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Abstract This pa per proposes a general and automated method that generates accurate eval

uation functions, without expert players' knowledge of a target game. Patterns 

(which are partial descriptions of a game state) are widely used as primitives of 

evaluation functions in game programming. They ha veto be carefully selected in 

order to generate accurate evaluation functions. Our approach consists of three 

steps: (1) generation of logic formulae by using the specifications of a target 

game, (2) translation of the formulae into patterns, and (3) selection of a set of 

suitable patterns from those generated. The problem, in the automated identi

fication of suitable patterns, is that it is difficult either to generate only useful 

patterns or to examine ali possible patterns. The latter obstacle is due to the 

prohibi ti ve numbers involved. We solved this dilemma by a combination of two 

methods, where one method generates patterns of good quality, and the other 

method entails a lightweight selection based on statistics that could handle a 

large number of candidates. Experiments in Othello revealed that about 100,000 

patterns from more than eight million automatically generated patterns could be 

successfully selected with our method, and that accurate evaluation functions 

were constructed. This accuracy is comparable to that of specialized Othello 

programs and is much better than that of the evaluation functions generated by 

existing general methods. 
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1. General Game Players 

One of the most ambitious goals of artificial-intelligence research is the 

development of a general game player that can learn and play an arbitrary 

instance of a certain class of game. Strong game programs must ha ve an accurate 

and efficient evaluation function that can estimate the results of a game based 

on the notion position. Since an evaluation function is specific to a target game, 

the development of general game players requires evaluation functions to be 

automatically constructed without assistance of human experts. 

H. J. Van Den Herik et al. (eds.), Advances in Computer Games
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1.1 Learning of Evaluation Functions 

A popular way of constructing an evaluation function is to make it a (linear) 

combination of evaluation primitives calledfeatures, and adjust the parameters 

ofthe combination (Samuel, 1967; Tesauro, 1992; Buro, 2002). Generally, the 

construction of evaluation functions requires the acquisition of features, and 

the training of a prediction model (e.g., linear combination). 

1.2 Learning of Features 

The main difficulty in constructing evaluation functions is identifying ap

propriate features. In most preceding investigations, these features have been 

provided by human experts for the game involved. 

Our first goal is to identify appropriate features mechanically. To achieve 

this we employed a method of constructing features written in logic programs 

(we called them logica[ features). However, logica! features are not practica! 

because they are too slow in evaluating logic programs. Yet, the advantage 

is that practica! evaluation functions were constructed with a large number of 

patterns as features (Buro, 1998; Buro, 2002). A pattern is a logica! formula in 

a specific form. We introduce a rigorous definition for this in Subsection 3.3. 

Even though a pattern is just a logica! formula in a specific form, the mechanical 

identification of suitable pattern sets to derive a good evaluation function is a 

difficult task. 

1.3 The Approach 

Our second goal is to construct efficient and accurate evaluation functions 

through game-independent methods. Here we propose a combination of meth

ods that yields patterns similar to Buro's (1998) methods by translation from 

logica! features. These methods are: 

1 generation of logica! features, 

2 extraction of patterns from logica! features, and 

3 selection of suitable patterns. 

A large number of patterns are produced in steps 1 and 2, and useful patterns 

are selected in step 3. The claim of the pa per is that this selection is indispensable 

for generating useful evaluation functions. The reason why we have to generate 

such a large number of patterns in steps 1 and 2 is that they are required to achieve 

accuracy in the evaluation functions constructed. There is no known method of 

generating only useful patterns. 

The method of selection must be so lightweight that a machine can evaluate 

numerous pattern candidates within practica! time limitations. We demonstrate 

the effectiveness of our solution through experiments. 
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The paper is organized as follows. Section 2 reviews related work and other 

issues that need to be resolved to construct general game players. Section 3 

introduces the basic terrninology. Methods to generate logical features and 

evaluate positions are briefiy explained in Sections 4 and 5. In Section 6 a 

method of selection is proposed. Section 7 shows the experimental results in 

Othello. Section 8 concludes the paper. 

2. Related Work 

The construction of general game players requires the acquisition of game

specific search enhancements as well as evaluation functions, such as realizati an 

probabilities (Tsuruoka, Yokoyama, and Chikayama, 2002), opening books 

(Lincke, 2001), and endgame books. This paper only addresses evaluation 

functions, even though we are aware that aur method can be applied to the 

acquisition of other knowledge. 

In constructing evaluation functions, the training of prediction models re

quires unbiased training positions and an appropriate labeling (Bura, 1998). It 

is well known that the usefulness of learned evaluation functions depends on 

the training positions used. Thus, unbiased positions are needed to develop 

strong programs. Because this paper primarily focuses on the acquisition of 

features, the experiments were conducted on a game where both the training 

positions and the labeling were available (near endgame in Othello). In games 

where these are not available, we can apply methods of gathering positions via 

self-play and temporal-difference learning (Tesauro, 1992, 2002). 

We simply use linear regres sion for prediction because we could use a method 

that iteratively adjusts the weights in a linear model, even when a very large 

number of features are used (Barrett et al., 1994). Other prediction models, 

such as neural networks, could be used with aur method, too. 

Logica} features are general and were actually applied to many games. We 

mention Othello and a single-agent search problem by Fawcett ( 1993 ), symmet

ric chess-like games (Pell, 1993) and a variant of Shogi (Kaneko, Yamaguchi, 

and Kawai, 2002). However, the cost of evaluating positions is prohibi ti ve when 

there are logical features due to the slow evaluation of logic programs, despite 

the recent efforts that have increased speeds more than 4,000 times (Kaneko, 

Yamaguchi, and Kawai, 2000, 2001). 

Bura (2002) used patterns in fixed shapes. This is effective in achieving 

highly efficient pattern matching, even when a large number of patterns is 

involved. However, there is no established method of identifying effective 

shapes mechanically, and we do not know whether patterns in such fixed shapes 

are useful in other games. Kojima, Ueda, and Nagano's (1997) method acquired 

patterns from game records in Go through genetic programming. This requires 
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Figure 1. Othello initial position (left) and position after Black has played c4 (right). Facts 

below each board detine the position shown above. 

game-specific adaptation to apply it to other games because it depends on the 

importance of adjacent stones. 

We recently developed a method of generating patterns from logica! features 

(Kaneko et al., 2001). However, the accuracies of the generated evaluation 

functions did not reach those that Buro obtained. This is because we only used 

about 4,000 patterns, while Buro used about 200,000. For our method it was 

impossible to provide a sufficient number of useful patterns because effective 

methods of selection were up to then unknown. 

The selection of features is a central research topic in artificial intelligence, 

and many methods ha ve been developed ( Guyon and Elisseeff, 2003; J ain, Duin, 

and Mao, 2000). It is a combinatorial optimization problem. Heuristics are 

essential because the computational costs identifying an optimal pattern subset 

are known to be exponential in terms of the number of candidates (J ain, Duin, 

and Mao, 2000). Such costs are not acceptable. Moreover, popular selection 

methods such as the F-test in statistics cannot be used here. To illustrate this 

difficulty, we used about eight million candidates in the experiments that will 

be described later. Obviously, their covariances cannot be stored on normal 

computers. 

3. Basic Terminology 

This section introduces the basic terminology, including the specifications 

of a game written in logic (Subsection 3.1), the logic features (Subsection 3.2) 

and the definition of patterns (Subsection 3.3). 

3.1 Positions and Domain Theory 

A position is an intermediate status of a game. It is described by a set of 

special facts. A fact is a clause without a body. In Othello, owns and blank 
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legal~ove(S, Player):-square(S), bs(S,JEnd,Player). 

bs(S1,S3,P):-blank(S1), opponent(P,Opp), 

neighbour(S1,D,S2), span(S2,S3,D,Dpp), 

neighbour(S3,D,S4), owns(P,S4). 

span(S1,S2,D,Owner):-

square(S1),square(S2), player(Owner), owns(Dwner, Sl), 

neighbour(Sl,D,S3),span(S3,S2,D,Owner). 

span(S,S,D,Owner):-

square(S),player(Owner),owns(Owner,S), direction(D). 

line(S,S,D):-square(S),direction(D). 

line(From,To,D):-neighbour(From,D,Next), line(Next,To,D). 

opponent(x, o). opponent(o, x). 

direction(n).direction(ne).direction(e).direction(se). 

direction(s).direction(sw).direction(w) .direction(nw). 

square (al). square (a2). square (a3). ( · ·) 

square (d2) . square (d3) . square (d4) . ( · ·) 

neighbour(al, s, a2). neighbour(a2, n, al). 

neighbour (a2, s, a3) . neighbour (a3, n, a2). ( · ·) 

neighbour ( c4, ne, d3) . neighbour (d3, sw, c4) . ( · ·) 

Figure 2. Sample domain theory for Othello. 
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are used to represent a position. To demonstrate this, we have shown the facts 

defined in the initial position in Othello and the position after Black has played 

c4 in Figure 1. Here, Black is denoted by x, and White is denoted by o. In the 

initial position, owns(d5,x), owns(e4,x), owns(d4,o), and owns(e5,o) 

are defined for squares with a disc, and blank is defined for each empty square. 

The main part of the specifications of a game consists of the rules of the 

game and the goal conditions. This is called domain theory and described by 

a set of Horn Clauses. The example Othello domain theory in Figure 2 is used 

throughout this paper. 

3.2 Logical Features 

Logica! features are defined as Horn Clauses of the predicate logic where 

predicates in their body are defined by domain theory or position. The following 

clause is an example of a logica! feature. 1 

f (A) : -owns (x, A) . % pieces for Black 

1This is written as "f(N) :- count([A], (owns(x,A)), N)" in Fawcett (1993). In this paper, "count" has been 

assumed to be the default semantics of logica! features and has therefore been omitted. 
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The value of a logica! feature for a state is defined as the number of solutions, 

where solutions are the bindings of such constants to variables that make the 

clause true. In the above feature, A is a variable, and the solutions in the initial 

position in Figure 1 (left) are d5 and e4 (two solutions), which is the number 

of squares currently owned by Black. 

3.3 Patterns 

A pattern is defined as a conjunction of facts describing a part of a position. 

The value of a pattern is O or 1 according to its Boolean value; in a given 

position this value of a fact is 1 if it is defined ( or O if undefined). For example, 

the following is a pattern. 

blank(a1) 1\ owns(x,a2) 1\ owns(o,a3) 

This pattern is a logica! formula for "White can play on square al." 

4. Pattern Generation 

Patterns are generated through the following steps: 

1 generation of logica! features with Fawcett's (1993) method, 

2 translation of logica! features into propositional logic by unfolding, and 

3 extraction of patterns from propositional logic. 

First, logica! features are generated by means of syntactic translation of 

Horn Clauses, which are extracted from the domain theory of a target game. 

For example, the following feature ( called a mobility feature) can be generated. 

f (A) : -legaLmove (A, o) . % mobility for White 

Complex features can be generated by taking the preconditions of existing 

features. Fawcett (1993) has more details on automated construction. 

In the next step, generated features are translated into propositional logic 

by unfolding. This is a technique in partial evaluation of logic programming 

(Bossi, Cocco, and Dullie, 1990), and is repeatedly applied until features only 

consist of ground facts. In conventional games with reasonable rules, it is 

easy to write a domain theory so that the unfolding of generated features stops 

even if they contain recursively defined clauses, due to the finiteness of the 

number of squares and satisfiable terms. Detailed translation methods have 

been described by Kaneko et al. (2001). The following clauses are part of the 

results we obtained for the unfolding of the feature in the above example. 

legaLmove (ai, o) 
legaLmove (ai, o) 
legaLmove (ai, o) 

blank(a1), owns(x,a2), owns(o,a3). 
blank(a1), owns(x,b1), owns(o,c1). 
blank(a1), owns(x,b2), owns(o,c3). 
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Finally, we extracted patterns from the unfolded features simply by tak:ing 

the conjunctive part of their propositional formulae. The following formulae 

are patterns extracted from the unfolded features listed above. 

• blank(a1) 1\ owns(x,a2) 1\ owns(o,a3) 

• blank(a1) 1\ owns(x,b1) 1\ owns(o,c1) 

• blank(a1) 1\ owns(x,b2) 1\ owns(o,c3) 

Each pattern has a corresponding clause whose body (right hand of clause) 

is equivalent to the pattern. 

5. Pattern Matching 

Below, we briefty discuss a pattern matching method to justify the selection 

method of the next section. The purpose of the selection is to identify sets of 

patterns that produce efficient and accurate evaluation functions, where their 

efficiency depends on how the patterns are evaluated. Basic ideas in efficient 

matching are (1) performing incremental calculations and (2) utilizing a partial 

order on patterns. 

5.1 Incremental Matching with a Diagram 

Incremental matching was efficiently implemented with a Hasse diagram 

(Gries and Schneider, 1993) on the partial order of patterns, as outlined in Figure 

3. Let each a, b, and c bea fact describing a position (such as blank (al)), and 

consider that there are six patterns { abc, ab, bc, a, b, and c}. Here, ab means 

the conjunction of a and b. In the figure, a pattern is denoted by a square, and 

a fact is denoted by a circle. For each pattern, the question whether matching 

is required can quickly be determined by using the diagram. For example, 

matching of pattern 'abc' is only required when the value of pattern 'ab' or 'bc' 

changes. 

Figure 3. Hasse diagram of sample patterns. 

The computational costs of incremental matching can be estimated by the 

number of nodes visited. Because each edge will be visited once at most, the 

cost for the worst case is proportional to the number of edges. Cube extraction 

(Rudell, 1996) was applied to a diagram here to reduce edges, as well as other 

optimizations. Details are discussed in Kaneko et al. (2001). 



286 T. Kaneko, K. Yamaguchi, S. Kawai 

5.2 Counters for Matching 

To speed up matching of individual patterns, an integer counter cur(p) was 

associated with each pattern p such that the matching was determined by integer 

comparison instead of naively computing the logical conjunction of each fact 

in the pattern. 

Let dep(p) (upd(p)) be children (parents) ofpatternp in a diagram. Counter 

cur(p) is defined as the number of children of p whose current value is true. 

Then, as long as cur(p) is properly maintained, the Boolean value of cur(p) = 
ldep(p) 1 coincides with the value of pattern p. 

6. Pattern Selection 

This section introduces a lightweight selection method, which consists of 

two methods that are computationally inexpensive. These are: 

• preliminary filtering by using the frequency of patterns, and 

• approximated forward selection by assessing the contribution of patterns 

to the accuracy of a prediction model. 

The latter method takes into account the accuracy of a linear model that uses 

selected patterns. Consequently, it requires that the model is trained (by weight 

fitting) for each subset of patterns; thus the method is relatively expensive. The 

former method is more efficient because it only uses the frequency of each 

pattern. However, it cannot be used to select useful patterns by itself. Hence, 

we first need to filter the candidates with the former method, and then select 

useful patterns with the latter method, to reduce its weight-fitting time. 

6.1 Preliminary Filtering by Frequency 

First, useless patterns are heuristically determined and filtered out by analysing 

their frequency, before approximated forward selection is dane in the next step. 

There are two background considerations: (1) if low-frequency patterns are 

used, the efficiency of evaluating positions by using the method detailed in Sec

ti an 5 will improve,Z and (2) the use of extremely low-frequency patterns tends 

to cause over-fitting. We claim that high- or extremely low-frequency patterns 

can safely be rejected without a loss of quality in the generated evaluation func

tions. Although this may seem similar to the filtering in existing work (e.g., 

2More precisely, it is better to measure the frequency at which the pattems change from one position to 

another to improve search efficiency. We used the frequency of the patterns themselves, because this could 

be measured more easily. Moreover, to reduce the computational costs of weight fitting, reducing the 

frequency of the patterns themselves is also essential, as discussed in Subsection 7.2.2. 
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Kojima et al., 1997; Bura, 1998), our approach is different in the sense that our 

colleagues do not explicitly reject high-frequency patterns as we do.3 

We measured the frequency of part of Buro's (2002) horizontal patterns to 

estimate an appropriate frequency range (Figure 4). Because the highest fre

quencyinBuro's patterns was 0.075, weexpected thatgoodevaluationfunctions 

could be generated with only patterns with a frequency below this value. Figure 

4 also has the results of measurement for our patterns. It can be seen that many 

patterns can be filtered out by frequency. The preferable frequency ranges were 

determined by the experiments, which are discussed in Section 7. 

6.2 Approximated Forward Selection 

After filtering, we applied a method of statistically selecting explanatory 

variables, by treating a pattern as a binary variable. Approximated sequential 

forward selection was adopted from many existing methods (Guyon and Elis

seeff, 2003). It is so efficient that it was used already for manual computation 

before computers became widely available (Okuno et al., 1981). 

The algorithm is listed in Figure 5. It is used to selecta subset of variables 

(S) that are effective in predicting a target variable (y0 ), from a set of candidates 

(i.e., patterns, X). A target variable is the difference between the number of 

black and white discs (explained below in the experiments). 

One pattern (xaJ is added to the selected set (S) at the seventh line for each 

loop, as in sequential forward selection. A priority function, also explained 

later, is used to select a pattern. Let n be the number of candidates and m be the 

number of patterns finally selected. Because variables in S are never removed, 

the method tries m subsets of candidates, which is far less than the possible 

number of subsets, 2n. 

3Kojima et al.'s (1997) method and the inductive algorithm proposed by Buro (1998), which was not used in 

preparing the evaluation functions for LOGISTELLO, tend to discard high-frequency patterns because they 

prefer specific patterns in matching. As patterns for specific given shapes contained at least eight squares, 

high-frequency patterns were not used in constructing evaluation functions for LOGISTELLO. 
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11 (input) yo: a target variable, 

11 X = { x0 , x1, ... , Xp}: a set of explanatory variables 

11 (output) S: a set of selected variables 

11 Yi+ 1: residuals after selection 

i +--O, S +-- 0 
while (termination criterion is not satisfied) 

pick X ai of the highest priority 

compute aai, bai by uni variate regres sion s.t. aai X ai + bai predicts Yi 

Yi+l +-- Yi- (aaiXai + baJ 11 residuals 

8+--SU{xaJ 

i+-i+l 

Figure 5. Approximated forward selection algorithm. 

A priority function is used to estimate the usefulness of the pattern for selec

tion at the seventh line, and this should be carefuliy adopted taking the purpose 

of selection into consideration. For practica} game programming, efficiency 

and accuracy should be taken into account to estimate the usefulness of a pat

tern in terms of priority. In this paper, we used the correlation with residuals 

after the i-th regression Yi as a priority function to achieve accuracy. 

Here, if explanatory variables have no correlation with one another, variables 

selected with this method are equivalent to the ones selected by normal sequen

tial forward selection, where the multiple regression coefficient in predicting Yo 

using ali variables inS is used as the priority function.4 The order of candidates 

affects the results in other cases (Okuno et al., 1981). However, this method 

is more efficient than sequential forward selection because it uses univariate 

regres sion instead of multi variate regression. 

11 (input) 

11 

11 (output) 

R+--0 

Yb: be a target variable 

X o, X1, ... Xn: sets of variables 

R: selected variables 

for each i in O, ... , n 

(S, y~+l) +-- approximated forward selection(yL Xi) 
R+-RUS 

Figure 6. Iterative selection algorithm. 

The improved computation applied so far leads to appropriate results. Yet, 

the most expensive computation is to determine the priority (i.e., correlation) of 

each pattern in each loop. Naively, it requires pattern matching over ali training 

positions for every loop, but then the computational costs are unacceptable. The 

4The method approximates sequential forward selection by using the accumulation of univariate regressions 

instead of multi variate regres sion. 
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priority of each pattern can be incrementally updated by means of a table holding 

the number of pattern co-occurrences if there are not too many candidates. 

Thus, to avoid frequent pattern matching, patterns were split into sets of a 

moderate number of patterns {X0 , X 1 , ... Xn} in advance, and approximated 

forward selection was iteratively applied to each Xi in turn, as shown in Figure 

6. A test to determine whether the priority of a selected pattern went beyond 

a given threshold worked well as a termination criterion in each approximated 

forward selection. We selected variables from X 0 up to a given threshold, and 

then selected variables from X 1 up to the given threshold. This step was repeated 

to Xn. Preferable priority thresholds were estimated in the experiments and are 

discussed in Section 7. There were 1,000 candidates (Xi) in each approximated 

forward selection in our experiments. Although accuracy improves with greater 

numbers, only slight improvements could be observed for 4,000 candidates in 

our experiments. 

7. Experimental Results 

We did experiments on Othello to prove the effectiveness of the generation 

and selection methods proposed. We compared evaluation functions generated 

by our methods with those generated by other general methods, and with the 

evaluation functions used in specialized Othello programs. We used a computer 

with an Athlon MP 2100+ CPU (1.7 GHz) for these experiments. The program 

was implemented in GNU C++. 

7.1 Pattern Generation and Selection 

First, 11,079 logical features were generated by Fawcett's (1993) method. 

Subsequently, 8,502,664 unique patterns were extracted from the logica} fea

tures with the method proposed in Section 4. We then did selection by frequency 

as described in Subsection 6.1. Several sets of patterns were selected with var

ious frequency ranges. Finally, we applied the iterative selection described in 

Subsection 6.2 to the resulting sets with various priority thresholds. The priority 

function used here was correlation, and candidates were sorted by frequency. 

7.2 Accuracy of Evaluation Functions 

This subsection contains the heart of our experimental research. It is subdi

vided into six sub-subsections, each of them dealing with a relevant item. 

7 .2.1 Training Positions and Labeling. Evaluation functions made 

up of selected patterns were constructed to enable the usefulness of patterns 

to be estimated. Bach of the functions was a linear model of patterns. The 

weights were adjusted by means of least mean squares to predict the final score 

( difference between number of black and white discs at the end of the game 
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after both players had played the best moves). We separately constructed the 

evaluation functions for the positions of 60 discs and those for 55 discs. We 

only used the positions of 60 and 55 discs because positions of the near the 

endgame can be immediately labeled with the results of a complete search. 

The positions we used in selection and training were extracted from games 

played between LOGISTELLO and KITTY.5 It should be noted that our pro

posed method works without the game records of strong game programs. The 

purpose of using positions taken directly from games is to gather unbiased po

sitions and to demonstrate the method's learning ability in positions that strong 

programs face. About 50,000 positions were selected by eliminating duplicate 

positions considering the symmetry of the geometry and players. We then gen

erated two disjoint sets of positions expanding the symmetric ones.6 One set 

contained about 800,000 positions for training and the other had about 6, 000 

positions for testing. 

7 .2.2 Adjustment of Weights. Weights in evaluation functions with 

fewer than 10,000 patterns were adjusted with LAPACK7, and an iterative 

method (BiCGSTAB8 )(Barrett et al., 1994)) was used instead, due to memory 

limitations, in other cases. The time for weight fitting depends on the effi

ciency of an evaluation function and on the number of matching patterns for 

a position on average. This efficiency was primarily important because the 

iterative method requires pattern matching over all training positions for many 

repetitions. The number of multiplications required for each position is about 

the number of matching patterns squared. Thus, it was not feasible to use all 

patterns generated without selection. The time for weight fitting tended to be 

more than a week if there were more than 100,000 patterns. Buro could use 

more patterns because his efficiency is much better, as will be described below, 

and because only 50 patterns at most should match each position due to the 

carefully crafted shapes. 

7.2.3 Accuracy ofProposed Evaluation Functions. The graph in Fig

ure 7 illustrates the accuracy of our evaluation functions and the others. Here, 

"error" in the vertical axis is the square root of mean square errors. The hori

zontal axis plots the number of patterns on a logarithmic scale. Our evaluation 

functions ("with selection") for positions with 60 discs are denoted by the '+', 

and those for positions with 55 discs are denoted by the ·•·. The errors for 55 

5Both are available at ftp: 1 /external. nj .nec. com/pub/igord/IOS/misc/. 
6To generate evaluation functions that yield the same value at symmetric positions, symmetric pattems should 

have the same weight in the evaluation functions. We achieved this by simply instantiating ali symmetric 

positions when adjusting weights. 
7http://www.netlib.org/lapack/ 
8http://netlib2.cs.utk.edu/linalg/html_templates/Templates.html 
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discs are larger than those for 60 discs, because it is more difficult to predict 

scores for the positions of earlier game stages. The frequency ranges used in 

filtering were [1.25 ·10-5 , 0.075]; 540,724 patterns were selected. The priority 

thresholds used were 0.000125, 0.0005, 0.00125, 0.005, and 0.01; we selected 

approximately 3,000 to 140,000 patterns. The accuracy of aur evaluation func

tions improved as the number of patterns increased. 

7.2.4 Comparison with Logical Features or AII Patterns. We com

pared aur evaluation functions with those using logica! features and those using 

ali patterns without selection to demonstrate improvements over existing gen

eral methods. 

We have already reported on a comparison of ali patterns and logica! features 

(Kaneko et al., 2001). The accuracy of evaluation functions using 18 logica! 

features that Fawcett had selected was 12.9 and 12.5, and the accuracy of 

evaluation functions with 42 logica! features that were statisticaliy significant 

and selected with an F-test from 10,000 features was 8.90 and 12.4 for positions 

with 60 discs and 55 discs, respectively. Evaluation functions with logica! 

features were more than 20 times slower than those with patterns extracted 

from the same logica! features. The results indicate that extracted patterns are 

much more effective than the logica! features themselves. 

In Figure 7, "without selection" means the accuracy of evaluation functions 

that use automatically generated patterns without selection. The accuracy of 

aur evaluation functions was far better than that of patterns without selection 

(plotted with '*' and 'e• ). The accuracy of the latter functions were established 

in and taken from the authors' previous work (Kaneko et al., 2001). The results 

indicate that the proposed methods are more effective than existing general 

methods. 

12 With selection (60) + 
8 Buro (60) X 

11 8 Without selection (60) * 
• Random + selection (60) D 

10 
With selection (55) • 

1(] 
Buro (55) o 

..... 
9 

Without selection (55) • e D • Random + selection (55) 8 

w 
* • o 

8 

7 
+ 

+ 
6 

+ + X 

5 
1000 10000 100000 1e+06 

Number of patterns in evaluation functions 

Figure 7. Accuracy of evaluation functions. 
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7.2.5 Comparison with Buro's Patterns. We compared our evaluation 

functions with those of a specialized Othello program to evaluate our accuracy. 

In Figure 7, "Buro" means our previous reproduction ofBuro's method (Kaneko 

et al., 2001). The accuracy of our evaluation functions improves as the number 

of patterns increases, going beyond that of Buro's (plotted with the '8' and 

'X'). The results indicate that accurate evaluation functions are mechanically 

generated, without having to incorporate manually important shapes in Othello. 

7 .2.6 Comparison with Randomly Generated or Selected Patterns. 

To demonstrate the importance of both pattern generation and selection, we 

constructed evaluation functions with random generation/selection instead of 

the proposed generation/selection, and compared their accuracies. 

Random Generation + Proposed Selection. In Figure 7, "random + selec

tion" means evaluation functions that use patterns selected with our method, 

from randomly generated patterns instead of the ones generated by this method. 

First, 8,502,664 patterns were generated, each of which was a conjunction of 

the randomly selected status of squares. Then, about 3,000 and 6,000 patterns 

were selected with the selection we propose. The difference between the accu

racy of randomly generated patterns and that of ours means that our method of 

generating patterns is indispensable in producing useful patterns. 

Proposed Generation + Random selection. We measured the accuracy of 

evaluation functions with 4, 14 7 patterns that were randomly selected instead of 

with the selection we propose. The error was more than 14.5 and is not plotted 

in the graph. The difference between the accuracy of randomly selected patterns 

and that of our method means that our pattern selection method is indispensable 

in producing useful patterns. 

7.3 Efficiency of Evaluation Functions 

Figure 8 illustrates the efficiency and accuracy of our evaluation functions 

selected for various frequency ranges. The horizontal axis plots the number of 

patterns used in the evaluation functions and the vertical axis plots efficiency 

by the number of positions evaluated in one second. The priority thresholds 

we used were 0.000125, 0.0005, 0.00125, 0.005, and 0.01. As the number 

of patterns increased, the efficiency of evaluation functions deteriorated while 

the accuracy improved, almost regardless of frequency ranges. For this experi

ment, we collected a sequence of about 3, 000, 000 positions. Then the df-pn+ 
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Figure 8. Efficiency of evaluation functions for various numbers of pattems (55 and 60 discs ). 
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Figure 9. Accuracy of evaluation functions with various priority thresholds (55 and 60 discs). 
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Figure 10. Number of pattems selected with various priority thresholds. 

search (Nagai and Imai, 1999) visited the root positions of 49 discs, which were 

extracted from 23 matches in ros records.9 

Although the efficiency of our evaluation functions was much better than 

the efficiency of evaluation by logica! features (Kaneko et al., 2001), it was 

worse than that of a specialized Othello program. LOGISTELLO's speed was 

about 270,000 nodes/sec when running on a Pentium-II 333 MHz (Buro, 1998). 

This speed would have been about 1.4 million nodes/sec (by extrapolation) 

if it had been run on a 1.7-GHz CPU. Further research is required to make 

practica! evaluation functions because efficiency is usually more important than 

accuracy. 10 These differences were partly because we did not take efficiency 

into account in the selection of pattems and partly because we could have used 

a much more efficient pattern matching algorithm than the one we proposed if 

we had restricted our pattems to Buro's (1998) shapes. 

7.4 Parameters for Selection 

To determine appropriate values for frequency ranges and priority thresholds 

so that the proposed selection would work well, we investigated their influence 

on the efficiency and accuracy of the generated evaluation functions and on the 

time required for selection. 

The graphs in Figure 9 plot the accuracy of our evaluation functions for posi

tions with 60 and 55 discs, consisting of pattems selected with various frequency 

ranges and various priority thresholds. We can see that the frequency ranges 

do not distinctly affect the quality of selected pattems, if its upper boundary is 

greater than 0.15. Thus, we concluded that the accuracy of evaluation functions 

is mainly determined by the number of pattems used in them. 

The priority thresholds used in selection determine the number of pattems 

that are finally selected. Figure 10 plots the relation between the number of 

9These are available at ftp: 11 external. nj . nec. com/pub/igord/ othello/ios/. 
10Future advances in hardware will favour the accuracy because these will eventually compensate for serious 

delays when in-depth searches reach a saturation point (Heinz, 2001). 
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selected pattems and priority thresholds. The vertical axis plots the number 

of pattems on a logarithmic scale, and the horizontal axis plots the priority 

thresholds. Here, we used correlation for priority. We can see that the number 

of pattems selected is mainly determined by priority thresholds regardless of 

frequency ranges (denoted by symbols), and that the symbols in the graph are 

plotted at almost the same location if the same priority thresholds are used. 
Also, larger numbers of pattems are selected as Iower thresholds are used. 

Thus, one can control the trade-off between the accuracy and efficiency of 
evaluation functions by adjusting the priority thresholds, because these are 

mainly determined by the number of pattems in them as previously discussed. 

The time for iterative selection depends on frequency ranges as well as the 

number of selected pattems. Figure 11 plots the relation between time and 

the number of selected pattems with various priority thresholds and frequency 
ranges. The priority thresholds we used were 0.000125, 0.0005, 0.00125, 0.005, 

and 0.01. The horizonta1 axis plots the number of pattems finally selected by 
iterative selection, and the vertical axis plots the time for selection in minutes. 

These results are acceptable because we have to inspect a larger number of 

candidates during iterative selection for frequency ranges with larger upper 

bounds. 

Figure 12 plots the relation between the efficiency and accuracy of evalu

ation functions. The vertical axis plots accuracy by the square root of mean 

square errors, and the horizontal axis plots efficiency by the number of positions 

evaluated in one second. The one right below is to be preferred. 

Considering the time for selection, accuracy, and efficiency of evaluation 

functions, the recommendable upper boundary for the frequency range is be

tween 0.15 and 0.3. This value is obviously larger than the expected value 

0.075 in Figure 4. It is partly because most of our pattems had fewer squares 
than Buro's (1998). 
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Figure 12. Efficiency and accuracy of evaluation functions (55 and 60 discs). 

8. Concluding Remarks 

In this paper, we described a method of constructing accurate evaluation 

functions by using only the specifications of a target game and a set of training 

positions, which is crucial in constructing a general game player. Experiments 

on Othello revealed that a combination of pattern generation using logic and 

a lightweight pattern selection could efficiently search for and identify useful 

patterns. The method actually constructed accurate evaluation functions. The 

accuracy was by far superior to the evaluation functions generated by existing 

general methods, and was comparable (although slightly worse) to that ofBuro's 

(2002) which is part of a specialized Othello program. 

Our intended future work aims at demonstrating the generality of the ap

proach proposed here on other games, such as Shogi, where patterns with 

variable shapes are needed, and also at improving the efficiency of the gen

erated evaluation functions in order to investigate total game-playing perfor

mance. The development of selection criteria taking efficiency into account 

seems promising, though investigations into their impact on accuracy would 

be required. It would also be challenging to develop a general method that 

introduces game-specific optimizations, including the use of patterns in fixed 

shapes, through an analysis of domain theory. 
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