
Automated Implementation of Complex Distributed
Algorithms Specified in the IOA Language∗

Chryssis Georgiou
Dept. of Computer Science

University of Cyprus
Nicosia, Cyprus

chryssis@ucy.ac.cy

Nancy Lynch
MIT CSAIL

Cambridge, MA 02139
lynch@csail.mit.edu

Panayiotis Mavrommatis
MIT CSAIL

Cambridge, MA 02139
pmavrom@mit.edu

Joshua A. Tauber
MIT CSAIL

Cambridge, MA 02139
josh@csail.mit.edu

Abstract

IOA is a formal language for describing Input/Output
automata that serves both as a formal specification lan-
guage and as a programming language [14]. The IOA
compiler automatically translates IOA specifications into
Java code that runs on a set of workstations communicating
via the Message Passing Interface. This paper describes
the process of compiling IOA specifications and our expe-
riences running several distributed algorithms. We focus
on our implementation of the algorithm of Gallager, Hum-
blet and Spira (GHS) for minimum-weight spanning tree
formation in an arbitrary graph [13]. Our IOA code for
GHS is derived from the Input/Output automaton descrip-
tion of the algorithm proved correct by Welch, Lamport,
and Lynch [33].

The successful implementation of such a complicated al-
gorithm is significant for two reasons: (a) it is an indication
of the capabilities of the IOA compiler and of its advanced
state of development, and (b) to the best of our knowledge,
this is the first complex, distributed algorithm implemented
in an automated way that has been formally and rigorously
proved correct. Thus, this work shows that it is possible to
formally specify, prove correct, and implement complex dis-
tributed algorithms using a common formal methodology.

1 Introduction

IOA is a formal language for describing distributed
computation that serves both as a formal specification lan-
guage and as a programming language [14]. The IOA
toolkit supports the design, development, testing, and for-
mal verification of programs based on the Input/Output au-

∗This work is supported in part by the IST grant 33116 (FLAGS),
USAF, AFRL award #FA9550-04-1-0121 and MURI AFOSR award
#SA2796PO 1-0000243658

tomaton model of interacting state machines [23, 24]. I/O
automata have been used to verify a wide variety of dis-
tributed systems and algorithms and to express and prove
several impossibility results. The toolkit connects I/O au-
tomata with both lightweight (syntax checkers, simulators,
model checkers [20, 6, 26, 10, 34, 32, 28]) and heavyweight
(theorem provers [15, 3]) formal verification tools.

The IOA compiler has recently been added to the toolkit
to enable programmers to write a specification in IOA, vali-
date it using the toolkit, and then automatically translate the
design into Java code. As a result, an algorithm specified
in IOA can be implemented on a collection of workstations
running Java Virtual Machines and communicating through
the Message Passing Interface [29, 32, 31]. The code pro-
duced preserves the safety properties of the IOA program
in the generated Java code. This guarantee is conditioned
on the assumption that our model of network behavior is
accurate, that a hand-coded datatype library correctly im-
plements its semantic specification, and that programmer
annotations yield specified values. We require a further
technical constraint that the algorithm must be correct even
when console inputs are delayed.

This paper describes our experiences compiling and
running algorithms specified in IOA. We begin with a
general description of the process of preparing and run-
ning any distributed algorithm. We then highlight im-
portant aspects of the process by describing our experi-
ments with algorithms from the literature. Initially, we
implemented LCR leader election in a ring, computation
of a spanning tree in an arbitrary connected graph, and
repeated broadcast/convergecast over a computed span-
ningtree [21, 4, 5, 27]. Our IOA code for these algorithms
was derived from the I/O automaton description given for
these algorithms in [22].

We focus primarily on our implementation of the algo-
rithm of Gallager, Humblet and Spira (GHS) for finding the
minimum-weight spanning tree in an arbitrary connected
graph [13]. GHS is a sufficiently complicated algorithm to



constitute a “challenge problem” for the application of for-
mal methods to distributed computing. Welch, Lamport,
and Lynch formulated the algorithm using I/O automata
and gave a formal proof of correctness of that specifica-
tion [33]. Our IOA implementation of GHS is derived
from the I/O automaton description by Welch, et al. by
performing some technical modifications described in Sec-
tion 5. The complex nature of the GHS algorithm revealed
some technical implementation difficulties that we had to
overcome in order to successfully implement the algorithm.
These difficulties did not appear when dealing with simpler
algorithms.

The successful implementation of such a complicated
algorithm is significant for two reasons: (a) it indicates the
capabilities of the IOA compiler and its advanced state of
development, and (b) to the best of our knowledge, this
is the first complex, distributed algorithm implemented in
an automated way, that has been formally and rigorously
proved correct. Thus, this work shows that it is possible
to formally specify, prove correct and implement complex
distributed algorithms using a common formal methodol-
ogy.

2 Background

In this section, we briefly introduce the I/O automaton
model and the IOA language and set the current work in the
context of other research.

2.1 Input/Output Automata

An I/O automaton is a labeled state transition system.
It consists of a (possibly infinite) set of states (including a
nonempty subset of start states); a set of actions (classified
as input, output, or internal); and a transition relation, con-
sisting of a set of (state, action, state) triples (transitions
specifying the effects of the automaton’s actions).1 An ac-
tion π is enabled in state s if there is some triple (s,π,s′)
in the transition relation of the automaton. Input actions
are required to be enabled in all states. I/O automata ad-
mit a parallel composition operator, which allows an out-
put action of one automaton to be performed together with
input actions in other automata. The I/O automaton model
is inherently nondeterministic. In any given state of an au-
tomaton (or collection of automata), one, none, or many
(possible infinitely many) actions may be enabled. As a re-
sult, there may be many valid executions of an automaton.
A succinct explanation of the model appears in Chapter 8
of [22].

2.2 IOA Language

The IOA language [14] is a formal language for describ-
ing I/O automata and their properties. IOA code may be

1We omit discussion of tasks, which are sets of non-input actions.

considered either a specification or a program. In either
case, IOA yields precise, direct descriptions. States are rep-
resented by the values of variables rather than just by mem-
bers of an unstructured set. IOA transitions are described
in precondition-effect (or guarded-command) style, rather
than as state-action-state triples. A precondition is a pred-
icate on the the automaton state and the parameters of a
transition that must hold whenever that transition executes.
An effects clause specifies the result of a transition.

Due to its dual role, the language supports both ax-
iomatic and operational descriptions of programming con-
structs. Thus state changes can be described through im-
perative programming constructs like variable assignments
and simple, bounded loops or by declarative predicate as-
sertions restricting the relation of the post-state to the pre-
state.

The language directly reflects the nondeterministic na-
ture of the I/O automaton model. One or many transitions
may be enabled at any time. However, only one is executed
at a time. The selection of which enabled action to execute
is a source of implicit nondeterminism. The choose oper-
ator provides explicit nondeterminism in selecting values
from (possibly infinite) sets. These two types of nonde-
terminism are derived directly from the underlying model.
The first reflects the fact that many actions may be enabled
in any state. The second reflects the fact that a state-action
pair (s,π) may not uniquely determine the following state
s′ in a transition relation.

2.3 Related Work

Goldman’s Spectrum System introduced a formally-
defined, purely operational programming language for de-
scribing I/O automata [17]. He was able to execute this
language in a single machine simulator. He did not con-
nect the language to any other tools. However, he sug-
gested a strategy for distributed simulation using expensive
global synchronizations. More recently, Goldman’s Pro-
grammers’ Playground also uses a language with formal
semantics expressed in terms of I/O automata [18].

Cheiner and Shvartsman experimented with methods
for generating code by hand from I/O automaton descrip-
tions [7]. They demonstrated their method by hand translat-
ing the Eventually Serializable Data Service of Luchangco
et al. [11] into an executable, distributed implementation
in C++ communicating via MPI. Unfortunately, their gen-
eral implementation strategy uses costly reservation-based
synchronization methods to avoid deadlock.

To our knowledge, no system has yet combined a lan-
guage with formally specified semantics, automated proof
assistants, simulators, and compilers. Several tools have
been based on the CSP model [19]. The semantics of
the Occam parallel computation language is defined in
CSP [1]. While there are Occam compilers, we have found
no evidence of verification tools for Occam programs. For-



mal Systems, Ltd., developed a machine-readable language
for CSP.

Cleaveland et al. have developed a series of tools based
on the CCS process algebra [25]. The Concurrency Work-
bench [9] and its successor the Concurrency Factory [8] are
toolkits for the analysis of finite-state concurrent systems
specified as CCS expressions. They include support for
verification, simulation, and compilation. A model check-
ing tool supports verifying bisimulations. A compilation
tool translates specifications into Facile code.

3 Compiling and Running IOA

IOA can describe many systems architectures, includ-
ing centralized designs, shared memory implementations,
or message passing arrangements. Not every IOA spec-
ification may be compiled. An IOA program admissible
for compilation must satisfy several constraints on its syn-
tax, structure, and semantics. Programmers must perform
two preprocessing steps before compilation. First, the pro-
grammer must combine the original “algorithm automaton”
with several auxiliary automata. Second, the programmer
must provide additional annotations to this combined pro-
gram to resolve the nondeterminism inherent in the under-
lying I/O automaton denoted by the IOA program. The
program can then be compiled into Java and thence into an
executable. At runtime the user must provide information
about the programs environment as well as the actual input
to the program.

As proved elsewhere [29, 31], the system generated pre-
serves the safety properties of the original IOA specifica-
tion provided certain conditions are met. Those condi-
tions are that the model of the MPI communication ser-
vice behavior given in [29] is accurate, that the hand-coded
datatype library used by the compiler correctly implements
its semantic specification, and that programmer annotations
correctly initialize the automaton.

3.1 Imperative IOA syntax

As mentioned in Section 2.2, IOA supports both oper-
ational and axiomatic descriptions of programming con-
structs. The IOA compiler translates only imperative IOA
constructs. Therefore, IOA programs submitted for com-
pilation cannot include certain IOA language constructs.
Effects clauses cannot include ensuring clauses that re-
late pre-states to post-states declaratively. Throughout the
program, predicates must be quantifier free. Currently, the
compiler handles only restricted forms of loops that explic-
itly specify the set of values over which to iterate.

3.2 Node-channel form

The IOA compiler targets only message passing sys-
tems. The goal is to create a running system consisting

of the compiled code and the existing MPI service that
faithfully emulates the original distributed algorithm writ-
ten in IOA. Each node in the target system runs a Java in-
terpreter with its own console interface and communicates
with other hosts via (a subset of) the Message Passing In-
terface (MPI) [12, 2]. (By “console” we mean any local
source of input to the automaton. In particular, we call any
input that Java treats as a data stream — other than the MPI
connection — the console.)

The IOA compiler is able to preserve the externally vis-
ible behavior of the system without adding any synchro-
nization overhead because we require the programmer to
explicitly model the various sources of concurrency in the
system: the multiple machines in the system and the com-
munication channels. Thus, we require that systems sub-
mitted to the IOA compiler be described in node-channel
form. The IOA programs to be compiled are the nodes. We
call these programs algorithm automata. For the algorithm
automaton GHSProcess for GHS, see [16].

All communication between nodes in the system uses
asynchronous, reliable, one-way, FIFO channels. These
channels are implemented by a combination of the under-
lying MPI communication service and mediator automata
that are composed with the algorithm automata before com-
pilation. Thus, algorithm automata may assume channels
with very simple semantics and a very simple SEND/RECEIVE
interface even though the underlying network implementa-
tion is more complex. In the distributed graph algorithms
we implement, the network is the graph. That is, usually,
nodes map to machines and edges to networks. (The ex-
ceptions are experiments in which we run multiple nodes
on a single machine.)

3.3 Composition

The completed design is called the composite node au-
tomaton and is described as the composition of the algo-
rithm automaton with its associated mediator automata. A
composer tool [30] expands this composition into a new,
equivalent IOA program in primitive where each piece of
the automaton is explicitly instantiated. The resulting node
automaton describes all computation to be be performed on
one machine. This expanded node automaton (annotated as
described below) is the final input program to the IOA com-
piler. The compiler translates each node automaton into its
own Java program suitable to run on the target host.

3.4 Input-delay insensitivity

The I/O automaton model requires that input actions are
always enabled. However, our Java implementation is not
input enabled, it receives input only when the program asks
for it by invoking a method. Therefore, each IOA sys-
tem submitted for compilation must satisfy a semantic con-
straint. The system as a whole must behave correctly (as



defined by the programmer) even if inputs to any node from
its local console are delayed. This is a technical constraint
that most interesting distributed algorithms can be altered
to meet.

3.5 Resolving Nondeterminism

Before compiling a node automaton, a programmer
must resolve both the implicit nondeterminism inherent in
any IOA program and any explicit nondeterminism intro-
duced by choose statements. Execution of an automaton
proceeds in a loop that selects an enabled transition to exe-
cute and then performing the effects of that transition. Pick-
ing a transition to execute includes picking a transition def-
inition and the values of its parameters. It is possible and,
in fact, common that the set of enabled actions in any state
is infinite. In general, deciding membership in the set of
enabled actions to be undecidable because transition pre-
conditions may be arbitrary predicates in first-order logic.
Thus, there is no simple and general search method for
finding an enabled action. Even it when it is possible to
find an enabled action, finding an action that makes actual
progress may be difficult.

Therefore, before compilation, we require the program-
mer to write a schedule. A schedule is a function of the
state of the local node that picks the next action to exe-
cute at that node. In format, a schedule is written at the
IOA level in an auxiliary nondeterminism resolution lan-
guage (NDR) consisting of imperative programming con-
structs similar to those used in IOA effects clauses. The
NDR fire statement causes a transition to run and selects
the values of its parameters. Schedules may reference, but
not modify, automaton state variables. However, schedules
may declare and modify additional variables local to the
schedule [26, 10, 32].

3.6 Choosing

The choose statement introduces explicit nondetermin-
ism in IOA. When a choose statement is executed, an IOA
program selects an arbitrary value from a specified set. For
example, the statement

num := choose n:Int where 0 <= n /\ n < 3

assigns either 0, 1, or 2 to num. As with finding parame-
terized transitions to schedule, finding values to satisfy the
where predicates of choose statements is hard. So, again,
we require the IOA programmer to resolve the nondeter-
minism. In this case, the programmer annotates the choose

statement with an NDR determinator block. The yield

statement specifies the value to resolve a nondeterministic
choice. Determinator blocks may reference, but not mod-
ify, automaton state variables.

3.7 Initialization

The execution of an I/O automaton may start in any of
a set of states. In an IOA program, there are two ways to
denote its start states. First, each state variable may be as-
signed an initial value. That initial value may be a simple
term or an explicit choice. In the latter case, the choice
must be annotated with a choice determinator block to se-
lect the initial value before code generation. Second, the
initial values of state variables may be collectively con-
strained by an initially clause. As with preconditions,
an initially clause may be an arbitrary predicate in first
order logic. Thus, there is no simple search method for
finding an assignment of values to state variables to sat-
isfy an initially clause. Therefore, we require the IOA
programmer to annotate the initially predicate with an
NDR determinator block. However, unlike NDR programs
for automaton schedules initially determinator blocks
may assign values directly to state variables. We omit the
initially det block for GHS due to lack of space.

3.8 Runtime preparation

As mentioned above a system admissible for compila-
tion must be described as a collection of nodes and chan-
nels. While each node in the system may run distinct code,
often the nodes are symmetric. That is, each node in the
system is identical up to parameterization and input. For
example, the nodes in the GHS algorithm are distinguished
only a unique integer parameter. Automaton parameters
can also be used to give every node in the system some
common information that is not known until runtime. For
example, the precise topology of the network on which the
system is running. If a compiled automaton is parameter-
ized, the runtime system reads that information from a lo-
cal file during initialization. In our testbed, certain special
automaton parameters are automatically initialized at run-
time. The rank of a node each node is a unique nonnega-
tive integer provided by MPI. Similarly, the size of the sys-
tem is the number of nodes connected by MPI. Input action
invocations are also read from files (or file descriptors) at
runtime. A description of the format for such invocations
is given in [32].

4 Implementing Simple Algorithms

Our experimentation with the Toolkit began with the
asynchronous version of the algorithm of Le Lann, Chang
and Roberts (LCR) [21, 4] for leader election in a ring net-
work. Each node sends its identifier around the ring. When
a node receives an incoming identifier, it compares that
identifier to its own. It propagates the identifier to its right
neighbor only if the incoming identifier is greater than its
own. The node that receives an incoming identifier equal
to its own is elected as the leader. (In other words, only the



largest identifier completes a full circuit around the ring and
the node that sent it is elected leader.) formal specification
of the algorithm as an I/O automaton and a formal proof of
its correctness can be found in [22] (Section 15.1.1). Our
experimentation with LCR revealed some of the features
of the Toolkit that were not yet implemented, such as ini-
tialization of formal parameters. After implementing these
parts directly in Java, LCR became our first algorithm to be
compiled from IOA and run successfully on a collection of
workstations.

As soon as the Toolkit became fully automated, we
worked on implementing an Asynchronous Spanning Tree
algorithm for finding a rooted spanning tree in an arbi-
trary connected graph based on the work of Segal [27] and
Chang [5]. Initially all nodes are “unmarked” except from a
“source node” (the root of the resulting spanning tree). The
source node sends a search message to its neighbors. When
an unmarked node receives a search message, it marks itself
and chooses the node from which the search message has
arrived as its parent. Then it propagates the search message
to its neighbors. If the node is already marked, it just propa-
gates the message to its neighbors (in other words, a parent
of a node i is the node from which i has received a search
message for the first time). The spanning tree is formed by
the edges between the parent nodes with their children. The
successful implementation of this algorithm led to the im-
plementation of an Asynchronous Broadcast/Convergecast
algorithm, which is essentially an extension of the previous
algorithm: Along with the construction of a spanning tree,
a broadcast and convergecast takes place (the root node
broadcasts a message down the tree and acknowledgments
are passed up the tree from the leaves with each parent
sending an acknowledgment up the tree only after receiv-
ing one from each of its children). We continued with two
Leader Election algorithms on arbitrary connected graphs.
The first one is an extension of the Asynchronous Broad-
cast/Convergecast algorithm, where each node performs its
own broadcast to find out whether it is the leader (each node
broadcasts its identifier, and it receives the identifiers of all
other nodes – the one with the largest identifier is elected
as the leader). The second one computes the leader based
on a given spanning tree of the graph. Our code for each
of these algorithms was based on the formal specification
and a proof of correctness given in Chapter 15 of [22]. In
each case, we were able, using the IOA compiler, to au-
tomatically produce an implementation of the algorithm in
Java code and run it successfully on a network of worksta-
tions and run several experiments. For the details of the
implementation including IOA code and runtime results of
all these algorithms we refer the reader to [16].

5 Implementing the GHS Algorithm

The successful implementation of the (simple) algo-
rithms above made us confident that it would be possible,

using the Toolkit, to implement more complex distributed
algorithms. Our algorithm of choice to test the Toolkit’s
capabilities was the seminal algorithm of Gallager, Hum-
blet and Spira [13] for finding the minimum-weight span-
ning tree in an arbitrary connected graph with unique edge
weights.

In the GHS algorithm, the nodes form themselves into
components, which combine to form larger components.
Initially each node forms a singleton component. Each
component has a leader and a spanning tree that is a sub-
graph of the eventually formed minimum spanning tree.
The identifier of the leader is used as the identifier of the
component. Within each component, the nodes coopera-
tively compute the minimum-weight outgoing edge for the
entire component. This is done as follows: The leader
broadcasts search request along tree edges. Each node
finds, among its incident edges, the one of minimum weight
that is outgoing from the component (if any) and it reports
it to the leader. The leader then determines the minimum-
weight outgoing edge (which will be included in the mini-
mum spanning tree) of the entire component and a message
is sent out over that edge to the component on the other
side. The two components combine into a new larger com-
ponent and a procedure is carried out to elect the leader of
the newly formed component. After enough combinations
have occurred, all connected nodes in the given graph are
included in a single connected component. The spanning
tree of the final single component is the minimum spanning
tree of the graph.

Welch, Lamport and Lynch [33] described the GHS al-
gorithm using I/O automata and formally proved its cor-
rectness. We derived our IOA implementation of the algo-
rithm (see [16]) from that description. Only technical mod-
ifications were necessary to convert the I/O automata de-
scription from [33] into IOA code recognizable by the IOA
compiler. First, we introduced some variables that were
not defined in the I/O automaton description as formal pa-
rameters of the automaton in the IOA code. For example,
in our implementation, information about the edges of the
graph is encoded in links and weights automaton parame-
ters. In [33] that information is assumed to be available in
a global variable. Second, the I/O automaton description
uses the notion of a “procedure” to avoid code repetition.
The IOA language does not support procedure calls with
side-effects because call stacks and procedure parameters
complicate many proofs. Thus, we had to write the body of
the procedures several times in our code. Third, statements
like “let S = 〈p,r〉 : lstatus(〈p,r〉) = branch,r 6= q” were
converted into for loops that computed S.

The schedule block we used to run GHS can be found
in [16]. In that block, each variable reference is qualified
by the component automaton (P, SM[*], or RM[*]) in which
the variable appears. We also introduce new variables to
track the progress of the schedule. The schedule block is
structured as a loop that iterates over the neighbors of the



node. For each neighbor, the schedule checks if each action
is enabled and, if so, fires it with appropriate parameteriza-
tion. (The first six conditionals fire actions derived from
the omitted mediator automata.) As formulated in [33], in-
dividual nodes do not know when the algorithm completes.
Therefore, we terminated the algorithm manually after all
nodes had output their status. The effect of the schedule
is to select a legal execution of the automaton. When an
action is fired at runtime, the precondition of the action is
automatically checked. Thus, a schedule provides liveness
but not safety.

Other than the schedule block, the changes necessary to
derive compilable IOA code from the description in [33]
can be described as syntactic. It follows that our IOA spec-
ification preserves the correctness of the GHS algorithm,
as was formally proved in [33]. It follows from the cor-
rectness of the compiler as proved in [29] that the running
implementation also preserves the safety properties proved
by Welch, et al. provided certain conditions are met (see
Section 3).

From our IOA specification, the compiler produced the
Java code to implement the algorithm, enabling us to run
the algorithm on a network of workstations. In particular
we used up to 18 machines from the MIT Computer Sci-
ence and Artificial Intelligence Laboratory local area net-
work. The machine processors from 900MHz Pentium IIIs
to 3GHz Pentium IVs, and all the machines were running
Linux. The implementation was tested on a number of net-
work topologies. Most often we used a grid, while some-
times we used an arbitrary connected graph. The number
of nodes in the network ranged from 2 to 18. Tests were
performed mostly with one node running on a single ma-
chine. In every experiment, the algorithm terminated and
reported the minimum spanning tree correctly.

Several runtime measurements were made which can
be summarized in Figure 1. The graph plots the execu-
tion time (left Y axis) and the total number of messages
sent by all nodes (right Y axis) against the number of par-
ticipating nodes. The theoretical runtime of the algorithm
O(n logn) [22], is also shown. The actual runtime seems to
correspond well with the theoretical one, and an important
observation is that the execution time does not “explode” as
the number of machines used increases, which gives some
indication of the possible scalable nature of the implemen-
tation. We believe that the experimental results imply that
the performance of the algorithm (mainly in terms of ex-
ecution time) is “reasonable”, considering that the imple-
mentation code was obtained by an automatic translation
and not by an optimized, manual implementation of the
original algorithm. Therefore, we have demonstrated that it
is possible to obtain automated implementations (that per-
form reasonably well) of complex distributed algorithms
(such as GHS) using the IOA toolkit.

Figure 1. Performance of algorithm GHS

6 Conclusions

Direct compilation of formal models can enhance
the application of formal methods to the development
of distributed algorithms. Distributed systems specified
as message-passing IOA programs can be automatically
compiled when the programmer supplies annotations to
resolve nondeterministic choices. As shown elsewhere,
the resulting implementations are guaranteed to maintain
the safety properties of the original program under rea-
sonable assumptions. To the best of our knowledge, our
implementation of GHS (using the IOA Toolkit) is the
first example of a complex, distributed algorithm that has
been formally specified, proved correct, and automatically
implemented using a common formal methodology.
Hence, this work has demonstrated that it is feasible to use
formal methods, not only to specify and verify complex
distributed algorithms, but also to automatically implement
them (with reasonable performance) in a message passing
environment.

References

[1] INMOS Ltd: occam Programming Manual, 1984.
[2] M. Baker, B. Carpenter, S. H. Ko, and X. Li. mpiJava: A

Java interface to MPI. Submitted to First UK Workshop on
Java for High Performance Network Computing, Europar
1998.

[3] A. Bogdanov. Formal verification of simulations between
I/O automata. Master’s thesis, Department of Electrical
Engineering and Computer Science, MIT, Cambridge, MA,
September 2001.

[4] E. Chang and R. Roberts. An improved algorithm for decen-
tralized extrema-finding in circular configurations of pro-
cesses. Communications of the ACM, 22(5):281–283, May
1979.



[5] E. J. H. Chang. Echo algorithms: Depth parallel operations
on general graphs. IEEE Transactions on Software Engi-
neering, SE-8(4):391–401, July 1982.

[6] A. E. Chefter. A simulator for the IOA language. Master’s
thesis, Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, May 1998.

[7] O. Cheiner and A. Shvartsman. Implementing an
eventually-serializable data service as a distributed sys-
tem building block. In M. Mavronicolas, M. Merritt, and
N. Shavit, editors, Networks in Distributed Computing, vol-
ume 45 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 43–72. AMS, 1999.

[8] R. Cleaveland, J. N. Gada, P. M. Lewis, S. A. Smolka,
O. Sokolsky, and S. Zhang. The Concurrency Factory —
practical tools for specification, simulation, verification and
implementation of concurrent systems. In Specification
of Parallel Algorithms. DIMACS Workshop, pages 75–89.
AMS, 1994.

[9] R. Cleaveland, J. Parrow, and B. U. Steffen. The concur-
rency workbench: A semantics-based tool for the verifica-
tion of concurrent systems. ACM TOPLAS, 15(1), 1993.

[10] L. G. Dean. Improved simulation of Input/Output automata.
Master’s thesis, Department of Electrical Engineering and
Computer Science, MIT, Cambridge, MA, September 2001.

[11] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and
A. Shvartsman. Eventually-serializable data services. In
Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing, pages 300–309,
Philadelphia, PA, May 1996.

[12] M. P. I. Forum. MPI: A message-passing interface stan-
dard. International Journal of Supercomputer Applications,
8(3/4), 1994.

[13] R. G. Gallager, P. A. Humblet, and P. M. Spira. A dis-
tributed algorithm for minimum-weight spanning trees. In
ACM Transactions on Programming Languages and Sys-
tems, volume 5(1), pages 66–77, January 1983.

[14] S. Garland, N. Lynch, J. Tauber, and M. Vaziri. IOA
user guide and reference manual. Technical Report
MIT/LCS/TR-961, Laboratory for Computer Science, MIT,
Cambridge, MA, July 2004. URL http://theory.lcs.
mit.edu/tds/ioa/manual.ps.

[15] S. J. Garland and N. A. Lynch. The IOA language and
toolset: Support for designing, analyzing, and building
distributed systems. Technical Report MIT/LCS/TR-762,
Laboratory for Computer Science, MIT, Cambridge, MA,
August 1998. URL http://theory.lcs.mit.edu/tds/
papers/Lynch/IOA-TR-762.ps.

[16] C. Georgiou, P. Mavrommatis, and J. A. Tauber. Imple-
menting asynchronous distributed systems using the IOA
toolkit. Technical Report MIT/LCS/TR-966, Laboratory for
Computer Science, MIT, Cambridge, MA, September 2004.

[17] K. J. Goldman. Highly concurrent logically synchronous
multicast. Distributed Computing, 6(4):189–207, 1991.

[18] K. J. Goldman, B. Swaminathan, T. P. McCartney, M. D.
Anderson, and R. Sethuraman. The Programmers’ Play-
ground: I/O abstraction for user-configurable distributed
applications. IEEE Transactions on Software Engineering,
21(9):735–746, September 1995.

[19] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, United Kingdom, 1985.

[20] D. K. Kaynar, A. Chefter, L. Dean, S. Garland, N. Lynch,
T. N. Win, and A. Ramırez-Robredo. The IOA simulator.
Technical Report MIT-LCS-TR-843, MIT Laboratory for
Computer Science, Cambridge, MA, July 2002.

[21] G. L. Lann. Distributed systems - towards a formal ap-
proach. In B. Gilchrist, editor, Information Processing 77
(Toronto, August 1977), volume 7 of Proceedings of IFIP
Congress, pages 155–160. North-Holland Publishing Co.,
1977.

[22] N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers, Inc., San Mateo, CA, March 1996.

[23] N. A. Lynch and M. R. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed
Computing, pages 137–151, Vancouver, British Columbia,
Canada, August 1987.

[24] N. A. Lynch and M. R. Tuttle. An introduction to
input/output automata. CWI-Quarterly, 2(3):219–246,
September 1989. Centrum voor Wiskunde en Infor-
matica, Amsterdam, The Netherlands. Technical Memo
MIT/LCS/TM-373, Laboratory for Computer Science,
MIT, Cambridge, MA, November 1988.

[25] R. Milner. Communication and Concurrency. Prentice-Hall
International, United Kingdom, 1989.

[26] J. A. Ramırez-Robredo. Paired simulation of I/O automata.
Master’s thesis, Department of Electrical Engineering and
Computer Science, MIT, Cambridge, MA, September 2000.

[27] A. Segall. Distributed network protocols. IEEE Trans-
actions on Information Theory, IT-29(1):23–35, January
1983.

[28] E. Solovey. Simulation of composite I/O automata. Mas-
ter’s thesis, Department of Electrical Engineering and Com-
puter Science, MIT, Cambridge, MA, September 2003.

[29] J. A. Tauber. Verifiable Compilation of I/O Automata with-
out Global Synchronization. PhD thesis, Department of
Electrical Engineering and Computer Science, MIT, Cam-
bridge, MA, September 2004.

[30] J. A. Tauber and S. J. Garland. Definition and expan-
sion of composite automata in IOA. Technical Report
MIT/LCS/TR-959, Laboratory for Computer Science, MIT,
Cambridge, MA, July 2004. URL http://theory.lcs.
mit.edu/tds/papers/Tauber/MIT-LCS-TR-959.pdf.

[31] J. A. Tauber, N. A. Lynch, and M. J. Tsai. Compiling IOA
without global synchronization. In Proceedings of the 3rd
IEEE International Symposium on Network Computing and
Applications (IEEE NCA04), pages 121–130, Cambridge,
MA, September 2004.

[32] M. J. Tsai. Code generation for the IOA language. Master’s
thesis, Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, June 2002.

[33] J. Welch, L. Lamport, and N. Lynch. A lattice-structured
proof of a minimum spanning tree algorithm. In Proceed-
ings of 7th ACM Symposium on Principles of Distributed
Computing, pages 28–43, August 1988.

[34] T. N. Win. Theorem-proving distributed algorithms with
dynamic analysis. Master’s thesis, Department of Electrical
Engineering and Computer Science, MIT, Cambridge, MA,
May 2003.


