereas the sum of the moduli belonging to that cluster is
the corresponding modulus. For each icls we compute the associated MSE, and the optimal
number of clusters is automatically identified as the value of icls at which the MSE decreases
abruptly. More details will follow in Section 5.

5. Numerical results

In this section we test the performance of EUCLID by applying the identification strategy
described in Section 4 to numerically generated data augmented with artificial noise.

5.1. Data generation

Data are generated numerically by adopting a generalized Maxwell model characterized
by a total of Nf = 12 rheological components with NG = NK = 5. These “true” parameters,
selected from [51], are reported in Table 1.

The specimen has a rectangular shape with dimensions Lx = 100 mm and Ly = 500 mm.
The two vertical sides are free, the bottom side is fixed in both directions (ux = uy = 0),
whereas on the top side ux = 0 and uy is given by a periodic function ūy(ωj) exp(iφj) with
j = 1, . . . , Nω, such that Nω frequencies equally spaced over a logarithmic scale spanning
from ωmin = 0.0009 rad/s to ωmax = 907.5291 rad/s are excited. In this study we have set
Nω = 15.

We performed several tests considering different levels of noise. In the following, we
report the results for the two most representative cases, namely the one with no noise and
the one with a magnitude of the noise which starts influencing results to a non-negligible
extent. This noise level is quite high, indicating a low sensitivity of the proposed strategy
to noisy data (at least for the type of noise considered here). All the other tested cases with
intermediate levels of noise are not discussed, as their results are nearly indistinguishable
from those of the noise-free case.

5.2. Inverse problem settings

For the material library we choose NG = NK = 300, hence our identification procedure
starts with a total number of features Nf = 602. Additionally, we choose a relaxation time
range spanning seven orders of magnitude between τmin = 10−3 s and τmax = 104 s. The 300
candidate relaxation times for both shear and bulk moduli are taken equally spaced on a
logarithmic scale ranging from τmin to τmax. For the regularization parameter λ, we consider
1000 values equally spaced in a logarithmic scale between 10−12 and 10−1 .

11



5.3. Noise-free case

Figure 1 shows the MSE obtained for the range of tested values of the regularization
parameter λ. As λ increases, the MSE increases accordingly, indicating that linear momen-
tum balance is satisfied with decreasing accuracy; at the same time, the number of active
(non-zero) features in the identified model decreases. Thus the model becomes increasingly
simple and decreasingly accurate, confirming a trend that was consistently encountered in
the previous investigations on EUCLID [42–44]. The horizontal line corresponds to the MSE
threshold (here eλ = 1× 10−5 ) selected by the user as the accepted level of error in the
satisfaction of linear momentum balance. The largest value of λ leading to an MSE below
this threshold, λopt, is chosen as the best compromise between complexity and accuracy (in
our case, λopt = 0.0025). Note, however, than any value of λ larger than about 10−6 leads
to approximately the same number of non-zero features, hence the specific choice of λopt (or
of eλ) is not crucial for the success of the method.

With this value of λ, the active parameters automatically selected by sparse regression
are illustrated in Figure 2, which gives the magnitude of the identified moduli vs. their
position in the features vector. Out of the original 602 features, the vast majority are
automatically set to zero and only 22 are retained (11 for the shear and 11 for the bulk
response). Figure 3 provides further details by illustrating the selected moduli (excluding
G∞ and K∞, so that we now show 10 shear and 10 bulk moduli) with the corresponding
relaxation times in comparison with the true moduli hidden in the input data. It is evident
that the active moduli correspond to quite accurate relaxation times; however, the number
of active moduli is the double of the true number, as in the neighborhood of each true
relaxation time two moduli are active after stage 1. A closer look reveals that, for each
couple of moduli corresponding to the neighborhood of a given relaxation time, the sum of
the moduli is very close to the true modulus. Indeed, two Maxwell elements with equal (in
our case, very similar) relaxation times are equivalent to a single Maxwell element with the
same relaxation time, and modulus given by the sum of the moduli. Thus, the results in
Figure 3 motivate the need for stage 2 of the identification procedure (see Section 4.2).

To set an automated procedure to group Maxwell elements, we loop over the number of
clusters, icls, starting from 1 and ending at the unclustered number of moduli (in the present
case, 11 for shear and 11 for bulk). For each icls we perform clustering using the k-means
algorithm implemented in Matlab and compute the MSE. Results are shown in Figure 4,
and indicate that a sudden decrease in the MSE (three orders of magnitude) is obtained as
the optimal number of clusters is reached (5 in our case). For a number of clusters between
5 and 7 the MSE does not vary appreciably, whereas for a number larger than 7 it slowly
decreases further. The observed trend indicates that the choice of 5 as the optimal number
of clusters can be easily automatized introducing a suitable criterion on the MSE drop.

The final identified material parameters after stage 2 are reported in Table 2. To assess
their quality, Figure 5 reports a comparison of identified (red dashed line) vs. true (solid
black line) loss and storage functions, both for shear and bulk deformations, and for different
number of clusters. Column-wise, the figure shows the improvement of the agreement as the
number of clusters increases until an excellent matching is achieved with 5 clusters. Plots
with higher number of clusters are not reported since they would be indistinguishable from
those with 5 clusters.

12



Figure 1: Mean Squared Error and number of non-zero features vs. λ for the noise-free case (σ = 0).

G τG K τK
[N/mm2] [s] [N/mm2] [s]

499 - 2000 -
778 0.0726 2239 0.0075

1019 0.4793 2711 0.0635
527 3.9232 2365 0.4541
201 30.4283 1095 4.1405
96 622.7509 460 35.7694

Table 2: Identified parameters after the two-stage procedure for the noise-free case (σ = 0).
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Figure 2: Activated shear (a) and bulk (b) moduli over the entire library of rheological components after
stage 1 for the noise-free case (σ = 0).

Figure 3: Activated shear (a) and bulk (b) moduli and corresponding relaxation times after stage 1 for the
noise-free case (σ = 0).

Figure 4: Mean Squared Error vs. number of clusters for the noise-free case (σ = 0).
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Figure 5: Comparison of true and identified response functions ordered as: shear loss, shear storage, bulk loss,
bulk storage (row-wise from left to right) and with increasing number of clusters from 1 to 5 (column-wise
from top to bottom) for the noise-free case (σ = 0).
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5.4. Noisy data case

We now test the sensitivity of the proposed strategy to noise by adding to the data an
artificial noise with a quite high standard deviation σ = 1× 10−2 mm, corresponding to a
noise-excitation standard deviation ratio of about 0.001. In additional tests which we do not
show here, all noise levels below this value gave results practically indistinguishable from the
noise-free results.

Figure 6 shows the MSE vs. the regularization parameter λ, which confirms the trend
of Figure 1 but expectedly with larger MSE values. We now choose an error threshold
eλ = 2× 10−4 and identify λopt = 0.0062 (however, also in this case any λ larger than about
10−5 is equally effective in inducing sparsity). The parameters automatically selected by
Lasso in stage 1 are shown in Figure 7, and Figure 8 illustrates the selected moduli with
their corresponding relaxation times in comparison with the true values. As in the noise-free
case, most of the features are suppressed in stage 1; now 12 features remain active for the
shear response and 11 for the bulk response. As highlighted in the insert of Figure 7a, an
extra feature with respect to the noise-free case is now active, corresponding to the upper
bound of the relaxation times. This indicates that the noise disturbance affects the small
frequency response, leading to the identification of G∞ = 495 N/mm2 as opposed to the true
value of 500 N/mm2. Interestingly, the identification of K∞ is instead almost unaffected by
the presence of noise.

Figure 9 shows the results of the clustering procedure in stage 2 and reveals once again
a drastic drop of the MSE at 5 clusters. However, while in the noise-free case the use of 6 or
7 clusters leads to no improvement, here considering 6 clusters does improve results at the
small cost of adding one extra rheological component. To understand the reason, we compare
in Table 3 the final identified material parameters for the choices of 5 and 6 clusters. It is
clear that with 5 clusters the largest relaxation time for the shear deformation is not correctly
identified, as no shear modulus should be activated around 1571 s. Instead, with 6 clusters, a
shear modulus much closer to the true value (95 N/mm2 vs. 96 N/mm2) is correctly activated
in the neighborhood of the true relaxation time 629.40 s. Moreover, a shear modulus of
3 N/mm2 is activated at the upper limit of the relaxation times (1× 104 s), indicating that
such a value improves the accuracy of the long-term response. This is confirmed by noting
that, summing this value to the identified long-term shear modulus, a better G∞ is found
(495 + 3 = 498 N/mm2, which is much closer to the true value).

Finally, we plot in Figure 10 the comparison between identified and true shear/bulk
loss/storage functions. As expected, for the 5-cluster solution a small deviation from the
true response is observed at very low frequencies (long-term response). Consistently with
Figure 9, as a sixth cluster is added (bottom row), an excellent agreement with the true
response is achieved at all frequencies.

6. Conclusions

We extended EUCLID, an automated material model discovery and identification strat-
egy relying on full-field displacement and net force data, to linear viscoelasticity. For this
case, we perform a priori model selection and adopt a generalized Maxwell model expressed
by a Prony series, which is known to be able to approximate an arbitrarily complex linear
viscoelastic behavior if a sufficiently large number of terms is included. For the identification
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Figure 6: Mean Squared Error and number of non-zero features vs. λ with noise σ = 1× 10−2 mm.

(a) Shear. (b) Bulk.

Figure 7: Activated shear (a) and bulk (b) moduli over the entire library of rheological components after
stage 1 with noise σ = 1× 10−2 mm.
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Figure 8: Activated shear (a) and bulk (b) moduli and corresponding relaxation times after stage 1 with
noise σ = 1× 10−2 mm.

Figure 9: Mean Squared Error vs. number of clusters with noise σ = 1× 10−2 mm.
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Figure 10: Comparisons of true and identified response functions ordered as: shear loss, shear storage,
bulk loss, bulk storage (rows-wise from left to write) and with increasing number of clusters from 2 to 6
(columns-wise from top to bottom). Noisy data with σ = 1× 10−2 mm.
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5 Clusters 6 Clusters
G τG K τK G τG K τK

[N/mm2] [s] [N/mm2] [s] [N/mm2] [s] [N/mm2] [s]
495 - 1999 - 495 - 1999 -
777 0.0726 2237 0.008 777 0.0726 2110 0.0078

1017 0.4793 2709 0.0635 1017 0.4793 127 0.0082
531 3.9232 2368 0.4541 531 3.9232 2709 0.0635
201 30.4283 1091 4.1405 201 30.4283 2368 0.4541
99 1571.1208 457 35.7694 95 622.7509 1091 4.1405

3 10000 457 35.7694

Table 3: Identified parameters with 5 clusters after the two-stage procedure with noise σ = 1× 10−2 mm.

procedure we deploy EUCLID, which consists of four ingredients: i. the data, assumed to be
delivered from material testing on a single specimen, using a loading excitation with a suf-
ficiently rich frequency content and monitoring the full-field displacements (e.g. with DIC);
ii. a very wide material model library - in our case, a very large number of terms in the
Prony series, corresponding to equally spaced relaxation times on a logarithimc scale within
a chosen range; iii. the physics constraint of linear momentum balance, enforced weakly
on the data both in the interior and on the loaded sides of the specimen; iv. the sparsity
constraint, enforced through sparsity-promoting regularization in the optimization problem.

The devised strategy comprises two stages. Stage 1 relies on sparse regression; starting
from a very large number of terms in the Prony series, it enforces linear momentum balance
on the data and exploits sparsity-promoting regularization to drastically reduce the number
of terms (identifying the few most relevant relaxation times) and simultaneously identify the
values of the non-zero material parameters (i.e. the corresponding bulk and shear moduli).
Stage 2 relies on k-means clustering; starting from the reduced set of terms in the Prony series
from stage 1, it further reduces their number by grouping together Maxwell elements with
very close relaxation times and summing the corresponding moduli. Automated procedures
are proposed for the choice of the regularization parameter in stage 1 and of the number of
clusters in stage 2. The overall strategy is demonstrated on artificial numerical data, both
without and with the addition of noise, and shown to efficiently and accurately identify a
linear viscoelastic model with five relaxation times across four orders of magnitude, out of
a library with several hundreds of terms spanning relaxation times across seven orders of
magnitude.

Further research should address the application to real experimental data, which is ex-
pected to pose challenges related to the quality of the DIC measurements (e.g., loss of grid
points during loading, unavailable measurements close to the boundary, non-Gaussian noise).
A further interesting and meaningful extension would be that to non-linear viscoelasticity.
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