
AUTOMATED IDENTIFICATION OF PATTERNS

IN EVALUATION FUNCTIONS

T. Kaneko, K. Yamaguchi, S. Kawai
Graduate School of Arts and Sciences (Kaneko, Kawai) and lnformation Technology Center

(Yamaguchi), The University of Tokyo, Tokyo, Japan

{kaneko,yamaguch,kawai}@graco.c.u-tokyo.ac.jp, http://www.c.u-tokyo.ac.jprkaneko/

Abstract This pa per proposes a general and automated method that generates accurate eval

uation functions, without expert players' knowledge of a target game. Patterns

(which are partial descriptions of a game state) are widely used as primitives of

evaluation functions in game programming. They ha veto be carefully selected in

order to generate accurate evaluation functions. Our approach consists of three

steps: (1) generation of logic formulae by using the specifications of a target

game, (2) translation of the formulae into patterns, and (3) selection of a set of

suitable patterns from those generated. The problem, in the automated identi

fication of suitable patterns, is that it is difficult either to generate only useful

patterns or to examine ali possible patterns. The latter obstacle is due to the

prohibi ti ve numbers involved. We solved this dilemma by a combination of two

methods, where one method generates patterns of good quality, and the other

method entails a lightweight selection based on statistics that could handle a

large number of candidates. Experiments in Othello revealed that about 100,000

patterns from more than eight million automatically generated patterns could be

successfully selected with our method, and that accurate evaluation functions

were constructed. This accuracy is comparable to that of specialized Othello

programs and is much better than that of the evaluation functions generated by

existing general methods.

Keywords: feature generation, feature selection, evaluation function, Othello

1. General Game Players

One of the most ambitious goals of artificial-intelligence research is the

development of a general game player that can learn and play an arbitrary

instance of a certain class of game. Strong game programs must ha ve an accurate

and efficient evaluation function that can estimate the results of a game based

on the notion position. Since an evaluation function is specific to a target game,

the development of general game players requires evaluation functions to be

automatically constructed without assistance of human experts.

H. J. Van Den Herik et al. (eds.), Advances in Computer Games

© IFIP International Federation for Information Processing 2004

280 T. Kaneko, K. Yamaguchi, S. Kawai

1.1 Learning of Evaluation Functions

A popular way of constructing an evaluation function is to make it a (linear)

combination of evaluation primitives calledfeatures, and adjust the parameters

ofthe combination (Samuel, 1967; Tesauro, 1992; Buro, 2002). Generally, the

construction of evaluation functions requires the acquisition of features, and

the training of a prediction model (e.g., linear combination).

1.2 Learning of Features

The main difficulty in constructing evaluation functions is identifying ap

propriate features. In most preceding investigations, these features have been

provided by human experts for the game involved.

Our first goal is to identify appropriate features mechanically. To achieve

this we employed a method of constructing features written in logic programs

(we called them logica[features). However, logica! features are not practica!

because they are too slow in evaluating logic programs. Yet, the advantage

is that practica! evaluation functions were constructed with a large number of

patterns as features (Buro, 1998; Buro, 2002). A pattern is a logica! formula in

a specific form. We introduce a rigorous definition for this in Subsection 3.3.

Even though a pattern is just a logica! formula in a specific form, the mechanical

identification of suitable pattern sets to derive a good evaluation function is a

difficult task.

1.3 The Approach

Our second goal is to construct efficient and accurate evaluation functions

through game-independent methods. Here we propose a combination of meth

ods that yields patterns similar to Buro's (1998) methods by translation from

logica! features. These methods are:

1 generation of logica! features,

2 extraction of patterns from logica! features, and

3 selection of suitable patterns.

A large number of patterns are produced in steps 1 and 2, and useful patterns

are selected in step 3. The claim of the pa per is that this selection is indispensable

for generating useful evaluation functions. The reason why we have to generate

such a large number of patterns in steps 1 and 2 is that they are required to achieve

accuracy in the evaluation functions constructed. There is no known method of

generating only useful patterns.

The method of selection must be so lightweight that a machine can evaluate

numerous pattern candidates within practica! time limitations. We demonstrate

the effectiveness of our solution through experiments.

Automated Identification of Patterns in Evaluation Functions 281

The paper is organized as follows. Section 2 reviews related work and other

issues that need to be resolved to construct general game players. Section 3

introduces the basic terrninology. Methods to generate logical features and

evaluate positions are briefiy explained in Sections 4 and 5. In Section 6 a

method of selection is proposed. Section 7 shows the experimental results in

Othello. Section 8 concludes the paper.

2. Related Work

The construction of general game players requires the acquisition of game

specific search enhancements as well as evaluation functions, such as realizati an

probabilities (Tsuruoka, Yokoyama, and Chikayama, 2002), opening books

(Lincke, 2001), and endgame books. This paper only addresses evaluation

functions, even though we are aware that aur method can be applied to the

acquisition of other knowledge.

In constructing evaluation functions, the training of prediction models re

quires unbiased training positions and an appropriate labeling (Bura, 1998). It

is well known that the usefulness of learned evaluation functions depends on

the training positions used. Thus, unbiased positions are needed to develop

strong programs. Because this paper primarily focuses on the acquisition of

features, the experiments were conducted on a game where both the training

positions and the labeling were available (near endgame in Othello). In games

where these are not available, we can apply methods of gathering positions via

self-play and temporal-difference learning (Tesauro, 1992, 2002).

We simply use linear regres sion for prediction because we could use a method

that iteratively adjusts the weights in a linear model, even when a very large

number of features are used (Barrett et al., 1994). Other prediction models,

such as neural networks, could be used with aur method, too.

Logica} features are general and were actually applied to many games. We

mention Othello and a single-agent search problem by Fawcett (1993), symmet

ric chess-like games (Pell, 1993) and a variant of Shogi (Kaneko, Yamaguchi,

and Kawai, 2002). However, the cost of evaluating positions is prohibi ti ve when

there are logical features due to the slow evaluation of logic programs, despite

the recent efforts that have increased speeds more than 4,000 times (Kaneko,

Yamaguchi, and Kawai, 2000, 2001).

Bura (2002) used patterns in fixed shapes. This is effective in achieving

highly efficient pattern matching, even when a large number of patterns is

involved. However, there is no established method of identifying effective

shapes mechanically, and we do not know whether patterns in such fixed shapes

are useful in other games. Kojima, Ueda, and Nagano's (1997) method acquired

patterns from game records in Go through genetic programming. This requires

282 T. Kaneko, K. Yamaguchi, S. Kawai

12345678 12345678

a a

b b

c

d

e

f

g

h

• •
owns(d5, x). owns(e4, x).

owns(d4, o). owns(e5, o).

blank(al). blank(a2)

d

e

f

g

h

1.

• 1 •
1 •

owns(c4, x), owns(d4, x).

owns(d5, x). owns(e4, x).

owns(e5, o).

blank(al). blank(a2)

Figure 1. Othello initial position (left) and position after Black has played c4 (right). Facts

below each board detine the position shown above.

game-specific adaptation to apply it to other games because it depends on the

importance of adjacent stones.

We recently developed a method of generating patterns from logica! features

(Kaneko et al., 2001). However, the accuracies of the generated evaluation

functions did not reach those that Buro obtained. This is because we only used

about 4,000 patterns, while Buro used about 200,000. For our method it was

impossible to provide a sufficient number of useful patterns because effective

methods of selection were up to then unknown.

The selection of features is a central research topic in artificial intelligence,

and many methods ha ve been developed (Guyon and Elisseeff, 2003; J ain, Duin,

and Mao, 2000). It is a combinatorial optimization problem. Heuristics are

essential because the computational costs identifying an optimal pattern subset

are known to be exponential in terms of the number of candidates (J ain, Duin,

and Mao, 2000). Such costs are not acceptable. Moreover, popular selection

methods such as the F-test in statistics cannot be used here. To illustrate this

difficulty, we used about eight million candidates in the experiments that will

be described later. Obviously, their covariances cannot be stored on normal

computers.

3. Basic Terminology

This section introduces the basic terminology, including the specifications

of a game written in logic (Subsection 3.1), the logic features (Subsection 3.2)

and the definition of patterns (Subsection 3.3).

3.1 Positions and Domain Theory

A position is an intermediate status of a game. It is described by a set of

special facts. A fact is a clause without a body. In Othello, owns and blank

Automated Identification of Patterns in Evaluation Functions

legal~ove(S, Player):-square(S), bs(S,JEnd,Player).

bs(S1,S3,P):-blank(S1), opponent(P,Opp),

neighbour(S1,D,S2), span(S2,S3,D,Dpp),

neighbour(S3,D,S4), owns(P,S4).

span(S1,S2,D,Owner):-

square(S1),square(S2), player(Owner), owns(Dwner, Sl),

neighbour(Sl,D,S3),span(S3,S2,D,Owner).

span(S,S,D,Owner):-

square(S),player(Owner),owns(Owner,S), direction(D).

line(S,S,D):-square(S),direction(D).

line(From,To,D):-neighbour(From,D,Next), line(Next,To,D).

opponent(x, o). opponent(o, x).

direction(n).direction(ne).direction(e).direction(se).

direction(s).direction(sw).direction(w) .direction(nw).

square (al). square (a2). square (a3). (· ·)

square (d2) . square (d3) . square (d4) . (· ·)

neighbour(al, s, a2). neighbour(a2, n, al).

neighbour (a2, s, a3) . neighbour (a3, n, a2). (· ·)

neighbour (c4, ne, d3) . neighbour (d3, sw, c4) . (· ·)

Figure 2. Sample domain theory for Othello.

283

are used to represent a position. To demonstrate this, we have shown the facts

defined in the initial position in Othello and the position after Black has played

c4 in Figure 1. Here, Black is denoted by x, and White is denoted by o. In the

initial position, owns(d5,x), owns(e4,x), owns(d4,o), and owns(e5,o)

are defined for squares with a disc, and blank is defined for each empty square.

The main part of the specifications of a game consists of the rules of the

game and the goal conditions. This is called domain theory and described by

a set of Horn Clauses. The example Othello domain theory in Figure 2 is used

throughout this paper.

3.2 Logical Features

Logica! features are defined as Horn Clauses of the predicate logic where

predicates in their body are defined by domain theory or position. The following

clause is an example of a logica! feature. 1

f (A) : -owns (x, A) . % pieces for Black

1This is written as "f(N) :- count([A], (owns(x,A)), N)" in Fawcett (1993). In this paper, "count" has been

assumed to be the default semantics of logica! features and has therefore been omitted.

284 T. Kaneko, K. Yamaguchi, S. Kawai

The value of a logica! feature for a state is defined as the number of solutions,

where solutions are the bindings of such constants to variables that make the

clause true. In the above feature, A is a variable, and the solutions in the initial

position in Figure 1 (left) are d5 and e4 (two solutions), which is the number

of squares currently owned by Black.

3.3 Patterns

A pattern is defined as a conjunction of facts describing a part of a position.

The value of a pattern is O or 1 according to its Boolean value; in a given

position this value of a fact is 1 if it is defined (or O if undefined). For example,

the following is a pattern.

blank(a1) 1\ owns(x,a2) 1\ owns(o,a3)

This pattern is a logica! formula for "White can play on square al."

4. Pattern Generation

Patterns are generated through the following steps:

1 generation of logica! features with Fawcett's (1993) method,

2 translation of logica! features into propositional logic by unfolding, and

3 extraction of patterns from propositional logic.

First, logica! features are generated by means of syntactic translation of

Horn Clauses, which are extracted from the domain theory of a target game.

For example, the following feature (called a mobility feature) can be generated.

f (A) : -legaLmove (A, o) . % mobility for White

Complex features can be generated by taking the preconditions of existing

features. Fawcett (1993) has more details on automated construction.

In the next step, generated features are translated into propositional logic

by unfolding. This is a technique in partial evaluation of logic programming

(Bossi, Cocco, and Dullie, 1990), and is repeatedly applied until features only

consist of ground facts. In conventional games with reasonable rules, it is

easy to write a domain theory so that the unfolding of generated features stops

even if they contain recursively defined clauses, due to the finiteness of the

number of squares and satisfiable terms. Detailed translation methods have

been described by Kaneko et al. (2001). The following clauses are part of the

results we obtained for the unfolding of the feature in the above example.

legaLmove (ai, o)
legaLmove (ai, o)
legaLmove (ai, o)

blank(a1), owns(x,a2), owns(o,a3).
blank(a1), owns(x,b1), owns(o,c1).
blank(a1), owns(x,b2), owns(o,c3).

Automated Identification of Patterns in Evaluation Functions 285

Finally, we extracted patterns from the unfolded features simply by tak:ing

the conjunctive part of their propositional formulae. The following formulae

are patterns extracted from the unfolded features listed above.

• blank(a1) 1\ owns(x,a2) 1\ owns(o,a3)

• blank(a1) 1\ owns(x,b1) 1\ owns(o,c1)

• blank(a1) 1\ owns(x,b2) 1\ owns(o,c3)

Each pattern has a corresponding clause whose body (right hand of clause)

is equivalent to the pattern.

5. Pattern Matching

Below, we briefty discuss a pattern matching method to justify the selection

method of the next section. The purpose of the selection is to identify sets of

patterns that produce efficient and accurate evaluation functions, where their

efficiency depends on how the patterns are evaluated. Basic ideas in efficient

matching are (1) performing incremental calculations and (2) utilizing a partial

order on patterns.

5.1 Incremental Matching with a Diagram

Incremental matching was efficiently implemented with a Hasse diagram

(Gries and Schneider, 1993) on the partial order of patterns, as outlined in Figure

3. Let each a, b, and c bea fact describing a position (such as blank (al)), and

consider that there are six patterns { abc, ab, bc, a, b, and c}. Here, ab means

the conjunction of a and b. In the figure, a pattern is denoted by a square, and

a fact is denoted by a circle. For each pattern, the question whether matching

is required can quickly be determined by using the diagram. For example,

matching of pattern 'abc' is only required when the value of pattern 'ab' or 'bc'

changes.

Figure 3. Hasse diagram of sample patterns.

The computational costs of incremental matching can be estimated by the

number of nodes visited. Because each edge will be visited once at most, the

cost for the worst case is proportional to the number of edges. Cube extraction

(Rudell, 1996) was applied to a diagram here to reduce edges, as well as other

optimizations. Details are discussed in Kaneko et al. (2001).

286 T. Kaneko, K. Yamaguchi, S. Kawai

5.2 Counters for Matching

To speed up matching of individual patterns, an integer counter cur(p) was

associated with each pattern p such that the matching was determined by integer

comparison instead of naively computing the logical conjunction of each fact

in the pattern.

Let dep(p) (upd(p)) be children (parents) ofpatternp in a diagram. Counter

cur(p) is defined as the number of children of p whose current value is true.

Then, as long as cur(p) is properly maintained, the Boolean value of cur(p) =
ldep(p) 1 coincides with the value of pattern p.

6. Pattern Selection

This section introduces a lightweight selection method, which consists of

two methods that are computationally inexpensive. These are:

• preliminary filtering by using the frequency of patterns, and

• approximated forward selection by assessing the contribution of patterns

to the accuracy of a prediction model.

The latter method takes into account the accuracy of a linear model that uses

selected patterns. Consequently, it requires that the model is trained (by weight

fitting) for each subset of patterns; thus the method is relatively expensive. The

former method is more efficient because it only uses the frequency of each

pattern. However, it cannot be used to select useful patterns by itself. Hence,

we first need to filter the candidates with the former method, and then select

useful patterns with the latter method, to reduce its weight-fitting time.

6.1 Preliminary Filtering by Frequency

First, useless patterns are heuristically determined and filtered out by analysing

their frequency, before approximated forward selection is dane in the next step.

There are two background considerations: (1) if low-frequency patterns are

used, the efficiency of evaluating positions by using the method detailed in Sec

ti an 5 will improve,Z and (2) the use of extremely low-frequency patterns tends

to cause over-fitting. We claim that high- or extremely low-frequency patterns

can safely be rejected without a loss of quality in the generated evaluation func

tions. Although this may seem similar to the filtering in existing work (e.g.,

2More precisely, it is better to measure the frequency at which the pattems change from one position to

another to improve search efficiency. We used the frequency of the patterns themselves, because this could

be measured more easily. Moreover, to reduce the computational costs of weight fitting, reducing the

frequency of the patterns themselves is also essential, as discussed in Subsection 7.2.2.

Automated Identification of Patterns in Evaluation Functions

U)

c
Q)

::::::
ca
a. -o
....
Q)
.o
E
:::J
z

19+06

100000

10000 '

1000

100

10

1
o

,_
......... ii_

'-;.q_

!..•-:. .. ~~ • .!Jln"''_!l_:-.. !., p.rt_:-~l_r'iJ!.\ ,, .::!
.. 1.!!! i !!

Buro
O urs

! Lq Pfl
: :: :

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency of matching positions

Figure 4. Histogram for frequency of matching positions.

287

Kojima et al., 1997; Bura, 1998), our approach is different in the sense that our

colleagues do not explicitly reject high-frequency patterns as we do.3

We measured the frequency of part of Buro's (2002) horizontal patterns to

estimate an appropriate frequency range (Figure 4). Because the highest fre

quencyinBuro's patterns was 0.075, weexpected thatgoodevaluationfunctions

could be generated with only patterns with a frequency below this value. Figure

4 also has the results of measurement for our patterns. It can be seen that many

patterns can be filtered out by frequency. The preferable frequency ranges were

determined by the experiments, which are discussed in Section 7.

6.2 Approximated Forward Selection

After filtering, we applied a method of statistically selecting explanatory

variables, by treating a pattern as a binary variable. Approximated sequential

forward selection was adopted from many existing methods (Guyon and Elis

seeff, 2003). It is so efficient that it was used already for manual computation

before computers became widely available (Okuno et al., 1981).

The algorithm is listed in Figure 5. It is used to selecta subset of variables

(S) that are effective in predicting a target variable (y0), from a set of candidates

(i.e., patterns, X). A target variable is the difference between the number of

black and white discs (explained below in the experiments).

One pattern (xaJ is added to the selected set (S) at the seventh line for each

loop, as in sequential forward selection. A priority function, also explained

later, is used to select a pattern. Let n be the number of candidates and m be the

number of patterns finally selected. Because variables in S are never removed,

the method tries m subsets of candidates, which is far less than the possible

number of subsets, 2n.

3Kojima et al.'s (1997) method and the inductive algorithm proposed by Buro (1998), which was not used in

preparing the evaluation functions for LOGISTELLO, tend to discard high-frequency patterns because they

prefer specific patterns in matching. As patterns for specific given shapes contained at least eight squares,

high-frequency patterns were not used in constructing evaluation functions for LOGISTELLO.

288 T. Kaneko, K. Yamaguchi, S. Kawai

11 (input) yo: a target variable,

11 X = { x0 , x1, ... , Xp}: a set of explanatory variables

11 (output) S: a set of selected variables

11 Yi+ 1: residuals after selection

i +--O, S +-- 0
while (termination criterion is not satisfied)

pick X ai of the highest priority

compute aai, bai by uni variate regres sion s.t. aai X ai + bai predicts Yi

Yi+l +-- Yi- (aaiXai + baJ 11 residuals

8+--SU{xaJ

i+-i+l

Figure 5. Approximated forward selection algorithm.

A priority function is used to estimate the usefulness of the pattern for selec

tion at the seventh line, and this should be carefuliy adopted taking the purpose

of selection into consideration. For practica} game programming, efficiency

and accuracy should be taken into account to estimate the usefulness of a pat

tern in terms of priority. In this paper, we used the correlation with residuals

after the i-th regression Yi as a priority function to achieve accuracy.

Here, if explanatory variables have no correlation with one another, variables

selected with this method are equivalent to the ones selected by normal sequen

tial forward selection, where the multiple regression coefficient in predicting Yo

using ali variables inS is used as the priority function.4 The order of candidates

affects the results in other cases (Okuno et al., 1981). However, this method

is more efficient than sequential forward selection because it uses univariate

regres sion instead of multi variate regression.

11 (input)

11

11 (output)

R+--0

Yb: be a target variable

X o, X1, ... Xn: sets of variables

R: selected variables

for each i in O, ... , n

(S, y~+l) +-- approximated forward selection(yL Xi)
R+-RUS

Figure 6. Iterative selection algorithm.

The improved computation applied so far leads to appropriate results. Yet,

the most expensive computation is to determine the priority (i.e., correlation) of

each pattern in each loop. Naively, it requires pattern matching over ali training

positions for every loop, but then the computational costs are unacceptable. The

4The method approximates sequential forward selection by using the accumulation of univariate regressions

instead of multi variate regres sion.

Automated Identification of Patterns in Evaluation Functions 289

priority of each pattern can be incrementally updated by means of a table holding

the number of pattern co-occurrences if there are not too many candidates.

Thus, to avoid frequent pattern matching, patterns were split into sets of a

moderate number of patterns {X0 , X 1 , ... Xn} in advance, and approximated

forward selection was iteratively applied to each Xi in turn, as shown in Figure

6. A test to determine whether the priority of a selected pattern went beyond

a given threshold worked well as a termination criterion in each approximated

forward selection. We selected variables from X 0 up to a given threshold, and

then selected variables from X 1 up to the given threshold. This step was repeated

to Xn. Preferable priority thresholds were estimated in the experiments and are

discussed in Section 7. There were 1,000 candidates (Xi) in each approximated

forward selection in our experiments. Although accuracy improves with greater

numbers, only slight improvements could be observed for 4,000 candidates in

our experiments.

7. Experimental Results

We did experiments on Othello to prove the effectiveness of the generation

and selection methods proposed. We compared evaluation functions generated

by our methods with those generated by other general methods, and with the

evaluation functions used in specialized Othello programs. We used a computer

with an Athlon MP 2100+ CPU (1.7 GHz) for these experiments. The program

was implemented in GNU C++.

7.1 Pattern Generation and Selection

First, 11,079 logical features were generated by Fawcett's (1993) method.

Subsequently, 8,502,664 unique patterns were extracted from the logica} fea

tures with the method proposed in Section 4. We then did selection by frequency

as described in Subsection 6.1. Several sets of patterns were selected with var

ious frequency ranges. Finally, we applied the iterative selection described in

Subsection 6.2 to the resulting sets with various priority thresholds. The priority

function used here was correlation, and candidates were sorted by frequency.

7.2 Accuracy of Evaluation Functions

This subsection contains the heart of our experimental research. It is subdi

vided into six sub-subsections, each of them dealing with a relevant item.

7 .2.1 Training Positions and Labeling. Evaluation functions made

up of selected patterns were constructed to enable the usefulness of patterns

to be estimated. Bach of the functions was a linear model of patterns. The

weights were adjusted by means of least mean squares to predict the final score

(difference between number of black and white discs at the end of the game

290 T. Kaneko, K. Yamaguchi, S. Kawai

after both players had played the best moves). We separately constructed the

evaluation functions for the positions of 60 discs and those for 55 discs. We

only used the positions of 60 and 55 discs because positions of the near the

endgame can be immediately labeled with the results of a complete search.

The positions we used in selection and training were extracted from games

played between LOGISTELLO and KITTY.5 It should be noted that our pro

posed method works without the game records of strong game programs. The

purpose of using positions taken directly from games is to gather unbiased po

sitions and to demonstrate the method's learning ability in positions that strong

programs face. About 50,000 positions were selected by eliminating duplicate

positions considering the symmetry of the geometry and players. We then gen

erated two disjoint sets of positions expanding the symmetric ones.6 One set

contained about 800,000 positions for training and the other had about 6, 000

positions for testing.

7 .2.2 Adjustment of Weights. Weights in evaluation functions with

fewer than 10,000 patterns were adjusted with LAPACK7, and an iterative

method (BiCGSTAB8)(Barrett et al., 1994)) was used instead, due to memory

limitations, in other cases. The time for weight fitting depends on the effi

ciency of an evaluation function and on the number of matching patterns for

a position on average. This efficiency was primarily important because the

iterative method requires pattern matching over all training positions for many

repetitions. The number of multiplications required for each position is about

the number of matching patterns squared. Thus, it was not feasible to use all

patterns generated without selection. The time for weight fitting tended to be

more than a week if there were more than 100,000 patterns. Buro could use

more patterns because his efficiency is much better, as will be described below,

and because only 50 patterns at most should match each position due to the

carefully crafted shapes.

7.2.3 Accuracy ofProposed Evaluation Functions. The graph in Fig

ure 7 illustrates the accuracy of our evaluation functions and the others. Here,

"error" in the vertical axis is the square root of mean square errors. The hori

zontal axis plots the number of patterns on a logarithmic scale. Our evaluation

functions ("with selection") for positions with 60 discs are denoted by the '+',

and those for positions with 55 discs are denoted by the ·•·. The errors for 55

5Both are available at ftp: 1 /external. nj .nec. com/pub/igord/IOS/misc/.
6To generate evaluation functions that yield the same value at symmetric positions, symmetric pattems should

have the same weight in the evaluation functions. We achieved this by simply instantiating ali symmetric

positions when adjusting weights.
7http://www.netlib.org/lapack/
8http://netlib2.cs.utk.edu/linalg/html_templates/Templates.html

Automated Identification of Patterns in Evaluation Functions 291

discs are larger than those for 60 discs, because it is more difficult to predict

scores for the positions of earlier game stages. The frequency ranges used in

filtering were [1.25 ·10-5 , 0.075]; 540,724 patterns were selected. The priority

thresholds used were 0.000125, 0.0005, 0.00125, 0.005, and 0.01; we selected

approximately 3,000 to 140,000 patterns. The accuracy of aur evaluation func

tions improved as the number of patterns increased.

7.2.4 Comparison with Logical Features or AII Patterns. We com

pared aur evaluation functions with those using logica! features and those using

ali patterns without selection to demonstrate improvements over existing gen

eral methods.

We have already reported on a comparison of ali patterns and logica! features

(Kaneko et al., 2001). The accuracy of evaluation functions using 18 logica!

features that Fawcett had selected was 12.9 and 12.5, and the accuracy of

evaluation functions with 42 logica! features that were statisticaliy significant

and selected with an F-test from 10,000 features was 8.90 and 12.4 for positions

with 60 discs and 55 discs, respectively. Evaluation functions with logica!

features were more than 20 times slower than those with patterns extracted

from the same logica! features. The results indicate that extracted patterns are

much more effective than the logica! features themselves.

In Figure 7, "without selection" means the accuracy of evaluation functions

that use automatically generated patterns without selection. The accuracy of

aur evaluation functions was far better than that of patterns without selection

(plotted with '*' and 'e•). The accuracy of the latter functions were established

in and taken from the authors' previous work (Kaneko et al., 2001). The results

indicate that the proposed methods are more effective than existing general

methods.

12 With selection (60) +
8 Buro (60) X

11 8 Without selection (60) *
• Random + selection (60) D

10
With selection (55) •

1(]
Buro (55) o

.....
9

Without selection (55) • e D • Random + selection (55) 8

w
* • o

8

7
+

+
6

+ + X

5
1000 10000 100000 1e+06

Number of patterns in evaluation functions

Figure 7. Accuracy of evaluation functions.

292 T. Kaneko, K. Yamaguchi, S. Kawai

7.2.5 Comparison with Buro's Patterns. We compared our evaluation

functions with those of a specialized Othello program to evaluate our accuracy.

In Figure 7, "Buro" means our previous reproduction ofBuro's method (Kaneko

et al., 2001). The accuracy of our evaluation functions improves as the number

of patterns increases, going beyond that of Buro's (plotted with the '8' and

'X'). The results indicate that accurate evaluation functions are mechanically

generated, without having to incorporate manually important shapes in Othello.

7 .2.6 Comparison with Randomly Generated or Selected Patterns.

To demonstrate the importance of both pattern generation and selection, we

constructed evaluation functions with random generation/selection instead of

the proposed generation/selection, and compared their accuracies.

Random Generation + Proposed Selection. In Figure 7, "random + selec

tion" means evaluation functions that use patterns selected with our method,

from randomly generated patterns instead of the ones generated by this method.

First, 8,502,664 patterns were generated, each of which was a conjunction of

the randomly selected status of squares. Then, about 3,000 and 6,000 patterns

were selected with the selection we propose. The difference between the accu

racy of randomly generated patterns and that of ours means that our method of

generating patterns is indispensable in producing useful patterns.

Proposed Generation + Random selection. We measured the accuracy of

evaluation functions with 4, 14 7 patterns that were randomly selected instead of

with the selection we propose. The error was more than 14.5 and is not plotted

in the graph. The difference between the accuracy of randomly selected patterns

and that of our method means that our pattern selection method is indispensable

in producing useful patterns.

7.3 Efficiency of Evaluation Functions

Figure 8 illustrates the efficiency and accuracy of our evaluation functions

selected for various frequency ranges. The horizontal axis plots the number of

patterns used in the evaluation functions and the vertical axis plots efficiency

by the number of positions evaluated in one second. The priority thresholds

we used were 0.000125, 0.0005, 0.00125, 0.005, and 0.01. As the number

of patterns increased, the efficiency of evaluation functions deteriorated while

the accuracy improved, almost regardless of frequency ranges. For this experi

ment, we collected a sequence of about 3, 000, 000 positions. Then the df-pn+

Automated Identification of Patterns in Evaluation Functions

o
o
o

+
,f

10000 100000 1e+06

Number of patterns in evaluation functions

293

Figure 8. Efficiency of evaluation functions for various numbers of pattems (55 and 60 discs).

....
g
UJ

11 ,-----------~----------~~--------~~

10

9

+
X

+

55 discs
(1.25e-5,0.0375] +
(1.25e-5,0.0750] X
(1.25e-5,0.1125] o
(1.25e-5,0.1500] D
(1.25e-5,0.3000] v
(1.25e-5, 1.0000] O

8 L-~--~~~~--~~~~~--~~~~~

1 000 1 0000 1 00000 1e+06

8 .---~r-~~~--------~--~----~--~~
-r- 60 di'scs [1.25e-5,0.0375]

7

6

X [1.25e-5,0.0750j
rn [1.25e-5,0.1125
'ZI [1.25e-5,0.1500]

+

+

~

[1.25e-5,0.3000]
[1.25e-5, 1.0000]

+
~

+
X
o
D
V
o

5 L---~~~~~--~~~~~~--~~~~~

1000 10000 100000 1e+06

Number of patterns in evaluation functions

Figure 9. Accuracy of evaluation functions with various priority thresholds (55 and 60 discs).

294 T. Kaneko, K. Yamaguchi, S. Kawai

'O
Q)

o 1e+06 + Q) [1 .25e-5,0.0375]
Qi
<J) • [1.25e-5,0.0750] X
<J) • [1 .25e-5,0.1125] o c: 100000
O; • [1 .25e-5,0.1500] o
~ [1.25e-5,0.3000] /::,.
a.

• [1 .25e-5, 1.0000] 'V o 10000

O; $.o
E 1000
::1 o 0.002 0.004 0.006 0.008 0.01 z

Priority

Figure 10. Number of pattems selected with various priority thresholds.

search (Nagai and Imai, 1999) visited the root positions of 49 discs, which were

extracted from 23 matches in ros records.9

Although the efficiency of our evaluation functions was much better than

the efficiency of evaluation by logica! features (Kaneko et al., 2001), it was

worse than that of a specialized Othello program. LOGISTELLO's speed was

about 270,000 nodes/sec when running on a Pentium-II 333 MHz (Buro, 1998).

This speed would have been about 1.4 million nodes/sec (by extrapolation)

if it had been run on a 1.7-GHz CPU. Further research is required to make

practica! evaluation functions because efficiency is usually more important than

accuracy. 10 These differences were partly because we did not take efficiency

into account in the selection of pattems and partly because we could have used

a much more efficient pattern matching algorithm than the one we proposed if

we had restricted our pattems to Buro's (1998) shapes.

7.4 Parameters for Selection

To determine appropriate values for frequency ranges and priority thresholds

so that the proposed selection would work well, we investigated their influence

on the efficiency and accuracy of the generated evaluation functions and on the

time required for selection.

The graphs in Figure 9 plot the accuracy of our evaluation functions for posi

tions with 60 and 55 discs, consisting of pattems selected with various frequency

ranges and various priority thresholds. We can see that the frequency ranges

do not distinctly affect the quality of selected pattems, if its upper boundary is

greater than 0.15. Thus, we concluded that the accuracy of evaluation functions

is mainly determined by the number of pattems used in them.

The priority thresholds used in selection determine the number of pattems

that are finally selected. Figure 10 plots the relation between the number of

9These are available at ftp: 11 external. nj . nec. com/pub/igord/ othello/ios/.
10Future advances in hardware will favour the accuracy because these will eventually compensate for serious

delays when in-depth searches reach a saturation point (Heinz, 2001).

Automated Identijication of Patterns in Evaluation Functions

(f)

Q)

:5
c

~

300 .----.-----,-----,----,-----.-----.----,

250

200

150

100

50
o

Figure Il.

o

•

o

•
1

o

•
+fjj

[1.25e-5,0.0375] +
[1.25e-5,0.0750] x
[1.25e-5,0.1125] *
[1.25e-5,0.1500] o
[1.25e-5,0.3000] •
[1 .25e-5, 1 .000] o

50000 100000 150000 200000 250000 300000 350000

Number of patterns selected

Time for iterative selection according to frequency ranges.

295

selected pattems and priority thresholds. The vertical axis plots the number

of pattems on a logarithmic scale, and the horizontal axis plots the priority

thresholds. Here, we used correlation for priority. We can see that the number

of pattems selected is mainly determined by priority thresholds regardless of

frequency ranges (denoted by symbols), and that the symbols in the graph are

plotted at almost the same location if the same priority thresholds are used.
Also, larger numbers of pattems are selected as Iower thresholds are used.

Thus, one can control the trade-off between the accuracy and efficiency of
evaluation functions by adjusting the priority thresholds, because these are

mainly determined by the number of pattems in them as previously discussed.

The time for iterative selection depends on frequency ranges as well as the

number of selected pattems. Figure 11 plots the relation between time and

the number of selected pattems with various priority thresholds and frequency
ranges. The priority thresholds we used were 0.000125, 0.0005, 0.00125, 0.005,

and 0.01. The horizonta1 axis plots the number of pattems finally selected by
iterative selection, and the vertical axis plots the time for selection in minutes.

These results are acceptable because we have to inspect a larger number of

candidates during iterative selection for frequency ranges with larger upper

bounds.

Figure 12 plots the relation between the efficiency and accuracy of evalu

ation functions. The vertical axis plots accuracy by the square root of mean

square errors, and the horizontal axis plots efficiency by the number of positions

evaluated in one second. The one right below is to be preferred.

Considering the time for selection, accuracy, and efficiency of evaluation

functions, the recommendable upper boundary for the frequency range is be

tween 0.15 and 0.3. This value is obviously larger than the expected value

0.075 in Figure 4. It is partly because most of our pattems had fewer squares
than Buro's (1998).

296 T. Kaneko, K. Yamaguchi, S. Kawai

10.5

10.0

e
9.5

w 9.0

8.5

55 discs

~;;;:::~
[1.25e-5,0.0375] --+-
[1.25e-5,0.0750] ----~---

[1.25e-5,0.1125] ·····*-····
[1.25e-5,0.1500] ·· ·H-···
[1.25e-5,0.3000] ---•-·-·
[1.25e-5, 1.0000] -·-·-0-·-·

8.0
o 50

8.0

7.5

e
7.0

w 6.5

6.0

5.5
o 50

100 150

100 150

1000 positions/sec

200

200

[1.25e-5,0.0375] --+-
[1.25e-5,0.0750] ----~---

[1.25e-5,0.1125] ·····*-····
[1.25e-5,0.1500] ····H···
[1.25e-5,0.3000] -·-·-•·-
[1.25e-5, 1.0000] -·-·-0-·-·

Figure 12. Efficiency and accuracy of evaluation functions (55 and 60 discs).

8. Concluding Remarks

In this paper, we described a method of constructing accurate evaluation

functions by using only the specifications of a target game and a set of training

positions, which is crucial in constructing a general game player. Experiments

on Othello revealed that a combination of pattern generation using logic and

a lightweight pattern selection could efficiently search for and identify useful

patterns. The method actually constructed accurate evaluation functions. The

accuracy was by far superior to the evaluation functions generated by existing

general methods, and was comparable (although slightly worse) to that ofBuro's

(2002) which is part of a specialized Othello program.

Our intended future work aims at demonstrating the generality of the ap

proach proposed here on other games, such as Shogi, where patterns with

variable shapes are needed, and also at improving the efficiency of the gen

erated evaluation functions in order to investigate total game-playing perfor

mance. The development of selection criteria taking efficiency into account

seems promising, though investigations into their impact on accuracy would

be required. It would also be challenging to develop a general method that

introduces game-specific optimizations, including the use of patterns in fixed

shapes, through an analysis of domain theory.

Acknowledgments

The authors would like to express their appreciation to the anonymous ref

erees, whose comments led to significant improvements in this paper.

Automated Identification of Patterns in Evaluation Functions 297

References

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo,

R., Romine, C., and der Vorst, H. V. (1994). Templates for the Solution of Linear Systems:

Building Blocksfor Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA.

Bossi, A., Cocco, N., and Dulli, S. (1990). A method for specializing logic programs. ACM

Transactions on Programming Languages and Systems, 12(2):253-302.

Buro, M. (1998). From simple features to sophisticated evaluation functions. In Proceedings of

the First International Conference on Computers and Games(eds. H.J. van den Herik and H.

lida), pages 126-145. Springer-Verlag, Berlin, Germany.

Buro, M. (2002). Improving heuristic mini-max search by supervised learning. Artificial Intelli

gence, 134(1-2):85-99.

Fawcett, T. E. (1993). Feature Discovery for Problem Solving Systems. PhD thesis, Department

of Computer Science, University of Massachusetts, Amherst, MA.

Gries, D. and Schneider, F. B. (1993). A Logica[Approach to Discrete Math. Springer-Verlag,

New York, NY.

Guyon, 1. and Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of

Machine Learning Research, 3:1157-1182. Special Issue on Variab1e and Feature Selection.

Heinz, E. A. (2001). New self-play results in computer chess. In Marsland, T. A. and Frank, 1.,

editors, Computer and Games (eds. H.J. van den Herik and H. lida), number 2063 in LNCS,

pages 262-276. Springer-Verlag, Berlin, Germany.

Jain, A., Duin, P., and Mao, J. (2000). Statistica! pattern recognition: a review. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(1):4- 37.

Kaneko, T., Yarnaguchi, K., and Kawai, S. (2000). Compiling logica! features into specialized

state-evaluators by partial evaluation, boolean tables and incremental calculation. In PRICAI

2000, pages 72-82, Melbourne, Australia.

Kaneko, T., Yamaguchi, K., and Kawai, S. (2001). Automatic feature construction and optirniza

tion for general game player. In The Sixth Game Programming Workshop, number 14 in IPSJ

Symposium Series 2001, pages 25-32.

Kaneko, T., Yarnaguchi, K., and Kawai, S. (2002). Automatic construction of pattern-based eval

uation functions for game programming. IPSJ JOURNAL, 43(10):3040-3047. (In Japanese)

Kojima, T., Ueda, K., and Nagano, S. (1997). An evolutionary algorithm extended by ecologica!

analogy and its application to the game of Go. In Proceedings of the I5th IJCAI, pages

684-689, Nagoya, Japan.

Lincke, T. R. (2001). Strategies for the automatic construction of opening books. In Marsland,

T. A. and Frank, 1., editors, Computer and Games, number 2063 in LNCS, pages 74-86.

Springer-Verlag, Berlin, Germany.

Nagai, A. and Imai, H. (1999). Application of df-pn+ to Othello endgarnes. In Game Program

ming Workshop in Japan '99, pages 16-23.

Okuno, T., Kume, H., Haga, T., and Yoshizawa, T. (1981). Multivariate Analysis. Nikka-giren.

(in Japanese) (this citation information is translated in English by the author of the paper)

Pell, B. D. (1993). Strategy Generation and Evaluationfor Meta-Game Playing. Ph.D. thesis,

University of Cambridge.

Rudell, R. L. (1996). Tutorial: Design of a logic synthesis system. In Design Automation Con

ference, pages 191-196, Las Vegas, NV.

Samuel, A. L. (1967). Some studies in machine learning using the game of checkers. II- recent

progress. IBM Journal ofResearch and Development, 11(6):601-617.

298 T. Kaneko, K. Yamaguchi, S. Kawai

Tesauro, G. (1992). Practica! issues in temporal difference learning. Machine Learning, 8:257-

278.

Tesauro, G. (2002). Programming backgammon using self-teaching neural nets. Artificial Intel

ligence, 134(1-2):181-199.

Tsuruoka, Y., Yokoyama, D., and Chikayama, T. (2002). Game-tree search algorithm based on

realization probability. ICGA Journal, 25(3):145-153.

