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Automated Insider Threat Detection System Using

User and Role-Based Profile Assessment
Philip A. Legg, Oliver Buckley, Michael Goldsmith, and Sadie Creese

Abstract—Organizations are experiencing an ever-growing con-
cern of how to identify and defend against insider threats. Those
who have authorized access to sensitive organizational data are
placed in a position of power that could well be abused and could
cause significant damage to an organization. This could range
from financial theft and intellectual property theft to the destruc-
tion of property and business reputation. Traditional intrusion
detection systems are neither designed nor capable of identifying
those who act maliciously within an organization. In this paper, we
describe an automated system that is capable of detecting insider
threats within an organization. We define a tree-structure profiling
approach that incorporates the details of activities conducted by
each user and each job role and then use this to obtain a consistent
representation of features that provide a rich description of the

user’s behavior. Deviation can be assessed based on the amount
of variance that each user exhibits across multiple attributes,
compared against their peers. We have performed experimenta-
tion using ten synthetic data-driven scenarios and found that the
system can identify anomalous behavior that may be indicative
of a potential threat. We also show how our detection system
can be combined with visual analytics tools to support further
investigation by an analyst.

Index Terms—Anomaly detection, cyber security, insider threat.

I. INTRODUCTION

THE insider threat problem is one that is constantly grow-

ing in magnitude, resulting in significant damage to or-

ganizations and businesses alike. Those who operate within

an organization are often trusted with highly confidential in-

formation such as intellectual property, financial records, and

customer accounts, in order to perform their job. If an individual

should choose to abuse this trust and act maliciously toward

the organization, then their position within the organization,

their knowledge of the organizational systems, and their ability

to access such materials means that they can pose a serious

threat to the operation of the business. The range of pos-

sible activities could be anything from taking money from

a cash register to exfiltrating intellectual property from the
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organization to sell on to rivals, which could effectively destroy

the successful operation of the organization. Capelli et al.

from the Carnegie Mellon University Computer Emergency Re-

sponse Team (CMU-CERT) group identified three main groups

of insider threat: information technology sabotage, theft of in-

tellectual property, and data fraud [1]. There are also a growing

number of cases that media attention has highlighted in recent

years that reveal that both businesses and governments have

suffered similar experiences, whereby top secret information

has been exfiltrated and passed on to oppositions. The threat

posed by the insider is very real and requires serious attention

from both employees and organizations.

Over the years, technological advancements have meant that

the way organizations conduct business is constantly evolving.

It is now common practice for employees to have access to large

repositories of organization documents electronically stored

on distributed file servers. Many organizations provide their

employees with company laptops for working while on the

move and use e-mail to organize and schedule appointments.

Services such as video conferencing are frequently used for

hosting meetings across the globe, and employees are con-

stantly connected to the Internet, where they can obtain infor-

mation on practically anything that they require for conducting

their workload. Given the electronic nature of organizational

records, these technological advancements could potentially

make it easier for insiders to attack. From the organizational

view, one advantage to this is the capability of capturing activity

logs that may provide insight into the actions of employees.

However, actually analyzing such activity logs would be in-

feasible for any analyst due to the sheer volume of activity

being conducted by employees every day. What is required is

a capability to analyze individual users who conduct business

on organizational systems, to assess when users are behaving

normally and when users are posing a threat.

In this paper, we present a systematic approach for insider

threat detection and analysis based on the concept of anomaly

detection. Given a large collection of activity log data, the sys-

tem constructs tree-structured profiles that describe individual

user activity and combined role activity. Using these profiles,

comparisons can be clearly made to assess how the current

daily observations vary from previously observed activities.

In this fashion, we construct a feature set representation that

describes the observations made for each day and the variations

that are exhibited between the current day and the previously

observed days. This large feature set is reduced into multiple

anomaly assessment scores using principal component analysis

(PCA) [2] decompositions on subsets of features, to identify the

degree of deviation for each grouping. The anomaly assessment

1937-9234 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



504 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

scores can be used either with classification schemes to produce

a list of suspicious users or can be visualized using parallel

coordinates plots to provide a more in-depth view. To test

the performance of the approach, a red team developed ten

simulated insider threat scenarios for experimentation that are

designed to cover a variety of different types of insider attacks

that are often observed. It was found that the system performed

significantly well for detecting the attacks using the classifi-

cation alerts, and the visualization enabled analysts to identify

what particular attributes caused the insider to be detected. The

remainder of this paper is as follows. Section II discusses the

related work. Section III describes the requirements of an in-

sider threat detection system. Section IV presents the proposed

system, describing in detail the different components. Section V

presents the process of constructing effective simulation data

and the experimentation of the detection system, and Section VI

concludes this paper.

II. RELATED WORK

The topic of insider threat has recently received much at-

tention in the literature. Researchers have proposed a variety

of different models that are designed to prevent or detect the

presence of attacks (e.g., [3] and [4]). Similarly, there is much

work that considers the psychological and behavioral character-

istics of insiders who may pose a threat as means for detection

(e.g., [5]–[7]). Kammüller and Probst [8] considered how orga-

nizations can identify attack vectors based on policy violations,

to minimize the potential of insider attacks. Likewise, Ogiela

and Ogiela [9] studied how to prevent insider threats using

hierarchical and threshold secret sharing. For the remainder of

this section, we choose to focus particularly on studies that

address the practicalities of designing and developing systems

that can predict or detect the presence of insider threat.

Early work by Spitzner [10] discusses the use of honey-

pots (decoy machines that may lure an attack) for detecting

insider attacks. However, as security awareness increases, those

choosing to commit insider attacks are finding more subtle

methods to cause harm or defraud their organizations, and thus,

there is a need for more sophisticated prevention and detection.

Early work by Magklaras and Furnell [11] considers how to

estimate the level of threat that is likely to originate from a

particular insider based on certain profiles of user behavior. As

they acknowledge, substantial work is still required to validate

the proposed solutions. Myers et al. [12] considered how web

server log data can be used to identify malicious insiders who

look to exploit internal systems. Maloof and Stephens [13]

proposed a detection tool for when insiders violate need-to-

know restrictions that are in place within the organization.

Okolica et al. [14] used probabilistic latent semantic indexing

with users to determine employee interests, which are used

to form social graphs that can highlight insiders. Liu et al.

[15] proposed a multilevel framework, which is called sensitive

information dissemination detection, that incorporates network-

level application identification, content signature generation

and detection, and covert communication detection.

More recently, Eldardiry et al. [16] have also proposed a

system for insider threat detection based on feature extraction

from user activities. However, they did not factor in role-

based assessment. The profiling stage that we perform allows

us to extract many more features beyond the activity counts

that they suggested. Brdiczka et al. [17] combined psycholog-

ical profiling with structural anomaly detection to develop an

architecture for insider threat detection. They used data col-

lected from the multiplayer online game, i.e., World of

Warcraft, to predict whether a player will quit their guild. In

contrast to real-world insider threat detection, they acknowl-

edged that the game contains obvious malicious behaviors;

however, they aimed to apply these techniques to real-world

enterprises. Eberle et al. [18] considered graph-based anomaly

detection as a tool for detecting insiders, based on modifica-

tions, insertions, and deletions of activities from the graph.

They used the Enron e-mail data set [19] and cellphone traffic as

two preliminary cases, within the intention of extending to the

CERT insider threat data sets. Senator et al. [20] proposed to

combine structural and semantic information on user behavior

to develop a real-world detection system. They used a real

corporate database, gathered as part of the Anomaly Detection

at Multiple Scales program; however, due to confidentiality,

they cannot disclose the full details, and thus, it is difficult

to compare against the work. Parveen et al. [21] used stream

mining and graph mining to detect insider activity in large

volumes of streaming data, based on ensemble-based methods,

unsupervised learning, and graph-based anomaly detection.

Parveen and Thuraisingham [22] extended the work with an

incremental learning algorithm for insider threat detection that

is based on maintaining repetitive sequences of events. They

used trace files collected from real users of the Unix C shell

[23]; however, this public data set is relatively dated now.

One clear observation from these related work is that access

to real-world data is extremely difficult, and thus, researchers

synthesize data that are similar to that of a real-world enterprise,

or use a subset of data points, or apply insider threat detection

techniques to other problem domains (e.g., online games). In

our work, we particularly wanted to represent the variety and

volume of data that would be observed in a modern real-world

organization and show how this could be combined to form an

overall assessment for each user and for each role. We also

wanted to clearly demonstrate a wide variety of insider threat

scenarios as represented by our synthetic data generation and

show how our detection system would be capable of detecting

the different attacks.

III. REQUIREMENTS ANALYSIS

The work described in this paper was carried out as part

of a wider interdisciplinary project that includes computer

scientists, security researchers, and cyber psychology experts.

As the problem of insider threat continues to be of growing

concern to businesses and governments alike, there becomes a

critical need for practical tools to help alleviate the threat that

is posed. Our understanding of what we believe to constitute as

insider threat is the result of close interdisciplinary collabora-

tion between industry, government, and academia. The system

that is proposed here aims to address the majority of scenarios

that are understood from the knowledge that has been shared
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by organizations experiencing such attacks and case studies that

have been documented in research reports and the media.

Our initial work on insider threat detection was to develop a

conceptual model of how a detection system could connect the

actions of the real world with the hypothesis that a particular

individual is an insider [3]. It is crucial that organizations

looking to deploy insider threat detection tools have a clear

understanding of the valuable assets of the organization and

the monitored activities that relate to these assets, to therefore

understand the type of attacks that could potentially arise. In

developing our conceptual model, we identified the different

elements that exist within organizations to understand what

elements could be affected as a result of an insider attack. As a

result, we can define the requirements of the detection system

as given in the following.

1) The system should be able to determine a score for each

user that relates to the threat that they currently pose.

2) The system should be able to deal with various forms

of insider threat, including sabotage, intellectual property

theft, and data fraud.

3) The system should be also able to deal with unknown

cases of insider threat, whereby the threat is deemed to

be an anomaly for that user and for that role.

4) The system should assess the threat that an individual

poses based on how this behavior deviates from both

their own previous behavior and the behavior exhibited

by those in a similar job role.

While we aim for a well-defined detection system that can

alleviate the presence of insider threat, to promise a system

that can eradicate the problem is a bold claim that we do not

try to state here. By the very nature of an insider attack, a

sophisticated attacker would be conscious of covering their

tracks to avoid being detected. For example, they could attempt

to falsify or delete the activity logs that are reported to the

detection system, or they could attempt to circumvent standard

monitoring practices. In theory, the very nature of modifying

or deleting log files should be detected and so should raise an

alert, given that this behavior should not be deemed as normal.

Such attacks would therefore most likely be detected through a

combination of both online and offline behaviors, such as acting

suspiciously in the workplace.

IV. SYSTEM OVERVIEW

The architecture of the detection system is detailed in Fig. 1.

Here, the detection system connects with a database that con-

tains all available log records that exist for the organization.

Such examples may be computer-based access logs, e-mail and

web records, and physical building access (e.g., swipe card

logs). All records for the current date are retrieved and parsed

by the system. For each record, the user ID is used to append

the activity to their daily observed profile. Likewise, the activity

is also appended to the daily observed profile of their associated

role, if applicable. Once the daily observation profiles are

constructed, the system proceeds to assess each user based on

three levels of alerts: policy violations and previously recog-

nized attacks, threshold-based anomalies, and deviation-based

anomalies. At each stage in the assessment, the system can

trigger an alert to the analyst to notify of a supposed threat

being observed. The analyst can investigate the alert and then

decide whether this alert is correct. Should the analysts decide

that the alert is not correct, then they have the capability to

reject a detection result, which then refines the parameters

within the system, to minimize the false positive rate for future

observations.

In the following sections, we will detail how each of the

key components of the system is performed to identify at-risk

individuals. We consider the key components of the system

to be the retrieval of records from the organizational data-

base, user and role-based profiling, profile feature extraction,

anomaly assessment from features, and classification of threat

from anomaly scores. For this work, a pilot detection system

was developed using the Python programming language. In

addition, visualization components have been also developed,

which allow the analyst to explore different components of the

detection process, such as user profiles and multiple anomaly

scores. Our visualization components are developed using a

Python back end and the popular D3 javascript library for the

front-end display [24].

A. Data Input

At the first stage of the pipeline is the Data Parser Module,

which interfaces with the organization. For each day, the system

requests the set of records from the log data that correspond

with the current date. In theory, this could consist of many

different captures of data from different sensors within the

organization. Our initial work was based on the data sets

provided by CMU-CERT. In these data sets, the organization

activity logs consist of five different files that correspond to

the different activities that can be performed: login, usb device,

e-mail, web, and file access. Each record is parsed to obtain

a timestamp, a user ID, a device ID (i.e., what device logged

the action), and an activity name (e.g., login and e-mail). Some

activities (i.e., e-mails, files, and websites) may also contain

further information that we assign as the attribute, such as the

e-mail recipients, the filename accessed, or the website accessed.

Where an attribute is provided, the system is also capable of

retrieving and analyzing content that can be assigned as the final

property of the record, which is handled by the Content Parser.

The Content Parser consists of two main techniques of ana-

lyzing textual data: bag of words and Linguistic Inquiry Word

Count (LIWC) [25]. For analyzing website and file content,

Content Parser will scrape the given URL and retrieve all

texts that are recognized to exist within the English dictionary.

Using a bag-of-words approach to construct a feature set, this

feature vector is assigned to the given record. Similarly, for

e-mail content, we construct a feature vector; however, rather

than using the raw text content, we use features defined by

LIWC. The justification of this is threefold. First, given the

sensitivity of e-mail content, many organizations are concerned

with directly monitoring the content of e-mails. Second, the

LIWC categories have well-defined meaning with regard to

psychological context, and thus could provide more meaningful

information regarding the e-mail content than the raw message
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Fig. 1. Architecture of the insider threat detection system. The system consists of a number of key components that process incoming log data records and
construct a profile of user and role behavior for the current day and assess the level of threat posed by the invidual. Alerts can be automatically triggered at three
levels: policy violations and previously recognized attacks, threshold-based anomalies, or deviation-based anomalies. Alerts are dealt with by an analyst who can
then determine whether the individual does actually pose a threat or not. If deemed not to be a threat, the analyst can refine the detection model to minimize the
false positive rate for future observations.

would do in any case. Finally, there are 80 features defined

by the LIWC tool; thus, it means that the size of the feature

vector can easily be reduced. It would be possible to use either

technique for assessment of each activity; however, we make

this distinction due to e-mails being user generated, rather

than websites or files that are only being read by a user. Each

content-based feature vector is combined with the user and role-

based daily observation profiles, which we will describe further

in Section IV-B.

The Content Parser serves as an optional module within our

architecture. It is understood that many organizations currently

do not maintain records of all content from e-mails being

sent, due to privacy concerns. However, organizations may well

change their position on this, particularly if it is believed that

such content would help in combatting against the threat of

insider attacks. For the development of our system, we have

worked with a number of synthetic data sets, including CMU-

CERT insider threat scenarios, the published Enron e-mail

data set, sample data provided by Centre for the Protection of

National Infrastructure (CPNI), and in-house generated data.

One challenge with using synthetic data sets, such as CMU-

CERT and our own, is that, while the data may show that

e-mails were sent or files were accessed, since these are purely

synthetic, there is no substantial content within the files or

e-mails. E-mail content may be a collection of randomly chosen

words that define a topic, rather than a meaningful commu-

nication sent by a human user. While we have been able to

trial such methods on e-mail and web analysis in isolation,

without these pairing up with corresponding insider threat

scenarios, it is difficult to truly validate the approach. However,

it is incorporated into the overall architecture since it serves

as an optional complimentary anomaly metric that analysts can

choose whether to utilize, based on the availability of data.

B. User and Role-Based Profiling

The second stage of the system is user and role-based profil-

ing. Each user and each role that exist within the organization
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Fig. 2. Tree-structured profiles of user and role behaviors. The profile shows all the devices, activities, and attributes that the user has been observed performing.
The probability distribution for normal hourly usage is given in the top right, and the distribution for the detected attack is given in the bottom right. Here, it can
be seen that the user has accessed resources late at night.

are defined by a tree-structured profile that describes the dif-

ferent devices, activities, and attributes that they have been

observed on. This notion of a tree-structured profile provides

a consistent representation for all users and for all roles that can

be used for comparative assessment, either between multiple

employees or between multiple time steps for a particular

employee. Fig. 2 illustrates the profile of a typical user using

our tree visualization tool. At the root of the tree is the user

ID (or in the case of a role tree, the role title), which can

consist of three child nodes: observations made for the current

date (daily), observations that have previously been made and

exist within the normal profile (normal), and, if applicable,

observations that have been deemed to be suspicious (attack).

For each of these branches, we define the same hierarchical

structure to facilitate comparison. At the first level down, all

devices that the user has been observed on are given. In the

case of a role tree, this would be all devices observed by all

users who act within this particular role. These typically would

be computers; however, this could well be extended to other

electronic devices such as printers or door locks. The next level

of the tree shows all the activities that the user has performed

on each of these devices. The level below this then shows the

attributes, if applicable, such as the files or websites accessed or

the e-mail addresses that the user has contacted. Each node in

the profile maintains a 24-bin histogram that denotes the hourly

usage for that particular state, based on the observed records. In

addition, attributes can also maintain the results of the Content

Parser as a cumulative histogram.

For each record, the system first compares this record against

the state of the user’s current daily profile. If the device–

activity–attribute tuple does not exist within the tree-structured

profile, then a new node is created at the appropriate location

within the daily profile tree. The associated histogram for the

node is then updated based on the timestamp of the observed

record. Similarly, the tuple is also compared against the corre-

sponding role profile that the user belongs to. This provides a

profile that describes the currently daily activity for all users

and for all roles. If the user belongs to multiple roles, then

the system can be configured to either populate all roles that

the user belongs to or to create a specific role type that is
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then populated (e.g., technician-engineer could define the set of

users who act in both roles). Once all daily records have been

observed, the next stage of the system is to derive a feature set

that provides a comprehensive and comparable description of

each user’s profile. To do this, the system compares the current

daily profile against the existing previous profile.

Once the daily observation profile is constructed, the system

can perform a comparison against organizational policies and

previously recognized attack patterns. A rule-based approach

can be specified using a policy language that can be used to state

how particular observations should be treated (e.g., all logins

out of hours should be flagged to the analyst with a medium

severity level). If there are no violations flagged up at this stage,

then the system proceeds to the next level.

C. Feature Extraction

Once we have computed the current daily profile for each

user and for each role, we perform our feature extraction.

Since the profile structure is well defined, it means that a wide

variety of comparisons between users, roles, or time steps can

be easily made. We define a series of features that consider

new observations across devices, activities, and attributes, for

the user compared against their previous behaviors, and for

the user compared against the previous behavior of all users

within the same role (e.g., New device for user, New activity for

device for role, and New activity for any device for user). We

also define a series of features that assess the hourly and daily

usage counts for each particular device, activity, and attribute

(e.g., Hourly usage count for device, Hourly usage count for

activity, Hourly usage count for attribute, and Daily usage

count for activity). Finally, we define time-based features for

each particular device, activity, and attribute (e.g., Latest logon

time for user, Earliest USB time for user, and USB duration

for user). The full feature matrix that we currently consider

consists of 168 columns (the full list of extracted features

is available in [26]). The complete set of features allows for

assessment of three key areas: the user’s daily observations,

comparisons between the user’s daily activity and their previous

activity, and comparisons between the user’s daily activity and

the previous activity of their role.

D. Threat Assessment

Once the feature set for the current daily observation has

been computed, the next stage of the system is to determine

whether these features show significant deviation in behavior

compared with all previously accepted observations. To do this,

an n×m matrix is constructed for each user, where n is the

total number of sessions (or days) being considered, and m is

the number of features that have been obtained from the profile.

The bottom row of the matrix represents the current daily

observation, with the remainder of the matrix being all previous

observation features. To derive the amount of variation that is

exhibited in the multivariate feature space, we perform PCA to

obtain a projection of the features into lower dimensional space

based on the amount of variance exhibited by each feature.

What this means is that features that have a higher variance can

be projected into a lower dimensional space while preserving

separability between similar and dissimilar features. It is often

used to enable visualization and understanding of large data sets

using only two or three dimensions, to observe the clustering of

similar data records. For our application, we also allow a weight

to be associated with each feature so that features of greater

importance can be emphasized, as dictated by an analyst. This

way, the analyst can generate different models for analysis

based on different configurations of weighted combinations. If

no weights are specified, then the weight is taken to be 1/f ,

where f is the total number of features. All feature columns are

normalized before the PCA decomposition is performed. By

default, we consider a decomposition of the features to a 2-D

space. If all feature observations were identical, then all points

in the new space would be clustered at the origin. However,

given the deviation that is expected of human behavior, points

are likely to be clustered near to, but not directly at, the center.

For the new matrix, we consider only the current observation,

which is the bottommost record in the matrix. We compute the

distance of this point from the origin in the new space and take

this to be the anomaly score of this metric at this observation.

This process is performed for each of the anomaly metrics,

where each metric consists of a subset of the overall feature set

and, if specified, a corresponding weighting function for each

feature. Each anomaly metric can be configured to alert if the

score obtained for that particular metric is above a particular

threshold.

The anomaly metrics that are currently considered include the

following: Login_anomaly, Login_duration_anomaly, Logoff_

anomaly, USB_inserstion_anomaly, USB_duration_anomaly,

Email_anomaly, Web_anomaly, File_anomaly, This_anomaly,

Any_anomaly, New_anomaly, Hourly_anomaly, Number_

anomaly, User_anomaly, Role_anomaly, and Total_anomaly.

The system could easily support the addition of further

anomaly metrics, based on the observation of different activity

types. From our research into case studies of insider threat,

most cases could be associated with either performing a new

activity, performing an existing activity at a new time of day,

or performing an existing activity more or less often than

previously. These define our “new,” “hourly,” and “number”

metrics. The combination of multiple metrics also provides sup-

port for greater confidence in the result obtained regarding an

individual. For example, we may observe that a particular

individual scores higher than other users not only on “hourly_

anomaly” or “total_anomaly” but also on “file_anomaly” and

“e-mail_anomaly.” By considering how the different subsets of

features score, rather than a single overall score, it allows an

assessment to be made on not only that an individual is posing

as a threat but also on what attack vectors they are acting on.

Here, we observe that the user is logging in at an unusual time

to access new files and e-mail new contacts.

E. Classification of Threat

The final stage of the system is to provide assessment of the

threat that is posed by an individual, given the observation of

their activity, and the collection of anomaly scores that have

been assigned to their daily observation profile. One approach
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to this as a relatively effective measure is to simply normal-

ize each column of the anomaly score matrix and then take

the maximum standard deviation as an integer classification

of importance. We would expect most data to exist within

two standard deviations of the norm; thus, anything above

this should certainly be investigated. Likewise, we can also

compute the Mahalanobis distance to assess how far away an

individual’s observations are from the rest of the distribution.

As a third approach that can be deployed, we compute the

covariance matrix of a user’s anomaly scores and, on each

daily observation, assess the signed differences between the

covariances. The system could well be extended to support

other classification schemes in the future as desired by the

analyst. The classification can be used to flag up users to the

analyst and to determine whether a user’s daily observation

profile should be included within their previously observed

normal profile. If the observation is deemed to be too much of

an anomaly, then the observation is recorded as an attack rather

than their normal. This is a vital stage so as to not contaminate

a user’s previously observed profile with malicious behavior,

while also providing the capability for each daily observation

to contribute toward the previously observed profile.

V. EXPERIMENTATION

To be able to assess the performance of the detection system,

we conduct a series of experimentation scenarios using the

prototype system. As part of the wider project on insider threat,

ten scenarios have been developed that cover the broad range

of possible attacks that an insider could perform against their

organization. For each scenario, a narrative has been devised

that explains what has happened, including why the individual

has chosen to act against the organization, and what they have

done. Each scenario is modeled within a unique synthetically

generated data set that represents the normal activity of the

organization. The data contain all employee activities within

the organization for the period of 365 days, including that of

the insider. We consider the first 15 days as training data, where

no attacks are initiated, so that an initial normal baseline can

be obtained. The remaining 350 days are then used as testing,

whereby each newly observed day that is deemed to be normal

then contributes toward the normal baseline. The scenarios

were developed in isolation of the detection system, so not to

have been bias by this, and have been designed to test a variety

of different scenarios that could occur over different attack

vectors. In addition to our own synthetic data, we have also

used third-party data sets generated by CMU-CERT to further

validate the performance of the approach described.

A. Constructing Experimentation Data

The creation of the synthetic data sets was conducted in

isolation of the detection system so as to not introduce any bias.

The premise of the activity was to craft a synthetic organization

for each scenario and insert a malicious employee in such

a way that their behaviors correspond with those that have

been documented by the various case studies of previously

observed attacks. All the while, the intent was to create different

TABLE I
CHARACTERISTICS OF THE TEN INSIDER THREAT SCENARIOS,

INCLUDING THE VOLUME AND TYPE OF INSERTED

MALICIOUS ACTIVITY. EACH SCENARIO CONSISTS

OF 365 DAYS OF ACTIVITY LOGS

scenarios with the objective of beating the detection system,

within the confines of the data points available as described in

Section IV-A.

The approach used to generate the data sets involved an

automated system to generate the normal day-to-day activity

(the background noise), and then, the attack data were manually

injected into the log files. The method used to create the

normal activity has focused on the notion of defining a “virtual

organization.” In our system, an organization is composed of

a number of staff roles (e.g., manager and developer), with a

number of employees in each of the roles.

The employee’s role is used as the seed for the data genera-

tion process and determines the boundaries of normal behavior

of an employee undertaking that role. An employee’s role,

within our virtual organization, defines the normal boundaries

of behavior over a number of data dimensions, including the

following: log-in times, USB device insertions, HTTP requests,

e-mail contacts, e-mails sent, and file system accesses. The

role does not provide entirely uniform behavior; there are only

average values for an employee in that role. For example, an

employee in an administrative role may typically log in to

the system between 8 A.M. and 10 A.M. and log out between

4 P.M. and 6 P.M. The data generation system would, typically,

assign the employee a log-in time within the specified window,

but there is also the provision to generate occasional anomalous

values outside of this window.

Once the normal activity has been generated, then the mali-

cious activity is manually inserted into the data sets. For each of

the attacks inserted, an attack scenario was written, specifying

the type of employee (i.e., the employee’s role) and describ-

ing the nature of the attack. For example, a scenario may specify

that a manager, within the organization, had been arriving at

work earlier than they normally would and browsing to new

areas of the corporate network that they had not previously

visited. Once a scenario is created, then an employee in the

correct role is selected, and the attack data are inserted into the

log files. Owing to the random nature of the data generation

process, very little was known about the behavior of the “ma-

licious” employee prior to the insertion of the attack data. The

data inserted, about an attack, relate directly to the employee’s

behavior, rather than that of the role. If we consider the earlier

example of a manager who begins to log in earlier than before

and accesses new areas of the corporate network, then the
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TABLE II
RESULTS FROM TEN INSIDER THREAT SCENARIOS FOR LEVEL-2 AND LEVEL-3 ALERTS

earlier logins would be early for that particular employee, not

the role as a whole. This makes the attack insertion slightly

more subtle and harder to identify. Details of each synthetic

data set are provided in Table I.

B. Results

Table II shows the results from the detection system. We

show the number of alerts that are generated under different

operational schemes for Level-2 and Level-3 alerts. In addition,

we show the anomaly metrics that the alerts were triggered for.

In this experiment, it is clear that L3 alerts with a deviation

of σ = 2.0 gave the fewest alerts. In real-world operation,

it may well be beneficial to preserve alerts generated under

different operational schemes, for instance, to observe that an

employee is consistently scoring just below a particular thresh-

old. This knowledge, coupled with offline behaviors, could well

reveal the employee to be a threat, which would have been

missed otherwise. From these results, the best result is obtained

from scenario 3. Here, there are 4200 daily assessments made

(12 employees for 350 days), of which 24 are flagged as

anomalies. From Table I, we see that ten of the days consisted

of malicious activity, of which all ten days are within the set

of 24 detected anomalies. Based on precision and recall, this

gives a precision of 42% and a recall of 100%. While it is

clear that the system still presents some error, the effort of an

analyst to investigate 24 results rather than 4200 is still clearly

advantageous. The classification of either being an insider

threat or not is somewhat of an ambiguous task, since it is

highly dependent on context, and it also involves the analyst

or managers to determine what the next course of action should

be regarding the individual. What is perhaps most important

from any insider threat detection system is that recall is ensured

over precision. In this sense, the detection system serves as a

means to filter a substantial number of assessments to alleviate

the efforts of the analyst.

Futhermore, we also present our results using a parallel

coordinates plot that shows each of the anomaly metrics as an

individual axis (as shown in Fig. 3). This example is shown

for a scenario generated by CMU-CERT, where the data set

consists of 1000 employees, of which 1 is an insider. Fig. 3(a)

shows 691 000 daily observations on the plot, and yet, there is

a distinct polyline, which is seen to be an outlier on multiple

axes. By brushing the axis, as shown in Fig. 3(b), the analyst

can filter the data and reveal information on this particular case.

Here, there are now only four observations, all of which are the

actions of the inserted insider who copied data to a USB drive

during unusual work hours. By coupling the detection results

with a visual analytics approach, this empowers the analyst

much more to be able to identify anomalous behavior within

the daily observation records.

In our experimentation, we found that seven of the ten cases

were clearly identifiable when using the parallel coordinates

plot. Of the cases that did fail, there are a number of factors that

could impact on the performance of the system. First, one of the

scenarios that failed was dependent on the content of a website,

rather than the unusual access of it. While the architecture of the

system supports content, we did not include this in for the syn-

thetic experimentation as the website addresses were randomly

created, and thus, access to these would not be feasible. Second,

despite the synthetic data being modeled to reflect human

behavior, it is difficult to truly capture the intentions and mo-

tivations of the employees who are supposedly acting normally.

Therefore, there is possibility that the normal background data

exhibit noise and randomness that real data should not have.

Having said this, it is also possible that the opposite could be

true for some organizations and that, in fact, the synthetic data

are too simple and not truly reflecting the dynamic nature of

real human behavior. Nevertheless, we believe that the results

presented here, for threshold and deviation-based assessment

and for visual assessment of anomalies, are encouraging for our

initial experimentation. We are currently working with a large

international corporation to deploy our experimentation system

within their environment to test our system against real-world

activity data.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented an effective approach for

insider threat detection. From the organizational log data, the

system generates user and role-based profiles that can de-

scribe the full extent of activities that users perform within

the organization. The tree-structured profiles are designed to

be easily comparable against other users, role types, and tem-

poral observations. From each daily observation, the system

constructs a large set of features that describe the state of the

current daily profile and the previously observed profiles for all

users. The system then creates subsets of the features that

describe particular anomalies of interest and computes a PCA

decomposition on this to identify features that exhibit high de-

viation. Alerts are generated when anomaly scores are deemed

to be over a particular threshold, measured as the standard

deviation from the normalized anomaly scores. From an alert,
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Fig. 3. Parallel coordinates plot of the multiple anomaly results that are generated by the detection process. (a) Plot shows 691000 results for a year and a half
of monitoring 1000 employees. It can be seen that there exists a record that can be described as an outlier over at least four of the different metrics. (b) Plot shows
four results that have been highlighted by the any_anomaly metric that all correspond to a particular individual. In this example, this invidual was the inserted
malicious insider who began using a USB device to copy sensitive records earlier than they would normally act.

the analyst can visualize how the user differs from their normal

behavior, or from other users, using a range of visualization

techniques. We demonstrate this approach for a variety of

synthetically generated insider threat scenarios, both from our

own development and from CMU-CERT, and find that the

system performs well for identifying these attacks across the

range of anomaly metrics that are considered.

Clearly, by the very nature of an insider threat, the individual

in question is purposely attempting to stay below the radar;

and thus, to guarantee 100% detection success is difficult since

there could be a number of attacks that are not considered by

the designers of the detection system. Our future work is to

explore the notion of model evolution and how multiple detec-

tion models could operate in parallel. In our current architec-

ture, we have shown the process of refining the current model,

but what if the analyst chose to maintain both models and com-

pare the two? The analyst would then need to be able to assess

the performance of each model over time, to decide whether it

is worth utilizing all models or whether some models should

be discarded. There are also organizational-dependant charac-

teristics that may need to be considered; however, the approach

described is designed to be flexible to the forms of data that

different organizations may collect. We are currently conduct-

ing experiments with a large real-world organization to see

how effective the tools can be when studying real users and, in

particular, the differences between real normal and real threats.

We are also exploring whether decomposition to different levels

of dimensionality can improve the precision results for the de-

tection system, to further alleviate analyst efforts. What is very

clear, however, is that organizations recognize that real threats

exist and that such systems as this could well detect and alleviate

the efforts that are required of organizational security analysts.
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