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Abstract

Splicing is a common image manipulation technique in which

a region from a first image is pasted onto a second image to

alter its content. In this paper, we use the fact that different

images have different noise characteristics, according to the

camera and lighting conditions during the image acquisition.

The proposed method automatically detects image splicing in

raw images by highlighting local noise inconsistencies within

a quadtree scan of the image. The image noise is modelized by

both Gaussian and Poisson noise components. We demonstrate

the efficiency and robustness of our method on several images

generated with an automated image splicing.

1 Introduction

Over the past few decades, there has been an important rise in

the production of digital images. Most of the pictures we see

nowadays (press, fashion industry, politics, scientific journals)

usually come from a digital camera. The number of falsified

photographs has risen as well, becoming more frequent and

sophisticated, and created with increasingly powerful tools.

During the past ten years, digital forensics has emerged to

help detect falsifications and restore trust towards digital im-

agery, as explained by Farid in [5]. In this paper, we study

a way to counter a specific alteration called splicing, based

on the noise characteristics of the image. Our approach es-

pecially focuses on raw images where the noise is supposed

to be unaltered. Indeed, raw images correspond to the infor-

mation coming directly from the camera sensors, without any

processing like white balance, gamma correction, noise correc-

tion, etc. These raw images are harder to tamper with, though it

is still possible to alter them, especially via the open file format

DNG (Digital Negative) from Adobe. As a consequence, some

press and media agencies have started to require raw images as

a proof of authenticity. It is therefore timely and important to

detect tamperings in this kind of images before using one of

them.

1.1 Image splicing

Splicing is a common image manipulation consisting of the in-

sertion in a first image of regions coming from a second, differ-

ent image. There are various ways to detect such an alteration,

some of them dependent on the format of the image. In [19],

Popescu and Farid present a method based on the Color Filter

Array (CFA) used to transform a raw image into a color image.

Producing a full color image from CFA input requires image in-

terpolation, which can be perturbed by splicing. This method,

of course, can not be used on raw images.

Some other methods are restricted exclusively to JPEG im-

ages: JPEG ghosting, introduced by Farid [6], is based on the

potential difference of JPEG quality between the spliced ele-

ment and the rest of the image. It is also possible to detect an

altered image by analyzing the quantization histogram of JPEG

images, either on the whole image as proposed by Popescu and

Farid [18] or by patch, as performed by He et al. [9] and Lin et

al. [12].

There also exist some methods that are either very high-

level or have hard to meet prerequisites. Lukas et al. [13] pro-

pose a detection method based on the camera fingerprint. How-

ever this method requires some unaltered images taken by the

camera, or access to the camera itself. It is also possible to

use machine learning, such as presented by Bayram et al. [2]

or Fu et al. [8]: spliced regions in an image can be detected us-

ing a classifier of image features learned from training sets of

authentic and forged images. However, this approach is rather

high level, while in this article we choose to remain at the level

of the camera imaging system.

Finally, some methods use the image noise to detect splic-

ing regions, as detailed in the next section.

1.2 Splicing detection from image noise

All digital sensor capture images perturbed by noise. This

noise may be reduced by the camera post-processing or by a

lossy compression. However, the remaining noise have consis-

tent parameters throughout the image and this noise can take

various form according to the camera model and the lighting

conditions during the image acquisition. Thus, noise parame-

ters discrepancy in a zone of the image can be a strong indicator

of splicing in this zone.



Mahdian and Saic [15] present a block-based noise incon-

sistencies approach that relies on the homogeneity of the stan-

dard deviation of the Gaussian noise over the image. However,

this relies on the assumption that the noise standard deviation

is homogeneous over an image which is usually not true, espe-

cially due to Poisson noise component. Pan and et al. [16, 17]

also propose a block based approach and consider that kurtosis

values of natural images in band-pass filtered domains tend to

concentrate around a constant value. Although very efficient

at detecting noise inconsistencies, their method is not robust

against textures and low noise values, making the detection of

splicing in natural images difficult. Popescu and Farid [18] in

part 5, “Signal to Noise Ratio”, introduce another way to iden-

tify spliced zones in an image from a noise estimation. How-

ever, this method requires a-priori information about the unal-

tered noise, which is impossible to do with a blind analysis.

Finally, some methods are a combination of various tools.

For example, Mahdian and Saic [14] combine resampling de-

tection and noise analysis to highlight suspicious areas.

Most noise estimation methods used in digital forensics

simplify the noise as a zero-mean white Gaussian process that

is additive and independent of the pixel intensity and localiza-

tion. Therefore it is possible to reduce the noise estimation

to the estimation the variance of this Gaussian process. This

ignores the Poisson component of the noise, which is usually

dominant in high-intensity areas of an image. Our approach,

which is also block-based, aim to get a good estimate of the

parameters of the Gaussian and Poisson parts of the noise. The

measure of those parameters in sub-images allows to isolate

discrepancies, and thus possible splicings. Our study mainly

focuses on raw images where noise is supposed to be unaltered.

2 Digital Image Noise estimation

2.1 State of the art

Image denoising is a very active research field in signal pro-

cessing community. Moreover, most existing denoising meth-

ods requires noise parameter estimation before denoising.

Hence, some noise parameter estimation studies also exist.

Digital images are subject to noise of two kinds: a Gaus-

sian noise due to some thermal cues of the camera sensor and a

Poisson noise from the photonic nature of light. The Gaussian

noise affects all the pixels with a constant variance, hence it is

more apparent in the low pixel intensities, whereas the Pois-

son noise component has variance proportional to the intensity,

and so ends up dominating in the high pixel intensities. Most

noise estimation and removal methods mainly focus on Gaus-

sian noise. However, our tests showed that the Poisson compo-

nent also contains significant informations useful to distinguish

images from different cameras or from different shooting situ-

ations. Therefore, the following state of the art presents the

methods that can handle both types of noise.

Foi et al. [7] presents a noise estimation method that iden-

tifies the Gaussian and the Poisson noise component of an im-

age. They include a clipping stage for higher and lower pixel

intensity for robustness purpose. However, this method is also
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Figure 1. Patches variances according to the patch mean. The

lower and higher pixel intensities are discarded. The line is

fitted with RANSAC.

subject to an homogeneous image region search that discards a

large part of the pixels of a natural image. Thus this method is

not well suited to our purpose, where small region of the im-

age where homogeneous part are too small are also to be con-

sidered. Jezierska et al. [10] distinguish pixels that are more

subject to Gaussian noise or to Poisson noise from an iterative

Expectation-Maximization process. Nevertheless, this method

is extremely slow, even for a 80 × 80 pixels, and thus is im-

practicable for a raw image. It is important to note that the

main purpose of the noise estimators is to get a good noise es-

timation in order to denoise. Our purpose is different and does

not require the same characteristics: the discarded areas should

be minimal and the noise estimation should be local.

Another possibility to estimate the image noise consists in

first denoising an image and then subtracting the result from the

original noised image. Among the large variety of denoising

methods, the non-local means, proposed by Buades et al. [3],

performs well. However our tests shown that the method

lacks of accuracy in highly textured zones. Moreover, this

method only denoises the Gaussian noise component. Jezier-

ska et al. [11] follows their previous work [10] and still suffer

from time computation issue. Dabov et al. [4] introduce the so-

called BM3D algorithm that performs a 3D collaborative fil-

tering. This technique performs excellent denoising for both

homogeneous and textured regions, and denoises the Gaussian

noise component as well as the Poisson component.

Our noise estimation process follows the latter approach

that provides a noise image.

2.2 Poisson and Gaussian noise parameters

The Poisson and Gaussian noise parameters are estimated from

the difference image between the denoised image by BM3D

and the original noised image. We first divide the pixel lumi-

nance range into n equal intervals Ii, i ∈ [1, n]. The pixels of

the denoised image with intensity in Ii are grouped together to

compute a variance σi of these pixels in the noise image and



(a) Input image
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(b) full image noise estimation
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(c) Top-left quarter
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(d) Top-right quarter
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(e) Bottom-left quarter
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(f) Bottom-right quarter
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(g) Some 1/16 of the image
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(h) Some 1/16 of the image
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(i) Some 1/16 of the image
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(j) The spliced zone

Figure 2. 2(a): a spliced image. The grid represents the quadtree sub-images. For each curve, the vertical axis represents the

patch variance and the horizontal axis the patch mean. 2(b): Line-fitting of the noise data for the full image. From 2(c) to 2(i):

Line-fitting of the noise data for various 1/16 subimages. 2(i) Line-fitting of the noise data for the spliced 1/16 sub-image.

a mean value mi in the denoised image. As specified by [7],

the noise that appear in the lower and higher pixel intensities

is not reliable. Thus, these pixels are discarded from our noise

estimation process. The plot of the variance as a function of

the mean gives a line that can be fitted with RANSAC line

fitting. The line slope corresponds to the Poisson noise pa-

rameters whereas the “y-intercept” corresponds to the Gaus-

sian noise component. An example of this fitting is depicted in

Figure 1. For numerical robustness purpose, pixel groups with

only a few pixels are discarded. In the rare case where a line

have negative parameters, either Poisson or Gaussian, this line

is discarded and not taken into account for the rest of the pro-

cess. This can occur when the denoising is suboptimal or when

the line fitting fails.

3 Block based approach

The purpose of this paper is to detect a splicing from the dif-

ference of noise between the two images (or more) used in the

forgery. Our approach consists in the computation of a quad-

tree of the image regions. The statistics of the falsified region

may differ from those of the rest of the image. This section

describes how to build this quadtree data and how to detect the

falsified zones.

3.1 Image block noise estimation

A significant constraint of BM3D and most of the denoising

methods is the requirement of a good noise estimation of the

input image before processing. Indeed, the denoising strength

will be chosen according to the estimated noise in the image

to process. Thus, a falsified region of the image may not be

denoised properly during the denoising process.

In practice, the falsified region can be correctly denoised

when the image is processed block per block, according to the

respective proportion of original and falsified part in the block.

In that case, the Poisson and Gaussian component of the falsi-

fied part can be estimated properly and compared to the rest of

the image.

In this purpose, our method uses a quadtree to decompose

the falsified image into sub regions. The quadtree approach is

motivated by the noise statistic computation constraints. In-

deed, very small regions provide an accurate spatial informa-

tion of the forgery coordinates but may not have a wide enough
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Figure 3. Each point represents the noise of a sub-region of

the image. The horizontal axis represents the Gaussian stan-

dard deviation of the subimage and the vertical axis the Poisson

standard deviation. The isolated point on the top right corner

corresponds to the splicing area, its noise parameters are dif-

ferent from the parameters of the rest of the image.

variety of pixel intensity to compute the Poisson and Gaussian

noise parameters. On the other hand, large image region can

provide robust noise statistics but are not precise enough for

forgery localization. It is noticeable that a small non falsified

block of the image will not be denoised in exactly the same

way it is denoised when the process is performed on the full

image. A sample image with some subimages noise fitting is

shown in Figure 2.

3.2 Gaussian-Poisson space

The quadtree processed on the falsified image generates a set

of image regions. Usually, 3 levels of quadtree, that generate

a total of 21 images, are enough. Each image is used to esti-

mate a Poisson and a Gaussian noise component. The blocks

corresponding to non altered parts of the image will provide

similar noise parameters whereas the region corresponding to

the splicing area may provide different noise parameters.

We use a clustering method on the Gaussian-Poisson space

to identify the potential suspicious regions. This Gaussian-

Poisson space express each noise estimation in term of coor-

dinates (x =gaussian, y =poisson). Similar noise should have

similar position. An example of a usual point distribution is

shown in Figure 3.

At this step, the point distribution is discriminative enough

to visually identify the splicing area but the automatic detec-

tion is not straightforward. The next section describes how to

identify an outlier.
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Figure 4. After the robust Principal Component Analysis, the

point cloud corresponding to the non-falsified sub-images are

grouped in a disc shape. The outlier, in the top can be detected

with a σ-clipping.

3.3 Clustering

The point cloud obtained from the Gaussian-Poisson space

should be transformed so that the outliers can be detected eas-

ily. Ideally, the point cloud of the non-altered sub-image should

be grouped in a more compact form. A Principal Component

Analysis (PCA) would perform well in a data set without out-

liers, but in our situation, an outlier located far from the main

point group will alter the PCA transformation, due to the L2-

norm sensitivity of the PCA computation.

3.3.1 Robust Principal Component Analysis

To perform a robust PCA, we first remove a large set of poten-

tial outliers candidates. A point is considered as an outlier if

the distance to its nearest neighbor is the highest of the group.

To make our method robust to 2 splicings from the same im-

age, with their representation in the Gaussian-Poisson space

with two points near from each other, we better select an out-

lier as a point whose distance to its second nearest neighbor is

the highest of the group.

Then our process removes not only one, but many isolated

points with an iterative form of this method. Indeed, the PCA

will still perform well if we remove much more points than the

expected number of outliers.

Finally, the data normalization along the axis of the PCA

space is computed only from the remaining points. Then this

normalization is apply to all the data points, including the

potential outliers. The initial point distribution that initially

roughly looks like an ellipse should finally look like a compact

group of points, except for the outliers, as depicted in Figure 4.



3.3.2 Outlier detection

From the compact form of the data described in the previous

section, the outliers can easily be extracted by a σ-clipping: all

points with distance to the origin higher that twice the average

distance from the origin is considered as suspicious.

Moreover, for robustness purpose, the average distance

from the origin σ is computed without the 3 points whose dis-

tance from the origin is the higher.

Finally, we use a progressive σ-clipping. Data points with a

distance to the center of the disc shorter than two σ are consid-

ered unaltered. From two σ onward, the probability of a patch

being altered increases linearly, until it reaches one when the

most distant point or four σ, whichever is greater, is reached.

This allows us to evaluate the impact of false positive: while

datapoints that are not representative of an altered patch can be

found outside of the two-σ boundary, they are often fairly close

to it, and thus can be disregarded in comparison with more dis-

tant, and thus suspect, points. The boundary values have been

chosen empirically, and are the ones that give the best results.

4 Results

4.1 Implementation

The raw images are loaded using LibRaw [1]. We could test

our method on various raw image format files, like DNG, RAW,

NEF, etc. The denoising process is performed by BM3D using

the Matlab code provided by [4]. We empirically chose 100

value intervals to extract the noise statistics in section 2.2, in-

ducing a line fitting over a maximum of 100 points.

4.2 Experiments

We conducted our tests on real data with an automatic process.

The database consists in 400 raw images with splicing, and 20

non spliced images to test the robustness of the method against

false positive. The spliced images were generated automati-

cally by copying random areas from other images in a random

1/16 of the test image. We conduced the tests on the green

channel of every raw image.

On spliced images, we detect a splicing in 84% of the cases,

and in 70.6% of those detection the localisation of the splicing

is correctly identified. On unspliced images, we have a rate of

false positive of 30%. A sample splicing detection is shown on

Figure 5. This method, however, has a few weaknesses: first of

all, on the size of the spliced areas. An area that is too small

will not affect much the noise characteristics of the subimage

containing it, and thus will not be detectable. It is also impossi-

ble for this method to detect spliced areas with noise character-

istics similar to the ones of the image being altered. We have

also tested the method in the case of two simultaneous splic-

ing from two different images, with success, see Figure 6. The

discrimination method adopted for the PCA offer an impor-

tant robustness in the case of multiple splicings. We conducted

some tests on JPEG files. The results are promising but not

convincing yet because of the lossy compression characteristic

of JPEG. Indeed, the method seems to measure a kind of JPEG
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Figure 5. Top: a spliced image. Middle: the robust PCA and

the σ-clipping. Bottom: the spliced zone detection (in red).

noise rather than the Gaussian and Poisson noise considered in

this paper.

5 Conclusion

We present a fully automated method to detect splicing in raw

digital images. This approach is based on the relative consis-

tency of noise parameters throughout an unaltered image. By

looking for inconsistencies in those noise parameters in a quad-

tree decomposition of the image, which are representative of

both the Gaussian and Poisson components of the noise, we

show that it is possible to highlight spliced areas in an image.

The method is fully automatic, based on a robust PCA of the

noise parameters and a subsequent σ-clipping, which detects

the potential image splicings, and returns an image showing

the probability of falsification by patch.
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Figure 6. Top: a double spliced image. Middle: the robust PCA

and σ-clipping. Bottom: the spliced zones detection (in red).
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